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Abstract
We establish an invariance principle corresponding to the universality of random matrices.
More precisely, we prove the dynamical universality of random matrices in the sense that,
if the random point fields μN of N -particle systems describing the eigenvalues of random
matrices or log-gases with general self-interaction potentials V converge to some random
point field μ, then the associated natural μN -reversible diffusions represented by solutions
of stochastic differential equations (SDEs) converge to some μ-reversible diffusion given by
the solution of an infinite-dimensional SDE (ISDE). Our results are general theorems that
can be applied to various random point fields related to random matrices such as sine, Airy,
Bessel, and Ginibre random point fields. In general, the representations of finite-dimensional
SDEs describing N -particle systems are very complicated. Nevertheless, the limit ISDE has
a simple and universal representation that depends on a class of random matrices appearing
in the bulk, and at the soft- and at hard-edge positions. Thus, we prove that ISDEs such as the
infinite-dimensional Dyson model and the Airy, Bessel, and Ginibre interacting Brownian
motions are universal dynamical objects.
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1 Introduction

The concept of universality in strongly correlated systems was envisioned by Wigner, who
conjectured that the eigenvalue distribution of a large random matrix is universal, that is, the
eigenvalue distribution depends only on the symmetry classes of matrices, rather than on the
distributions of matrix components. The universality of random matrices is a central concept
in random matrix theory, and has been studied intensively over the past two decades (see,
e.g. [3,5–8,10,20–22,36]). However, its dynamical counterpart has been much less studied.
In the present paper, we establish the concept of dynamical universality for random matrices
in a general framework.

Let us recall some universality results for the sineβ random point field derived by
Deift et al. [5,6] following Deift and Gioev [8]. We consider the ensembles M N with the
distribution

PN
β (dM N ) = 1

Z N
V ,β

e−N trV (M N )dM N

for β = 1, 2, and 4. Here, the ensembles M N consist of N × N real symmetric matrices,
N × N Hermitian matrices, and 2N × 2N Hermitian self-dual matrices for β = 1, 2, and 4,
respectively. For β = 2, the potential V is a real analytic function satisfying

lim|x |→∞
V (x)

log |x | = ∞. (1.1)

For β = 1, 4, the potential V is a real polynomial such that
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V (t) =
2m∑

n=0

vnt
n, v2m > 0. (1.2)

The density of the distribution of eigenvalues xN of M N is given by

PN
V ,β(xN ) = 1

Z N
V ,β

N∏

i< j

|xi − x j |β
N∏

k=1

e−NVβ (xk ), (1.3)

where xN = (x1, . . . , xN ) ∈ R
N , Z N

V ,β is the normalizing constant, and we set

Vβ(x) =
{
V (x), β = 1, 2,

2V (x) β = 4.
(1.4)

Note that, according to the logarithmic interaction potential, particles repel each other. The
logarithmic interaction potential has a strong long-range effect that causes special phenomena
to occur in particle systems. One example is the convergence of the empirical distribution
to a deterministic distribution that has non-degenerate density, typically known as Wigner’s
semi-circle law in the limit.

Let νN
V ,β be the random point field such that its labeled density is given by PN

V ,β . The
behavior of the system as the number of particles N tends to infinity has been extensively
studied. We set x = ∑

i δxi , where δa denotes the delta measure at a. Then, there exists a
probability density function ρV on R such that

lim
N→∞

∫
1

N
x((−∞, s])νN

V ,β(dx) =
∫ s

−∞
ρV (x) dx . (1.5)

If V (x) = x2, then νN
V ,2 gives the eigenvalue distribution of the Gaussian unitary ensemble

(GUE), which is the Hermitian random matrix whose entries follow an independent and
identically distributed Gaussian distribution. The probability measure ρV dx is simply the
Wigner semicircle law, which is given by ρV (x) = 1

π

√
2 − x21{|x |<√

2} (see, e.g., [2,23]).
The convergence in (1.5) is in the macroscopic regime. Next, we consider the microscopic

scaling limit. More precisely, we consider a local fluctuation of (1.3) and obtain a random
point field with infinitely many particles as the limit. Here, we take the bulk scaling limit.
For a constant θ ∈ R satisfying

ρV (θ) > 0, (1.6)

we set the bulk scaling at θ as

x �→ s

NρV (θ)
+ θ. (1.7)

Let mN
V ,β,θ be the rescaled density function of PN

V ,β in (1.3) under the scaling defined by

(1.7). Then,mN
V ,β,θ is given by

mN
V ,β,θ (sN ) = 1

Z N
V ,β,θ

N∏

i< j

|si − s j |β
N∏

k=1

exp
(

− NVβ

( sk
NρV (θ)

+ θ
))

. (1.8)

We define μN
V ,β,θ as the random point field whose labeled density is given bymN

V ,β,θ .
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Let μsin,β be the sineβ random point field. Let ρm
sin,β be the m-point correlation function

of μsin,β . If β = 2, then μsin,β is the determinantal random point field whose kernel is given
by

Ksin(x, y) = sin π(x − y)

π(x − y)
.

Then, by definition,

ρm
sin,2(x1, . . . , xm) = det[Ksin(xi , x j )]1≤i, j≤m .

Similar formulae are also known for β = 1, 4 (see [23]).
Bulk universality for log-gases asserts that, for a suitable and wide class of V and for any

θ satisfying (1.6),

lim
N→∞ μN

V ,β,θ = μsin,β weakly,

or, more strongly, for each m ∈ N the m-point correlation function ρ
N ,m
V ,β,θ of μN

V ,β,θ satisfies

lim
N→∞ ρ

N ,m
V ,β,θ = ρm

sin,β (1.9)

uniformly on each compact set. Note that the limit μsin,β is independent of V and θ , and, in
this sense, the sineβ random point field can be thought of as a universal object. We call such
universality static or geometric because it involves no time evolution.

Consideration of the classical invariance principle yields a natural question: what is the
dynamical counterpart of geometric universality?

We consider an N -dimensional stochastic differential equation (SDE) ofXN = (XN ,i )Ni=1
corresponding to μN

V ,β,θ such that, for 1 ≤ i ≤ N ,

XN ,i (t) − XN ,i (0) = Bi (t) + β

2

∫ t

0

N∑

j �=i

1

XN ,i (u) − XN , j (u)
du

− 1

2

∫ t

0

1

ρV (θ)
V ′

β

( XN ,i (u)

NρV (θ)
+ θ

)
du. (1.10)

Here, Bi , i = 1, . . . , N , are independent standard Brownian motions with Bi (0) = 0. We
derive (1.10) from μN

V ,β,θ as follows. Let μ̌N
V ,β,θ be the distribution of the labeled particle

system of μN
V ,β,θ . Then,

μ̌N
V ,β,θ (dxN ) = mN

V ,β,θ (xN )dxN , (1.11)

and consider the Dirichlet form on L2(RN , μ̌N
V ,β,θ ) such that

E
μN
V ,β,θ ( f , g) =

∫

RN

1

2

N∑

i=1

∂ f

∂xi

∂g

∂xi
mN

V ,β,θ (xN )dxN .

Integrating by parts and using (1.11), we have that

E
μN
V ,β,θ ( f , g) = −

∫

RN

1

2

N∑

i=1

{ ∂2 f

(∂xi )2
+ ∂ logmN

V ,β,θ

∂xi

∂ f

∂xi

}
gmN

V ,β,θ (xN )dxN

= −
∫

RN
(AN f )gmN

V ,β,θ (xN )dxN . (1.12)

123



Partial Differential Equations and Applications             (2022) 3:27 Page 5 of 51    27 

Here, from (1.8) and (1.12), we see that AN is given by

AN = 1

2
Δ + β

2

N∑

i=1

N∑

j �=i

1

xi − x j

∂

∂xi
− 1

2

N∑

k=1

1

ρV (θ)
V ′

β

( xk
NρV (θ)

+ θ
) ∂

∂xk
.

Because mN
V ,β,θ (xN ) is bounded and continuous, we easily find that the bilinear form

(E
μN
V ,β,θ ,C∞

0 (RN )) is closable on L2(RN , μ̌N
V ,β,θ ). Then, there exists a unique L2-

Markovian semi-group {T N
t } on L2(RN , μ̌N

V ,β,θ ) associated with the closure of (E
μN
V ,β,θ ,

C∞
0 (RN )). The semi-group {T N

t } is given by the solution XN of (1.10):

T N
t f (xN ) = ExN [ f (XN (t))].

Here, ExN is the expectation with respect to the solution XN starting at xN . By construction,
XN is reversible with respect to μ̌N

V ,β,θ . We denote the unlabeled dynamics of XN as XN .

Then, XN (t) = ∑N
i=1 δXN ,i (t) by definition. It is clear that XN is reversible with respect to

μN
V ,β,θ .
If the initial conditions converge, it is interesting to determine whether the stochastic

process XN converges or not, and to exploit the infinite-dimensional SDE (ISDE) satisfied
by the limit stochastic process X.

We set XN ,m = (XN ,i )mi=1 and Xm = (Xi )mi=1 for each m ∈ N. We shall prove that,
loosely speaking, if the initial distributions of XN ,m converge to that of Xm in distribution,
then

lim
N→∞XN ,m = Xm weakly in C([0,∞); R

m).

Here, XN is a solution to (1.26) for μN = μN
V ,β,θ . The limit ISDE is Dyson’s model in

infinite dimensions [35], which is an ISDE of X = (Xi )i∈N such that, for i ∈ N,

Xi (t) − Xi (0) = Bi (t) + β

2

∫ t

0
lim
R→∞

∑

j �=i
|Xi (u)−X j (u)|<R

1

Xi (u) − X j (u)
du. (1.13)

The associated unlabeled dynamics X(t) = ∑∞
i=1 δXi (t) are reversible with respect to the

sineβ random point field [27]. From the static universality defined in (1.9), we expect the
limit of (1.10) as N → ∞ to be given by (1.13). In particular, the limit does not depend on
V and θ . In other words, ISDE (1.13) is expected to be a dynamical universal object, which
is a consequence of the present paper.

The simplest case is V (t) = t2, β = 2, and |θ | <
√
2. Because ρV (θ) = 1

π

√
2 − θ2,

(1.10) becomes

XN ,i (t) − XN ,i (0) = Bi (t) +
∫ t

0

N∑

j �=i

1

XN ,i (u) − XN , j (u)
du

− π2

N (2 − θ2)

∫ t

0
XN ,i (u)du − πθ√

2 − θ2
t . (1.14)
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In [14], the authors proved that the solution of (1.14) converges to that of (1.13) in distribution
in C([0,∞); R

m) for each m if the dynamics start from reversible measures. Note that the
term − πθ√

2−θ2
t in (1.14) disappears in (1.13).

Suppose that V is a real analytic function satisfying (1.1) and β = 2. Set

c1 := 1

2

1

ρV (θ)
V ′(θ). (1.15)

Then, as N → ∞, the remaining part in the last term of (1.10) is −c1t , which vanishes in
(1.13). Thus, we see that the convergence has an SDE gap. This phenomenon is a result of
the long-range interaction of the logarithmic potential, and never happens for translation-
invariant random point fields with potentials of Ruelle’s class.

Our result is an invariance principle in the sense that weak convergence occurs in the
path space C([0,∞); R

N). As an application of the invariance principle, we see from (1.10),
(1.15), and (1.26) that, for a ≥ 0 and i ≤ nN ,

lim
N→∞ P

(
max
0≤t≤T

{
XN ,i (t) − XN ,i (0) −

∫ t

0

nN∑

j �=i

1

XN ,i (u) − XN , j (u)
du

+ c1t −
∫

S\SrN

1

XN ,i (t) − y
ρN ,1(y)dy

}
≥ a

)

= 2
∫

x≥a

1√
2πT

e−|x |2/2T dx . (1.16)

Here,ρN ,1 is the one-point correlation function ofμN := μN
V ,2,θ with respect to the Lebesgue

measure. The process (XN ,i )
nN
i=1 is a solution of SDE (1.26) on {|x | < rN }nN for μN with

V as above. The number of particles in SrN is denoted by nN , and so XN ,i (0) ∈ SrN for
i = 1, . . . , nN . The radius of the domain SrN satisfies limN→∞ rN = ∞. Furthermore, (1.26)
is given by (1.10) with the reflecting boundary condition and the free potential in (1.27) for
Ψ N (x) = −2 log |x |. We prove that (1.16) holds in Sect. 10.1.

The next example is the Ginibre random point field. The Ginibre random point field μgin

is a determinantal random point field on R
2 that has the kernel Kgin with respect to the

Lebesgue measure such that

Kgin(x, y) = 1

π
exp

(
− |x |2 + |y|2

2
+ x ȳ

)
. (1.17)

Here, we naturally regard R
2 as C by (x, y) �→ x + √−1y. Then, by definition, the m-point

correlation function ρm
gin with respect to the Lebesgue measure is given by

ρm
gin(x1, . . . , xm) = det[Kgin(xi , x j )]mi . j=1.

The Ginibre random point fieldμgin is a limit of the random point fieldsμN
gin arising from the

ensemble of the complex non-HermitianGaussian randommatricesMN
gin = (MN

gin(i, j))
N
i . j=1

in which the 2N 2 parameters are independent Gaussian random variables with mean zero
and variance 1/2. The labeled density mN

gin of the distribution of the eigenvalues of MN
gin is

given by

mN
gin(x1, . . . , xN ) = 1

Z

⎧
⎨

⎩

N∏

i< j

|xi − x j |2
⎫
⎬

⎭ e−∑N
k=1 |xk |2 . (1.18)
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From (1.18), similar to the case for (1.10)–(1.12), we derive the SDE describing the labeled
N -particle dynamics XN = (XN ,i )i=1,...,N as follows. For i = 1, . . . , N ,

XN ,i (t) − XN ,i (0) = Bi (t) −
∫ t

0
XN ,i (u)du +

∫ t

0

N∑

j �=i

X N ,i (u) − XN , j (u)

|XN ,i (u) − XN , j (u)|2 du.

(1.19)

It has been shown [13] that, under suitable assumptions regarding the initial distributions,
the dynamics of the first m particles XN ,m = (XN ,1, . . . , XN ,m) converge weakly in
C([0,∞); (R2)m) to those of the unique strong solutionsX = (Xi )∞i=1 of the ISDE such that

Xi (t) − Xi (0) = Bi (t) −
∫ t

0
Xi (u)du +

∫ t

0
lim
R→∞

∑

j �=i
|X j (u)|<R

Xi (u) − X j (u)

|Xi (u) − X j (u)|2 du.

(1.20)

It has also been shown [27,31] that the solution X of (1.20) satisfies the second ISDE

Xi (t) − Xi (0) = Bi (t) +
∫ t

0
lim
R→∞

∑

j �=i
|Xi (u)−X j (u)|<R

Xi (u) − X j (u)

|Xi (u) − X j (u)|2 du. (1.21)

Thus, both ISDEs have the same unique strong solution X, and the solution X satisfies two
different ISDEs [27,31]. Such multiple representations of ISDEs are the result of the long-
range nature of the logarithmic interaction potential in the drift terms of (1.20) and (1.21).

The unlabeled dynamics X(t) = ∑∞
i=1 δXi (t) describe μgin-reversible diffusion [28]. The

ISDEs are obtained from the general theory for random point fields and the associated ISDEs
in [27,31]. Note that, even in such a typical case, the convergence of finite particle systems
is a sensitive problem, as we see from (1.19)–(1.21).

Akemann–Cikovic–Venker [1] proved the following universality of the Ginibre random
point field. LetJ (N ) be the space of the normal matrices of order N . For constants γ ≥ 0,
Kp ∈ R, and ω ∈ [0, 1), consider the probability measure onJ (N ) whose density is given
by

σ(J ) = 1

Z
exp

{ N

1 − ω2 Tr(J J
∗ − ω

2
(J 2 + J ∗2)) − γ (TrJ J ∗ − NKp)

2
}
.

Then, the joint density of the eigenvalues is proportional to
⎧
⎨

⎩

N∏

i< j

|zi − z j |2
⎫
⎬

⎭

× exp
{

− N

1 − ω2

( N∑

i=1

|zi |2 − ω

2

N∑

i=1

(z2i + z̄i
2)
)

− γ
( N∑

i=1

|zi |2 − NKp

)2}
(1.22)

Let ρ
N ,m
gin be the m-point correlation function of the eigenvalue density corresponding to

(1.22). For positive constants c2 and c3, we set

E = {z ∈ C; c2(�z)2 + c3(z)2 < 1}.
We quote a universality result for the Ginibre random point field from [1].
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Proposition 1.1 ([1, Theorem 1]) There exist positive constants c2, c3, c4 depending on K p,
γ , ω such that, for any ζ ∈ C \ ∂E,

lim
N→∞

1

N
ρ
N ,1
gin (ζ ) = c4

π
1E (ζ ).

Furthermore, for each m ∈ N and ζ ∈ E,

1

(c4N )m
ρ
N ,m
gin

(
ζ + z1√

c4N
, . . . , ζ + zm√

c4N

)
= ρm

gin(z1, . . . , zm) + O
( 1√

N

)
.

Here, the error term O
(

1√
N

)
can be taken uniformly on each compact set in C

m.

We shall investigate a dynamical counterpart of this result.
From the same calculation as for (1.11)–(1.12), we obtain from (1.22) the SDE of the N

particles XN = (XN ,i )Ni=1 such that, for i = 1, . . . , N ,

XN ,i (t) − XN ,i (0) = Bi (t) +
∫ t

0

N∑

j �=i

X N ,i (u) − XN , j (u)

|XN ,i (u) − XN , j (u)|2 du

−
∫ t

0

N

1 − ω2

1√
c4N

(
ζ + XN ,i (u)√

c4N

)
du

+
∫ t

0

N

1 − ω2

ω

2

1√
c4N

{(
ζ + XN ,i (u)√

c4N

)
+
(
ζ + XN ,i (u)√

c4N

)†}
du

−
∫ t

0

2γ√
c4N

(
ζ + XN ,i (u)√

c4N

){ N∑

j=1

∣∣∣ζ + XN , j (u)√
c4N

∣∣∣
2 − NKp

}
du. (1.23)

Here, we set (x, y)† = (x,−y) ∈ R
2. The limit ISDE corresponding to μGin is

Xi (t) − Xi (0) = Bi (t) +
∫ t

0
lim
R→∞

∑

j �=i
|Xi (u)−X j (u)|<R

Xi (u) − X j (u)

|Xi (u) − X j (u)|2 du (i ∈ N).

Thus, although the representation of the N -particle SDE is quite complicated, the limit ISDE
is very simple and universal.

