Partial Differential Equations and Applications (2022) 3:27 Check’for
https://doi.org/10.1007/542985-022-00154-7 updates

ORIGINAL PAPER

Dynamical universality for random matrices

Yosuke Kawamoto' - Hirofumi Osada?

Received: 29 September 2021 / Accepted: 28 January 2022
© The Author(s) 2022

Abstract

We establish an invariance principle corresponding to the universality of random matrices.
More precisely, we prove the dynamical universality of random matrices in the sense that,
if the random point fields uV of N-particle systems describing the eigenvalues of random
matrices or log-gases with general self-interaction potentials V converge to some random
point field s, then the associated natural p -reversible diffusions represented by solutions
of stochastic differential equations (SDEs) converge to some p-reversible diffusion given by
the solution of an infinite-dimensional SDE (ISDE). Our results are general theorems that
can be applied to various random point fields related to random matrices such as sine, Airy,
Bessel, and Ginibre random point fields. In general, the representations of finite-dimensional
SDE:s describing N-particle systems are very complicated. Nevertheless, the limit ISDE has
a simple and universal representation that depends on a class of random matrices appearing
in the bulk, and at the soft- and at hard-edge positions. Thus, we prove that ISDEs such as the
infinite-dimensional Dyson model and the Airy, Bessel, and Ginibre interacting Brownian
motions are universal dynamical objects.
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1 Introduction

The concept of universality in strongly correlated systems was envisioned by Wigner, who
conjectured that the eigenvalue distribution of a large random matrix is universal, that is, the
eigenvalue distribution depends only on the symmetry classes of matrices, rather than on the
distributions of matrix components. The universality of random matrices is a central concept
in random matrix theory, and has been studied intensively over the past two decades (see,
e.g.[3,5-8,10,20-22,36]). However, its dynamical counterpart has been much less studied.
In the present paper, we establish the concept of dynamical universality for random matrices
in a general framework.

Let us recall some universality results for the sineg random point field derived by
Deift et al. [5,6] following Deift and Gioev [8]. We consider the ensembles .# N with the
distribution

AR ANE —IN e NV g N
2N,

for B = 1,2, and 4. Here, the ensembles .#" consist of N x N real symmetric matrices,
N x N Hermitian matrices, and 2N x 2N Hermitian self-dual matrices for § = 1, 2, and 4,
respectively. For 8 = 2, the potential V is a real analytic function satisfying

V(x)
m =
|x|—o00 log |x|

(1.1)
For B = 1, 4, the potential V is a real polynomial such that
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2m
V() = Z vt", Vo > 0. (1.2)

The density of the distribution of eigenvalues xy of .#" is given by

PY y(xy) = ]_[ i — xj|? ]_[e—NVWk) (1.3)
V Bi<j
where Xy = (x1,...,XN) € RN, Q‘”‘ﬂvﬂ is the normalizing constant, and we set
Vix), pB=12,
Ve(x) = (1.4)
2V(x) B =4.

Note that, according to the logarithmic interaction potential, particles repel each other. The
logarithmic interaction potential has a strong long-range effect that causes special phenomena
to occur in particle systems. One example is the convergence of the empirical distribution
to a deterministic distribution that has non-degenerate density, typically known as Wigner’s
semi-circle law in the limit.

Let Vv be the random point field such that its labeled density is given by PN The
behavior of the system as the number of particles N tends to infinity has been extenswely
studied. We set ¢t = Zi dx;» where §, denotes the delta measure at a. Then, there exists a
probability density function oy on R such that

1 s
Jim [ Setsoushnl e = [ pycords, (1.5

If V(x) = x2, then Vy,z gives the eigenvalue distribution of the Gaussian unitary ensemble
(GUE), which is the Hermitian random matrix whose entries follow an independent and
identically distributed Gaussian distribution. The probability measure py dx is simply the
Wigner semicircle law, which is given by py (x) = %«/2 — le{IX\<ﬁ} (see, e.g., [2,23]).

The convergence in (1.5) is in the macroscopic regime. Next, we consider the microscopic
scaling limit. More precisely, we consider a local fluctuation of (1.3) and obtain a random
point field with infinitely many particles as the limit. Here, we take the bulk scaling limit.
For a constant 6 € R satisfying

py () >0, (1.6)
we set the bulk scaling at 6 as
4o (1.7)
X — . .
Npy (6)

Let meV, 8.0 be the rescaled density function of P{,\" P in (1.3) under the scaling defined by
(1.7). Then, ml‘\/’,ﬁ‘e is given by

my g ,(sy) = l_[ls, —sjlﬁnexp(—NVﬁ(%—t—G)). (1.8)

Vf391<j

We define ,ul‘y o as the random point field whose labeled density is given by ml‘\// 0"
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Let ptsin, g be the sineg random point field. Let pf?, ; be the m-point correlation function

of gin,g. If B = 2, then pgjn g is the determinantal random point field whose kernel is given
by

sinm(x —y)
Kin(x, y) = ———
T(x —y)
Then, by definition,
Psin2(X1s -, Xm) = det[ Kgin (xi, Xj)l1<i j<m-

Similar formulae are also known for 8 = 1, 4 (see [23]).
Bulk universality for log-gases asserts that, for a suitable and wide class of V and for any
0 satisfying (1.6),

IVIEHOO M/‘\//,,g,g = Ugin,g  Weakly,
or, more strongly, for each m € N the m-point correlation function pV g of MV p.p Satisfies
. Nm _ m
ngnoo Py.p.o = Psin,p (1.9)

uniformly on each compact set. Note that the limit jig, g is independent of V and 6, and, in
this sense, the sineg random point field can be thought of as a universal object. We call such
universality static or geometric because it involves no time evolution.

Consideration of the classical invariance principle yields a natural question: what is the
dynamical counterpart of geometric universality?

We consider an N-dimensional stochastic differential equation (SDE) of XN = (XN IN: h
corresponding to //‘Y,ﬂﬂ such that, for 1 <i < N,

N
, , ) ﬂ /’ 1
xNi@y — xNi0) = Bi(r)+ & . _d
() 0) = B'(1) + 5 ngN,l(m_wa)u
L[ XN
_ ,/ vi( ®) +0)du. (1.10)
2 Jo py(0) Npy(6)
Here, B',i = 1,..., N, are independent standard Brownian motions with B (0) = 0. We

derive (1.10) from u"\,” .o 3 follows. Let ,lVL}‘Y, .0 be the distribution of the labeled particle
system of ;U\Yﬁﬁ. Then,

ﬁj\\//,ﬁ,e(dXN) = m]&’,ﬁ,g(XN)dXN, (L.11)

v

and consider the Dirichlet form on L2(RY, Ry g, o) such that

of 0
é’ﬂvﬂe(f g) = /sza){ af mgﬁe(xN)de.

Integrating by parts and using (1.11), we have that

Noo92 31 m})
N a° f ogmy 44 3f
EMVBe(f, E } d
8= / N2 (8xl)2 ax;  dx gmy .0 ()X

=- /RN(ANf)ng‘\/’,ﬂﬂ(xN)de. (1.12)
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Here, from (1.8) and (1.12), we see that AN is given by

AN:lA+ﬂii L 9 fZ v( k g)i
2 2z=l j#i Xi = Xj 9x; ,OV(H) ; Npy () dxy

Because m"\,/ B ¢(Xy) is bounded and continuous, we easily find that the bilinear form
(P“Vﬁ" COO(RN)) is closable on L2(RN, & Vvﬂﬁ). Then, there exists a unique L2-

N
Markovian semi-group {T,N} on L2(RM ,/,LV’/S o) associated with the closure of (&Hvpe,
Cy° (R™)). The semi-group {TIN} is given by the solution XV of (1.10):

TN f(xn) = Exy LfF XN ()]

Here, Ey, is the expectation with respect to the solution X" starting at x,y. By construction,
XV is reversible with respect to /2@’ 8.0 We denote the unlabeled dynamics of XV as V.
Then, XV (1) = ZlNzl dxn.i(p by definition. It is clear that XN is reversible with respect to
MV ,B.0

If the initial conditions converge, it is interesting to determine whether the stochastic
process XV converges or not, and to exploit the infinite-dimensional SDE (ISDE) satisfied
by the limit stochastic process X.

We set XV = (XN”);":1 and X" = (X"){*, for each m € N. We shall prove that,
loosely speaking, if the initial distributions of X" converge to that of X™ in distribution,
then

lim XV = X™ weakly in C([0, c0); R™).
N—o00
Here, X" is a solution to (1.26) for uV = u"\,ﬁ 50" The limit ISDE is Dyson’s model in
infinite dimensions [35], which is an ISDE of X = (X");en such that, fori € N,

i i _ pi B[ .. 1
X' (1) — X'(0) =B () + 5/0 Jim ; mdu. (1.13)

IX7 )= X7 ()| <R

The associated unlabeled dynamics X(1) = > 72, 8y () are reversible with respect to the
sineg random point field [27]. From the static universality defined in (1.9), we expect the
limit of (1.10) as N — oo to be given by (1.13). In particular, the limit does not depend on
V and 6. In other words, ISDE (1.13) is expected to be a dynamical universal object, which
is a consequence of the present paper.

