Preprints and papers
Preprints
- Hirofumi Osada
Ginibre interacting Brownian motion in infinite dimensions is sub-diffusive
https://arxiv.org/abs/2109.14833
- Hirofumi Osada, Ryosuke Tsuboi
Dyson’s model in infinite dimensions is irreducible
https://https://arxiv.org/pdf/2107.10752.pdf
- Hirofumi Osada
Stochastic Analysis of Infinite Particle Systems – A new development in classical stochastic analysis and dynamical universality of random matrices: translation of Sugaku 70 (2019), no. 2, 113–137.
PDF File
- Hirofumi Osada, Hideki Tanemura
Infinite-dimensional stochastic differential equations arising from Airy random point fields
http://arxiv.org/abs/1408.0632v5
Papers
- Yosuke Kawamoto, Hirofumi Osada
Dynamical universality for random matrices
Partial Differential Equations and Applications volume 3, Article number: 27 (2022)
https://arxiv.org/abs/2107.10752 PDF File
- Hirofumi Osada
Stochastic geometry and dynamics of infinitely many particle systems—random matrices and interacting Brownian motions in infinite dimensions
https://www.ams.org/journals/suga/2021-34-02/S0898-9583-2021-00461-6/
- Yosuke Kawamoto, Hirofumi Osada, Hideki Tanemura
Infinite-dimensional stochastic differential equations and tail σ-fields II: the IFC condition
PDF file
- Yosuke Kawamoto, Hirofumi Osada, Hideki Tanemura
Uniqueness of Dirichlet forms related to infinite systems of interacting
Brownian motions
Potential Anal. (2020).
https://doi.org/10.1007/s11118-020-09872-2
http://arxiv.org/abs/1711.07796v2
- Hirofumi Osada, Hideki Tanemura
Infinite-dimensional stochastic differential equations and tail σ-fields
Probability Theory and Related Fields 177, 1137--1242 (2020).
https://doi.org/10.1007/s00440-020-00981-y
http://arxiv.org/abs/1412.8674v12
- Hirofumi Osada
Stochastic analysis for infinite many particle systems: translation of Sûgaku 69 (2017), no. 3, 225--254
to appear in Sugaku Expositions. PDF File
- Yosuke Kawamoto, Hirofumi Osada
Dynamical Bulk Scaling limit of Gaussian Unitary Ensembles and Stochastic-Differential-Equation gaps
Journal of Theoretical Probability, 32(2), 2019, 907--933.
https://doi.org/10.1007/s10959-018-0816-2
- Alexander I Bufetov, Andrey V Dymov, Hirofumi Osada
The logarithmic derivative for point processes with equivalent Palm measures
J. Math. Soc. Japan, 71(2), 2019, 451--469. http://arxiv.org/abs/1707.01773
- Yosuke Kawamoto, Hirofumi Osada
Finite-particle approximations for interacting Brownian particles with logarithmic potentials
J. Math. Soc. Japan, Volume 70, Number 3 (2018), 921-952. doi:10.2969/jmsj/75717571
https://projecteuclid.org/euclid.jmsj/1529309020 PDF File
- Hirofumi Osada
Infinite-dimensional Stochastic Differential Equations with Symmetry
In: Eberle A., Grothaus M., Hoh W., Kassmann M., Stannat W., Trutnau G. (eds) Stochastic Partial Differential Equations and Related Fields. SPDERF 2016. Springer Proceedings in Mathematics & Statistics, vol 229. Springer, Cham
https://doi.org/10.1007/978-3-319-74929-7_38e PDF File
- Hirofumi Osada, Shota Osada
Discrete approximations of determinantal point processes on continuous spaces: tree representations and tail triviality
Journal of Statistical Physics, 170(2018), no.2, 421--435. https://doi.org/10.1007/s10955-017-1928-2
- Hirofumi Osada
Self-diffusion constants of non-colliding interacting Brownian motions in one spatial dimension
"Stochastic analysis on large scale interacting systems", RIMS Kôkyûroku Bessatsu, B59, 253--272, 2016
- Hirofumi Osada, Hideki Tanemura
Stochastic differential equations related to random matrix theory
"Stochastic analysis on large scale interacting systems", RIMS Kôkyûroku Bessatsu, B59, 203--214, 2016
- Hirofumi Osada, Tomoyuki Shirai
Absolute continuity and singularity of Palm measures of the Ginibre point process
Probability Theory and Related Fields, 2016, 165(3-4), 725--770.
https://doi.org/10.1007/s00440-015-0644-6
- Hirofumi Osada, Hideki Tanemura
Strong Markov property of determinantal processes with extended kernels
Stochastic Processes and their Applications, 2016, 126(1), 186--208.
https://doi.org/10.1016/j.spa.2015.08.003
- Hirofumi Osada, Ryuichi Honda
Infinite-dimensional stochastic differential equations related to Bessel random point fields
Stochastic Processes and their Applications, 2015, 125(10), 3801--3822.
https://doi.org/10.1016/j.spa.2015.05.005
- Hirofumi Osada, Hideki Tanemura
Cores of Dirichlet forms related to random matrix theory
Proceedings of the Japan Academy Series A: Mathematical Sciences, 2014, 90(10), 145--150.
https://doi.org/10.3792/pjaa.90.145
- Hirofumi Osada
Interacting Brownian motions in infinite dimensions with logarithmic interaction potentialsII: Airy random point field.