To prove such dynamical finite particle approximations, the authors have previously estab-
lished a general theory [13]. The framework in [13] does not depend on the dimension of the
underlying space, the inverse temperature, or the integrable structures; thus, the theory can
be applied to many examples. A key point in our previous paper is the control of drift terms
in finite-dimensional SDEs, which provide a sensitive estimate for the long-range interaction
potential. Actually, we have proved the dynamical bulk scaling limit by completing such an
estimate [14]. However, when the potentials become some general V (x), the calculations are
more difficult. In particular, whenwe consider an ISDE related to the Airy random point field,
which arises from the soft-edge scaling limit of eigenvalue distributions of random matri-
ces, this presents a more complicated problem. Indeed, the drift term in the corresponding
finite-dimensional SDE includes a divergent term [32].

To overcome this difficulty, we construct a newmethod in the present paper. This approach
uses the convergence concept of Dirichlet forms associated with finite or infinite particle
systems. Let ρN ,m and ρm be the m-point correlation functions of μN and μ, respectively.
Let σm

R be the m-point density function of μ on SR = {|s| < R}. As well as the existence of
infinite particle dynamics, we assume two main conditions for convergence:
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(I) We assume that limN→∞ ρN ,m = ρm uniformly on each compact set, and the capacity
of the zero points of σm

R vanishes.
(II) We assume the uniqueness in law of weak solutions to the limit ISDE.

Condition (I) is related to the static property of random point fields, while Condition (II) con-
cerns the dynamical property of infinite-particle systems in the limit. These two ingredients
are sufficient for dynamical universality.

Only condition (I) is related to finite-particle systems. This is purely because of the static
property of such systems—we do not require any assumption regarding estimates related to
the dynamics of finite-particle systems, such as the estimates of drift terms in [13]. Addition-
ally, themethod derived in the present paper is independent of the dimension of an underlying
space, the inverse temperature, or the integrable structures, as in [13].

Consequently, if the limit ISDE has a unique weak solution, the strong convergence of ran-
dompoint fields automatically implies dynamical convergence. It has been proved that several
ISDEs with coefficients given by the logarithmic interaction potential have unique solutions
[31,37]. Therefore, the static strong universality of random matrices can be strengthened to
dynamical universality, not only for Dyson’s Brownian motion and the Ginibre random point
field, but also for ISDEs related to the Airy random point field, the Bessel random point field,
and so on.

We now explain some of our main results. There exists a natural correspondence among a
random point field μ on S, an unlabeled diffusionX in the configuration spaceS over S, and
an ISDE X on SN (see [27,28]). For a given random point field μ, the associated unlabeled
diffusion X is given by distorted Brownian motion, which is a Dirichlet form whose energy
and time change measures are common (see Sect. 2). The correspondence between X and X
is given byX(t) = ∑∞

i=1 δXi (t) andX = (Xi )i∈N. Furthermore, the labeled dynamicsX have
a representation as a solution of an ISDE. The ISDE is described in terms of the logarithmic
derivative dμ of μ as follows:

Xi (t) − Xi (0) = Bi (t) + 1

2

∫ t

0
dμ(Xi (u),

∞∑

j �=i

δX j (u))du. (1.24)

See Definition 2.1 for the definition of the logarithmic derivative dμ.
For a random point field μN , we consider a window SrN = {|x | ≤ rN }, 0 < rN < ∞,

such that

lim
N→∞ rN = ∞ (1.25)

and introduce the diffusion (XN ,i
rN )

nN
i=1 with the state space (SrN )nN such that, for 1 ≤ i ≤ nN ,

where nN is the number of particles in SrN ,

XN ,i
rN (t) − XN ,i

rN (0) = Bi (t) + 1

2

∫ t

0
dN (XN ,i

rN (u),

nN∑

j �=i

δ
XN , j
rN (u)

)du

+ 1

2

∫ t

0
UN (XN ,i

rN (u))du + 1

2
BCN (XN ,i

rN (t)). (1.26)

Here, BCN (XN ,i
rN (t)) comes from a boundary condition of ∂SrN and UN is a free potential

caused by the average of the outside particles. Furthermore, dN is the logarithmic derivative
of μN . If dN is given by an interaction potential Ψ N with inverse temperature β, then UN

becomes
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UN (x) = β

2

∫

ScrN

∇Ψ N (x, y)ρN ,1(y)dy, (1.27)

where ρN ,1 is the one-point correlation function of μN (see (3.24)–(3.25)). By construction,
the associated unlabeled diffusion XN (t) = ∑nN

i=1 δXN ,i
rN (t) is μN ◦ π−1

rN -reversible. Here,

πrN (s) = s(· ∩ SrN ). We label the particles here in such a way that |XN ,i
rN (0)| ≤ |XN ,i+1

rN (0)|
for all i . Note that the number nN is, therefore, random.

The last term in (1.26) will vanish as N → ∞ because of (1.25). The relation between
dN and dμ is not transparent, as we saw in (1.10), (1.14), and (1.23). Nevertheless, in Corol-
lary 3.3, we shall prove that there exists a sequence {rN } satisfying (1.25) such that (XN ,i

rN )mi=1
converge weakly in C([0,∞); Sm) to the firstm components ofX. In this sense, the geomet-
ric universality in condition (I) to a random point field μ yields the dynamical universality
to the solution X of ISDE (1.24).

The idea behind the proof of the dynamical universality is as follows. One of the main
tools for the proof is the generalized Mosco convergence, in the sense of Kuwae–Shioya
[18], of Dirichlet forms (cf. [17]). This convergence is equivalent to the strong convergence
of semi-groups corresponding to Dirichlet forms. The Mosco convergence concept consists
of two convergence relations related to Dirichlet forms (see Definition 4.4).

For a random point field μ, there are two canonical Dirichlet forms, called the upper
and lower Dirichlet forms (see Sect. 2). Accordingly, two natural schemes of finite-volume
Dirichlet forms exist, and each scheme converges to the limit Dirichlet form. We shall prove
that these two schemes of Dirichlet forms realize the two convergence relations in the Mosco
convergence definition, respectively. We use condition (I) at this stage.

In addition, the two canonicalDirichlet forms in the limit are the sameunder the uniqueness
in law of weak solutions to the ISDE. Hence, we conclude the Mosco convergence from
conditions (I) and (II).

In [15], we proved the uniqueness of Dirichlet forms applicable to the current situation.
This uniqueness theorem is robust and can be applied to random point fields from random
matrix theory despite the long-range interaction of these random point fields.

Note that, in general, dynamical convergence fails under only the weak convergence
of measures, even in one-dimensional diffusion. A typical example is a homogenization
problem. Hence, we must assume a stronger convergence of the random point fields μN ,
such as that specified by condition (I). Thus, the strong convergence in condition (I) is a
valid assumption. We note that examples of the universality of random matrices satisfying
the uniform convergence of correlation functions on each compact set can be found in [5–
8,21,22,34].

In our argument, it is critical to take solutions of ISDEs as the limiting point of the stochas-
tic dynamics. There are different constructions of infinite-dimensional stochastic dynamics
arising from random matrices for d = 1 and β = 2. In [12], the dynamics were constructed
by using spatial–temporal correlation functions. Using [29–31], we find that this construction
defines the same stochastic dynamics as given by solutions of ISDEs. In [4], the dynamics
were constructed using the Brownian Gibbs property. It is plausible, but has not yet been
proved, that this construction also defines the same dynamics given by the solutions of ISDEs.

The remainder of this paper is organized as follows. In Sect. 2, we set up Dirichlet forms
and recall the relations among random point fields, unlabeled diffusions, and an SDE repre-
sentation. In particular, two types of unlabeled diffusions are presented. In Sect. 3, we state
the main theorems (Theorems 3.1–3.5). In Sect. 4, we recall the concept of Mosco conver-
gence in the sense of Kuwae-Shioya, before proving Theorem 3.1 in Sect. 5. In Sect. 6, we
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prepare some results related to cut-off Dirichlet forms for the proof of Theorems 3.2–3.5.
In Sect. 7, we prove Theorems 3.2–3.3, and then in Sect. 8, we prove Theorems 3.4–3.5. In
Sect. 9, we present a sufficient condition for (C3). Finally, Sect. 10 presents some examples
of dynamical universality arising from random matrix theory.

2 Preliminaries

2.1 Two spatial approximations of Dirichlet forms

In this section, we prepareDirichlet forms and the associated dynamics, following [15,24,27].

Let S be a connected open set in R
d such that S

int = S. We take S as the underlying space,
and denote the configuration space over S asS . By definition,S is the set of Radonmeasures
consisting of sums of point measures:

S =
{
s =

∑

i

δsi ; si ∈ S, s(K ) < ∞ for any compact set K in S

}
.

Here, we regard the zero measure as an element ofS. The setS is equipped with the vague
topology, under which S is a Polish space. We set SR = {|s| < R} and

Sm
R = {s ∈ S ; s(SR) = m}.

For a set A ⊂ S, let πA : S → S be the projection map given by πA(s) = s(· ∩ A). We
often write πR = πSR . A function f on S is said to be local if f is σ [πK ]-measurable for
some compact set K in S. For such a local function f onS, f is said to be smooth if f̌ = f̌O
is smooth for a relatively compact open set O ⊂ S such that K ⊂ O . Here, f̌O is a function
defined on ∪∞

k=0O
k such that, for each k, f̌O(x1, . . . xk) restricted on Ok is symmetric in

xi (i = 1, . . . , k) and f̌O(x1, . . . , xk) = f (x), where
∑k

i=1 δxi = πO (x). The case k = 0
corresponds to a constant function. Because x is a configuration and O is relatively compact,
the cardinality of the particles of x is finite in O . Note that f̌O has the consistency property
such that

f̌O(x1, . . . , xk) = f̌O ′(x1, . . . , xk) for all (x1, . . . , xk) ∈ Ok ∩ O
′k .

Thus, we see that f (x) = f̌ (x1, . . . xk) is well-defined.
Next, we introduce carré du champ operators onS. Let a = (apq)dp,q=1 be an R

d2 -valued
function defined on S × S such that apq = aqp and a is elliptic and bounded: there exists a
constant c5 such that, for all (x, s) ∈ S × S,

c−1
5 |ξ |2 ≤ (aξ, ξ)Rd ≤ c5|ξ |2 for all ξ ∈ R

d . (2.1)

Because a(x, s) = a(x,
∑

i δsi ) is symmetric in (si )i , we can construct a function, denoted
by the same symbol a(x, s1, s2, . . .) such that a is symmetric in (s1, s2, . . .) for each x ∈ S
and

a(x, s1, s2, . . .) = a(x,
∑

i

δsi ). (2.2)

Let D◦ be the set of all local, smooth functions onS. For f , g ∈ D◦, we set
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D
a[ f , g](s) = 1

2

∑

si∈S
(a(si , si♦)∇si f̌ (s),∇si ǧ(s))Rd , (2.3)

D
a
R[ f , g](s) = 1

2

∑

si∈SR
(a(si , si♦)∇si f̌ (s),∇si ǧ(s))Rd . (2.4)

Here, for s = (si )i , we set s = ∑
i δsi and si♦ = ∑

j �=i δs j . The right-hand sides of (2.3)
and (2.4) are symmetric functions in s = (si )i . Hence, we regard them as functions in s. Let

D
a,m
R [ f , g](s) = 1Sm

R
(s) D

a
R[ f , g](s). (2.5)

Then, by construction,

D
a
R =

∞∑

m=1

D
a,m
R , lim

R→∞ D
a
R[ f , g] = D

a[ f , g] for f , g ∈ D◦.

A probability measure μ on S is called a random point field. For a random point field
μ, we set L2(μ) := L2(S, μ) and D

μ◦ = { f ∈ D◦ ∩ L2(μ) ; E ( f , f ) < ∞}. For each
R,m ∈ N, we define the bilinear forms on L2(μ) such that

E ( f , g) =
∫

S
D
a[ f , g]dμ, ER( f , g) =

∫

S
D
a
R[ f , g]dμ

E m
R ( f , g) =

∫

S
D
a,m
R [ f , g]dμ.

We assume the following.
(A1) (E m

R ,D
μ◦ ) is closable on L2(μ) for each R,m ∈ N.

Set BR = { f ; f is σ [πR]-measurable}. If f ∈ BR , then f (s) is independent of πc
R(s).

Hence, for f ∈ D◦ ∩ BR , we have that

D
a[ f , f ](s) = D

a
R[ f , f ](s) = D

a,m
R [ f , f ](s) for all s ∈ Sm

R . (2.6)

From (2.6), we obtain that, for f ∈ D◦ ∩ BR ,

E ( f , f ) = ER( f , f ) =
∞∑

m=1

E m
R ( f , f ).

This obvious identity is one of the key points of the argument in [24]. In the following, we
quote a sequence of results from [24].

Lemma 2.1 ([24, Lemma 2.2]) Assume that (A1) is satisfied. Then, the following hold:

(1) (ER,D
μ◦ ) is closable on L2(μ).

(2) (E ,D
μ◦ ∩ BR) is closable on L2(μ).

Proof Claim (1) follows from Lemma 2.2 (1) in [24]. Claim (2) follows from Claim (1) and
D

μ◦ ∩ BR ⊂ D
μ◦ . ��

We write (E 1,D1) ≤ (E 2,D2) if D1 ⊃ D2 and E 1( f , f ) ≤ E 2( f , f ) for any f ∈ D2.
For a sequence {(E n,Dn)}n∈N of positive definite, symmetric bilinear forms on L2(μ), we
say that {(E n,Dn)} is increasing if (E n,Dn) ≤ (E n+1,Dn+1) for any n ∈ N, and decreasing
if (E n,Dn) ≥ (E n+1,Dn+1) for any n ∈ N.

Taking Lemma 2.1 into account, we denote the closures of (ER,D
μ◦ ) and (E ,D

μ◦ ∩ BR)

on L2(μ) as (ER,D R) and (ER,DR), respectively. Note that (ER,D R) is an extension of
(ER,DR) in the sense that DR ⊂ D R and the value ER( f , f ) for f ∈ DR of (ER,DR)

coincides with that of (ER,D R).
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Lemma 2.2 ([24, Lemma 2.2]) Assume that (A1) is satisfied. Then, the following hold:

(1) {(ER,D R)}R∈N is increasing.
(2) {(ER,DR)}R∈N is decreasing.

By definition, the largest closable part ((Ẽ )reg, (D̃)reg) of a given positive symmetric form
(Ẽ , D̃)with a dense domain is a closable form such that ((Ẽ )reg, (D̃)reg) is the largest element
of closable forms dominated by (Ẽ , D̃). Such a form exists and is unique [33, Theorem S.15].

Let D∞ = ⋃
R∈N DR . Let (E∞,D∞) be the symmetric form such that

E∞( f , f ) = lim
R→∞ ER( f , f ).

From Lemma 2.1 and Lemma 2.2, we obtain the following.

Lemma 2.3 ([24]) Assume (A1). Then, the following hold:

(1) (E ,D
μ◦ ) is closable on L2(μ).

(2) The closure of ((E∞)reg, (D∞)reg) on L2(μ) coincides with that of (E ,D
μ◦ ) on L2(μ).

From Lemma 2.3 (1), we denote the closure of (E ,D
μ◦ ) on L2(μ) as (E ,D).

By Lemma 2.2 (2), {(ER,D R)}R∈N is increasing. Let (E ,D) be the closed symmetric
form given by the increasing limit of {(ER,D R)}R∈N as R → ∞. Then, by definition,

E ( f , f ) = lim
R→∞ ER( f , f ), D =

{
f ∈

∞⋂

R=1

D R ; lim
R→∞ ER( f , f ) < ∞

}
. (2.7)

We say a sequence of positive closed bilinear forms {(E N ,DN )} on L2(μ) converges to
a positive closed bilinear form (E ,D) on L2(μ) in the strong resolvent sense if the sequence
of their resolvents {RN

α } converges to the resolvent Rα of (E ,D) on L2(μ) strongly in L2(μ)

for each α > 0.
Summarizing the above, we obtain the following lemma.

Lemma 2.4 Assume that (A1) is satisfied. Then, the following hold:

(1) (E ,D) is the strong resolvent limit of {(ER,DR)}R∈N as R → ∞.
(2) (E ,D) is the strong resolvent limit of {(ER,D R)}R∈N as R → ∞.
(3) (E ,D) ≤ (E ,D).

Proof The first two statements follow fromTheorem3 in [24]. The third follows fromRemark
(3) in [24, 120 p]. ��

Taking Lemma 2.4 (3) into account, we call (E ,D) and (E ,D) the lower and upper
Dirichlet forms, respectively. We make an assumption.
(A2) (E ,D) = (E ,D).

We shall present a sufficient condition for (A2) in Lemma 2.9.

2.2 A diffusion associated with the upper Dirichlet form

In Sect. 2.2, we introduce the S-valued diffusion X given by the Dirichlet form (E ,D) on
L2(μ), and the associated SN-valued labeled process X.
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We denote the density function of μ onSm
R with respect to the Lebesgue measure on SmR

as σm
R , that is, σ

m
R is the symmetric function such that

1

m!
∫

SmR

f mR (xm)σm
R (xm)dxm =

∫

Sm
R

f (x)dμ

for any bounded σ [πR]-measurable functions f , where f mR is a symmetric function on SmR
such that f mR (xm) = f (x) for xm = (x1, . . . , xm) and x = ∑m

i=1 δxi ∈ Sm
R . We set the

following condition:
(A3) μ has a density function σm

R for each R,m ∈ N, and μ satisfies

∞∑

m=1

mμ(Sm
R ) < ∞ for each R ∈ N.

We recall the concepts of quasi-regularity and locality of Dirichlet forms [9,19]. Quasi-
regularity and locality guarantee the existence of the associated diffusion. Here, a diffusion
process is a strong Markov process with continuous sample paths starting at each point in
the state space.

We say that a diffusion (X,P) = ({X(t)}, {Ps}) is associated with the Dirichlet form
(E ,D) on L2(μ) if Tt f (s) = Es[ f (X(t))] for any f ∈ L2(μ), where {Tt } is the L2(μ)-
semi-group given by the Dirichlet form (E ,D) on L2(μ) and Es is the expectation with
respect to Ps. By definition, Ps(X(0) = s) = 1. We say that X(t) is μ-reversible if Tt is
μ-symmetric andμ is an invariant probability measure of Tt . The unlabeled diffusion (X,P)

associated with (E ,D) on L2(μ) is constructed in [15,24].

Lemma 2.5 ([24, Theorem 1, Corollary 1], [15, Lemma 2.5]) Assume that (A1) and (A3)
hold. Then, (E ,D) is a local, quasi-regular Dirichlet form on L2(μ). In particular, there
exists an S-valued, μ-reversible diffusion (X,P) associated with (E ,D) on L2(μ).