The simplest case is V(¢) = 12, B =2,and |0]| < /2. Because py(0) = ﬂi 2 — 02,
(1.10) becomes
1
xNi@)y — xNi0) = B (¢ /

() — xN0) = B'(t) + me(u) T

b4 : w6
- | xXNiwydu - ——r. (1.14)

N(2—92)fo V2 =62
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In [14], the authors proved that the solution of (1.14) converges to that of (1.13) in distribution
in C([0, oo); R™) for each m if the dynamics start from reversible measures. Note that the
term ——2%—7 in (1.14) disappears in (1.13).

V2-62
Suppose that V is a real analytic function satisfying (1.1) and 8 = 2. Set
1 1
c = < V(). (1.15)
2py(0)

Then, as N — oo, the remaining part in the last term of (1.10) is —c;¢, which vanishes in
(1.13). Thus, we see that the convergence has an SDE gap. This phenomenon is a result of
the long-range interaction of the logarithmic potential, and never happens for translation-
invariant random point fields with potentials of Ruelle’s class.

Our result is an invariance principle in the sense that weak convergence occurs in the
path space C ([0, 00); RY). As an application of the invariance principle, we see from (1.10),
(1.15), and (1.26) that, fora > 0 andi < ny,

t N 1

lim P xNigy — xNi0) — : :
Ngnoo <0I§Ia§XT{ @ © /0 ; XN”(u) _ XN,J(u)du

var— [ oo za)
s\8,y XNV —y -

1 2
= 2/ e WIT2T gy 1.16
x>a VZ?TT ( )

Here, p™-! is the one-point correlation function of V' := /ﬂ‘)’ 2.9 Withrespect to the Lebesgue
measure. The process (X]V’");iv1 is a solution of SDE (1.26) on {|x| < ry}"~ for uV with
V as above. The number of particles in S, is denoted by ny, and so X Ni) € S,y for
i =1,...,ny.Theradius of the domain S, satisfies limy _, oo 7y = 00. Furthermore, (1.26)
is given by (1.10) with the reflecting boundary condition and the free potential in (1.27) for
oN(x) = —21log |x|. We prove that (1.16) holds in Sect. 10.1.

The next example is the Ginibre random point field. The Ginibre random point field ztgin
is a determinantal random point field on R2 that has the kernel K «in With respect to the
Lebesgue measure such that

2 2
x|©+ -
XAy +xy).

5 (1.17)

1
Kgin(x’ y) = ; exp(

Here, we naturally regard R? as C by (x, y) > x 4 +/—1y. Then, by definition, the n-point
correlation function pgn with respect to the Lebesgue measure is given by

Pgin (X1, + -, Xm) = det[Kgin(xi, x )17

The Ginibre random point field jij, is a limit of the random point fields Mgn arising from the
ensemble of the complex non-Hermitian Gaussian random matrices M g]\i/n =W é\i,n (D)) ;szl

in which the 2N? parameters are independent Gaussian random variables with mean zero

and variance 1/2. The labeled density mg{n of the distribution of the eigenvalues of M é\i’n is
given by
1 N N 2
mfg‘i’n(xl,...,xzv)=§ [T —xj1> e Zbmr bl (1.18)
i<j
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From (1.18), similar to the case fqr (1.10)—(1.12), we derive the SDE describing the labeled
N-particle dynamics XV = (xN-);,_; yasfollows. Fori =1,..., N,

.....

| ' ' b Con XNy — XN ()
N,i _ yN.i — B! — N
X1 = XT(0) = B'(1) /0 X +/o § XN () — XN )P

(1.19)

It has been shown [13] that, under suitable assumptions regarding the initial distributions,
the dynamics of the first m particles XNm — (xN.Io X?V’m) converge weakly in
C ([0, 00); (R2)™) to those of the unique strong solutions X = (X*)?2, of the ISDE such that

X'(1) — X'(0) = B'(1) /OX(”)d”/o Paes ; X () — XTI
|X7 (u)|<R

(1.20)
It has also been shown [27,31] that the solution X of (1.20) satisfies the second ISDE

! Z X () — X (u)

Xi(t) — X'(0) = B'(r) +/ Rlim du (1.21)
0 — 00

— IXT(u) — XT|>
o7

| X' (w)—X' (u)|<R
Thus, both ISDEs have the same unique strong solution X, and the solution X satisfies two
different ISDEs [27,31]. Such multiple representations of ISDEs are the result of the long-
range nature of the logarithmic interaction potential in the drift terms of (1.20) and (1.21).

The unlabeled dynamics X(¢) = Zi’il 3xirn describe jigin-reversible diffusion [28]. The
ISDEs are obtained from the general theory for random point fields and the associated ISDEs
in [27,31]. Note that, even in such a typical case, the convergence of finite particle systems
is a sensitive problem, as we see from (1.19)—(1.21).

Akemann—Cikovic—Venker [1] proved the following universality of the Ginibre random
point field. Let _# (N) be the space of the normal matrices of order N. For constants y > 0,
K, € R, and w € [0, 1), consider the probability measure on ¢ (N) whose density is given
by

1 N ) ) 2
(7(.]):§e)m[1 Tr(JJ*—E(J + 7)) —y(TrJJ* = NK)) }

)

Then, the joint density of the eigenvalues is proportional to

N
2
lei - zjl

i<j
N N 0 N 2
xexp | - . _wz(ZmIz —5 2 G +2)) - r( Xl -NK,) | 22
i=1 i=1 i=1

Let pgﬁm be the m-point correlation function of the eigenvalue density corresponding to
(1.22). For positive constants ¢, and c3, we set

E={z€C;c,(M2)* +c3(32)* < 1}.

We quote a universality result for the Ginibre random point field from [1].
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Proposition 1.1 ([1, Theorem 1]) There exist positive constants c3, c3, c4 depending on K p,
y, w such that, forany ¢ € C\ 9E,

. 1 N,1 Cq
ngnoo y Pein ©) = ;IE(§)~

Furthermore, for eachm € N and ¢ € E,

1 Nm( 1 Zm m 1
V. =" (21 ..., o(—).
(C4N)m pgm é‘ + ’7(,‘4N ;‘ + ,7C4N) ,Ogm(Zl Zm) + ( N)

Here, the error term O (ﬁ) can be taken uniformly on each compact set in C™.

We shall investigate a dynamical counterpart of this result.
From the same calculation as for (1.11)—(1.12), we obtain from (1.22) the SDE of the N
particles XN = (XN*’)INZ1 such that, fori = 1,..., N,

. . . r Y XNy — XN ()
N,i _ yN,i — R!
XNi(r) - X (0>—B<z)+/0 E# X0 XTI @P

toN 1 XN ()
_/0 o C4N<§+ Jq%)du

t N,i N,i
+/0 1_1vw‘z%\/c-1*N{<‘u+X\/uf(Nu))+<§+X«/ﬂf(Nu)) }d”

[ e DNl - wiofan 0z

Here, we set (x, y)T =(x,—y) e R2. The limit ISDE corresponding to [LGin 1S
Z Xi(u) — X7 ()
— | X (u) — X (u)]?
oA
1XT(u)— X7 (u)|<R

t
X'(1) — X'(0) = B (1) +/ lim du (i €N).
0

R—o0

Thus, although the representation of the N-particle SDE is quite complicated, the limit ISDE
is very simple and universal.

To prove such dynamical finite particle approximations, the authors have previously estab-
lished a general theory [13]. The framework in [13] does not depend on the dimension of the
underlying space, the inverse temperature, or the integrable structures; thus, the theory can
be applied to many examples. A key point in our previous paper is the control of drift terms
in finite-dimensional SDEs, which provide a sensitive estimate for the long-range interaction
potential. Actually, we have proved the dynamical bulk scaling limit by completing such an
estimate [14]. However, when the potentials become some general V (x), the calculations are
more difficult. In particular, when we consider an ISDE related to the Airy random point field,
which arises from the soft-edge scaling limit of eigenvalue distributions of random matri-
ces, this presents a more complicated problem. Indeed, the drift term in the corresponding
finite-dimensional SDE includes a divergent term [32].

To overcome this difficulty, we construct a new method in the present paper. This approach
uses the convergence concept of Dirichlet forms associated with finite or infinite particle
systems. Let oV and p™ be the m-point correlation functions of u” and y, respectively.
Let o' be the m-point density function of u on Sg = {|s| < R}. As well as the existence of
infinite particle dynamics, we assume two main conditions for convergence:
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(I) We assume that limy_, oo o™ = p™ uniformly on each compact set, and the capacity
of the zero points of o' vanishes.
(IT) We assume the uniqueness in law of weak solutions to the limit ISDE.

Condition (I) is related to the static property of random point fields, while Condition (II) con-
cerns the dynamical property of infinite-particle systems in the limit. These two ingredients
are sufficient for dynamical universality.

Only condition (I) is related to finite-particle systems. This is purely because of the static
property of such systems—we do not require any assumption regarding estimates related to
the dynamics of finite-particle systems, such as the estimates of drift terms in [13]. Addition-
ally, the method derived in the present paper is independent of the dimension of an underlying
space, the inverse temperature, or the integrable structures, as in [13].

Consequently, if the limit ISDE has a unique weak solution, the strong convergence of ran-
dom point fields automatically implies dynamical convergence. It has been proved that several
ISDEs with coefficients given by the logarithmic interaction potential have unique solutions
[31,37]. Therefore, the static strong universality of random matrices can be strengthened to
dynamical universality, not only for Dyson’s Brownian motion and the Ginibre random point
field, but also for ISDEs related to the Airy random point field, the Bessel random point field,
and so on.