Stochastic Processes and their Applications, 2013, 123(3), 813--838.
https://doi.org/10.1016/j.spa.2012.11.002
- Hirofumi Osada
Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials
Annals of Probability, 2013, 41(1), 1--49. https://doi.org/10.1214/11-AOP736
- Hirofumi Osada
Infinite-dimensional stochastic differential equations related to random matrices
Probability theory and related fields, 2012, 153(3-4), 471--509.
https://doi.org/10.1007/s00440-011-0352-9
- Hirofumi Osada
Tagged particle processes and their non-explosion criteria
Journal of the Mathematical Society of Japan, 2010, 62(3), 867--894.
https://doi.org/10.2969/jmsj/06230867
- Hirofumi Osada, Tomoyuki Shirai
Variance of the linear statistics of the Ginibre random point field
RIMS Kôkyûroku Bessatsu B6: Proceedings of RIMS Workshop on Stochastic Analysis and Applications eds. M. Fukushima and I. Shigekawa, 2008, 193--200.
- Hirofumi Osada
Exotic Brownian motions
Kyushu Jarnal of Mathematics, 2007, 61(1), 233--257.
DOI:10.2206/kyushujm.61.233
- Hirofumi Osada
Singular time changes of diffusions on Sierpinski carpets
Stochastic Processes and their Applications, 2006, 116(4), 675--689.
DOI:10.1016/j.spa.2005.11.004
- Hirofumi Osada
Non-collision and collision properties of Dyson's model in infinite dimension and other stochastic dynamics whose equilibrium states are determinantal random point fields
T. Funaki, & H. Osada (Eds.), Stochastic Analysis on Large Scale Interacting Systems (Vol. 39, pp. 325--343). (Advanced Studies in Pure Mathematics ; Vol. 39). Mathematical Society of Japan.
- Hirofumi Osada
Harnack inequalities for exotic Brownian motions
Kyushu Journal of Mathematics, 2002, 56(2), 363--380.
DOI:10.2206/kyushujm.56.363
- Hirofumi Osada
Tagged particles of interacting Brownian motions with skew symmetric drifts
Monte Carlo and probabilistic methods for partial differential equations, Part II (Monte Carlo, 2000). Monte Carlo Methods and Applications, 2001, 7(3-4), 339--348. DOI:10.1515/mcma.2001.7.3-4.339
- Yuu Hariya, Hirofumi Osada
Diffusion processes on path spaces with interactions
Reviews in Mathematical Physics, 2001, 13(2), 199--220.
DOI:10.1142/S0129055X01000661
- Hirofumi Osada
A family of diffusion processes on Sierpinski carpets
Probability theory and related fields, 2001, 119(2), 275--310.
DOI:10.1007/PL00008761
- Hirofumi Osada, Herbert Spohn
Gibbs measures relative to Brownian motion
Annals of Probability , 1999, 27(3), 1183--1207.
doi:10.1214/aop/1022677444
- Hirofumi Osada
An invariance principle for Markov processes and Brownian particles with singular interaction
Annales de l'institut Henri Poincare (B) Probability and Statistics, 1998, 34(2), 217--248. DOI:10.1016/S0246-0203(98)80031-9
- Hirofumi Osada
Interacting Brownian motions with measurable potentials
Proceedings of the Japan Academy Series A: Mathematical Sciences, 1998, 74(1), 10--12. doi:10.3792/pjaa.74.10
- Hirofumi Osada
Positivity of the self-diffusion matrix of interacting Brownian particles with hard core
Probability Theory and Related Fields, 1998, 112(1), 53--90.
DOI:10.1007/s004400050183
- Hirofumi Osada
Dirichlet form approach to infinite-dimensional Wiener processes with singular interactions
Communications in Mathematical Physics, 1996, 176(1), 117--131.
https://doi.org/10.1007/BF02099365
- Hirofumi Osada
Long time estimates for transition probabilities of reflecting barrier Brownian motions
Probability theory and mathematical statistics (Tokyo, 1995), 1996, 396--402
- Hirofumi Osada, Toshifumi Saitoh
An invariance principle for non-symmetric Markov processes and reflecting diffusions in random domains
Probability Theory and Related Fields, 1995, 101(1), 45--63.