Let u be the map defined on {∪∞
m=0S

m} ∪ SN such that u(s) = ∑
i δsi for s = (si )i . Here,

S0 = {∅} and u(∅) = 0, where 0 is the zero measure. We call u the unlabeling map.
LetSsi be the subset ofS consisting of the single and infinite configurations. By definition,

Ssi = Ss ∩ Si, where Ss and Si are given by

Ss = {s ∈ S ; s({x}) ≤ 1 for all x ∈ S}, Si = {s ∈ S ; s(S) = ∞}. (2.8)

We denote the set consisting of A-valued continuous paths on [0,∞) as W (A). Each w ∈
W (Ss) can be written asw(t) = ∑

i δwi (t), wherewi is an S-valued continuous path defined
on an interval Ii of the form [0, bi ) or (ai , bi ), where 0 ≤ ai < bi ≤ ∞. Note that
intervals of this form are unique up to labeling. Additionally, note that if ∂S = ∅, then
limt↓ai |wi (t)| = ∞ and limt↑bi |wi (t)| = ∞ for bi < ∞ for all i . For A ⊂ Ss, we set

WNE(A) = {w ∈ W (A) ; Ii = [0,∞) for all i}. (2.9)

We say that the tagged path wi of w does not explode if bi = ∞, and does not enter if
Ii = [0, bi ). By definition,WNE(Ssi) is the set consisting of non-exploding and non-entering
paths of infinitely many non-colliding particles.

The measurable map l : Ss\{0} → {∪∞
m=1S

m} ∪ SN is called a label if u ◦ l(s) = s for all
s ∈ Ss\{0}. For a label l, we set

lpath : WNE(Ss\{0}) → C([0,∞); {∪∞
m=1S

m} ∪ SN) (2.10)
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by

lpath(w)(0) = l(w(0)), u(lpath(w)(t)) = w(t). (2.11)

The map lpath is uniquely determined by l.

Let Pμ be the distribution of the unlabeled diffusion with X(0)
law= μ, where X

law= μ

denotes that the distribution of a random variable X equals μ. We assume that the stochastic
processX is defined onW (S) such thatX(w)(t) = w(t) forw = {w(t)} ∈ W (S). We make
the following assumption.
(A4) Pμ(WNE(Ssi)) = 1.

Lemma 2.6 Assume that (A1), (A3), and (A4) hold. Let (X,P) be the diffusion in Lemma 2.5.
Then, there exists a unique labeled process X ∈ C([0,∞); SN) such that X(0) = l(s) for
μ-a.s.s and u(X(t)) = X(t).

Proof Because of (A4), X := lpath(X) is well-defined for Pμ-a.s. Let Pμ(·|X(0) = s) be
the regular conditional probability. Then, X = lpath(X) under Pμ(·|X(0) = s) satisfies the
claim. ��
Remark 2.1 Recall that S is an open set. If ∂S �= ∅, then assumption (A4) implies that none
of the tagged particles Xi of X = (Xi )i∈N hits the boundary ∂S.

2.3 ISDE describing two limit stochastic dynamics, and identity of the upper and
lower Dirichlet forms

Once we have established the labeled dynamics, the next task is to describe the dynamics
more explicitly. We shall present an ISDE representation of the limit labeled dynamics X in
Lemma 2.7. For this, we recall the concept of the logarithmic derivative ofμ in Definition 2.1.

A symmetric and locally integrable function ρn : Sn → [0,∞) is called the n-point
correlation function of μ with respect to the Lebesgue measure if ρn satisfies

∫

A
k1
1 ×···×Akm

m

ρn(xn)dxn =
∫

S

m∏

i=1

s(Ai )!
(s(Ai ) − ki )!dμ

for any sequence of disjoint bounded measurable sets A1, . . . , Am ∈ B(S) and a sequence
of natural numbers k1, . . . , km satisfying k1 + · · · + km = n.

Let μ̃[1] be the measure on (S × S,B(S × S)) determined by

μ̃[1](A × B) =
∫

B
s(A)μ(ds), A ∈ B(S), B ∈ B(S).

Ifμ has a one-point correlation function ρ1, then there exists a regular conditional probability
μ̃x of μ satisfying

∫

A
μ̃x (B)ρ1(x)dx = μ̃[1](A × B), A ∈ B(S), B ∈ B(S).

The measure μ̃x is called the Palm measure of μ [11]. In this paper, we use the probability
measure μx (·) := μ̃x (· − δx ) instead of μ̃x . We call μx the reduced Palm measure of μ

conditioned at x . Informally, μx is given by

μx = μ(· − δx | s({x}) ≥ 1).
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We consider the Radon measure μ[1] on S × S such that

μ[1](dxds) = ρ1(x)μx (ds)dx .

We take μ[1] instead of μ̃[1], and call this the reduced one-Campbell measure of μ.
We write f ∈ L p

loc(μ
[1]) if f ∈ L p(SR × S, μ[1]) for all R ∈ N. We set

C∞
0 (S) ⊗ D◦ =

{
N∑

i=1

fi (x)gi (y) ; fi ∈ C∞
0 (S), gi ∈ D◦, N ∈ N

}
.

LetBb
R , R ∈ N, be a set consisting of σ [πR]-measurable, bounded functions. LetBb∞ be

the set of bounded B(S)-measurable functions. We can naturally regard Bb
R and D◦ ∩ Bb

R
as function spaces onSR . For 0 < R ≤ ∞, we set

μR = μ ◦ π−1
R . (2.12)

We denote the reduced one-Campbell measure of μR as μ
[1]
R . If R = ∞, then μR = μ and

μ
[1]
R = μ[1]. We recall the concept of the logarithmic derivative dμ of μ in [27].

Definition 2.1 Let 0 < R ≤ ∞. An R
d -valued function dμ

R ∈ L1
loc(μ

[1]
R )d is called a loga-

rithmic derivative dμ
R of μ on SR if, for all h ∈ C∞

0 (SR) ⊗ {D◦ ∩ Bb
R},

∫

SR×S
dμ
R(x, y)h(x, y)μ[1]

R (dxdy) = −
∫

SR×S
∇xh(x, y)μ[1]

R (dxdy).

We write dμ = dμ
R for R = ∞.

Let a be as in (2.2). We set ∇a(x, s) = (
∑d

j=1
∂ai j
∂x j

(x, s))di=1, where x = (x1, . . . , xd).
We make the following assumption.
(A5) The logarithmic derivative dμ

R of μ on SR exists for each R ∈ N ∪ {∞} and ∇a ∈
L1
loc(μ

[1]
R )d .

Let σ(x, s) be a matrix-valued function such that σ tσ = a. We consider the ISDE of
X = (Xi )i∈N on SN defined by

dXi (t) = σ(Xi (t),Xi♦(t))dBi (t) + 1

2
{∇a + adμ}(Xi (t),Xi♦(t))dt . (2.13)

Here, i ∈ N andXi♦(t) denotes
∑∞

j �=i δX j (t). We say that a continuous processX = (Xi )i∈N
defined on a filtered space (Ω,F , P, {Ft }) is a weak solution of (2.13) if there exists a
Brownian motion B = (Bi )i∈N on the same space such that (X,B) satisfies the following
for all t :

Xi (t) − Xi (0) =
∫ t

0
σ(Xi (u),Xi♦(u))dBi (u) +

∫ t

0

1

2
{∇a + adμ}(Xi (u),Xi♦(u))du.

Here, i ∈ N and we implicitly assume that ∂S = ∅, or no tagged particles hit the boundary.
Otherwise, a boundary term generally appears in (2.13). As we saw in Remark 2.1, the
assumption stated above follows from (A4).

Lemma 2.7 ([27]) Assume that (A1) and (A3)–(A5) hold. Then, the labeled process X =
lpath(X) under Ps given by Lemma 2.6 is a weak solution of (2.13) such that X(0) = l(s)

for μ-a.s.s.
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Proof If S = R
d , then the claim follows from Theorem 26 in [27]. The proof of the case

S �= R
d is the same as for the case R

d because of (A4), and is therefore omitted. ��
Note that the solution X in Lemma 2.7 is associated with the upper Dirichlet form (E ,D)

in the sense that the L2(μ)-semi-group Tt given by (E ,D) on L2(μ) satisfies Tt f (s) =
Es[ f (u(Xt ))] for any f ∈ L2(μ), where Es is the expectation with respect to Ps.

In [15, Theorem 3.1], it was proved that the lower Dirichlet form (E ,D) is also associated
with a weak solution X of (2.13) under mild additional constraints. Specifically, in [15], σ
was assumed to be the identity matrix. The generalization of the result in [15, Theorem 3.1]
to the present case is easy.

We make the following assumption.
(A6) For each r , s, p ∈ N with r < s, there exists dμ

r ,s,p ∈ Cb(S × S) such that

lim
r→∞ lim

s→∞ lim
p→∞ sup

R≥r+s+1
‖ dμ

r ,s,p − dμ ‖L1
loc(S×S, μ

[1]
R,s)

= 0 for μ-a.s.s. (2.14)

Here, μ[1]
R,s is the reduced one-Campbell measure of μR,s = μ(·|πc

R(s)).
Condition (A6) is not difficult to check in practice; see [15, Lemma 6.1] for a sufficient

condition. The roles of the parameters (r , s, p) in (A6) are discussed in Section 6 of [15].
Recall that (E ,D) on L2(μ) is a Dirichlet form. Hence, we have the associated Markovian
L2(μ)-semi-group T t . We quote a result from [15].

Lemma 2.8 ([15, Theorem 3.1]) Assume that (A1) and (A3)–(A6) hold. Then, there exist a
continuous S-valued process X and a family of probability measures {P

s
} associated with

(E ,D) on L2(μ). Furthermore, there exists an SN-valued continuous process X such that X
under P

s
is a solution of (2.13) with X(0) = l(s) for μ-a.s.s.

A key point of Lemma 2.8 is that (E ,D) on L2(μ) is not necessarily a quasi-regular
Dirichlet form. If (E ,D) on L2(μ) is quasi-regular, then the conclusion in Lemma 2.8 follows
immediately from the result in [27].Wedonot knowhow toprove the quasi-regularity directly.

The quasi-regularity can be proved from the identity (E ,D) = (E ,D) in Lemma 2.9.
The proof of Lemma 2.9 follows from Lemma 2.8 and the uniqueness in law of solutions of
(2.13) (see [15]). To state the uniqueness result, we introduce two conditions for solutions X
of ISDE (2.13) defined on (Ω,F , P, {Ft }).
μ-(AC) P ◦ u(Xt )

−1 is absolutely continuous with respect to μ for each t > 0.
(NBJ) P(mR,T (X) < ∞) = 1 for each R, T ∈ N.
Here, mR,T is such that, for w = (wn),

mR,T (w) = inf{m ∈ N ; min
t∈[0,T ] |w

n(t)| > R

for all n such that n > m}. (2.15)

Condition (NBJ) plays an important role in controlling the labeled dynamics X = lpath(X)

using the unlabeled dynamicsX (see [31, Section 5]). Note that (NBJ) obviously holds if the
cardinality of the particles is finite. Even if the number of particle is infinite, (NBJ) is easy to
check. Lemma 10.3. in [31] states a sufficient condition for (NBJ). We make the following
assumption for ISDE (2.13).
(A7) The uniqueness in law of weak solutions of ISDE (2.13) with the initial distribution
μ ◦ l−1 holds under constraints μ-(AC) and (NBJ).
References [16,31] provide sufficient conditions for (A7).

We quote a result from [15].

Lemma 2.9 ([15, Theorem 3.2]) Assume that (A1) and (A3)–(A7) hold. Then, (A2) holds.
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2.4 A sufficient condition for (A1): quasi-Gibbs measures

We introduce a Hamiltonian on a bounded Borel set SR . For Borel-measurable functions
Φ : S → R ∪ {∞} and Ψ : S × S → R ∪ {∞} with Ψ (x, y) = Ψ (y, x), let

H Φ,Ψ
R (x) =

∑

xi∈SR
Φ(xi ) +

∑

xi ,x j∈SR ,i< j

Ψ (xi , x j ), where x =
∑

i

δxi . (2.16)

The functions Φ and Ψ are called free and interaction potentials, respectively.
For a symmetric open set Om

R ⊂ SmR , we set

Om
R = π−1

R (u(Om
R )), OR =

∞⋃

m=1

Om
R , O =

∞⋂

R=1

OR .

Here, u is the unlabeling map defined after Lemma 2.5. We regardOm
R ,OR , andO as subsets

of S. We note that Om
R and OR are also subsets of SR := ∪∞

m=0S
m
R . We write μ1 ≤ μ2

if two measures μ1 and μ2 on a measurable space (Ω,B) satisfy μ1(A) ≤ μ2(A) for all
A ∈ B. We introduce the concept of a quasi-Gibbs measure.

Definition 2.2 A random point field μ is said to be a (Φ,Ψ )-quasi-Gibbs measure with
{Om

R }R,m∈N if (1), (2), and (3) hold.
(1) {Om

R }R,m∈N is a sequence of symmetric open sets such that Om
R ⊂ SmR for each R,m ∈ N.

(2) There exists a sequence of measures {μ(k)} on S such that

μ(k) ≤ μ(k+1) ≤ μ for each k ∈ N,

lim
k→∞ μ(k),R = μR weakly for each R ∈ N.

Here, we set measures μ(k),R = μ(k) ◦ π−1
R and μR = μ ◦ π−1

R on S as in (2.12).
(3) The regular conditional probability measures

μm
(k),R,s = μ(k)(πR(x) ∈ ·| x(SR) = m, πc

R(x) = πc
R(s))

satisfy, for all k, R,m ∈ N and μ(k)-a.e.s ∈ S,

c−1
6 1Om

R
e−H Φ,Ψ

R Λm
R (dx) ≤ 1Om

R
μm

(k),R,s(dx) ≤ c61Om
R
e−H Φ,Ψ

R Λm
R (dx). (2.17)

Here, πc
R(s) = s(· ∩ ScR). We set c6 = c6(k, R,m, πc

R(s)) to be a positive constant and
Λm

R = ΛR(· ∩ Sm
R ), where ΛR is the Poisson random point field with intensity 1SR dx .

Definition 2.3 ([28]) We call μ a (Φ,Ψ )-quasi-Gibbs measure if we take Om
R = SmR in

Definition 2.2. In this case, Om
R = Sm

R and O = S.

We say that a random point field μ satisfies (QG) with {Om
R }R,m∈N if the following hold:

(QG1) μ is a (Φ,Ψ )-quasi-Gibbs measure with {Om
R }R,m∈N.

(QG2) There exists a potential (Φ0, Ψ0) such that (Φ0, Ψ0) is locally bounded from below,
upper semi-continuous, and satisfies

c−1
7 Φ0(x) ≤ Φ(x) ≤ c7Φ0(x), x ∈ SR,

c−1
7 Ψ0(x − y) ≤ Ψ (x, y) ≤ c7Ψ0(x − y), x, y ∈ SR, (2.18)

for each R with a constant c7 := c7(R) > 0 depending on R.

Note that (Φ,Ψ ) is unbounded in general, and that e−H Φ,Ψ
R (u(x)) is bounded and lower

semi-continuous on SmR for each R,m ∈ N. Replacing μ by μ(· ∩ O) in the definition of
(ER,D

μ◦ ), we set (EO
R ,DO◦ ). The following result was essentially obtained in [28].
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Lemma 2.10 Assume thatμ satisfies (QG) with {Om
R }R,m∈N. Then, (EO

R ,DO◦ ) is closable on
L2(μ(· ∩ O)) and L2(μ) for each R ∈ N.

Proof In the same manner as for Lemmas 3.4 and 3.5 in [28], we can prove that (EO
R ,DO◦ )

is closable on L2(μ(· ∩ O)), which implies the first claim. Note that, if a sequence { fn}
strongly converges to zero in L2(μ), then { fn} strongly converges to zero in L2(μ(· ∩ O)).
Using this, we deduce the second claim from the first. ��

3 Main results

In this section, we set up the problem and state the main results (Theorems 3.1–3.5).

3.1 Universality of unlabeled dynamics

Let S, S, and D◦ be as in Sect. 2.1. Let {μN }N∈N be a sequence of random point fields on
S. Let D

a,m
R be the carré du champ operator in (2.5). We set

E N ,m
R ( f , g) =

∫

S
D
a,m
R [ f , g]dμN ,

DN ,m◦ = { f ∈ D◦ ∩ L2(μN ) ; E N ,m
R ( f , f ) < ∞}.

The bilinear forms (E N ,DN◦ ) and (E N
R ,DN◦ ) are given by

E N ( f , g) =
∫

S
D
a[ f , g]dμN , E N

R ( f , g) =
∫

S
D
a
R[ f , g]dμN ,

DN◦ = { f ∈ D◦ ∩ L2(μN ) ; E N ( f , f ) < ∞}. (3.1)

For the existence of μN -reversible diffusion, we assume the following.
(B1) (1) (E N ,m

R ,DN ,m◦ ) is closable on L2(μN ) for each N , R,m ∈ N.
(2) μN has an m-density function on SR for each N , R,m ∈ N, and μN satisfies

∞∑

m=1

mμN (Sm
R ) < ∞ for each N , R ∈ N.

To take Dμ◦ as C in Definition 4.1, we assume the following:
(B2) Dμ◦ ⊂ ⋂

N∈N DN◦ .
Note that (B2) is a mild assumption. Indeed, if μN (s(S) ≤ CN ) = 1 for some CN ∈ N

for each N ∈ N, then DN◦ = D
μ◦ . Hence, (B2) holds.

To state the main theorems, we introduce cut-off Dirichlet forms and the associated unla-
beled diffusions. From (B1), we see that (E N

R ,DN◦ ) is closable on L2(μN ). Then, we denote
the closure by (E N

R ,DN
R ). Let SR = {s ∈ S; |s| ≤ R}. We set

D̃
N
R = { f ∈ DN

R ; f is σ [πSR
]-measurable}. (3.2)

Then, (E N
R , D̃

N
R ) is a Dirichlet form on L2(μN ). Clearly, DN

R ⊃ D̃
N
R . Hence, we have

(E N
R ,DN

R ) ≤ (E N
R , D̃

N
R ). (3.3)
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Let μN
R = μN ◦ π−1

R . Note that μN ({s ∈ S; s(∂SR) > 0}) = 0. Then, we can regard
μN
R as a probability measure on Cf(SR), where Cf(A) denotes the configuration space over

A for a topological space A. We regard (E N
R , D̃

N
R ) as a closed form on

L2(μN
R ) := L2(Cf(SR), μN

R ).