We now explain some of our main results. There exists a natural correspondence among a
random point field 1 on S, an unlabeled diffusion X in the configuration space G over S, and
an ISDE X on SN (see [27,28]). For a given random point field p, the associated unlabeled
diffusion X is given by distorted Brownian motion, which is a Dirichlet form whose energy
and time change measures are common (see Sect. 2). The correspondence between X and X
is givenby X(¢) = Zloil dxinand X = (X !);en. Furthermore, the labeled dynamics X have
a representation as a solution of an ISDE. The ISDE is described in terms of the logarithmic
derivative d* of u as follows:

. . . 1
X'(t)—X'(0)=B'(1) + 2/ d* (X' (), Z‘SX/(u))dM (1.24)
J#
See Definition 2.1 for the definition of the logarithmic derivative d*.

For a random point field u”, we consider a window S, = {|x| < ry},0 < ry < o0,
such that

lim ry = oo (1.25)
N—o0

and introduce the diffusion (XrN ) ;= with the state space (S,N)"N such that, for1 <i < ny,
where ny is the number of particles in S,N,

: : - 1
XNl — xNo0) = B/ (1) + 5/ dVx N, Za L
J#

1 [t . )

+ 5/ UN (XN (w))du + EBCN(XfI’V*’(t)). (1.26)
0

Here, BCY (X s (t)) comes from a boundary condition of 9S,, and U N is a free potential
caused by the average of the outside particles. Furthermore, dV is the logarithmic derivative

of uN. If dV is given by an interaction potential ¥ with inverse temperature 8, then U™
becomes
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v =" /S VeV e gy, (127)

where p™'! is the one-point correlation function of i (see (3.24)-(3.25)). By construction,
the associated unlabeled diffusion XV (1) = Y1, SyNi () 18 uN o 7 l-reversible. Here,
N

7,y (8) = 5(- N Sy ). We label the particles here in such a way that |X£\,]V’i 0] < |X£\1]\,”'Jrl )]
for all i. Note that the number ny is, therefore, random.

The last term in (1.26) will vanish as N — oo because of (1.25). The relation between
d" and d* is not transparent, as we saw in (1.10), (1.14), and (1.23). Nevertheless, in Corol-
lary 3.3, we shall prove that there exists a sequence {ry} satisfying (1.25) such that (X 5\,]\,” i
converge weakly in C ([0, 0o); $) to the first m components of X. In this sense, the geomet-
ric universality in condition (I) to a random point field u yields the dynamical universality
to the solution X of ISDE (1.24).

The idea behind the proof of the dynamical universality is as follows. One of the main
tools for the proof is the generalized Mosco convergence, in the sense of Kuwae—Shioya
[18], of Dirichlet forms (cf.[17]). This convergence is equivalent to the strong convergence
of semi-groups corresponding to Dirichlet forms. The Mosco convergence concept consists
of two convergence relations related to Dirichlet forms (see Definition 4.4).

For a random point field u, there are two canonical Dirichlet forms, called the upper
and lower Dirichlet forms (see Sect. 2). Accordingly, two natural schemes of finite-volume
Dirichlet forms exist, and each scheme converges to the limit Dirichlet form. We shall prove
that these two schemes of Dirichlet forms realize the two convergence relations in the Mosco
convergence definition, respectively. We use condition (I) at this stage.

In addition, the two canonical Dirichlet forms in the limit are the same under the uniqueness
in law of weak solutions to the ISDE. Hence, we conclude the Mosco convergence from
conditions (I) and (II).

In [15], we proved the uniqueness of Dirichlet forms applicable to the current situation.
This uniqueness theorem is robust and can be applied to random point fields from random
matrix theory despite the long-range interaction of these random point fields.

Note that, in general, dynamical convergence fails under only the weak convergence
of measures, even in one-dimensional diffusion. A typical example is a homogenization
problem. Hence, we must assume a stronger convergence of the random point fields 1,
such as that specified by condition (I). Thus, the strong convergence in condition (I) is a
valid assumption. We note that examples of the universality of random matrices satisfying
the uniform convergence of correlation functions on each compact set can be found in [5—
8,21,22,34].

In our argument, it is critical to take solutions of ISDEs as the limiting point of the stochas-
tic dynamics. There are different constructions of infinite-dimensional stochastic dynamics
arising from random matrices ford = 1 and 8 = 2. In [12], the dynamics were constructed
by using spatial-temporal correlation functions. Using [29-31], we find that this construction
defines the same stochastic dynamics as given by solutions of ISDEs. In [4], the dynamics
were constructed using the Brownian Gibbs property. It is plausible, but has not yet been
proved, that this construction also defines the same dynamics given by the solutions of ISDEs.

The remainder of this paper is organized as follows. In Sect. 2, we set up Dirichlet forms
and recall the relations among random point fields, unlabeled diffusions, and an SDE repre-
sentation. In particular, two types of unlabeled diffusions are presented. In Sect. 3, we state
the main theorems (Theorems 3.1-3.5). In Sect. 4, we recall the concept of Mosco conver-
gence in the sense of Kuwae-Shioya, before proving Theorem 3.1 in Sect. 5. In Sect. 6, we
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prepare some results related to cut-off Dirichlet forms for the proof of Theorems 3.2-3.5.
In Sect. 7, we prove Theorems 3.2-3.3, and then in Sect. 8, we prove Theorems 3.4-3.5. In
Sect. 9, we present a sufficient condition for (C3). Finally, Sect. 10 presents some examples
of dynamical universality arising from random matrix theory.

2 Preliminaries
2.1 Two spatial approximations of Dirichlet forms

In this section, we prepare Dirichlet forms and the associated dynamics, following [15,24,27].

. —int .
Let S be a connected open set in R such that ™ = 5. We take S as the underlying space,
and denote the configuration space over S as G . By definition, & is the set of Radon measures
consisting of sums of point measures:

G=1{s= ZSS,. ; 8i € S,8(K) < oo for any compact set K in S
i
Here, we regard the zero measure as an element of &. The set G is equipped with the vague
topology, under which & is a Polish space. We set Sg = {|s| < R} and

={s € S; s(Sg) =m]}.

Foraset A C S,let Tty : & — & be the projection map given by w4 (s) = s(- N A). We
often write 7g = mg,. A function f on & is said to be local if f is o [mk]-measurable for
some compact set K in S. For such a local function f on &, f is said to be smooth if f = fo
is smooth for a relatively compact open set O C S such that K C O. Here, fo is a function
defined on Ug‘;OOk such that, for each k, fo (x1, ... xz) restricted on OF is symmetric in
x; i =1,...,k)and fo(xl, ..., xx) = f(r), where Zf-;l 8y, = mo(r). The case k = 0
corresponds to a constant function. Because ¢ is a configuration and O is relatively compact,
the cardinality of the particles of ¢ is finite in O. Note that fo has the consistency property
such that

o, xk) = for(xt,...,xx) forall (x1,...,x) € 0kn o’

Thus, we see that f(r) = f (x1, ...xx) is well-defined.

Next, we introduce carré du champ operators on &. Leta = (a ,,q) _; bean R -valued
function defined on § x & such that a), = a4, and a is elliptic and bounded there exists a
constant cs such that, for all (x,s) € § x G,

JEP < (a8, E)ga < cs|E]* forall & € RY. 2.1)
Because a(x, s) = a(x, ) _; 8) is symmetric in (s;);, we can construct a function, denoted

by the same symbol a(x, si, 52, . ..) such that @ is symmetric in (s1, 52, ...) foreachx € §
and

a(x, s, $2,...) :a(x,ZS‘W). 2.2)
i
Let 2, be the set of all local, smooth functions on &. For f, g € Z,, we set
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1 "
DL f, gl(s) = 3 Z(a(sz‘, 5i0) Vs, £(8), Vs, £(8))pa, (2.3)
s; €S
1 "
DRLSf. gl(s) = 5 Z (a(si, 5i0) Vs, f(8), V5, &(8))pa- 24
si€SR

Here, for s = (s;);, we sets = ), 8 and s;¢, = Zj#i ds;- The right-hand sides of (2.3)
and (2.4) are symmetric functions in s = (s;);. Hence, we regard them as functions in s. Let

DS, g1(s) = len () DRLS, g1(s). (2.5

Then, by construction,

[e.¢]
a _ a,m : a _ M 0
D% = E D™, ngnooID)R[f,g]_D [f,g]l forf,ge€ P..

m=1

A probability measure @ on S is called a random point field. For a random point field
w, we set L2(n) = L%(6, n) and 2% = {f e ZonN Li(w); &(f, f) < oo}. For each
R, m € N, we define the bilinear forms on L2 (i) such that

E(f.g) = /6 DLS. gldu, Er(f.g) = /G D4Lf. gldp

S (f.g) = /6 D™ Lf, gldp.

We assume the following.
(A1) (&7, 21 is closable on L% () for each R, m € N.

Set Br = {f; fiso[ng]-measurable}. If f € %g, then f(s) is independent of 7 (s).
Hence, for f € 2, N Ag, we have that

D[ f, f1(s) = DRLf, f1s) =DR"[f, f1(s) foralls € &. (2.6)
From (2.6), we obtain that, for f € 2, N Bp,

oo
E(f, )=¢&r(f, )= 25}{"(}”,.}‘).
m=1
This obvious identity is one of the key points of the argument in [24]. In the following, we
quote a sequence of results from [24].