DOI:10.1007/BF01192195
- Hirofumi Osada
Self-similar diffusions on a class of infinitely ramified fractals
Journal of the Mathematical Society of Japan, 1995, 47(4), 591--616.
doi:10.2969/jmsj/04740591
- Hirofumi Osada
Estimates for transition probability of diffusion processes and their applications: translation of Sûgaku 41 (1989), no. 4, 335–344
Sugaku Expositions, 1993, 6(1), 93--105.
- Hirofumi Osada
Homogenization of reflecting barrier Brownian motions
Pitman Research Notes in Mathematics Series: Asymptotic problems in probability theory: stochastic models and diffusions on fractals (Sanda/Kyoto, 1990) ,1993(283), 59--74.
- Hirofumi Osada
Cell fractals and equations of hitting probabilities
Probability theory and mathematical statistics (Kiev, 1991), 1992, 248--258
- Hirofumi Osada
Isoperimetric constants and estimates of heat kernels of pre Sierpinski carpets
Probability Theory and Related Fields, 1990, 86(4), 469--490.
DOI:10.1007/BF01198170
- Yoshikazu Giga, Tetsuro Miyakawa, Hirofumi Osada
Diffusion of vortices in planar Navier-Stokes flow
Sūrikaisekikenkyūsho Kōkyūroku: Mathematical analysis of fluid and plasma dynamics, I (Kyoto, 1986), 1988, 656, 81--104.
- Yoshikazu Giga, Tetsuro Miyakawa, Hirofumi Osada
Two-dimensional Navier-Stokes flow with measures as initial vorticity
Archive for Rational Mechanics and Analysis, 1988, 104(3), 223--250.
DOI:10.1007/BF00281355
- Hirofumi Osada
Diffusion processes with generators of generalized divergence form
Journal of Mathematics of Kyoto University, 1987, 27(4), 597--619.
DOI:10.1215/kjm/1250520601
- Hirofumi Osada
Limit points of empirical distributions of vortices with small viscosity
The IMA Volumes in Mathematics and its Applications: Hydrodynamic behavior and interacting particle systems (Minneapolis, Minn., 1986), 1987, 9, 117--126.
DOI:10.1007/978-1-4684-6347-7_10
- Hirofumi Osada
Propagation of chaos for the two-dimensional Navier-Stokes equation
Probabilistic methods in mathematical physics (Katata/Kyoto, 1985), 1987, 303--334.
https://catalog.lib.kyushu-u.ac.jp/opac_download_md/1785460/osada_1785460.pdf
- Hirofumi Osada
Propagation of chaos for the two-dimensional Navier-Stokes equation
Proceedings of the Japan Academy Series A: Mathematical Sciences, 1986, 62(1), 8--11. doi:10.3792/pjaa.62.8
- Hirofumi Osada
A stochastic differential equation arising from the vortex problem
Proceedings of the Japan Academy Series A: Mathematical Sciences, 1985, 61(10), 333--336. doi:10.3792/pjaa.61.333
- Hirofumi Osada
Moment estimates for parabolic equations in the divergence form.
Journal of Mathematics of Kyoto University, 1985, 25(3), 473--488.
doi:10.1215/kjm/1250521067
- Shinichi Kotani, Hirofumi Osada
Propagation of chaos for the Burgers equation
Journal of the Mathematical Society of Japan, 1985, 37(2), 276--294.
doi:10.2969/jmsj/03720275
- Hirofumi Osada
Homogenization of diffusion processes with random stationary coefficients
Lecture Notes in Mathematics: Probability theory and mathematical statistics (Tbilisi, 1982), 1983, 1021, 507--517. DOI:10.1007/BFb0072946
Preprints | Papers | Publications written in Japanese
Publications written in Japanese
- Hirofumi Osada
無限粒子系の確率解析学: --古典的確率解析の新展開とランダム行列の力学的普遍性--
Stochastic analysis on infinite particle systems: new development of classical stochastic analysis and dynamical universality for random matrices
Sūgaku 70 (2019), no. 2, 113-137. PDF File
- Hirofumi Osada
無限粒子系の確率幾何と力学:--ランダム行列と無限次元干渉ブラウン運動--
Stochastic analysis for infinitely many particle systems
Sūgaku 69 (2017), no. 3, 225–-254.
- Hirofumi Osada
The work of Tadahisa Funaki—from interface to the Bessel-Wiener integrals.
Sūgaku 60 (2008), no. 2, 204–-211.
- Hirofumi Osada
The work of Takashi Kumagai—Research on diffusion processes on fractals.
Sūgaku 56 (2004), no. 4, 419–-426.
- Hirofumi Osada
The estimation of the transition probability of the diffusion process and its application.
Sūgaku 41 (1989), no. 4, 335–-344.