It is easy to show that (E N
R , D̃

N
R ) is a quasi-regular Dirichlet form on L2(μN

R ). Hence, we have

a diffusion XN
R with the state space Cf(SR) associated with the Dirichlet form (E N

R , D̃
N
R )

on L2(μN
R ). The associated labeled process lpath(XN

R ) is described by SDE (1.26). Note that
the concept of quasi-regularity depends on the topology equipped on the measurable space.
Hence, we take Cf(SR) as the state space of the diffusion.

Let {rN }N∈N be a non-decreasing sequence in N ∪ {∞}. Let (X,P) be the diffusion in
Lemma 2.5. We make the following assumptions.
(B3) The distributions of XN

rN (0) and X(0) have densities ξ N
rN ∈ L2(μN

rN ) and ξ ∈ L2(μ),
respectively. The functions ξ N

rN and ξ satisfy limN→∞ ξ N
rN = ξ strongly in the sense of

Definition 4.2.
(B4) For each R,m ∈ N,

lim
N→∞

∥∥∥
σ
N ,m
R

σm
R

− 1
∥∥∥
SmR

= 0. (3.4)

Here,σm
R andσ

N ,m
R are them-density functions ofμ andμN on SR , respectively.Additionally,

‖ · ‖SmR is the L∞(SmR , dx)-norm.

Theorem 3.1 Assume that (A1)–(A3), and (B1)–(B4) hold. Then, there exists a non-
decreasing sequence {rN }N∈N in N ∪ {∞} satisfying the following:

lim
N→∞ rN = ∞, (3.5)

lim
N→∞XN

rN = X in finite-dimensional distributions. (3.6)

Here, using the natural inclusion Cf(SrN ) ⊂ S, we regard XN
rN as a S-valued process.

Remark 3.1 We shall give a concrete value of rN in (5.7) and the subsequent sentence. With
this choice of rN , we have rN = ∞ if and only if N ≥ sup{Nn; n ∈ N}. Furthermore,
rN = ∞ implies μN = μ. Thus, if rN = ∞, then (3.6) yields a trivial result.

We present a sufficient condition such that both rN = ∞ for all N ∈ N and (3.6) hold for
μN such that μN �= μ. Let c8(N ) be such that

c8(N ) = sup
{∥∥∥

σ
N ,m
R

σm
R

− 1
∥∥∥
SmR

; 1 ≤ m < ∞, 1 ≤ R < ∞
}
. (3.7)

We introduce the condition stronger than (B4) as follows.

lim
N→∞ c8(N ) = 0. (3.8)

Let c11 be as in (5.4). By definition, we deduce for any N , κ, R, R′ ∈ N

c11(N , κ, R, R′) ≤ c8(N ). (3.9)

Let c12 be as in (5.8). Then c12(N ) ≤ c8(N ) from (3.9). Replacing c12(N ) by c8(N ), we
obtain (3.6) with rN = ∞ for all N ∈ N with a slight modification of the proof in Sect. 5
using c12(N ) ≤ c8(N ).
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Combining Theorem 3.1 and Lemma 2.9, we obtain the following.

Corollary 3.1 Assume that (A1), (A3)–(A7), and (B1)–(B4) hold. Then, we have the same
conclusion as in Theorem 3.1.

Next, we present variants of assumption (B4).
In general, the density σm

R in (3.4) may vanish. To control the set {σm
R = 0}, we use the

concept of capacity. See [9, 66p] for the definition of capacity.
Note that SR = {s ∈ S; |s| < R} is an open set in R

d . Let Cf(SR) be the configuration
space over SR . We equip Cf(SR) with the vague topology. Note that the topology of Cf(SR)

is different from the relative topology as a topological subspace of S.
Let (ER,DR) be the Dirichlet form on L2(μ) defined before Lemma 2.2. Recall that

(ER,DR) is the closure of (E ,D
μ◦ ∩BR) on L2(μ). Then, each f ∈ DR is σ [πR]-measurable.

Hence, we regard f as a function on Cf(SR).
We regardμR as a probabilitymeasure onCf(SR) instead ofS, and (ER,DR) as aDirichlet

form on L2(Cf(SR), μR). Then, we can prove that (ER,DR) is a quasi-regular Dirichlet form
on L2(Cf(SR), μR). The proof is similar to that given in [24] for (E ,D) on L2(μ), and is
therefore omitted.

Let CapR be the capacity given by the Dirichlet form (ER,DR) on L2(Cf(SR), μR). Let
Cfm(SR) = {s ∈ Cf(SR) ; s(SR) = m}. We make the following assumption.
(ZC) For each R,m ∈ N, the capacity CapR satisfies

CapR
({s ∈ Cfm(SR) ; σm

R (s) = 0}) = 0. (3.10)

Here, σm
R is regarded as a function on Cfm(SR) in an obvious manner, that is, we set σm

R (s) =
σm
R (s1, . . . , sm) for s = ∑m

i=1 δsi .
For R, ν,m ∈ N, let Om

R,ν be a symmetric open set in SmR . We set

Om
R,ν = π−1

R (u(Om
R,ν)), OR,ν =

∞⋃

m=1

Om
R,ν , Oν =

∞⋂

R=1

OR,ν . (3.11)

We introduce the following conditions for {Om
R,ν}R,ν,m∈N. For each R, ν,m ∈ N,

OR,ν = π−1
R (πR(OR+1,ν)), (3.12)

OR,ν ⊂ OR,ν+1, (3.13)

μ
( ∞⋃

ν=1

OR,ν

)
= 1, (3.14)

πR(S \
∞⋃

ν=1

OR,ν) =
∞⋃

m=1

{
s ∈ Sm

R ; σm
R (s) = 0

}
, μ ◦ π−1

R -a.s., (3.15)

0 < inf{σm
R (s) ; s ∈ Om

R,ν}, sup{σm
R (s) ; s ∈ Om

R,ν} < ∞. (3.16)

We make the following assumptions regarding the density and correlation functions.
(B4)′ The density function σm

R is continuous for each R,m ∈ N and satisfies

lim
N→∞

∥∥∥σ N ,m
R − σm

R

∥∥∥
SmR

= 0 for each R,m ∈ N. (3.17)

(B4)′′ The correlation functions ρN ,m and ρm are continuous and satisfy

123



   27 Page 22 of 51 Partial Differential Equations and Applications             (2022) 3:27 

lim
N→∞

∥∥ρN ,m − ρm
∥∥
SmR

= 0 for each R,m ∈ N, (3.18)

sup
N∈N, xm∈SmR

ρN ,m(xm) ≤ cm9 m
c10m for all m ∈ N. (3.19)

Here, c9 = c9(R) and c10 = c10(R) are constants satisfying 0 < c9 < ∞ and 0 < c10 < 1,
and ρN ,m and ρm are the m-point correlation functions of μN and μ, respectively.

Theorem 3.2 Assume that (A1)–(A3) and (B1)–(B3) hold, and that (ZC) is satisfied. Assume
thatμandμN satisfy (QG)with {Om

R,ν}R,m∈N for each ν ∈ Nand that {Om
R,ν}R,ν,m∈N satisfies

(3.12)–(3.16). Finally, assume that either (B4)′ or (B4)′′ holds. Then, the same conclusion
as for Theorem 3.1 holds.

Remark 3.2 (1) Let (PR,XR) be the diffusion associated with the Dirichlet form (ER,DR)

on L2(Cf(SR), μR). From the general theory of Dirichlet forms in [9], (3.10) implies that

PR(XR(t) ∈ {s ∈ Cfm(SR) ; σm
R (s) = 0} for some t) = 0. (3.20)

(2) Let Cap be the capacity associated with (E ,D) on L2(μ). Note that (3.10) implies
Cap

({s ∈ Sm
R ; σm

R (s) = 0}) = 0 for each R,m ∈ N. This follows from the relation
(E ,D) ≤ (ER,DR) by Lemma 2.2, the variational formula of capacity, and the natural
identification between Cfm(SR) and Sm

R .

We set (E N
rN ,DN

rN ) similarly to (ER,DR) in Lemma 2.2, replacing μ and R by μN
rN and

rN , respectively. Note that

(E N
rN , D̃

N
rN ) ≤ (E N

rN ,DN
rN ).

Let Tt be the Markovian semi-group associated with (E ,D) on L2(μ). Let (X,P) be the
diffusion associated with (E ,D) on L2(μ). The following demonstrates the universality of
boundary conditions on ∂SrN = {|x | = rN }.

Theorem 3.3 Under the same assumptions as for either Theorem 3.1 or Theorem 3.2, let
(E N

rN , D̂N
rN ) be a (not necessarily quasi-regular) Dirichlet form on L2(μN

rN ) such that

(E N
rN , D̃

N
rN ) ≤ (E N

rN , D̂N
rN ) ≤ (E N

rN ,DN
rN ). (3.21)

Let T̂ N
rN ,t be the Markovian semi-group associated with (E N

rN , D̂N
rN ) on L2(μN

rN ). Then, T̂ N
rN ,t

converges to Tt for each t strongly in the sense of Definition 4.2. In particular, if there exists
a Markov process X̂N

rN satisfying (B3) associated with T̂ N
rN ,t , then X̂N

rN converges to X in
finite-dimensional distributions.

3.2 Universality of labeled dynamics and SDEs of finite-particle systems

In this section, we state several results on the convergence of labeled dynamics. We describe
the limit dynamics in termsof solutions to an ISDEand strengthen themeaningof convergence
at the path-space level.

Let lN be a label. Let lNpath be the label path map given by lN as in (2.10) and (2.11). For

the sequence {lN }N∈N and l, we define the discontinuity set by
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Disc[l] = {s ∈ S ; s /∈ Ss or there exists {sN }N∈N in Ss

such that lim
N→∞ sN = s and lim

N→∞ lN (sN ) �= l(s)}.

We make the following assumptions.
(C1) μ(Disc[l]) = 0.
From (B3) and (C1), we have that, for each m ∈ N,

lim
N→∞ μN

rN ◦ (lN ,1, . . . , lN ,m)−1 = μ ◦ (l1, . . . , lm)−1 weakly. (3.22)

Without loss of generality, we can take a non-decreasing label as follows:

|lN ,i | ≤ |lN ,i+1| for all i ∈ N.

Let (XN
rN , P̃

N

rN
) be the diffusion given by the Dirichlet form (E N

rN , D̃
N
rN ) with the initial

distribution μN
rN . Let WNE(Ss) be as in (2.9).

(C2) P̃
N

rN
(XN

rN ∈ WNE(Ss)) = 1 for each N ∈ N.

We set the labeled process XN
rN = (XN ,i

rN )∞i=1 to

XN
rN = (lNpath(X

N
rN ), o, o, , . . .) ∈ C([0,∞); SN),

where o denotes a constant pathwhose value is denoted by the same symbol o. Here, o ∈ S is a

dummy point that has no importance. From (C2), we see thatXN
rN under P̃

N

rN
is well-defined.

Let mR,T be as in (2.15).
(C3) For each R, T ∈ N and ε > 0, there exists l ∈ N such that

sup
N∈N

P̃
N

rN
({mR,T (lNpath(X

N
rN )) > l}) < 1 − ε.

To prove Theorem 3.4, we need the tightness of {XN
rN }N∈N in W (S). We deduce this from

the tightness of {XN
rN }N∈N in C([0,∞); SN). We use (C3) for this.

Theorem 3.4 Assume that (A2)–(A4) and (B1)–(B3) hold. Assume that either (B4), (B4)′, or
(B4)′′ is satisfied. Assume that μ and μN satisfy (QG) with {Om

R,ν}R,m∈N for each ν ∈ N and
that {Om

R,ν}R,ν,m∈N satisfies (3.12)–(3.16). Finally, assume that (ZC) and (C1)–(C3) hold.

Then, (XN
rN , P̃

N

rN
) satisfy

lim
N→∞XN

rN = X in law in C([0,∞); SN)

and, in particular, for each m ∈ N,

lim
N→∞(XN ,1

rN , . . . , XN ,m
rN ) = (X1, . . . , Xm) in law in C([0,∞); Sm). (3.23)

Here, X = (Xi )i∈N is a solution of (2.13) with the initial distribution (ξdμ) ◦ l−1.

The most critical assumption in Theorems 3.1–3.4 is (A2), which asserts the uniqueness
of Dirichlet forms. Combining Theorem 3.4 and Lemma 2.9, we immediately obtain the
following.

Corollary 3.2 Under the same assumptions as for Theorem 3.4 and replacing (A2) by (A5)–
(A7), the same conclusion as in Theorem 3.4 holds.
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We present an SDE describing finite particle systems in Theorem 3.4.
Assume thatμN has the logarithmic derivative dNR on SR in the sense of Definition 2.1. Let

nN be the number of particles in SR at time zero. Note that nN is unchanged as t increases.
Hence, we have that nN = XN

rN (t)(SrN ). Let

XN ,i♦
rN (t) =

nN∑

j �=i

δ
XN , j
rN (t)

.

Then, we introduce the SDE of (XN ,i
rN )

nN
i=1 as follows. For each 1 ≤ i ≤ nN ,

XN ,i
rN (t) − XN ,i

rN (0) =
∫ t

0
σ(XN ,i

rN (u),XN ,i♦
rN (u))dBN ,i (u)

+ 1

2

∫ t

0
{∇a + adNrN }(XN ,i

rN (u),XN ,i♦
rN (u))du

+ 1

2

∫ t

0
a(XN ,i

rN (u),XN ,i♦
rN (u))nrN (XN ,i

rN (u))LN ,i
rN (du). (3.24)

Here,nrN (x) is the inward normal unit vector at x ∈ ∂SrN and dNrN is the logarithmic derivative

of μN on SrN . Furthermore, LN ,i
rN is the local time of XN ,i

rN on the boundary ∂SrN . That is,
LN ,i
rN is a continuous non-decreasing process such that

LN ,i
rN (t) =

∫ t

0
1∂SrN

(XN ,i
rN (u))LN ,i

rN (du).

If rN = ∞, then we delete the term LN ,i
rN from (3.24). It is easy to show that if dN is given

by a pair of potentials (ΦN , Ψ N ) such that

dN (x, s) = −∇ΦN (x) −
∑

i

∇Ψ N (x − si ),

then the logarithmic derivative dNrN (x, s) of μN on SrN is given by

dNrN (x, s) = −∇ΦN (x) −
∑

si∈SrN
∇Ψ N (x − si )

−
∫

S\SrN
∇Ψ N (x − y)ρN ,1(y)dy, (3.25)

where ρN ,1 is the one-point correlation function of μN , as before. Thus, under the reduced
one-Campbell measure μ

N ,[1]
rN of μN

rN = μN ◦ π−1
rN , we have that

dNrN (x, s) = dN (x, s) −
∫

S\SrN
∇Ψ N (x − y)ρN ,1(y)dy.

From (3.24) and (3.25), we obtain (1.26).
From (A4) and (B1), we find thatXN

rN is a solution of (3.24). Taking this into account, we
make the following assumption.
(C4) The uniqueness in law of weak solutions of SDE (3.24) with the initial distribution
μN
rN ◦ (lN )−1 holds under constraints μN

rN -(AC) and (NBJ) for each N ∈ N.
Here, conditions μN

rN -(AC) and (NBJ) were given in Sect. 2.3. Clearly, we do not need
condition (NBJ) in (C4) if nN < ∞.

From Theorem 3.4, we obtain the convergence of solutions of SDEs.
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Corollary 3.3 Consider the same assumptions as for Theorem 3.4. In addition, we assume
that (C4) holds. Let XN

rN be the solution of (3.24) in (C4). Then, the first m components of

XN
rN satisfy (3.23) for each m ∈ N.

Proof Applying Lemma 2.7 to the Dirichlet form (E N
rN , D̃

N
rN ) on L2(μN

rN ), we see thatXN
rN =

lNpath(X
N
rN ) is a solution of (3.24). By (C4), all weak solutions are equivalent in law to XN

rN if
they have common initial distributions. Hence, Corollary 3.3 follows from Theorem 3.4. ��

Finally, we strengthen the statement of Theorem 3.1.

Theorem 3.5 Under the same assumptions as for Theorem 3.4, there exists a non-decreasing
sequence {rN }N∈N in N ∪ {∞} satisfying (3.5) and

lim
N→∞XN

rN = X weakly in W (S).

4 GeneralizedMosco convergence

We now introduce the concept of generalized Mosco convergence in the sense of Kuwae-
Shioya [18]. Using this concept, we shall prove the main results in Sect. 3.

Definition 4.1 Let HN (N ∈ N) and H be real Hilbert spaces. We say that {HN }N∈N con-
verges to H if there exists a dense subspace C ⊂ H and a sequence of operators

ΦN : C → HN

such that, for any u ∈ C ,

lim
N→∞ ||ΦNu||HN = ||u||H .

Definition 4.2 (1) We say that a sequence {uN } with uN ∈ HN strongly converges to u ∈ H
if there exists {ũM } ⊂ C such that

lim
M→∞ ||ũM − u||H = 0, (4.1)

lim
M→∞ lim sup

N→∞
||ΦN ũM − uN ||HN = 0. (4.2)

(2) We say that {uN } with uN ∈ HN weakly converges to u ∈ H if

lim
N→∞(uN , vN )HN = (u, v)H (4.3)

for any sequence {vN } with vN ∈ HN that strongly converges to v ∈ H .

Definition 4.3 Let L(H) denote the set consisting of linear operators on H . We say that a
sequence of bounded operators {BN } with BN ∈ L(HN ) strongly converges to an operator
B ∈ L(H) if, for any sequence {uN } with uN ∈ HN that strongly converges to u ∈ H ,
{BNuN } strongly converges to Bu.

Let (E ,D) be a non-negative, symmetric bilinear form E : D × D → R, where D is a
subspace of the Hilbert space H . We identify the bilinear form E (·, ∗) with the function E 〈·〉
on H such that

E 〈u〉 =
{
E (u, u), u ∈ D,

∞, u /∈ D .
(4.4)

We say that E is a bilinear form on H if the domain of E is a subset of H .
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Definition 4.4 We say that a sequence of bilinear forms (E N ,DN ) on HN , N ∈ N, is Mosco
convergent to a bilinear form (E ,D) on H if the following conditions hold.
(1) If a sequence {uN } with uN ∈ HN weakly converges to u ∈ H , then

E 〈u〉 ≤ lim inf
N→∞ E N 〈uN 〉. (4.5)

(2) For any u ∈ H , there exists a strongly convergent sequence limN→∞ uN = u with
uN ∈ HN such that

E 〈u〉 = lim
N→∞ E N 〈uN 〉. (4.6)

Lemma 4.1 ([17]) Let (E N ,DN ) and (E ,D) be Dirichlet forms on L2(μN ) and L2(μ),
respectively. Let T N

t and Tt be the associated semi-groups on L2(μN ) and L2(μ), respec-
tively. Then, the following are equivalent.