Lemma 2.1 ([24, Lemma 2.2]) Assume that (A1) is satisfied. Then, the following hold:

(1) (&g, 2Y) is closable on L*(1).
2) (&, P N BR) is closable on LZ(M).

Proof Claim (1) follows from Lemma 2.2 (1) in [24]. Claim (2) follows from Claim (1) and
17/ PBr C k. [}

We write (&1, 21) < (&2, 2%) if 2' > 2% and &'(f, f) < EX(f, f) forany f € P2.
For a sequence {(&", 2")},en of positive definite, symmetric bilinear forms on L2(n), we
say that {(&", 2")} is increasing if (", 2") < (&t gt for any n € N, and decreasing
if (&", 9™) = (&"H, ") for any n € N.

Taking Lemma 2.1 into account, we denote the closures of (&g, 2%y and (&, 2 N BR)
on L%(n) as (&g, 2 ) and (R, Zr), respectively. Note that (&g, Zp) is an extension of
(&r, Zr) in the sense that Zr C Zp and the value &x(f, f) for f € g of (Er, Zr)
coincides with that of (6, Z).
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Lemma 2.2 ([24, Lemma 2.2]) Assume that (A1) is satisfied. Then, the following hold:

(1) {(Er. ZR)}ReN is increasing.
(2) {(ERr, ZR)}ReN is decreasing.

By definition, the largest closable part (& reg (.@)reg) of a given positive symmetric form
((57’ , 9) with a dense domain is a closable form such that ((éz Jregs (@)reg) is the largest element
of closable forms dominated by (@E" , .@). Such a form exists and is unique [33, Theorem S.15].

Let 700 = U reN ZR- Let (6, Z) be the symmetric form such that

bo(fy f) = lim Er(f, f).
R—
From Lemma 2.1 and Lemma 2.2, we obtain the following.
Lemma 2.3 ([24]) Assume (Al). Then, the following hold:

(1) (&, 2Y) is closable on L*(1).
(2) The closure of ((Eco)regs (Poo)reg) 0N Lz(,u) coincides with that of (&, 2%y on Lz(u).

From Lemma 2.3 (1), we denote the closure of (£, 2%) on LZ(/L) as (&, 9).
By Lemma 2.2 (2), {(r, ZR)}RreN is increasing. Let (&, Z) be the closed symmetric
form given by the increasing limit of {(&r, Zg)}ren as R — 00. Then, by definition,

E(f, 1= Jim Ep(f, [, 2=1f€[)Zx; Jim &(f, f)<oot. @7
R=1

We say a sequence of positive closed bilinear forms {(&V, 2"V)} on L?(11) converges to
a positive closed bilinear form (&, Z) on L?(u) in the strong resolvent sense if the sequence
of their resolvents {Rév } converges to the resolvent R, of (&, Z) on L2(w) strongly in L%(w)
for each @ > 0.

Summarizing the above, we obtain the following lemma.

Lemma 2.4 Assume that (Al) is satisfied. Then, the following hold:

(1) (&, D) is the strong resolvent limit of {(Eg, ZR)}ReN as R — 00.
(2) (&, 2) is the strong resolvent limit of {(6r, Zg)}reN as R — o0.
3) £,2) <&, D).

Proof The first two statements follow from Theorem 3 in [24]. The third follows from Remark
(3) in [24, 120 p]. m]

Taking Lemma 2.4 (3) into account, we call (&, 2) and (&, ) the lower and upper
Dirichlet forms, respectively. We make an assumption.

(A2) (¢, 2) = (&, D).
We shall present a sufficient condition for (A2) in Lemma 2.9.

2.2 A diffusion associated with the upper Dirichlet form

In Sect. 2.2, we introduce the G-valued diffusion X given by the Dirichlet form (&, &) on
L%(w), and the associated SN-valued labeled process X.
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We denote the density function of  on &’} with respect to the Lebesgue measure on S’
as oy, thatis, o' is the symmetric function such that

1
| / IR Gm)og X )dX = / f@du
m. Sy S

for any bounded o[ ]-measurable functions f, where fg' is a symmetric function on S%
such that f7'(x,) = f() for x,, = (x1,...,x,) and ¢ = Y_i" | 8, € &%. We set the
following condition:

(A3) u has a density function al’e” for each R, m € N, and u satisfies

o0
Z mu(S'g) < oo foreach R € N.

m=1

We recall the concepts of quasi-regularity and locality of Dirichlet forms [9,19]. Quasi-
regularity and locality guarantee the existence of the associated diffusion. Here, a diffusion
process is a strong Markov process with continuous sample paths starting at each point in
the state space.

We say that a diffusion (X, ) = ({X (@)}, {s}) is associated with the Dirichlet form
(&, 9) on L*(n) if T; f(s) = E[f(X())] for any f € L%(uw), where {T};} is the L%(u)-
semi-group given by the Dirichlet form (&£, ) on L?(w) and € is the expectation with
respect to B. By definition, P (X(0) = s) = 1. We say that X(¢) is u-reversible if 7; is
p-symmetric and p is an invariant probability measure of 7;. The unlabeled diffusion (X, 3)
associated with (&, ) on L2(u) is constructed in [15,24].

Lemma 2.5 ([24, Theorem 1, Corollary 1], [15, Lemma 2.5]) Assume that (Al) and (A3)
hold. Then, (£, ) is a local, quasi-regular Dirichlet form on L*(w). In particular, there
exists an G-valued, p-reversible diffusion (X, B) associated with (&, 2) on L2(w).

Let u be the map defined on (US>, S™} U SN such that u(s) = > i 8 fors = (s;);. Here,
SY = {f#} and u(¥) = o, where o is the zero measure. We call u the unlabeling map.

Let &,; be the subset of G consisting of the single and infinite configurations. By definition,
G = 65 N G4, where G and &; are given by

Gs={s€6;s({x}) <lforallx €S}, G={s€G; s5(S) =o0}. (2.8)

We denote the set consisting of 2(-valued continuous paths on [0, co) as W(2l). Each to €
W (&) canbe writtenas o (t) = ) ; i (1)» Where w' is an S-valued continuous path defined
on an interval I; of the form [0, b;) or (a;, b;), where 0 < a; < b; < oo. Note that
intervals of this form are unique up to labeling. Additionally, note that if 0§ = ¢, then
lim, |4, |w' ()] = oo and lim;4, |w' (t)| = oo for b; < oo for alli. For A C &g, we set

WNE®) = {to € W(R); I; = [0, oo) for all i}. (2.9)

We say that the tagged path w' of t does not explode if b; = oo, and does not enter if
I; = [0, b;). By definition, WNg (Gs;) is the set consisting of non-exploding and non-entering
paths of infinitely many non-colliding particles.
The measurable map [ : &s\{o} — {U}>_, S} U SN is called a label if u o [(s) = s for all
5 € G4\{o}. For a label [, we set
[patn © WNE(S5\{0}) — C ([0, 00); {Up; ™} U M) (2.10)

m=1
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by
lpath (t10)(0) = [(t0(0)),  u(lpatn (t0)()) = 1o(2). 2.11)

The map [,ah is uniquely determined by [.

Let B3, be the distribution of the unlabeled diffusion with X(0) = faw u, where X faw n
denotes that the distribution of a random variable X equals ;. We assume that the stochastic
process X is defined on W (&) such that X(10)(z) = w(¢) for o = {ro(¢)} € W(S). We make
the following assumption.

(A4) T, (Wre(S4)) = 1.

Lemma 2.6 Assume that (A1), (A3), and (A4) hold. Let (X, B) be the diffusion in Lemma 2.5.
Then, there exists a unique labeled process X € C([0, 00); SN) such that X(0) = [(s) for
u-a.s. s and w(X(t)) = X(¢).

Proof Because of (A4), X := [pan(X) is well-defined for *B,-a.s. Let B, (:|X(0) = 5) be
the regular conditional probability. Then, X = [y, (X) under B, (-|X(0) = s) satisfies the
claim. O

Remark 2.1 Recall that S_ is an open set. If 0S # ¢, then assumption (A4) implies that none
of the tagged particles X' of X = (X"); e hits the boundary 9.

2.3 ISDE describing two limit stochastic dynamics, and identity of the upper and
lower Dirichlet forms

Once we have established the labeled dynamics, the next task is to describe the dynamics
more explicitly. We shall present an ISDE representation of the limit labeled dynamics X in
Lemma 2.7. For this, we recall the concept of the logarithmic derivative of w in Definition 2.1.

A symmetric and locally integrable function p" : S" — [0, co) is called the n-point
correlation function of p with respect to the Lebesgue measure if p” satisfies

s(A)!
/AT ety © O = /H(s(m—k)' g

for any sequence of disjoint bounded measurable sets Ay, ..., A, € %(S) and a sequence
of natural numbers ki, ..., k,, satisfying k; + - -+ + k,,, = n.
Let fil!1 be the measure on (S x &, B(S x G)) determined by

(A x B) = / s(A)u(ds), A€ B(S), Be B(6).
B

If 11 has a one-point correlation function p ', then there exists a regular conditional probability
[y of p satisfying

/ fc(B)p'(x)dx = fMM(A x B), A€ B(S), B € B(S).
A
The measure fi, is called the Palm measure of  [11]. In this paper, we use the probability

measure py(-) := iy (- — 8x) instead of fi,. We call u, the reduced Palm measure of u
conditioned at x. Informally, 1, is given by

px = (- = x| s({x}) = 1).
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We consider the Radon measure M1 on § x & such that
uM(dxds) = p' (x)py (ds)dx.

We take ! instead of 11!, and call this the reduced one-Campbell measure of 1.
We write f € L? (u)if f € LP(Sg x &, ult)) for all R € N. We set

loc

N
CP($)® Do = {Zﬁ(X)gi(U); fi € C5°(S), gi € Zo, N € N}-

i=1

Let 93%, R € N, be a set consisting of o[ g]-measurable, bounded functions. Let @go be
the set of bounded #(&)-measurable functions. We can naturally regard 93?3 and 2, N 95‘%
as function spaces on Sg. For 0 < R < 0o, we set

IR =pomy'. (2.12)

We denote the reduced one-Campbell measure of g as ngl]. If R = oo, then ugr = p and
[1]

Hp = ull. We recall the concept of the logarithmic derivative d* of u in [27].
Definition 2.1 Let 0 < R < co. An R¢-valued function ds € LL (1) is called a loga-
rithmic derivative d% of wwon Sg if, forall h € Cgo(SR) ®{%, N L@Z},

[ diomne o = - [ vohonuflaxdn).
SRXG SRXG
We write d# = d} for R = oc.

Let a be as in (2.2). We set Va(x,s) = (Y9_, ‘f;‘(; (x,8)%,, where x = (x1,....xq).
We make the following assumption.
(AS5) The logarithmic derivative d’lé of ; on Sk exists for each R € N U {oo} and Va €
Ll ( [ll)d
loc \MR .
Let q(x, 5) be a matrix-valued function such that 6’0 = a. We consider the ISDE of
X = (X));en on SN defined by

dX' (1) = o (X' (1), X' (t))d B (1) + %{w +ad*} (X (1), X' (1))dr. (2.13)

Here, i € Nand ¥’ (¢) denotes Z?j&l dxi (- We say that a continuous process X = (XH)jen
defined on a filtered space (£2, .7, P, {.%;}) is a weak solution of (2.13) if there exists a
Brownian motion B = (B');cy on the same space such that (X, B) satisfies the following
for all 7:

1

t
X"(r)—x"(()):/ G(Xi(u),%io(u))dBi(u)+/ %{Va+ad“}(x"(u),xio(u))du.
0 0

Here, i € N and we implicitly assume that 3.5 = ), or no tagged particles hit the boundary.
Otherwise, a boundary term generally appears in (2.13). As we saw in Remark 2.1, the
assumption stated above follows from (A4).

Lemma 2.7 ([27]) Assume that (A1) and (A3)—(A5) hold. Then, the labeled process X =
Ipath (X) under *Bs given by Lemma 2.6 is a weak solution of (2.13) such that X(0) = [(s)
Jor p-a.s. s.
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Proof If S = R?, then the claim follows from Theorem 26 in [27]. The proof of the case
S # R is the same as for the case R because of (A4), and is therefore omitted. m]

Note that the solution X in Lemma 2.7 is associated with the upper Dirichlet form (&, 2)
in the sense that the Lz(u)-semi-group T; given by (&, &) on Lz(u) satisfies 7; f(s) =
E[f(u(X,))] forany f € L?(u), where &, is the expectation with respect to .

In [15, Theorem 3.1], it was proved that the lower Dirichlet form (&, ) is also associated
with a weak solution X of (2.13) under mild additional constraints. Specifically, in [15], o
was assumed to be the identity matrix. The generalization of the result in [15, Theorem 3.1]
to the present case is easy.

We make the following assumption.

(A6) For each r, s, p € N with r < s, there exists difw, € Cp(S x ©) such that

lim lim lim sup | d 1):0 for pu-a.ss. (2.14)

ﬁﬂp__du”L'(SXG pl
r—>005—=00 p=>00 pu o] loc s MR
Here, /LE,;]E is the reduced one-Campbell measure of jig s = (-5 (5)).

Condition (A6) is not difficult to check in practice; see [15, Lemma 6.1] for a sufficient
condition. The roles of the parameters (r, s, p) in (A6) are discussed in Section 6 of [15].
Recall that (£, 2) on L2(u) is a Dirichlet form. Hence, we have the associated Markovian
Lz(u)-semi-group T,. We quote a result from [15].

Lemma 2.8 ([15, Theorem 3.1]) Assume that (A1) and (A3)—(A6) hold. Then, there exist a
continuous S-valued process X and a family of probability measures {%ﬁ} associated with

(&, D) on LE(). Furthermore, there exists an SN-valued continuous process X such that X
under %5 is a solution of (2.13) with X(0) = I(s) for p-a.s. s.

A key point of Lemma 2.8 is that (&£, 2) on L?(u) is not necessarily a quasi-regular
Dirichlet form. If (£, 2) on L2(1) is quasi-regular, then the conclusion in Lemma 2.8 follows
immediately from the resultin [27]. We do not know how to prove the quasi-regularity directly.

The quasi-regularity can be proved from the identity (£, 2) = (&, ) in Lemma 2.9.
The proof of Lemma 2.9 follows from Lemma 2.8 and the uniqueness in law of solutions of
(2.13) (see [15]). To state the uniqueness result, we introduce two conditions for solutions X
of ISDE (2.13) defined on (£2, .7, P, {%}).
u-(AC) P ou(X,)'is absolutely continuous with respect to u for each ¢ > 0.

(NBJ) P(mg,r(X) <oo) =1foreach R, T € N.
Here, mg 7 is such that, for w = (w"),

mpg r(w) =inf{m € N; min |w" ()| > R
1€[0.T]

for all n such that n > mj}. (2.15)

Condition (NBJ) plays an important role in controlling the labeled dynamics X = [ath (X)
using the unlabeled dynamics X (see [31, Section 5]). Note that (NBJ) obviously holds if the
cardinality of the particles is finite. Even if the number of particle is infinite, (NBJ) is easy to
check. Lemma 10.3.1in [31] states a sufficient condition for (NBJ). We make the following
assumption for ISDE (2.13).
(A7) The uniqueness in law of weak solutions of ISDE (2.13) with the initial distribution
1 o =1 holds under constraints x-(AC) and (NBJ).
References [16,31] provide sufficient conditions for (A7).

We quote a result from [15].

Lemma 2.9 ([15, Theorem 3.2]) Assume that (A1) and (A3)—(A7) hold. Then, (A2) holds.
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2.4 A sufficient condition for (A1): quasi-Gibbs measures

We introduce a Hamiltonian on a bounded Borel set Sg. For Borel-measurable functions
®:S—>RU{oo}and ¥ : S x § — R U {oo} with ¥ (x, y) = ¥(y, x), let

AT W= i)+ Y W), wherer=) 6, (216)
x; €SR Xi,XjESR,I<] i

The functions @ and ¥ are called free and interaction potentials, respectively.
For a symmetric open set O C S%, we set

(e ¢] o0
w=ng'wOp), Or=JO% O=[)9%
m=1 R=1
Here, u is the unlabeling map defined after Lemma 2.5. We regard ’;, O g, and O as subsets
of &. We note that O and O are also subsets of G = US> &'%. We write ;1 < o
if two measures ©1 and o on a measurable space (£2, %) satisfy p1(A) < u2(A) for all
A € . We introduce the concept of a quasi-Gibbs measure.

Definition 2.2 A random point field u is said to be a (@, ¥)-quasi-Gibbs measure with
{OR}R.men if (1), (2), and (3) hold.
(1) {O% } R, meN is a sequence of symmetric open sets such that O C S foreach R,m € N.
(2) There exists a sequence of measures {1 ()} on & such that
M) < Mgk+1) < p foreachk e N,
lim pg),r = pur weakly foreach R € N.
k—o00

Here, we set measures (L), R = (k) © 71,;1 and ug = po 71,;1 on G as in (2.12).
(3) The regular conditional probability measures

W, R,s = Mo (TRQ) € | 2(SR) = m, () = m(9))
satisfy, for all k, R,m € N and up)-a.e.s € G,

“ome™ %" A (dr) < Lonp™, . (dD) < colome™ 7~ A™(d 2.17
Ce lome R( ¥ < D%ﬂ(k),R,s( ) < ¢ ome R( ). 2.17)
Here, 5 (s) = s(- N Sg). We set cg = co(k, R, m, mp(5)) to be a positive constant and

Ay = Ar(- N G), where A is the Poisson random point field with intensity 1s,dx.

Definition 2.3 ([28]) We call u a (@, ¥)-quasi-Gibbs measure if we take OF = S% in
Definition 2.2. In this case, Oy = & and O = 6.

We say that a random point field p satisfies (QG) with {OF } g men if the following hold:
(QG1) pis a (@, ¥)-quasi-Gibbs measure with {OF } g meN.
(QG2) There exists a potential (@g, ¥p) such that (Do, ¥y) is locally bounded from below,
upper semi-continuous, and satisfies

¢; ' @o(x) < P(x) < ¢rPo(x). x € Sk,
7 Wolx —y) S ¥ (. y) < o%(x —y), x,y € Sk, (2.18)
for each R with a constant ¢7 := ¢;(R) > 0 depending on R.