(1) limN→∞ E N = E in the sense of Mosco convergence.
(2) limN→∞ T N

t = Tt strongly for all t > 0.

Thus, we see that the Mosco convergence of Dirichlet forms is equivalent to the strong con-
vergence of the associated semi-groups, which implies the convergence of finite-dimensional
distributions.

5 Proof of Theorem 3.1

In this section, we prove Theorem 3.1. Throughout this section, we assume that (A1), (A3),
and (B1)–(B4) hold. We utilize the concept of Mosco convergence in Definition 4.4. We take
HN = L2(μN

rN ), H = L2(μ), C = D
μ◦ , and ΦN = χN · in Definition 4.1, where rN is given

by (5.7) and χN is given before (5.39). Then, we have that limN→∞ HN = H in the sense
of Definition 4.1.

We take the Dirichlet forms E N and E in Sect. 3 as the bilinear forms E N and E in Sect. 4.
Hereafter, E ( f ) and D

a[ f ] denote E ( f , f ) and D
a[ f , f ], respectively. We shall use the

same convention for bilinear objects when they appear. The difference between E ( f ) and
E 〈 f 〉 should be clearly distinguished. Note that E ( f ) is only defined for f ∈ D , while E 〈 f 〉
is defined for all f ∈ L2(μ) and

E 〈 f 〉 =
{

∞ for f /∈ D

E ( f , f ) for f ∈ D .

Let {aκ,R}κ,R∈N be a sequence of natural numbers satisfying

aκ,R < aκ,R+1, aκ,R < aκ+1,R for all κ, R ∈ N. (5.1)

For {aκ,R}κ,R∈N, we set

Kκ,R = {s ∈ S ; s(SR) ≤ aκ,R}, Kκ = ∩∞
R=1Kκ,R . (5.2)

Lemma 5.1 There exists a sequence {aκ,R}κ,R∈N satisfying (5.1) and

inf
N∈NμN (Kκ ) ≥ 1 − 1

κ
, μ(Kκ ) ≥ 1 − 1

κ
for each κ ∈ N. (5.3)
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Proof Recall that a subsetA inS is relatively compact if and only if there exists an increasing
sequence of natural numbers MR such that A ⊂ {s; s(SR) ≤ MR for all R}. Because μN

converges weakly to μ, {μN } is tight. Hence, there exists a sequence {aκ,R}κ,R∈N satisfying
(5.1) and (5.3). ��

For N , κ, R, R′ ∈ N, we set c11(N , κ, R, R′) to

c11(N , κ, R, R′) = max
{∥∥∥

σ
N ,m
r

σm
r

− 1
∥∥∥
Smr

; 1 ≤ m ≤ aκ,R, 1 ≤ r ≤ R′}. (5.4)

Lemma 5.2 For each n ∈ N,

lim
N→∞ c11(N , n, n, n) = 0. (5.5)

Proof From (B4), we have that limN→∞ c11(N , κ, R, R′) = 0 for each κ, R, R′ ∈ N. Then,
taking κ = R = R′ = n, we have (5.5). ��

For each n ∈ N, let

Nn = min{N ; c11(N ′, n, n, n) ≤ 2−n for all N ′ ≥ N }. (5.6)

From (5.5) and (5.6), we find that Nn < ∞ for each n ∈ N. Furthermore, it is easy to see
that {Nn}n∈N is a non-decreasing sequence. Hence, we denote the inverse function of Nn on
N as rN . Indeed, we take r1 = 1 for N < N1 and

rN = 1 + sup{n ∈ N ; Nn ≤ N ≤ Nn+1}. (5.7)

If {Nn}n∈N is bounded, then we set rN = ∞ for N ≥ sup{Nn; n ∈ N}. We set

c12(N ) =
{
c11(N , rN , rN , rN ) if rN < ∞,

0 if rN = ∞.
(5.8)

Lemma 5.3 The sequences rN and c12(N ), N ∈ N, satisfy

lim
N→∞ rN = ∞, (5.9)

lim
N→∞ c12(N ) = 0. (5.10)

Proof It is sufficient to assume that rN < ∞ for all N ∈ N. From (5.5), we can deduce that
Nn < ∞. From this and (5.7), we have (5.9). From (5.8), we deduce

c12(N ) = c11(N , rN , rN , rN ) = c11(N , n, n, n) ≤ 2−n = 2−rN . (5.11)

From (5.9) and (5.11), we obtain (5.10). ��

5.1 Lower schemes of Dirichlet forms

In Sect. 5.1, we check Definition 4.4 (1).
Let Kκ,R and rN be as in (5.2) and (5.7), respectively. We set

f̂ = 1KrN ,rN
f . (5.12)
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Lemma 5.4 Assume that c12(N ) ≤ 1/2 and f ∈ D̃
N
rN . Then, f̂ ∈ D̃

N
rN and

|ErN ( f̂ ) − E N
rN ( f̂ )| ≤ c12(N ) ErN ( f̂ ). (5.13)

Proof Because f ∈ D̃
N
rN , we have that f is σ [πSrN

]-measurable. Hence, f̂ is also σ [πSrN
]-

measurable. Using this and (5.12), we have

E N
rN ( f̂ ) ≤ E N

rN ( f ) < ∞. (5.14)

This implies that f̂ ∈ D̃
N
rN . Note that D̃

N
rN ∩ D◦ is dense in D̃

N
rN with respect to

E N
rN ,(1) := E N

rN + (·, ∗)L2(μN
rN

).

Then, for each f ∈ D̃
N
rN , we have an E N

rN ,(1)-Cauchy sequence { f p} in D̃
N
rN ∩ D◦ such that

lim
p→∞ E N

rN ,(1)( f p − f ) = 0. (5.15)

Note that f̂ p − f̂ = f̂ p − f . Then from (5.12), (5.14), and (5.15), we deduce that { f̂ p} is an
E N
rN ,(1)-Cauchy sequence satisfying

lim
p→∞ E N

rN ,(1)( f̂ p − f̂ ) = lim
p→∞ E N

rN ,(1)( f̂ p − f ) ≤ lim
p→∞ E N

rN ,(1)( f p − f ) = 0. (5.16)

Hence, we have, from (5.14) and (5.16),

lim
p→∞ E N

rN ,(1)( f̂ p) = E N
rN ,(1)( f̂ ) < ∞. (5.17)

Next, we assume that f ∈ D̃
N
rN ∩ D◦. Then, from (5.12), we have that

E N
rN ( f̂ ) =

∞∑

m=1

1

m!
∫

SmrN

D
a[ f̂ ]σ N ,m

rN dxm

=
arN ,rN∑

m=1

1

m!
∫

SmrN

D
a[ f ]σ N ,m

rN dxm

=
arN ,rN∑

m=1

1

m!
∫

SmrN

D
a[ f ]σm

rN

{σ
N ,m
rN

σm
rN

− 1
}
dxm + ErN ( f̂ ).

Together with (5.4) and (5.8), this implies that

|ErN ( f̂ ) − E N
rN ( f̂ )| =

∣∣∣
arN ,rN∑

m=1

1

m!
∫

SmrN

D
a[ f ]σm

rN

{σ
N ,m
rN

σm
rN

− 1
}
dxm

∣∣∣

≤ c12(N ) ErN ( f̂ ). (5.18)

Applying (5.18) to f p − fq and noting that ̂f p − fq = f̂ p − f̂q , we obtain

|ErN ( f̂ p − f̂q) − E N
rN ( f̂ p − f̂q)| ≤ c12(N ) ErN ( f̂ p − f̂q).

Using this, c12(N ) ≤ 1/2, the fact that { f̂ p} is an E N
rN ,(1)-Cauchy sequence satisfying (5.16),

and (B4), we deduce that { f̂ p} is an ErN ,(1)-Cauchy sequence satisfying

lim
p→∞ ErN ,(1)( f̂ p − f̂ ) = 0.
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Hence, we have

lim
p→∞ ErN ,(1)( f̂ p) = ErN ,(1)( f̂ ) < ∞. (5.19)

Applying (5.18) to { f p}, we have
|ErN ( f̂ p) − E N

rN ( f̂ p)| ≤ c12(N ) ErN ( f̂ p). (5.20)

Using (5.17) and (5.19) in (5.20), we obtain (5.13) for f̂ . ��
Proposition 5.1 Assume that { fN }N∈N with fN ∈ L2(μN

rN ) weakly converges to f ∈ L2(μ)

in the sense of Definition 4.2. Then, (E ,D) and {(E N
rN , D̃

N
rN )}N∈N satisfy

E 〈 f 〉 ≤ lim inf
N→∞ E N

rN 〈 fN 〉. (5.21)

Proof If lim infN→∞ E N
rN 〈 fN 〉 = ∞, then (5.21) is obvious. Hence, we assume that

lim inf
N→∞ E N

rN 〈 fN 〉 < ∞.

From this and (4.4), we have

lim inf
N→∞ E N

rN ( fN ) < ∞. (5.22)

Assume that c12(N ) ≤ 1/2 and fN ∈ D̃
N
rN . Using Lemma 5.4, we have from (5.13) that

(1 − c12(N ))ErN ( f̂N ) ≤ E N
rN ( f̂N ) ≤ (1 + c12(N ))ErN ( f̂N ). (5.23)

Note that E N
rN ( fN ) < ∞ implies fN ∈ D̃

N
rN . Hence, using (5.22), we deduce that fN ∈ D̃

N
rN

for infinitely many N . From this, we see that (5.23) holds for infinitely many N . Combining
this with (5.10) and (5.14), we deduce from (5.23) that

lim inf
N→∞ ErN ( f̂N ) = lim inf

N→∞ E N
rN ( f̂N ) ≤ lim inf

N→∞ E N
rN ( fN ) < ∞. (5.24)

Because f̂N is σ [πSrN
]-measurable, we see that E ( f̂N ) = ErN ( f̂N ). Hence, (5.24) yields

lim inf
N→∞ E ( f̂N ) < ∞. (5.25)

Furthermore, from (5.4) and (5.8), we obtain

(1 − c12(N ))‖ f̂N‖L2(μ) ≤ ‖ f̂N‖L2(μN
rN

) ≤ (1 + c12(N ))‖ f̂N‖L2(μ).

Combining this with (5.10), we deduce

lim sup
N→∞

‖ f̂N‖L2(μ) = lim sup
N→∞

‖ f̂N‖L2(μN
rN

). (5.26)

Because { fN } with fN ∈ L2(μN ) weakly converges to f ∈ L2(μ), we have

sup
N∈N

‖ fN‖L2(μN
rN

) < ∞. (5.27)

Clearly, ‖ f̂N‖L2(μN
rN

) ≤ ‖ fN‖L2(μN
rN

). Hence, we have from (5.26) and (5.27) that

lim sup
N→∞

‖ f̂N‖L2(μ) ≤ sup
N∈N

‖ fN‖L2(μN
rN

) < ∞. (5.28)
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We set E(p)(·, ·) = E (·, ·) + p−1(·, ·)L2(μ) for p ∈ N. Then, D is a Hilbert space with the
inner product E(p) for each p ∈ N. From (5.25) and (5.28), we deduce

lim inf
N→∞ E(p)( f̂N ) < ∞.

Hence, we can choose an E(p)-bounded subsequence from { f̂N }.
We can choose an E(p)-weak convergent subsequence with the limit f from an arbitrary,

E(p)-bounded subsequence { f̂N ′ } of { f̂N }. Furthermore, we obtain limN→∞ 1KrN ,rN
(s) = 1

for μ-a.s.s from (5.3). Hence, for μ-a.s.s, we have that

f (s) = lim
N→∞ f̂N (s), D

a[ lim
N→∞ f̂N ](s) = lim

N→∞ D
a[ f̂N ](s).

Collecting these results together, we can deduce for all p ∈ N that

E(p)( f ) = E(p)( lim
N→∞ f̂N ) ≤ lim inf

N→∞ E(p)( f̂N ). (5.29)

Then, from (5.28) and (5.29), we obtain

E ( f ) ≤ E(p)( f ) ≤ lim inf
N→∞

{
E ( f̂N ) + 1

p
‖ f̂N‖2L2(μ)

}

≤ lim inf
N→∞ E ( f̂N ) + 1

p
lim sup
N→∞

‖ f̂N‖2L2(μ)
. (5.30)

Note that (5.30) holds for all p ∈ N. From (5.28) and (5.30), we then obtain

E ( f ) ≤ lim inf
N→∞ E ( f̂N ). (5.31)

Putting these together, we obtain

E ( f ) ≤ lim inf
N→∞ E ( f̂N ) by (5.31)

= lim inf
N→∞ ErN ( f̂N ) by the σ [πSrN

] − measurability of f̂N

≤ lim inf
N→∞ E N

rN ( fN ) by (5.24). (5.32)

Finally, we have (5.21) from (5.32). ��

5.2 Upper schemes of Dirichlet forms and proof of Theorem 3.1

In Sect. 5.2, we check Definition 4.4 (2). Let aκ,R be as in (5.1). For aκ,R and a label l = (l j ) j
satisfying |l j (s)| ≤ |l j+1(s)| for all j , we set

Jκ,R(s) = { j ; j > aκ,R, l j (s) ∈ SR},

dκ,R(s) =
{ ∑

j∈Jκ,R(s)

(R − |l j (s)|)2
} 1

2
.

Let ρ ∈ C∞(R) be a function satisfying ρ(t) ∈ [0, 1] for any t ∈ R, ρ(t) = 1 for t ≤ 0,
ρ(t) = 0 for t ≥ 1, and ρ′(t) ≤ √

2 for any t ∈ R. We set

χκ,R(s) = ρ ◦ dκ,R(s).

Let Kκ,R = {s ∈ S ; s(SR) ≤ aκ,R} be as in (5.2). We set

K+
κ,R = {s ∈ S ; s(SR−1) ≤ aκ,R}.
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Then, Kκ,R ⊂ K+
κ,R by construction. The next lemma shows that χκ,R is a cut-off function of

Kκ,R . Let E(1)( f , g) = E ( f , g)+ ( f , g)L2(μ). We can prove Lemma 5.5 in a similar manner
to [24, Lemma 2.5].

Lemma 5.5 Let c5 be as in (2.1). For each κ, R ∈ N, the following hold:

(1) χκ,R f ∈ D
μ◦ for each f ∈ D

μ◦ .
(2) χκ,R = 1 on Kκ,R and χκ,R = 0 on S\K+

κ,R.

(3) D
a[χκ,R] = 0 on (K+

κ,R\Kκ,R)c and 0 ≤ D
a[χκ,R] ≤ c5 on K

+
κ,R\Kκ,R.

(4) E(1)(χκ,R f ) ≤ 2E ( f ) + 3c5‖ f ‖2
L2(μ)

for each f ∈ D
μ◦ .

Proof A straightforward calculation shows that

D
a[χκ,R] ≤ c5D[χκ,R]

= c5
2

{ρ′(dκ,R(s))

dκ,R(s)

}2 ∑

j∈Jκ,R(s)

(R − |l j (s)|)2

= c5
2

ρ′(dκ,R(s))2 ≤ c5. (5.33)

From (5.33), we have

D
a[χκ,R f ] = χ2

κ,RD
a[ f ] + f 2Da[χκ,R] + 2χκ,R f D

a[χκ,R, f ]
≤ 2{χ2

κ,RD
a[ f ] + f 2Da[χκ,R]}

≤ 2{Da[ f ] + c5 f
2}. (5.34)

From (5.34), we see that E (χκ,R f ) < ∞, which implies (1). (2) is clear by construction. (3)
follows from (2) and (5.33). (4) follows from (5.34). ��

Let (E N ,DN◦ ) be as in (3.1). Then, using Lemma 2.3 (1), we see from (B1) (1) that
(E N ,DN◦ ) is closable on L2(μN ). We denote the closure of (E N ,DN◦ ) on L2(μN ) as
(E N ,DN ).

Proposition 5.2 Let rN be as in (5.7). For each f ∈ L2(μ), there exists a sequence {gN }N∈N
satisfying the following:

gN is σ [πrN ] − measurable, lim sup
N→∞

‖gN‖L2(μN
rN

) < ∞, (5.35)

lim
N→∞ gN = f strongly in the sense of Definition 4.2, (5.36)

lim
N→∞ E N 〈gN 〉 = E 〈 f 〉. (5.37)

Proof If f /∈ D , then E 〈 f 〉 = ∞ and we can easily take gN so as to satisfy (5.35)–(5.37).
We next suppose that f ∈ D . Then, E 〈 f 〉 = E ( f ) < ∞. Furthermore, there exists a

sequence { fn}n∈N in D
μ◦ such that

lim
n→∞ E(1)( fn − f ) = 0. (5.38)

Because each fn ∈ D
μ◦ is a local function, we can assume that fn is σ [πn]-measurable.

Let {qN } be a non-decreasing sequence of natural numbers such that qN + 1 ≤ rN for
rN ≥ 2 and limN→∞ qN = ∞. We set χN = χqN+1,qN . Let

gN = χN fqN . (5.39)
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Because χN and fqN are σ [πqN ]-measurable and qN + 1 ≤ rN , we find that gN is σ [πrN ]-
measurable. From fqN ∈ L2(μ), we have that gN ∈ L2(μ). Combining these results with
(B4), we find that lim supN→∞ ‖gN‖L2(μN

rN
) < ∞. Thus, we obtain (5.35).

We next check (5.36). Recall that we takeC = D
μ◦ . For gN = χN fqN , we take g̃M = fqM .

Then, g̃M ∈ C . Using (5.38) and limM→∞ qM = ∞, we have

lim
M→∞ ‖g̃M − f ‖2L2(μ)

= lim
M→∞ ‖ fqM − f ‖2L2(μ)

= 0. (5.40)

LetΦN (·) = χN ·. Then,ΦN (g̃M ) = ΦN ( fqM ) = χN fqM by construction and (5.39). Hence,
from this, (5.4), and Lemma 5.5, we have that

lim
M→∞ lim sup

N→∞
‖ΦN (g̃M ) − gN‖L2(μN

rN
)

= lim
M→∞ lim sup

N→∞
‖χN fqM − χN fqN ‖L2(μN

rN
) by definition

≤ lim
M→∞ lim sup

N→∞
c11(N , qN + 1, qN + 1, qN )‖χN fqM − χN fqN ‖L2(μ) by (5.4)

≤ lim
M→∞ lim sup

N→∞
c12(N )‖χN fqM − χN fqN ‖L2(μ) = 0. (5.41)

Here, we have used c11(N , qN +1, qN +1, qN ) ≤ c12(N ), which follows from qN +1 ≤ rN .
The last equality follows from Lemma 5.5 and (5.38).

Thus,we see that {gN } and {g̃M } satisfy (4.1) and (4.2) from (5.40) and (5.41), respectively.
We have already checked g̃M ∈ C . Hence, we obtain (5.36).

By Lemma 5.5, (5.38), and (5.39), we have that

sup
N∈N

E(1)(gN ) = sup
N∈N

E(1)(χN fqN ) < ∞. (5.42)

Obviously, we have

|E N (gN ) − E ( f )| ≤ |E N (gN ) − E (gN )| + |E (gN ) − E ( f )|. (5.43)

From Lemma 5.3, (5.4) and (5.42), we see that

|E N (gN ) − E (gN )| ≤c11(N , qN + 1, qN + 1, qN )E (gN )

≤c12(N )E (gN ) −−−−→
N→∞ 0. (5.44)

By a straightforward calculation, Lemma 5.5, (5.40), and (5.42) imply that

|E (gN ) − E ( f )| =
∣∣∣
∫

S
D
a[χN fqN ] − D

a[ f ]dμ

∣∣∣

=
∣∣∣
∫

S
D
a[χN ] f 2qN + 2D

a[χN , fqN ]χN fqN + χ2
ND

a[ fqN ] − D
a[ f ]dμ

∣∣∣

≤
∣∣∣
∫

S
D
a[χN ] f 2qN + 2D

a[χN , fqN ]dμ

∣∣∣+
∣∣∣
∫

S
χ2
ND

a[ fqN ] − D
a[ f ]dμ

∣∣∣

−−−−→
N→∞ 0. (5.45)

From (5.43), (5.44), and (5.45), we obtain (5.37). This completes the proof. ��
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Proof of Theorem 3.1 Assume that { fN }N∈N with fN ∈ L2(μN
rN ) weakly converges to

f ∈ L2(μ) in the sense of Definition 4.2. From Proposition 5.1, we see that (E ,D) and

{(E N
rN , D̃

N
rN )}N∈N satisfy

E 〈 f 〉 ≤ lim inf
N→∞ E N

rN 〈 fN 〉. (5.46)

By (A2), we have (E ,D) = (E ,D). From this and (5.46), we see that (E ,D) and

{(E N
rN , D̃

N
rN )}N∈N satisfy (4.5). Thus, we obtain Definition 4.4 (1).

Let gN be as in Proposition 5.2. From (5.37), we see that

E 〈 f 〉 = lim
N→∞ E N 〈gN 〉. (5.47)

Because gN is σ [πrN ]-measurable, we find that (E N
rN , D̃

N
rN ) satisfies

E N 〈gN 〉 = E N
rN 〈gN 〉. (5.48)

Combining (5.47) and (5.48), we obtain

E 〈 f 〉 = lim
N→∞ E N 〈gN 〉 = lim

N→∞ E N
rN 〈gN 〉.

Hence, we obtain Definition 4.4 (2) for (E ,D) and {(E N
rN , D̃

N
rN )}N∈N.

Thus, the Mosco convergence in Definition 4.4 holds for (E ,D) and {(E N
rN , D̃

N
rN )}N∈N.

The Mosco convergence of Dirichlet forms implies the strong convergence of the associated
L2-semi-groups, which yields the convergence of finite-dimensional distributions of XN

rN to
X (see [18, Section 7]).

6 Cut-off Dirichlet forms in infinite volumes

In this section, we construct schemes of cut-off Dirichlet forms in infinite volumes. We shall
use these schemes in Sect. 7 to prove Theorems 3.2–3.5.

Let OR,ν be as in (3.11). We set

ER,ν( f , g) =
∫

OR,ν

D
a
R[ f , g] dμ. (6.1)

Lemma 6.1 Assume thatμ satisfies (QG)with {Om
R,ν}R,m∈N. Assume that (3.12) holds. Then,

(ER,ν ,D
μ◦ ) is closable on L2(μ).

Proof Using Lemma 2.10, we see that (E
Oν

R ,D
Oν◦ ) is closable on L2(μ). From (3.12) and

(6.1), we have E
Oν

R = ER,ν . Hence, we find that (ER,ν ,D
Oν◦ ) is closable on L2(μ). Com-

bining this with D
μ◦ ⊂ D

Oν◦ , we conclude that (ER,ν ,D
μ◦ ) is closable on L2(μ). ��

6.1 Lower schemes of Dirichlet forms in infinite volumes

We assume that (3.12)–(3.14) hold. From Lemma 6.1, we see that (ER,ν ,D
μ◦ ) is closable

on L2(μ). Hence, we denote the closure of (ER,ν ,D
μ◦ ) on L2(μ) as (ER,ν ,D R,ν). Then, we

deduce from (3.12) that, for each ν ∈ N,

(ER,ν ,D R,ν) ≤ (ER′,ν ,D R′,ν) for R ≤ R′. (6.2)
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From (3.13), it is easy to show that, for each R ∈ N,

(ER,ν ,D R,ν) ≤ (ER,ν′ ,D R,ν′) for ν ≤ ν′. (6.3)

From (6.2) and (6.3), we have that, for f ∈ ⋂R,ν∈N D R,ν ,

lim
R→∞

{
lim

ν→∞ ER,ν( f , f )
}

= lim
ν→∞

{
lim
R→∞ ER,ν( f , f )

}
. (6.4)

For f , g ∈ D
μ◦ , we set

E∞,ν( f , g) =
∫

Oν

D
a[ f , g](s) dμ.

Because E∞,ν( f , f ) = ER,ν( f , f ) for f ∈ D
μ◦ ∩ BR , we naturally extend the domain of

E∞,ν to D R,ν . By (6.2), we see that {(ER,ν ,D R,ν)}R∈N is increasing for each ν ∈ N. Hence,
we set the closed form (E∞,ν ,D∞,ν) on L2(μ) such that

E∞,ν( f , f ) = lim
R→∞ ER,ν( f , f ) for f ∈ D∞,ν ,

D∞,ν =
{
f ∈

⋂

R∈N
D R,ν ; lim

R→∞ ER,ν( f , f ) < ∞
}

. (6.5)

From (6.2), (6.3), and (6.5), we see that the sequence of the forms (E∞,ν ,D∞,ν) is increasing
in ν ∈ N. Hence, we define the closed form (E∞,∞,D∞,∞) as

E∞,∞( f , f ) = lim
ν→∞ E∞,ν( f , f ) for f ∈

∞⋂

ν=1

D∞,ν ,

D∞,∞ =
{
f ∈

∞⋂

ν=1

D∞,ν ; lim
ν→∞ E∞,ν( f , f ) < ∞

}
. (6.6)

Lemma 6.2 Assume that μ satisfies (QG) with {Om
R,ν}R,m∈N for each ν ∈ N and that

{Om
R,ν}R,ν,m∈N satisfies (3.12)–(3.16). Assume that (ZC) holds. Then,

(E∞,∞,D∞,∞) = (E ,D). (6.7)

Proof From (6.3), we set the closed form (ER,∞,D R,∞) by

ER,∞( f , f ) = lim
ν→∞ ER,ν( f , f ),

D R,∞ =
{
f ∈

∞⋂

ν=1

D R,ν ; lim
ν→∞ ER,ν( f , f ) < ∞

}
. (6.8)

Obviously, we have

(ER,∞,D R,∞) ≤ (ER,D R) ≤ (ER,DR). (6.9)

It is easy to show that (ER,D R) is a quasi-regular Dirichlet form. From (6.9), we have that
Cap

R
≤ CapR , where CapR is the capacity given by the Dirichlet form (ER,D R) on L2(μ).

Using (ZC), (3.15), and the inequality of the capacities as above, we obtain

Cap
R

(
S \

∞⋃

ν=1

OR,ν

)
= 0. (6.10)
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Using (6.8) and (6.10) and the definition of (ER,D R), we deduce

(ER,∞,D R,∞) = (ER,D R). (6.11)

Using (2.7), (6.4)–(6.6), (6.8), and (6.11), we obtain

(E∞,∞,D∞,∞) = lim
ν→∞(E∞,ν ,D∞,ν) by (6.6)

= lim
ν→∞ lim

R→∞(ER,ν ,D R,ν) by (6.5)

= lim
R→∞ lim

ν→∞(ER,ν ,D R,ν) by (6.4)

= lim
R→∞(ER,∞,D R,∞) by (6.8)

= lim
R→∞(ER,D R) by (6.11)

= (E ,D) by (2.7).

This completes the proof of (6.7). ��

6.2 Upper schemes of Dirichlet forms in infinite volumes

We now proceed with the upper scheme. We define the domain BR,ν such that

BR,ν = { f ∈ BR; f is constant on each connected component of S\OR,ν}. (6.12)

From (3.12) and (6.12), we deduce the following for each ν ∈ N:

BR,ν ⊂ BR+1,ν for all R ∈ N. (6.13)

Using Lemma 2.10, we see that (EOν

R ,D
Oν◦ ) is closable on L2(μ) for each R, ν ∈ N. Because

D
μ◦ ∩ BR,ν ⊂ D

Oν◦ and

E ( f , f ) = E
Oν

R ( f , f ) for f ∈ Dμ◦ ∩ BR,ν ,

we have that (E ,D
μ◦ ∩ BR,ν) is closable on L2(μ). Hence, we define (ER,ν ,DR,ν) as the

closure of (E ,D
μ◦ ∩ BR,ν) on L2(μ). Note that, by construction,

(ER,ν ,D R,ν) ≤ (ER,ν ,DR,ν). (6.14)

Lemma 6.3 Assume that μ satisfies (QG) with {Om
R,ν}R,m∈N for each ν ∈ N and that

{Om
R,ν}R,ν,m∈N satisfies (3.12)–(3.16). Then, {(ER,ν ,DR,ν)}R∈N is decreasing in R for each

ν ∈ N. The strong resolvent limit (E∞,ν ,D∞,ν) of {(ER,ν ,DR,ν)}R∈N is the closure of
(E∞,ν ,∪RDR,ν).

Proof From (6.13), we have the following for each ν ∈ N:

Dμ◦ ∩ BR,ν ⊂ Dμ◦ ∩ BR+1,ν for all R ∈ N. (6.15)

Because (ER,ν ,DR,ν) is the closure of (ER,ν ,D
μ◦ ∩BR,ν), we see that {(ER,ν ,DR,ν)}R∈N is

decreasing in R for each ν ∈ N from (6.15). This implies the first claim.
The strong resolvent limit (E∞,ν ,D∞,ν) is the closure of the largest closable part of

(E∞,ν ,∪RDR,ν). Hence, it only remains to prove that (E∞,ν ,∪RDR,ν) is closable on L2(μ).
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We set Dμ◦ν = ∪R(D
μ◦ ∩ BR,ν). Then, D

μ◦ν ⊂ D
μ◦ . Recall that (E ,D

μ◦ ) is closable on
L2(μ). Hence, (E ,D

μ◦ν) is closable on L2(μ). Note that E ( f , f ) = E∞,ν( f , f ) for f ∈ D
μ◦ν .

Hence, the closability of (E∞,ν ,D
μ◦ν) on L2(μ) follows from that of (E ,D

μ◦ν) on L2(μ).
Note that Dμ◦ν ⊂ ∪RDR,ν and that Dμ◦ν is dense in ∪RDR,ν with respect to the inner

product E∞,ν(·, ∗) + (·, ∗)L2(μ). Combining these facts with the closability of (E∞,ν ,D
μ◦ν)

on L2(μ), we deduce that (E∞,ν ,∪RDR,ν) is closable on L2(μ). This completes the proof
of the second claim. ��
Lemma 6.4 Consider the same assumptions as for Lemma 6.3.

(1) {(E∞,ν ,D∞,ν)}ν∈N is decreasing in ν ∈ N. For each ν ∈ N, we have that

(E∞,ν ,D∞,ν) ≥ (E ,D), E∞,ν( f , f ) = E ( f , f ) for all f ∈ D∞,ν . (6.16)

Furthermore, (E ,∪∞
ν=1D∞,ν) is closable on L2(μ).

(2) The closure (E∞,D∞) of (E ,∪∞
ν=1D∞,ν) satisfies

(E∞,D∞) = lim
ν→∞(E∞,ν ,D∞,ν) in the strong resolvent sense, (6.17)

(E∞,D∞) ≥ (E ,D), E∞( f , f ) = E ( f , f ) for all f ∈ D∞. (6.18)

Proof From (3.13), we have OR,ν ⊂ OR,ν+1. Hence, BR,ν ⊂ BR,ν+1 by (6.12). Then,

(E ,Dμ◦ ∩ BR,ν) ≥ (E ,Dμ◦ ∩ BR,ν+1) for each R, ν ∈ N. (6.19)

Taking the closures of both sides of (6.19) and using DR,ν+1 ⊂ DR , we obtain

(ER,ν ,DR,ν) ≥ (ER,ν+1,DR,ν+1) ≥ (ER,DR) for each R, ν ∈ N. (6.20)

By Lemma 6.3, (E∞,ν ,D∞,ν) is the strong resolvent limit of {(ER,ν ,DR,ν)}R∈N for each
ν ∈ N. From this and the first inequality in (6.20), {(E∞,ν ,D∞,ν)}ν∈N is decreasing.

We see that (E ,D) = limR→∞(ER,DR) in the strong resolvent sense from Lemma 2.4
(1).We can deduce (E∞,ν ,D∞,ν) = limR→∞(ER,ν ,DR,ν) in the strong resolvent sense from
Lemma 6.3. Hence, taking R → ∞ in (6.20), we obtain the inequality in (6.16).

From E ( f , f ) = ER,ν( f , f ) for f ∈ DR,ν , we have the equality in (6.16).
From (6.16), we have (E ,D) ≤ (E ,∪∞

ν=1D∞,ν). Recall that (E ,D) is a closed form on
L2(μ). Hence, (E ,∪∞

ν=1D∞,ν) is closable L2(μ). Thus, we obtain (1).
By (1), {(E∞,ν ,D∞,ν)}ν∈N is decreasing. Therefore, (E∞,ν ,D∞,ν) converges to the clo-

sure of the largest closable part of (E∞,∪∞
ν=1D∞,ν) in the strong resolvent sense. By (1),

we see that (E∞,∪∞
ν=1D∞,ν) is closable. Hence, we obtain (6.17). Equation (6.18) is clear

because of (6.16) and the fact that (E∞,D∞) is the closure of (E ,∪∞
ν=1D∞,ν). ��

Proposition 6.1 Consider the same assumptions as for Lemma 6.3, and furthermore assume
that (ZC) holds. Let (E∞,D∞) be as in Lemma 6.4. Then, D∞ is dense in D with respect to
the inner product E(1) := E (·, ∗) + (·, ∗)L2(μ). Furthermore,

(E ,D) = (E∞,D∞), (6.21)

(E ,D) = lim
ν→∞(E∞,ν ,D∞,ν) in the strong resolvent sense. (6.22)

Proof We regard Oc
R,ν as a subset of Cf(SR). Then,

∞⋂

ν=1

Oc
R,ν =

∞⋃

m=1

{s ∈ Cfm(SR) ; σm
R (s) = 0}. (6.23)
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From (ZC), we see that

CapR

( ∞⋃

m=1

{s ∈ Cfm(SR) ; σm
R (s) = 0}

)
= 0. (6.24)

Using (3.13), (6.23), and (6.24), we obtain

lim
ν→∞CapR(Oc

R,ν) = 0 for each R ∈ N. (6.25)

Hence, for each R ∈ N, there exist a decreasing sequence of open sets {MR,ν}ν∈N and a
sequence of functions {ϕR,ν}ν∈N satisfying

Oc
R,ν ⊂ MR,ν , lim

ν→∞CapR(MR,ν) = 0, (6.26)

ϕR,ν = 1 onMR,ν , 0 ≤ ϕR,ν(s) ≤ 1 for all s ∈ S, (6.27)

ϕR,ν ∈ DR, lim
ν→0

ER,(1)(ϕR,ν) = 0. (6.28)

Here, ER,(1) := ER(·, ∗) + (·, ∗)L2(μR). For Q ≤ R, the set OQ,ν can be regarded as an
open set in Cf(SR), and the function ϕQ,ν can be considered as an element in DR . Recall the
definition ofDR,ν given before (6.14). Then, because of (6.26)–(6.28), we have the following
for each R ∈ N:

ψR,ν :=
R∏

Q=1

(1 − ϕQ,ν) ∈ DR,ν ∩ L∞(μ). (6.29)

From (6.27) and (6.29), we have ψR,ν = 0 on MR,ν . Hence, from (6.27)–(6.29) with a
straightforward calculation, we have that

lim
ν→∞ E(1)(1 − ψR,ν) = lim

ν→∞ ER,(1)(1 − ψR,ν) = 0 (6.30)

and a subsequential limit such that

lim
ν→0

ψR,ν(s) =
R∏

Q=1

lim
ν→∞(1 − ϕQ,ν(s)) = 1 for μ-a.s. s. (6.31)

Combining (6.30), (6.31), f ∈ D ∩ L∞(μ), and |1 − ψR,ν | ≤ 1, we obtain

E(1)( f − f ψR,ν) = E(1)( f (1 − ψR,ν))

=
∫

S
D
a[ f ]|1 − ψR,ν |2 + | f |2Da[1 − ψR,ν] + 2D

a[ f , 1 − ψR,ν] + | f |2|1 − ψR,ν |2dμ

≤
∫

S
2
{
D
a[ f ]|1 − ψR,ν |2 + | f |2Da[1 − ψR,ν]

}+ | f |2|1 − ψR,ν |2dμ

→ 0, ν → ∞. (6.32)

For f ∈ D ∩ L∞(μ), we have that f ψR,ν = 0 onMR,ν . For f ∈ D ∩ L∞(μ), this yields

f ψR,ν ∈ DR,ν ∩ L∞(μ) ⊂ D∞,ν ∩ L∞(μ). (6.33)

From (6.32), (6.33), and∪∞
ν=1D∞,ν∩L∞(μ) = D∞∩L∞(μ), we deduce thatD∞∩L∞(μ) is

dense inD∩L∞(μ)with respect to E(1). Furthermore, it is not difficult to see thatD∩L∞(μ)

is dense inD with respect to E(1). Collecting these results, we see thatD∞ is dense inD with
respect to E(1), which completes the proof of the first claim.

The second claim (6.21) follows immediately from the first claim and (6.18). The third
claim (6.22) follows from (6.17) and (6.21). ��
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6.3 Construction of {Om
R,�}R,�,m∈N

In this subsection, we construct {Om
R,ν}R,ν,m∈N satisfying (3.12)–(3.16).

Lemma 6.5 Assume that μ satisfies (QG) with {SmR }R,m∈N and (ZC). Assume that σm
R is

uniformly continuous on SmR for each R,m ∈ N. Then, we have a sequence of symmetric
open sets {Om

R,ν}R,ν,m∈N such that μ satisfies (QG) with {Om
R,ν}R,m∈N for each ν ∈ N and

that {Om
R,ν}R,ν,m∈N satisfies (3.12)–(3.16).