Note that (@, ¥) is unbounded in general, and that e R (w00) is bounded and lower
semi-continuous on S% for each R, m e N. Replacing by wu(- N O) in the definition of
(&r, ), we set (& o @? ). The following result was essentially obtained in [28].
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Lemma 2.10 Assume that  satisfies (QG) with {OF }r men. Then, (@@D, @?) is closable on
L2(u(- N D)) and Lz(u)for each R € N.

Proof In the same manner as for Lemmas 3.4 and 3.5 in [28], we can prove that (50 s 933 )
is closable on LZ(u(- N 9)), which implies the first claim. Note that, if a sequence { f;,}
strongly converges to zero in L? (i), then { f,,} strongly converges to zero in L?(u(- N O)).
Using this, we deduce the second claim from the first. O

3 Main results

In this section, we set up the problem and state the main results (Theorems 3.1-3.5).

3.1 Universality of unlabeled dynamics

Let S, S, and Z, be as in Sect. 2.1. Let {1V} yen be a sequence of random point fields on
S. Let ]I))‘,’e’m be the carré du champ operator in (2.5). We set

I ={f € 2N L2WM): & ) < oo).

The bilinear forms (&V, 2) and (&Y, 2) are given by

EN(f.g) = /6 DLf. gldu. &) (f.g) = /6 D4Lf. gldu?,
N ={f € 2.nL*W"); EN(f, f) < oo} 3.1

For the existence of MN -reversible diffusion, we assume the following.
B1) (1) (g,gv M gN-my s closable on L?(u™) for each N, R, m € N.
(2) "V has an m-density function on Sk for each N, R, m € N, and V' satisfies

o0
Z m;LN(G’I’é) < oo foreach N,R € N.

m=1

To take 2% as € in Definition 4.1, we assume the following:
(B2) 75 € Nyen 2Y.

Note that (B2) is a mild assumption. Indeed, if uN(s(6) < Cy) = 1forsome Cy € N
for each N € N, then 2 = 2. Hence, (B2) holds.

To state the main theorems, we introduce cut-off Dirichlet forms and the associated unla-
beled diffusions. From (B1), we see that (&7, QON ) is closable on LZ(MN ). Then, we denote

the closure by ((?N,Qg). Let Sg = {s € S; |s| < R}. We set
Q% ={f e 2%; fis a[ﬂgR]-measurable}. 3.2)

Then, (67, ég) is a Dirichlet form on L?(u"). Clearly, 2% > Qg Hence, we have

&Y. oY) < &Y. Zy). (3.3)
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Let u% =uNo ]TE]‘ Note that u¥ ({s € &; s(3Sg) > 0}) = 0. Then, we can regard
[,L]Ig as a probability measure on Cf(Sg), where Cf(A) denotes the configuration space over
A for a topological space A. We regard ((f}ev , 2’,?) as a closed form on

L*(up) = L*(CE(Sk), uy)-

Itis easy to show that &V, ég) is a quasi-regular Dirichlet form on L? (uflg ). Hence, we have

a diffusion .’{11}’ with the state space Cf(Sg) associated with the Dirichlet form &y, 22’)
on L?(u). The associated labeled process [y (X ) is described by SDE (1.26). Note that
the concept of quasi-regularity depends on the topology equipped on the measurable space.
Hence, we take Cf(Sg) as the state space of the diffusion.

Let {ry}nen be a non-decreasing sequence in N U {oo}. Let (X, B3) be the diffusion in
Lemma 2.5. We make the following assumptions.
(B3) The distributions of xﬁ)’v (0) and X(0) have densities Sr]x € Lz(u%) and £ € L?(u),
respectively. The functions Srf;’v and & satisfy limy_, o0 E,’;'/ = & strongly in the sense of
Definition 4.2.
(B4) Foreach R, m € N,

N,m
lim
N—o00

HU

=0. (3.4)

N
m
oR SE

Here, oy ando I};’ ™ are the m-density functions of y and Y on Sg, respectively. Additionally,

[[ - Il s is the L (S, dx)-norm.

Theorem 3.1 Assume that (A1)—(A3), and (B1)—(B4) hold. Then, there exists a non-
decreasing sequence {ry}nen in N U {oo} satisfying the following:

lim ry = oo, (3.5)

— 00

lim %ﬁ\lfv = X in finite-dimensional distributions. 3.6)
N—o0

Here, using the natural inclusion Cf(S,,) C &, we regard %ﬁ\;v as a S-valued process.

Remark 3.1 We shall give a concrete value of ry in (5.7) and the subsequent sentence. With
this choice of ry, we have ry = oo if and only if N > sup{N,;n € N}. Furthermore,
ry = oo implies u™N = . Thus, if ry = oo, then (3.6) yields a trivial result.

We present a sufficient condition such that both ry = oo forall N € N and (3.6) hold for
™ such that uV # . Let cg(N) be such that

iy
—1
m
OR

We introduce the condition stronger than (B4) as follows.

CS(N):sup[H ; 1§m<oo,1§R<oo]. 3.7

s
lim cg(N) = 0. (3.8)
N—oo
Let ¢y, be as in (5.4). By definition, we deduce for any N, «, R, R’ € N

cii(N,k, R, R') < cg(N). 3.9

Let ¢y, be as in (5.8). Then ¢1,(N) < cg(N) from (3.9). Replacing c¢;,(N) by cg(N), we
obtain (3.6) with ry = oo for all N € N with a slight modification of the proof in Sect. 5
using ¢j5(N) < cg(N).
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Combining Theorem 3.1 and Lemma 2.9, we obtain the following.

Corollary 3.1 Assume that (Al), (A3)—(A7), and (B1)—(B4) hold. Then, we have the same
conclusion as in Theorem 3.1.

Next, we present variants of assumption (B4).

In general, the density o' in (3.4) may vanish. To control the set {0} = 0}, we use the
concept of capacity. See [9, 66p] for the definition of capacity.

Note that Sg = {s € S; |s|] < R} is an open set in R?. Let Cf(Sg) be the configuration
space over Sg. We equip Cf(Sg) with the vague topology. Note that the topology of Cf(Sr)
is different from the relative topology as a topological subspace of G.

Let (&g, Zr) be the Dirichlet form on L%(x) defined before Lemma 2.2. Recall that
(&Er, Pg) is the closure of (&, ZL NBg) on L2(1). Then, each f € Dgiso[mrg]-measurable.
Hence, we regard f as a function on Cf(Sg).

We regard 1 g as a probability measure on Cf(Sg) instead of &, and (6, Zg) as a Dirichlet
form on L2(Cf(Sg), 1 r). Then, we can prove that (g, Zr) is a quasi-regular Dirichlet form
on L2(Cf(Sg), ir). The proof is similar to that given in [24] for (&, Z) on L2(w), and is
therefore omitted.

Let Capy, be the capacity given by the Dirichlet form (&, Zr) on L2(Cf(Sg), UR). Let
Cf"(Sg) = {s € Cf(Sg); s(Sg) = m}. We make the following assumption.

(ZC) For each R, m € N, the capacity Capp satisfies

Capg({s € Cf"(Sg); o (s) =0}) = 0. (3.10)

Here, o is regarded as a function on Cf" (S ) in an obvious manner, that is, we set o' (5) =

OR(s1, ..., 5m) fors =370, 8.
For R, v,m € N, let OF | be a symmetric open set in S% . We set

o0 o0
R, =7 @OF ). Ory={J 9%, Ov={)0%m. (3.11)
m=1 R=1

We introduce the following conditions for {O%  }r v,men. Foreach R, v, m € N,

Opry =g (TROR11.1)). (3.12)
ORrv C OR w11, (3.13)
M(UDR,V) —1, (3.14)
v=1
7S\ | JOr) = {s € 8% of(5) =0}, pony'as., (3.15)
v=lI m=1

m

0 < inf{og'(s); s € Ok ,}, suplog(s); s € O% ,} < o0. (3.16)

We make the following assumptions regarding the density and correlation functions.
(B4)’ The density function oy is continuous for each R, m € N and satisfies

lim O‘NR’ —Op
N—o0

o =0 foreach R,m € N. 3.17)
R

N.,m

(B4)” The correlation functions p and p™ are continuous and satisfy
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Jim [p% " =" gy =0 foreach R.m €N, (3.18)

sup  pN(xp) < cq'm10™  for allm € N. (3.19)

NeN, x, €S¥

Here, c9 = ¢9(R) and c19 = c10(R) are constants satisfying 0 < ¢ < coand 0 < ¢jp < 1,
and p™-" and p™ are the m-point correlation functions of ;" and s, respectively.

Theorem 3.2 Assume that (A1)—(A3) and (B1)—~(B3) hold, and that (ZC) is satisfied. Assume
that pand uN satisfy (QG) with {OZ’,V}R,mENforeach S Nandzhat{O}’g,v}R,v,meN satisfies
(3.12)—~(3.16). Finally, assume that either (B4)' or (B4)" holds. Then, the same conclusion
as for Theorem 3.1 holds.