Proof Let (Φ0, Ψ0) be as in (2.18). Let R, ν,m ∈ N be fixed. Let T1 = S1 and TQ =
SQ \ SQ−1 for 2 ≤ Q ≤ R. For x = (xi ) ∈ SmR , we set

IQ,R(x) =
∑

xi∈TQ
Φ0(xi ) +

∑

xi , x j∈TQ
i< j

Ψ0(xi , x j ) +
R∑

Q′=Q+1

∑

xi∈TQ , x j∈TQ′
Ψ0(xi , x j ).

Let T l
Q = {x = (xi ) ∈ SmR ; �{i ; xi ∈ TQ} = l}. We set A0

Q,R = ∅. Furthermore, we set for
Q ∈ N and l ∈ N

Al
Q,R = {x ∈ T l

Q ; IQ,R(x) = ∞}. (6.34)

Let L(m) = {(lQ) ∈ {0, . . . ,m}R ; ∑R
Q=1 lQ = m}. We set

Bm
R =

∑

(lQ)∈L(m)

R∑

Q=1

A
lQ
Q,R . (6.35)

Let H Φ,Ψ
R be as in (2.16). We set

HR(x) = H Φ0,Ψ0
R (u(x)).

Recall that (Φ0, Ψ0) is bounded from below because μ satisfies (QG) with {SmR }R,m∈N. Let
c6(R, k,m, πc

R(s)) be as in (2.17). We set

Ω(n) = {s ∈ S ; n−1 ≤ c6(R, k,m, πc
R(s)) ≤ n}.

Let σm
R,n be the density function of μ(· ∩ Ω(n)) on SmR . Suppose that μ(Ω(n)) > 0. Then,

from (2.17) and (2.18), we have a positive constant c13 such that

c−1
13 exp{−c7HR(x)} ≤ σm

R,n(x) ≤ c13 exp{−c−1
7 HR(x)} for x ∈ SmR . (6.36)

Thus, for x ∈ SmR , we deduce that σm
R,n(x) = 0 if and only if HR(x) = ∞. It is clear that

μ(∪nΩ(n)) = 1. Hence, {x ∈ SmR ; σm
R (x) = 0} if and only if x ∈ Bm

R .
Let εν , ν ∈ N, be functions defined on N

2 such that, for each Q, l ∈ N,

εν(Q, l) > εν+1(Q, l) > 0, lim
ν→∞ εν(Q, l) = 0. (6.37)

We set

N (Q, l) =
{
x ∈ T l

Q ; inf
y∈Al

Q,R

|x − y| > εν(Q, l)

}
,

Om
R,ν =

∑

(lQ )∈L(m)

R∑

Q=1

N (Q, lQ).
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Then, it is easy to show that Om
R,ν is a symmetric open set satisfying (3.12) and (3.13).

Recall that μ(π−1
R (u({x; σm

R (x) = 0}))) = 0 from (ZC). Then, μ(π−1
R (Bm

R )) = 0 from
(6.34) and (6.36). Hence, using (6.37), we obtain (3.14). Equation (3.15) follows from (6.34)
and (6.36). Equation (3.16) is clear because σm

R is uniformly continuous on SmR and Bm
R is

relatively compact in SmR .
To prove that μ satisfies (QG) with {Om

R,ν}R,m∈N for each ν ∈ N, we begin by checking
Definition 2.2. Definition 2.2 (1) is obvious. Using (ZC), we have

μR

({
⋃

ν∈N
OR,ν

}c)
= 0.

Hence, takingμR,ν = μ(·∩OR,ν), we obtain Definition 2.2 (2) (replacingμR,k byμR,ν). By
assumption, μ satisfies (QG) with {SmR }R,m∈N. Hence, applying (2.17) to SmR with a simple
calculation, we find that

c−1
6 e−H Φ,Ψ

R Λm
R (dx) ≤ μm

(k),R,s(dx) ≤ c6e
−H Φ,Ψ

R Λm
R (dx). (6.38)

Using (6.38), Om
R,ν ⊂ SmR , and retaking Om

R,ν if necessary, we can easily find that μ is a
(Φ,Ψ )-quasi-Gibbs measure with {Om

R,ν}R,m∈N. Thus, Definition 2.2 (3) holds. Collecting
these results, we obtain Definition 2.2, which implies (QG1). By assumption, (QG2) is
satisfied. Hence, we find that μ satisfies (QG) with {Om

R,ν}R,m∈N for each ν ∈ N. This
completes the proof of Lemma 6.5. ��

7 Proof of Theorems 3.2–3.3

In this section, we shall prove Theorems 3.2–3.3.
For simplicity, we make the following assumption.

(B4)∗ Either (B4), (B4)′, or (B4)′′ holds.
We introduce condition (B4)ν , which is similar to (B4).
(B4)ν For each R, ν,m ∈ N,

lim
N→∞

∥∥∥
σ
N ,m
R

σm
R

− 1
∥∥∥
Om

R,ν

= 0. (7.1)

Lemma 7.1 Assume that (B4)∗ is satisfied. Then, (B4)ν holds.

Proof If (B4) holds, then we obviously have (B4)ν . From (B4)′, we have that

lim
N→∞

∥∥∥σ N ,m
R − σm

R

∥∥∥
Om

R,ν

= 0 for each R, ν,m ∈ N. (7.2)

From (3.16), we see that σm
R is uniformly positive on Om

R,ν . Hence, (7.2) yields (7.1). This
implies (B4)ν . Because (B4)′′ implies (B4)′, (B4)′′ yields (B4)ν . ��

7.1 Lower schemes of cut-off Dirichlet forms

The main result of this subsection is Proposition 7.1, which presents an inequality for the
lower scheme.
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Let Om
R,ν and Oν be as in (3.11). Note that Om

R,ν ∩ Om′
R,ν = ∅ for m �= m′ and that

Oν ⊂ OR,ν = ∪∞
m=1O

m
R,ν . Replacing μ by 1Om

R,ν
μN and 1Oν

μN , we introduce the cut-off

bilinear forms E N ,m
R,ν and E N

R,ν such that

E N ,m
R,ν ( f , g) =

∫

Om
R,ν

D
a
R[ f , g] dμN ,

E N
R,ν( f , g) =

∞∑

m=1

E N ,m
R,ν ( f , g) =

∫

Oν

D
a
R[ f , g]dμN .

Lemma 7.2 Assume that μN satisfies (QG) with {Om
R,ν}R,m∈N for each ν ∈ N. Then,

(E N
R,ν ,D

N◦ ) is closable on L2(μN ).

Proof We obtain Lemma 7.2 from Lemma 6.1 by replacing μ with μN . ��
We denote the closure of (E N

R,ν ,D
N◦ ) on L2(μN ) as (E N

R,ν ,D
N
R,ν) .

Lemma 7.3 Assume that μN satisfies (QG) with {Om
R,ν}R,m∈N for each ν ∈ N. Let D̃

N
R be as

in (3.2). Then, for all R, ν, N ∈ N, (E N
R,ν ,D

N
R,ν) satisfies

(E N
R,ν ,D

N
R,ν) ≤ (E N

R , D̃
N
R ). (7.3)

Proof We have (E N
R,ν ,D

N◦ ∩ BR) ≤ (E N
R ,DN◦ ∩ BR). Hence, (E N

R,ν ,D
N
R,ν) ≤ (E N

R ,DN
R ).

Combining this with (3.3), we obtain (7.3). ��
Let rN be as in (5.7). We set

D̃
N
rN ,ν = { f ∈ DN

rN ,ν ; f is σ [πrN ] − measurable}.

Lemma 7.4 Assume that μ and μN satisfy (QG) with {Om
R,ν}R,m∈N for each ν ∈ N such

that (3.12)–(3.15) hold. Assume that (B4)∗ holds. Assume that { fN }N∈N with fN ∈ L2(μN
rN )

weakly converges to f ∈ L2(μ) in the sense of Definition 4.2. Then, for each ν ∈ N,

E∞,ν〈 f 〉 ≤ lim inf
N→∞ E N

rN ,ν〈 fN 〉 (7.4)

holds for (E∞,ν ,D∞,ν) and {(E N
rN ,ν , D̃

N
rN ,ν)}N∈N.

Proof Using Lemma 7.1, we deduce (B4)ν from (B4)∗. Then, we obtain (7.4) from (B4)ν
in the same fashion as in Proposition 5.1. Indeed, we replace (E N

rN , D̃
N
rN ) and (E ,D) in

Proposition 5.1 by (E N
rN ,ν , D̃

N
rN ,ν) and (E∞,ν ,D∞,ν), respectively. The remainder of the

proof is the same as that of Proposition 5.1, and so we omit the details. ��
Proposition 7.1 Consider the same assumptions as for Lemma 6.5 regarding μ and μN .
Assume that (B4)∗ holds. Assume that { fN }N∈N with fN ∈ L2(μN

rN ) weakly converges to

f ∈ L2(μ) in the sense of Definition 4.2. Then, (E ,D) and {(E N
rN , D̃

N
rN )}N∈N satisfy

E 〈 f 〉 ≤ lim inf
N→∞ E N

rN 〈 fN 〉. (7.5)
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Proof From the definition of E 〈·〉, (6.7), and (6.6), we have the following for f ∈ L2(μ)

E 〈 f 〉 = E∞,∞〈 f 〉 = lim
ν→∞ E∞,ν〈 f 〉. (7.6)

From (7.4) and (7.3), for f ∈ L2(μ), we have that

E∞,ν〈 f 〉 ≤ lim inf
N→∞ E N

rN ,ν〈 fN 〉 ≤ lim inf
N→∞ E N

rN 〈 fN 〉. (7.7)

Combining (7.6) and (7.7), we obtain (7.5). ��

7.2 Upper schemes of cut-off Dirichlet forms

The main result of this section is Proposition 7.2, which presents the convergence of the
upper scheme of the cut-off Dirichlet forms. The argument is similar to that in Sect. 5.2, with
the replacement of (3.4) by (B4)ν .

Let Oν be as in (3.11). We set

E N
R,ν( f , g) =

∫

Oν

D
a
R[ f , g]dμN .

Lemma 7.5 Assume that μN satisfies (QG) with {Om
R,ν}R,m∈N for each ν ∈ N. Then,

(E N
R,ν ,D

μ◦ ∩ BR) is closable on L2(μN ).

Proof Using (B2), we have Dμ◦ ⊂ ∩N∈NDN◦ . Then,

Dμ◦ ∩ BR ⊂ Dμ◦ ⊂ ∩N∈NDN◦ ⊂ DN◦ . (7.8)

From Lemma 7.2, we see that (E N
R,ν ,D

N◦ ) is closable on L2(μN ). Combining this with (7.8)
completes the proof. ��

We denote the closure of (E N
R,ν ,D

μ◦ ∩ BR) on L2(μN ) as (E N
R,ν ,D

N
R,ν) . We set

E N∞,ν( f , g) =
∫

Oν

D
a[ f , g]dμN .

Similar to Lemma 2.3, we see that (E N∞,ν ,∪∞
R=1D

μ◦ ∩ BR) is closable on L2(μN ). Let
(E N∞,ν ,D

N∞,ν) be the closure of (E N∞,ν ,∪∞
R=1D

μ◦ ∩ BR) on L2(μN ). Then, similar to
Lemma 2.4, we see that {(E N

R,ν ,D
N
R,ν)} converges to (E N∞,ν ,D

N∞,ν) on L2(μN ) as R → ∞
in the strong resolvent sense. Let (E∞,ν ,D∞,ν) be as in Lemma 6.3.

Lemma 7.6 Assume that (B4)∗ holds. Then, (E N∞,ν ,D
N∞,ν) and (E∞,ν ,D∞,ν) satisfy the fol-

lowing. For each f ∈ L2(μ), there exists a sequence {gN ,ν}N∈N satisfying

gN ,ν is σ [πrN ] − measurable, gN ,ν ∈ L2(μN
rN ), (7.9)

lim
N→∞ gN ,ν = f strongly in the sense of Definition 4.2, (7.10)

lim
N→∞ E N∞,ν〈gN ,ν〉 = E∞,ν〈 f 〉. (7.11)

Proof From Lemma 7.1, we deduce (B4)ν from (B4)∗. We then obtain (7.9)–(7.11) from
(B4)ν in the same fashion as in Proposition 5.2. We omit the details of the proof. ��

Next, we check Definition 4.4 (2).
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Proposition 7.2 Consider the same assumptions as for Lemma 6.5. Assume that (B4)∗ holds.
Then, (E N ,DN ) and (E ,D) satisfy the following. For any f ∈ L2(μ), there exists a sequence
{gN }N∈N such that

gN is σ [πrN ] − measurable,gN ∈ L2(μN
rN ), (7.12)

lim
N→∞ gN = f strongly in the sense of Definition 4.2, (7.13)

lim
N→∞ E N 〈gN 〉 = E 〈 f 〉. (7.14)

Proof From Lemma 6.5, we see that the assumptions of Proposition 6.1 are fulfilled. Using
Proposition 6.1, we find that ∪∞

ν=1D
N∞,ν is dense in D . Hence, without loss of generality, we

can assume that f ∈ ∪∞
ν=1D

N∞,ν . From Proposition 6.1, we obtain

E ( f ) = lim
ν→∞ E∞,ν( f ) (7.15)

Let gN ,ν denote the sequence in Lemma 7.6. Then, gN ,ν satisfies (7.12). Combining (7.9)–
(7.11) and (7.15), we can take gN satisfying (7.13) and (7.14) by choosing a subsequence of
{gN ,ν}N ,ν∈N. ��

7.3 Proof of Theorems 3.2–3.3

Proof of Theorem 3.2 We first assume that (B4)′′ holds. Assume that { fN }N∈N with fN ∈
L2(μN

rN ) weakly converges to f ∈ L2(μ) in the sense of Definition 4.2. Let (E N
rN , D̃

N
rN ) be

as in (3.3) with R = rN .
From Proposition 7.1, we see that (E ,D) and {(E N

rN , D̃
N
rN )}N∈N satisfy

E 〈 f 〉 ≤ lim inf
N→∞ E N

rN 〈 fN 〉. (7.16)

From (A2), we have (E ,D) = (E ,D). Combining these results, we see that (E ,D) and

{(E N
rN , D̃

N
rN )}N∈N satisfy Definition 4.4 (1).

Let gN be as in Proposition 7.2. Applying (7.16) to {gN }, we have that
E 〈 f 〉 ≤ lim inf

N→∞ E N
rN 〈gN 〉. (7.17)

Clearly, E N
rN 〈gN 〉 ≤ E N 〈gN 〉. Hence, from Proposition 7.2, we obtain

lim sup
N→∞

E N
rN 〈gN 〉 ≤ lim sup

N→∞
E N 〈gN 〉 = E 〈 f 〉. (7.18)

Combining (7.17) and (7.18), we have

E 〈 f 〉 = lim
N→∞ E N

rN 〈gN 〉. (7.19)

Hence, we find that (E ,D) and {(E N
rN , D̃

N
rN )}N∈N satisfy Definition 4.4 (2).

From (7.16) and (7.19), we see that the Mosco convergence of (E N
rN , D̃

N
rN ) on L2(μN

rN ) to
(E ,D) on L2(μ) holds. Combining this with Lemma 4.1, we conclude that (3.6) holds.

Next, we suppose that (B4)′′ holds. Combining (3.18) and (3.19), we see that

sup
xm∈SmR

ρm(xm) ≤ cm9 m
c10m . (7.20)
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Then, from (3.19) and (7.20), we obtain

σ
N ,m
R (xm) =

∞∑

n=0

(−1)n

n!
∫

SnR

ρN ,m+n(xm, yn)dyn, (7.21)

σm
R (xm) =

∞∑

n=0

(−1)n

n!
∫

SnR

ρm+n(xm, yn)dyn . (7.22)

Combining (3.18), (7.21), and (7.22) and using the Lebesgue convergence theorem,we obtain
(3.17), which implies that (B4)′ holds. Hence, (3.6) follows from the first part of the proof. ��

Proof of Theorem 3.3 We first check the Mosco convergence of (E N
rN , D̂N

rN ) on L2(μN
rN ).

Assume that { fN }N∈N with fN ∈ L2(μN
rN ) weakly converges to f ∈ L2(μ) in the sense of

Definition 4.2. From (7.16) and the first inequality in (3.21), (E N
rN , D̂N

rN ) satisfies

E 〈 f 〉 ≤ lim inf
N→∞ E N

rN 〈 fN 〉. (7.23)

Combining this with (A2) implies Definition 4.4 (1).
Let gN be as in Proposition 7.2. Then, from (7.18) and the second inequality in (3.21),

(E N
rN , D̂N

rN ) satisfies

lim sup
N→∞

E N
rN 〈gN 〉 ≤ E 〈 f 〉. (7.24)

Taking fN = gN in (7.23) and combining this with (7.24) and (A2), we obtain Definition 4.4
(2).

Thus, the Mosco convergence of (E N
rN , D̂N

rN ) on L2(μN
rN ) to (E ,D) on L2(μ) holds. Using

this and Lemma 4.1 completes the proof of Theorem 3.3. ��

8 Proof of Theorems 3.4–3.5

Let (XN
rN , P̃

N

rN
) be the unlabeled diffusion given by the Dirichlet form (E N

rN , D̃
N
rN ) as in

Theorem 3.1. Originally, XN
rN was a Cf(SrN )-valued process. We regard XN

rN as a W (Ss)-
valued process in an obvious manner.

Let (X,P),P = {Ps}s∈S, be theS-valued,μ-reversible diffusion associatedwith (E ,D)

on L2(μ) (see Lemma 2.5). Let ξ be as in (B3). Let Pξdμ = ∫
SPsξ(s)dμ.

Recall that the diffusion processesXN
rN andX are given byXN

rN (t) = w(t) andX(t) = w(t)

as functions defined onW (Ss), whereSs is defined by (2.8). Thus, wewrite lNpath(X
N
rN (w)) =

lNpath(w) and lpath(X(w)) = lpath(w).

We consider the discontinuity set of the sequence {lNpath(w)(t)}N∈N converging to
lpath(w)(t) such that

Disc[lpath(w)(t)] = {w ∈ W (S) ; w /∈ W (Ss) or there exists {wN }N∈N in W (Ss)

such that lim
N→∞wN = w and lim

N→∞ lNpath(w)(t) �= lpath(w)(t)}.