Remark 3.2 (1) Let (Bg, Xr) be the diffusion associated with the Dirichlet form (&%, Zg)
on LZ(Cf(Sg), WR). From the general theory of Dirichlet forms in [9], (3.10) implies that

Pr(Xr(t) € {s € Cf"(Sg); of(s) = 0} for some ) = 0. (3.20)

(2) Let Cap be the capacity associated with (&, ) on L?(u). Note that (3.10) implies
Cap({s € 6%;0p(s) = O}) = 0 for each R,m € N. This follows from the relation
(&,92) < (&g, Yr) by Lemma 2.2, the variational formula of capacity, and the natural
identification between Cf" (Sg) and &';.

We set (&N .@N) similarly to (&g, Zg) in Lemma 2.2, replacing ; and R by “rzv and

N’
rn, respectively. Note that

EN. 2 < &N, 7M.
Let T; be the Markovian semi-group associated with (&, ) on L%(n). Let (%, T) be the
diffusion associated with (£, 2) on L?(w). The following demonstrates the universality of
boundary conditions on 35, = {|x| = rn}.

Theorem 3.3 Under the same assumptions as for either Theorem 3.1 or Theorem 3.2, let
(é}?]/, QN) be a (not necessarily quasi-regular) Dirichlet form on LZ(MVN) such that

&N Gy < &N, Ny <N, 7). (3.21)

rN’ rN’ N’

Let ?N be the Markovian semi-group associated with (@‘drx, QN) on Lz(,u, ). Then, T, rN ‘
convergev to Ty for each t strongly in the sense afDeﬁnmon 4.2. In pamcular if there exists
a Markov process %N satisfying (B3) associated with T v then %N converges to X in

finite-dimensional dlstrlbutlons

3.2 Universality of labeled dynamics and SDEs of finite-particle systems

In this section, we state several results on the convergence of labeled dynamics. We describe
the limit dynamics in terms of solutions to an ISDE and strengthen the meaning of convergence
at the path-space level.

Let [V be a label. Let [th be the label path map given by [V as in (2.10) and (2.11). For

the sequence {IV} yen and [, we define the discontinuity set by
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Disc[l] ={s € G ; s ¢ & or there exists {sy}yen in S
such that lim sy =sand lim [N(sN) # l(s)}.
N—o00 N—o00
We make the following assumptions.

(C1) p(Discll]) = 0.
From (B3) and (C1), we have that, for each m € N,
lim w0 (N Ny = ot L M T weakly. (3.22)
N—oo 'N
Without loss of generality, we can take a non-decreasing label as follows:

VI < IV forall i e N.

Let (%VN, % ) be the diffusion given by the Dirichlet form &N e 2
distribution /,L,N Let WNE(Ss) be as in (2.9).
(C2) m (xN € WNe(Ss)) = 1 foreach N € N,

We set the labeled process X, (X )""1 to

9 ) with the initial

XY, = (n (X)), 0,0,,...) € C([0, 00); S,

where o denotes a constant path whose value is denoted by the same symbol o. Here, 0 € Sisa
. . ~N .
dummy point that has no importance. From (C2), we see that Xﬁ\;v under %m is well-defined.

Let mg 7 be as in (2.15).
(C3) Foreach R, T € N and € > 0, there exists / € N such that

sup B ((mp,r (I (X)) > 1) < 1 —e.
NeN

To prove Theorem 3.4, we need the tightness of {% Inen in W(S). We deduce this from
the tightness of {X Inen in C ([0, 00); SNY. We use (C3) for this.

Theorem 3.4 Assume that (A2)—(A4) and (B1)—(B3) hold. Assume that either (B4), (B4)', or
(B4)" is satisfied. Assume that j and uV satisfy (QG) with {OQ’U}R,meNfor eachv € Nand
that { ;’e’ JIR.v.meN satisfies (3.12)—=(3.16). Finally, assume that (ZC) and (C1)~(C3) hold.

Then, (%,N, ’]32,\,) satisfy

lim XN =X inlaw in C([0, 00); S™)

N—o0

and, in particular, for eachm € N,

lim (xN1 o XNy = (X', X™) inlaw in C([0, 00); S™). (3.23)

o
N—o00 N

Here, X = (X);en is a solution of (2.13) with the initial distribution (§du) o 1

The most critical assumption in Theorems 3.1-3.4 is (A2), which asserts the uniqueness
of Dirichlet forms. Combining Theorem 3.4 and Lemma 2.9, we immediately obtain the
following.

Corollary 3.2 Under the same assumptions as for Theorem 3.4 and replacing (A2) by (A5)—
(A7), the same conclusion as in Theorem 3.4 holds.
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We present an SDE describing finite particle systems in Theorem 3.4.
Assume that " has the logarithmic derivative d% on Sk in the sense of Definition 2.1. Let

ny be the number of particles in Sr at time zero. Note that ny is unchanged as ¢ increases.
Hence, we have that ny = %ﬁ\zfv ()(Sry). Let

ny
Ny _ _
Xy () = Z&lel\}, 0}
J#

Then, we introduce the SDE of (Xf\jlv'i):"z"] as follows. Foreach 1 <i < ny,
t
XN — X)) :/ o (XN ), X7 w)d BN ()
/ {Va + ad }XN (), 25 ) du

+5f a(X N ), N @)m™ (XN @) LY (du).  (3.24)

Here, n"~ (x) is the inward normal unit vector atx € 9.5, and dN is the logarithmic derivative
of u" on Sy - Furthermore, Ler is the local time of X ,N’ on the boundary 95, . That is,

Lﬁ\;\, is a continuous non-decreasing process such that
t
Ni Ni N
LY (1) = fo Lys, (XN ) LN (du).

If ry = oo, then we delete the term LﬁVN’i from (3.24). It is easy to show that if dV is given
by a pair of potentials (@, &™) such that
dV(x,8) = Vo) = Y vl —s),
i
then the logarithmic derivative di\llv (x,5) of u™ on S,y 18 given by

AN (x.5) = =voN@) — Y vl —s)

SiESrN
- f VN (x — )0 ()dy, (3.25)
S\Sry

where pN 1is the one-point correlation function of [LN , as before. Thus, under the reduced
one-Campbell measure ,uﬁvN’[l] of ,ufi/ =uNo 71,7\,1, we have that

s =" o - [ veNa— Yoy,
S\Sry

From (3.24) and (3.25), we obtain (1.26).

From (A4) and (B1), we find that Xﬁ\llv is a solution of (3.24). Taking this into account, we
make the following assumption.
(C4) The uniqueness in law of weak solutions of SDE (3.24) with the initial distribution
;Lﬁ\l'v o (IM)~! holds under constraints MrNN—(AC) and (NBJ) for each N € N.
Here, conditions uﬁ\l'v-(AC) and (NBJ) were given in Sect. 2.3. Clearly, we do not need
condition (NBJ) in (C4) if ny < oo.

From Theorem 3.4, we obtain the convergence of solutions of SDEs.
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Corollary 3.3 Consider the same assumptions as for Theorem 3.4. In addition, we assume
that (C4) holds. Let XQ’V be the solution of (3.24) in (C4). Then, the first m components of

X,NN satisfy (3.23) for each m € N.

Proof Applying Lemma 2.7 to the Dirichlet form (&~ er) onL? (MrN) we see that XN =

N’
path (Z{ ) is a solution of (3.24). By (C4), all weak solutions are equivalent in law to XA['V if
they have common initial distributions. Hence, Corollary 3.3 follows from Theorem 3.4. O

Finally, we strengthen the statement of Theorem 3.1.

Theorem 3.5 Under the same assumptions as for Theorem 3.4, there exists a non-decreasing
sequence {ry}nyen in N U {oo} satisfying (3.5) and

lim X} = X weakly in W ().
N—o0

4 Generalized Mosco convergence
We now introduce the concept of generalized Mosco convergence in the sense of Kuwae-

Shioya [18]. Using this concept, we shall prove the main results in Sect. 3.

Definition 4.1 Let Hy (N € N) and H be real Hilbert spaces. We say that { Hy }yen con-
verges to H if there exists a dense subspace 4 C H and a sequence of operators

N;cg_) HN
such that, for any u € %,

lim [[®yullay = lulln.
N—o0

Definition 4.2 (1) We say that a sequence {uy} with uy € Hy strongly convergestou € H
if there exists {ii)7} C % such that

lirn [lupr — ullg =0, “4.1)
11m limsup || Pniy —un||lmy =0. 4.2)
- N->oo

(2) We say that {uy} with uy € Hy weakly converges tou € H if
lim (un, vN)Hy = (U, V)H (4.3)
N—oo

for any sequence {vy} with vy € Hy that strongly converges to v € H.

Definition 4.3 Let L(H) denote the set consisting of linear operators on H. We say that a
sequence of bounded operators {By} with By € L(Hy) strongly converges to an operator
B € L(H) if, for any sequence {uy} with uy € Hy that strongly converges to u € H,
{Bnup} strongly converges to Bu.

Let (&, Z) be a non-negative, symmetric bilinear form & : Z x 2 — R, where Z is a
subspace of the Hilbert space H. We identify the bilinear form &'(-, ) with the function &'(-)
on H such that

_ E(u, u), ueE D,
=1 . W¢ 9. @9

We say that & is a bilinear form on H if the domain of & is a subset of H.
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Definition 4.4 We say that a sequence of bilinear forms (&N, 2Y)on Hy, N € N, is Mosco
convergent to a bilinear form (&', 2) on H if the following conditions hold.
(1) If a sequence {uy} with uy € Hy weakly converges to u € H, then

&(u) < liminf &N (uy). 4.5)

N—o00

(2) For any u € H, there exists a strongly convergent sequence limy_, oo uy = u with
uy € Hy such that

Ew) = lim &V (uy). (4.6)

N—o0

Lemma4.1 ([17]) Let (&N, 2V) and (&, ) be Dirichlet forms on L*(u™) and L*(w),
respectively. Let TtN and T; be the associated semi-groups on L2(u™) and L (), respec-
tively. Then, the following are equivalent.