We set Disc[lpath(w)(u) − lpath(w)(t)] similarly.
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Lemma 8.1 For each 0 ≤ t < u < ∞,

Pξdμ(Disc[lpath(w)(t)]) = 0, (8.1)

Pξdμ(Disc[lpath(w)(u) − lpath(w)(t)]) = 0. (8.2)

Proof Let WNE(Ssi) and WNE(Ss) be as in (2.9). By definition, WNE(Ssi) ⊂ WNE(Ss) ⊂
W (Ss). Recall that Pμ(WNE(Ssi)) = 1 by (A4).

Let t be fixed. It is easy to show that lpath(w)(t) restricted on WNE(Ss) is a continuous
function in (l(w(0)),w) in the sense that if (l(wN (0)),wN ) converge to (l(w(0)),w), then
lNpath(wN )(t) converge to lpath(w)(t). Hence, from (C1), we have

Pμ(Disc[lpath(w)(t)]) = 0. (8.3)

Because Pξdμ is absolutely continuous with respect to Pμ, we deduce (8.1) from (8.3).
From (8.1) with a simple calculation, we obtain (8.2). ��

Proof of Theorem 3.4 From (A4), (C2), and (3.22), we can construct the labeled processes
XN
rN = (lpath(X

N
rN ), o, o, . . .) and X = lpath(X). Note that the initial distribution of XN

rN has
a density in L2(μN

rN ) from (B3). Hence, it is sufficient for the tightness to prove the case in
which XN

rN start from the stationary distribution μN
rN . Let

μN ,m
rN = μN ◦ π−1

SrN
( · |s(SrN ) ≥ m).

By construction, μN ,m
rN ({s; m ≤ s(SrN ) < ∞}) = 1.

We assume that XN
rN (0)

law= μ
N ,m
rN in the rest of the proof. We write XN

rN = (XN ,i
rN )∞i=1. To

apply the Lyons–Zheng decomposition to XN ,i
rN , 1 ≤ i ≤ m, we use the m-labeled process

such that

XN ,[m]
rN =

(
(XN ,i

rN )mi=1,

nN∑

i=m+1

δXN ,i
rN

)
.

Then, XN ,[m]
rN is the diffusion process associated with the Dirichlet form (E N ,[m]

rN , D̃
N ,[m]
rN )

on L2(S
m
rN ×SrN , μ

N ,[m]
rN ). Here, μN ,[m]

rN is the m-Campbell measure of μ
N ,m
rN and E N ,[m]

rN is
the Dirichlet form such that

E N ,[m]
rN ( f , g) =

∫

S
m
rN

×SrN

D
a,[m][ f , g]dμN ,[m]

rN .

Furthermore, D
a,[m] is the carré du champ on S

m
rN × SrN such that

D
a,[m][ f , g](x, s) = 1

2

m∑

i=1

⎛

⎝a

⎛

⎝xi ,

⎧
⎨

⎩

m∑

j �=i

δx j

⎫
⎬

⎭+ s

⎞

⎠∇xi f (x, s),∇xi g(x, s)

⎞

⎠

Rd

+ D
a[ f , g](x, s),

where x = (x1, . . . , xm) ∈ Sm , and we regard D
a as the carré du champ on S

m
rN ×SrN in an

obvious fashion. The domain D̃
N ,[m]
rN is taken to be the closure of

{
f ∈ C∞

0 (Sm) ⊗ D◦; E N ,[m]
rN ( f , f ) < ∞, f ∈ L2(S

m
rN × SrN , μN ,[m]

rN )
}

.

123



Partial Differential Equations and Applications             (2022) 3:27 Page 45 of 51    27 

We see that XN ,i
rN , 1 ≤ i ≤ m, is an additive functional of the μ

N ,[m]
rN -symmetric, conser-

vative diffusion XN ,[m]
rN . Moreover, XN ,i

rN is a Dirichlet process of XN ,[m]
rN . Here, a Dirichlet

process is an additive functional of a Markov process associated with a Dirichlet form given
by the composition of the Markov process with a function belonging to the domain of the
Dirichlet form locally. Thus, we can apply the Lyons–Zheng decomposition to XN ,i

rN . Note
that we cannot apply the Lyons–Zheng decomposition to XN ,i

rN as an additive functional of
the unlabeled diffusion XN

rN directly, because XN ,i
rN is not a Dirichlet process of XN

rN . See
Section 9 in [16] for the proof of the Lyons–Zheng decomposition.

Let M [xi ] be a continuous martingale additive functional of XN ,[m]
rN such that

M [xi ]
t
(
XN ,[m]
rN

) =
∫ t

0
σ(XN ,i

rN (u),XN ,i♦
rN (u))dBN ,i (u). (8.4)

For T > 0, we set RT (w)(t) := w(T − t). For each 0 ≤ t ≤ T and 1 ≤ i ≤ m, we set

Mi
t = M [xi ]

t
(
XN ,[m]
rN

)
,

M∗i
t = M [xi ]

T−t

(
RT (XN ,[m]

rN )
)− M [xi ]

T

(
RT (XN ,[m]

rN )
)
. (8.5)

Using the Lyons–Zheng decomposition for solutions of SDE (3.24) with the function xi , we
have that, for each 0 ≤ t ≤ T and 1 ≤ i ≤ m, that

XN ,i
rN (t) − XN ,i

rN (0) = 1

2

{
Mi

t + M∗i
t

}
(8.6)

and that under P̃
N ,[m]
rN ,(x,s)

for μ
N ,[m]
rN -a.e. (x, s), Mi and M∗i are continuous martingales such

that Mi
0 = M∗i

0 = 0. Here, P̃
N ,[m]
rN ,(x,s)

is the distribution of the diffusion process XN ,[m]
rN

associated with the Dirichlet form (E N ,[m]
rN , D̃

N ,[m]
rN ) on L2(S

m
rN × SrN , μ

N ,[m]
rN ) starting at

(x, s).
From (2.1) and (8.4)–(8.6), there exists a constant c14 independent of i such that

E[|XN ,i
rN (t) − XN ,i

rN (u)|4] ≤ c14|t − u|2 for all 0 ≤ t, u ≤ T . (8.7)

Using (3.22), we see that {XN ,i
rN (0)}N∈N is tight in S for each 1 ≤ i ≤ m. Combining this

with (8.7), we easily obtain the tightness of {XN ,i
rN }N∈N in C([0, T ]; S) for each 1 ≤ i ≤ m.

Because T is arbitrary, this implies the tightness of {XN ,i
rN }N∈N in C([0,∞); S) for each

1 ≤ i ≤ m.
Taking an arbitrary m ∈ N, we obtain the tightness of {XN ,i

rN }N∈N in C([0,∞); S) for
all i ∈ N. From this, we deduce the tightness of XN

rN = (XN ,i
rN )∞i=1 in C([0,∞); SN). Here,

we endow C([0,∞); SN) = ∏
i∈N C([0,∞); S) with the product topology. We use the fact

that, in general, the tightness of random variables with the value of a countable product of
Polish spaces follows from that of each component-wise random variable.

Recall that XN
rN = (lpath(X

N
rN ), o, o, . . .) and X = lpath(X). From the tightness of XN

rN (0),
(C3), and (8.7), it easily follows that XN

rN is tight in W (S).
From Theorem 3.1, Lemma 8.1, (LIN), and the tightness ofXN

rN inW (S), we see that the
random variables XN

rN (t) and XN
rN (u) − XN

rN (t) converge weakly to X(t) and X(u) − X(t),
respectively. Thus, we have the convergence of the finite-dimensional distributions of XN

rN
to those of X. From this, we deduce the convergence of the finite-dimensional distributions
of XN ,m

rN to Xm . Collecting these results, we obtain Theorem 3.4. ��
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Proof of Theorem 3.5 From the proof of Theorem 3.4, we see that {XN
rN } is tight in W (S).

Hence, Theorem 3.5 follows from Theorem 3.4. ��

9 A sufficient condition for (C3)

In this section,we present a sufficient condition for (C3) in terms of initial distributions. Let lN

and μN
rN be as in Sect. 3.2. LetR(t) = ∫∞

t (1/
√
2π)e−|x |2/2dx be a (scaled) complementary

error function. We specify the following condition on the initial distributions μN
rN ◦ (lN )−1,

N ∈ N.
(D) For any positive numbers R and T ,

lim
l→∞

{
sup
N∈N

∫ ∑

i≥l

R(
|si | − R

T
)μN

rN ◦ (lN )−1(ds)
}

= 0. (9.1)

Lemma 9.1 Assume that (D) holds. Then, (XN
rN , P̃

N

rN
) satisfies (C3).

Proof Let (XN
rN , P̃

N

rN
) be the diffusion defined in Sect. 3.2. Then, (XN

rN , P̃
N

rN
) is the diffusion

associated with (E N
rN , D̃

N
rN ) on L2(μN

rN ). We denote the distribution of the diffusion with the

initial distribution μN
rN using the same symbol P̃

N

rN
.

From (2.15), we have that

P̃
N

rN

(
mR,T (lNpath(X

N
rN )) > l

)
=P̃

N

rN

(⋃

i≥l

{
inf

t∈[0,T ] |X
i
t | ≤ R

})

≤
∑

i≥l

P̃
N

rN

(
inf

t∈[0,T ] |X
i
t | ≤ R

)
. (9.2)

Let (E N ,[m]
rN , D̃

N ,[m]
rN ) be the Dirichlet form on L2(S

m
rN ×SrN , μ

N ,[m]
rN ) given in the proof

of Theorem 3.4 in Sect. 8. Let P̃
N ,[m]
rN ,(x,s)

be the distribution of the associated diffusion process
starting at (x, s), as before.

From (8.6), we see that, under P̃
N ,[m]
rN ,(x,s)

for μ
N ,[m]
rN -a.e. (x, s), the stochastic processes

Mi and M∗i are continuous martingales with Mi
0 = M∗i

0 = 0 satisfying

XN ,i
rN (t) − XN ,i

rN (0) = 1

2

{
Mi

t + M∗i
t

}
. (9.3)

We set Xi = XN ,i
rN , Xm = (X1, . . . , Xm), and Xm∗ = ∑nN

i>m δXi . Here, nN is the number
of particles in SrN such that nN = XN

rN (SrN )(0). By construction, Xm = lN ,m(XN
rN ). Using

(2.18) of Theorem 2.4 in [26], we have the identity

P̃
N ,[m]
rN ,(x,s)

= P̃
N

rN
((Xm,Xm∗) ∈ · |(Xm,Xm∗)(0) = (x, s)). (9.4)
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Using (9.3) and (9.4), we see that Xi = XN ,i
rN satisfies (9.3) under P̃

N

rN
. Hence, we have that

P̃
N

rN

(
inf

t∈[0,T ] |X
i
t | ≤ R

)
≤ P̃

N

rN

(
sup

t∈[0,T ]
|Xi

t − Xi
0| ≥ |Xi

0| − R

)

≤ P̃
N

rN

(
sup

t∈[0,T ]
|Mi

t | ≥ |Xi
0| − R

)
+ P̃

N

rN

(
sup

t∈[0,T ]
|M∗i

t | ≥ |Xi
0| − R

)
by (9.3), (9.4)

= 2 P̃
N

rN

(
sup

t∈[0,T ]
|Mi

t | ≥ |Xi
0| − R

)
. (9.5)

Let Ẽ
N
rN denote the expectation with respect to P̃

N

rN
. Then, using the martingale inequality,

we see that there exists a positive constant c15 such that

P̃
N

rN

(
sup

t∈[0,T ]
|Mi

t | ≥ |Xi
0| − R

)
≤ Ẽ

N
rN

(
R

(
|Xi

0| − R

c15T

))

=
∫

R(
|si | − R

c15T
)μN

rN ◦ (lN )−1(ds). (9.6)

Combining (9.1), (9.2), (9.5), and (9.6), we can deduce that

sup
N∈N

P̃
N

rN
(mR,T (lNpath(X

N
rN )) > l) ≤ 2 sup

N∈N

∑

i≥l

∫

S
R

( |si | − R

c15T

)
μN
rN ◦ (lN )−1(ds).

Hence, (D) implies (C3). This completes the proof. ��

10 Examples of dynamical universality

In this section, we give some examples of dynamical universality. We consider the sineβ

random point field, β = 1, 2, 4, and the Ginibre random point field. All examples satisfy
the assumptions in Theorems 3.1–3.5, and the main theorems are thus applicable to these
examples.

For these random point fields, (A1) is proved in [28].We have (A2) from [15]. Assumption
(A3) obviously holds. We obtain (A4) from [31] based on the result in [25]. We have (A5)
from [27]. We check (A6) in [15]. Both (ZC) and (C2) hold according to [25]. In [25],
these are only proved for R = ∞. The current case can be proved in a similar fashion. The
quasi-Gibbs property is checked in [28]. Assumptions (B1) and (B2) are clear because the
random point fields in these conditions are supported on finite particle systems. Condition
(3.19) in (B4)′′ holds because the correlation functions come from determinants of matrices
given by kernels that are uniformly bounded on SR × SR for each R ∈ N (see, for example,
[28, Lemma 10.1] for the Ginibre random point field). As for (C3), we present a sufficient
condition in Sect. 9, which is satisfied by all the examples. Condition (C4) obviously holds.
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10.1 The sineˇ interacting Brownianmotion withˇ = 1, 2, 4

Let μN
V ,β,θ be the random point field whose density is mN

V ,β,θ given by (1.8). Then, the

logarithmic derivative dNrN of μN
V ,β,θ on SrN is given by

dNrN (x, s) = − 1

ρV (θ)
V ′

β

( x

NρV (θ)
+ θ

)

+ β

2

∑

si∈SrN

1

x − si
+ β

2

∫

S\SrN

1

x − y
ρN ,1(y)dy. (10.1)

From (3.24), (3.25), and (10.1), we see that the associated SDE is given by

XN ,i
rN (t) − XN ,i

rN (0) = Bi (t) −
∫ t

0

1

ρV (θ)
V ′

β

( XN ,i
rN (u)

NρV (θ)
+ θ

)
du

+ β

2

∫ t

0

N∑

j �=i

1

XN ,i
rN (u) − XN , j

rN (u)
du + β

2

∫

S\SrN

1

XN ,i
rN (t) − y

ρN ,1(y)dy

+ 1

2

∫ t

0
nrN (XN ,i

rN (u))LN ,i
rN (du). (10.2)

For β = 1, 2, 4 and V as in (1.2), condition (3.18) in (B4)′′ is proved in [5]. For β = 2 with
a real analytic function V satisfying (1.1), condition (3.18) in (B4)′′ is proved in [6]. Hence,
we apply the results in Theorems 3.1–3.5 to these models.

Proposition 10.1 The following equation holds. In particular, (1.16) holds.

lim
N→∞ P

(
max
0≤t≤T

{
XN ,i (t) − XN ,i (0) − β

2

∫ t

0

nN∑

j �=i

1

XN ,i (u) − XN , j (u)
du

+ c16(β)t − β

2

∫

S\SrN

1

XN ,i (t) − y
ρN ,1(y)dy

}
≥ a

)

= 2
∫

x≥a

1√
2πT

e−|x |/2T dx .

Here we set c16(β) = c1 for β = 1, 2 and c16(4) = 2c1.

Proof We write μN = μN
V ,β,θ . We set μN

rN = μN ◦ π−1
rN . Recall that the unlabeled dynamics

XN
rN are μN

rN -reversible. Let X
N
rN = (lpath(X

N
rN ), o, o, . . .) be as in the proof of Theorem 3.4.

Let P̃ N = PN ◦(XN
rN )−1.Wewritew = (wi )i∈N. Applying the Lyons–Zheng decomposition

to wi , we have that

wi (t) − wi (0) = 1

2
{Bi (w)(t) + Bi (RT (w))(t)}, (10.3)

whereRT : C([0, T ]; R
N) → C([0, T ]; R

N) such thatRT (w)(t) = w(T − t). The function
Bi is a Brownian motion under P̃ N .

From (1.4) and (1.15), we have that

lim
N→∞

1

ρV (θ)
V ′

β

( x

NρV (θ)
+ θ

)
= c16 (10.4)
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uniformly in x ∈ SR for each R ∈ N. Hence, from (10.3) and (10.4), we have the following
for each ε > 0

lim
N→∞ P̃ N

(
max
0≤t≤T

∣∣∣
∫ t

0

1

ρV (θ)
V ′

β

( wi (u)

NρV (θ)
+ θ

)
du − c16t

∣∣∣ ≥ ε
)

= 0. (10.5)

Because limN→∞ rN = ∞, (10.3) implies that

lim
N→∞ P̃ N

(
max
0≤t≤T

∣∣∣
1

2

∫ t

0
nrN (wi (u))Li

rN (du)

∣∣∣ ≥ ε
)

= 0. (10.6)

Under P̃ N , we can rewrite (10.2) as

wi (t) − wi (0) = Bi (t) −
∫ t

0

1

ρV (θ)
V ′

β

( wi (u)

NρV (θ)
+ θ

)
du + β

2

∫ t

0

N∑

j �=i

1

wi (u) − w j (u)
du

+ β

2

∫

S\SrN

1

wi (t) − y
ρN ,1(y)dy + 1

2

∫ t

0
nrN (wi (u))Li

rN (du).

Then, we have that

wi (t) − wi (0) +
∫ t

0

1

ρV (θ)
V ′

β

( wi (u)

NρV (θ)
+ θ

)
du

− β

2

∫ t

0

N∑

j �=i

1

wi (u) − w j (u)
du − β

2

∫

S\SrN

1

wi (t) − y
ρN ,1(y)dy

− 1

2

∫ t

0
nrN (wi (u))Li

rN (du) = Bi (t). (10.7)

The boundary of the set {w ∈ C([0,∞); R) ; max0≤t≤T w(t) ≥ a} has Wiener measure
zero. Combining this with (10.5)–(10.7), and using Theorem 3.4, we obtain

lim
N→∞ P̃ N

(
max
0≤t≤T

{
wi (t) − wi (0) + c16t − β

2

∫ t

0

N∑

j �=i

1

wi (u) − w j (u)
du

− β

2

∫

S\SrN

1

wi (t) − y
ρN ,1(y)dy

}
≥ a

)

= P( max
0≤t≤T

B(t) ≥ a) = 2
∫

x≥a

1√
2πT

e−|x |/2T dx .

Thus, the proof is complete. ��

10.2 The Ginibre interacting Brownianmotion

We apply our result to the random matrix model with strong non-Hermiticity introduced in
[1]. Condition (3.18) in (B4)′′ follows from Proposition 1.1. The SDE for the finite particle
system is given by (1.23) with the addition of the following two terms on the right-hand side.:

∫

S\SrN

X N ,i
rN (t) − y

|XN ,i
rN (t) − y|2 ρN ,1(y)dy + 1

2

∫ t

0
nrN (XN ,i

rN (u))LN ,i
rN (du).

Thus, we obtain the results of Theorems 3.1–3.5 for the Ginibre random point field.
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