(1) limy— oo &N = & in the sense of Mosco convergence.
(2) limy—oo TN = T; strongly for all t > 0.

Thus, we see that the Mosco convergence of Dirichlet forms is equivalent to the strong con-
vergence of the associated semi-groups, which implies the convergence of finite-dimensional
distributions.

5 Proof of Theorem 3.1

In this section, we prove Theorem 3.1. Throughout this section, we assume that (A1), (A3),
and (B1)-(B4) hold. We utilize the concept of Mosco convergence in Definition 4.4. We take
Hy = L*(ul), H = L*(n), ¢ = 2%, and ®y = xy- in Definition 4.1, where ry is given
by (5.7) and yy is given before (5.39). Then, we have that limy_,~, Hy = H in the sense
of Definition 4.1.

We take the Dirichlet forms &V and & in Sect. 3 as the bilinear forms & and & in Sect. 4.
Hereafter, £(f) and D[ f] denote &(f, f) and D[ f, f], respectively. We shall use the
same convention for bilinear objects when they appear. The difference between &(f) and
&( f) should be clearly distinguished. Note that &'(f) is only defined for f € 2, while &( f)
is defined for all f € L%(u) and

() = o0 for f ¢ 9
e, ) for fea.

Let {a r}«. ren be a sequence of natural numbers satisfying
e R < G, R+1, QR < d+1,R forallk, R € N. 5.1
For {ax, g}« reN, WeE set

ﬁ/(,R ={5€6;5(Sg) < aK,R}7 Re = ﬂ%;pﬁlc,R- (5.2)

Lemma 5.1 There exists a sequence {ay g}, reN satisfying (5.1) and

1 1
inf uWV(Re)>1——, u(R) >1—— foreachk €N. (5.3)
NeN K K
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Proof Recall that a subset 2 in S is relatively compact if and only if there exists an increasing
sequence of natural numbers My such that A C {s; s(Sg) < Mp for all R}. Because u
converges weakly to 1, {1V} is tight. Hence, there exists a sequence {ai R}k Ren satisfying
(5.1) and (5.3). O

For N,«, R, R' ¢ N, we set c11(N, «, R, R) to

N,m
cMMmRﬂ@:mmwmm——L;lfms@&lsrgﬁy (5.4)
ol m
Lemma5.2 Foreachn € N,
lim ¢ (N,n,n,n) =0. (5.5
N—o0

Proof From (B4), we have that limy_, o ¢11 (N, «, R, R") = 0 for each , R, R’ € N. Then,
taking « = R = R’ = n, we have (5.5). O

Foreachn € N, let
N, =min{N; ¢;;y(N',n,n,n) <2 " forall N > N}. (5.6)

From (5.5) and (5.6), we find that N,, < oo for each n € N. Furthermore, it is easy to see
that { NV, },en is a non-decreasing sequence. Hence, we denote the inverse function of N, on
N as ry . Indeed, we take ri = 1 for N < N; and

ry =14sup{n e N; N, <N < Npy1}. 5.7
If { Ny }nen is bounded, then we set ry = oo for N > sup{N,,; n € N}. We set

cu(N,ry,ry,ry)  ifry < oo,

cp(N) = { (5.8)

0 ier:OO.

Lemma 5.3 The sequences ry and c12(N), N € N, satisfy

lim ry = oo, 5.9
—00

lim c,(N) =0. (5.10)
N—o00

Proof 1t is sufficient to assume that ry < oo for all N € N. From (5.5), we can deduce that
N, < oo. From this and (5.7), we have (5.9). From (5.8), we deduce

co(N) =cn(N,ry,ry,ry) =cu(N,n,n,n) <27" =27"V, (5.11)
From (5.9) and (5.11), we obtain (5.10). ]

5.1 Lower schemes of Dirichlet forms

In Sect. 5.1, we check Definition 4.4 (1).
Let K¢ r and ry be as in (5.2) and (5.7), respectively. We set

F=la,,.f (5.12)
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Lemma 5.4 Assume that c;,(N) < 1/2and f € QZ\/ Then, .]?e QrNN and
16y () = EN(PI < cia(N) &y (). (5.13)

Proof Because f € éi\]]v, we have that f is G[ngw ]-measurable. Hence, fis also a[ngw 1-
measurable. Using this and (5.12), we have

ENH = EN(f) < oo (5.14)
This implies that fe éﬁ:’v Note that ém N 9, is dense in Qﬁv with respect to
Gy = Gy + (o028 )
Then, for each f € éi\/]v we have an ng (1)-Cauchy sequence { f),} in éi\/]v N P, such that

Jim 63 0y (fp = ) =0, (5.15)

Note that fp f fp f- Then from (5.12), (5.14), and (5.15), we deduce that {fp} is an

&N 1)-Cauchy sequence satisfying

hm £N (1)(fp f) = hm sz (1)(fp =< hm %!(1)(]‘,, —f)=0. (516
Hence, we have, from (5.14) and (5.16),
: N = N A
plemng’(l)(fp) =&, 1m(f) < oo (5.17)

Next, we assume that f € éﬁv N %,. Then, from (5.12), we have that

&) = Z -~ f DTl "

ary.rN

=Y f D[ f1ofy " d

ary.rN

=Y m,f D[ 101t |

Together with (5.4) and (5.8), this implies that

N,m
| _
e I]dxm + & (P

N

ary.r

i h-ai=| X /D”[f] i —1}dxm\

< cpp(N) & (f). (5.18)
Applying (5.18) to f}, — f, and noting that fp fq= fp f;, we obtain
(o (o = Jo) = EN (Fp = F)l < ca(N) &y (Fp = -
Using this, ¢5(N) < 1/2, the fact that {f,,} isan & (1)-Cauchy sequence satisfying (5.16),

and (B4), we deduce that { f p}isan & N,(1)-Cauchy sequence satisfying
pli_)moo Sry.()(fp — ) =0.
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Hence, we have

plimwg,N,(l)(ﬁ) = & 1)(f) < 00. (5.19)

Applying (5.18) to { f),}, we have
G (Fp) = EN ()| < co(N) &y, (F). (5.20)
Using (5.17) and (5.19) in (5.20), we obtain (5.13) for f ]

Proposition 5.1 Assume that { fy}nen With fn € Lz(p.ﬁ\]’v) weakly converges to [ € L%(w)
in the sense of Definition 4.2. Then, (&, ) and {(@‘drx, éi\;\,)}NeN satisfy

E(f) < llivminfé"r’;v’<f1v). (5.21)

Proof If liminfy_ o é"r% (fn) = oo, then (5.21) is obvious. Hence, we assume that
.. N
l}vnigofng<fN> < 00.

From this and (4.4), we have

lim inf éa,’x (fn) < o0. (5.22)
N—o00

Assume that ¢;,(N) < 1/2 and fy € Qﬁ:’v Using Lemma 5.4, we have from (5.13) that
(1 = Ny (Fw) < EN(FN) < (14 ca(N)Ey (F)- (5.23)

Note that 5,% (fn) < ooimplies fy € Qﬁ\; Hence, using (5.22), we deduce that fy € éi\/,v
for infinitely many N. From this, we see that (5.23) holds for infinitely many N. Combining
this with (5.10) and (5.14), we deduce from (5.23) that

liminf &, (fy) = liminf &Y (fy) < liminf &Y (fy) < oo. (5.24)
N—o0 N—o00 N N—o0 N
Because ﬁv is G[NE"N ]-measurable, we see that é"(fN) =&y (fN). Hence, (5.24) yields
liminf &(fy) < oco. (5.25)
N—o00
Furthermore, from (5.4) and (5.8), we obtain
(1= eI fnllzzgy = 1Fnllzagy,) < 0+ ca@W)I Fvllzzgy-
Combining this with (5.10), we deduce

tim sup || v ll2u = limsup [ Fvll 2. - (5.26)
N—o0 N—o0 N

Because { fy} with fy € LZ(u™) weakly converges to f € L2(u), we have

sup [[fnllg2qupy ) < oo. (5.27)
NeN N
Clearly, || || 2y ) < I fnllz2(.n - Hence, we have from (5.26) and (5.27) that
rN rN

limsup | fvll 2y < sup [Ifnllz2un ) < oo (5.28)
N—o0 NeN N
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We set &) (-, 1) = &(, -) + p~ I, VL2 () for p € N. Then, Z is a Hilbert space with the
inner product &) for each p € N. From (5.25) and (5.28), we deduce

lim inf &) (fn) < oo.
N—o0

Hence, we can choose an & )-bounded subsequence from {ﬁv}.

We can choose an &,)-weak convergent subsequence with the limit f from an arbitrary,
&(p)-bounded subsequence {ﬁ\]/} of {ﬁv}. Furthermore, we obtain limy_, 1 - (s) =1
for pn-a.s.s from (5.3). Hence, for u-a.s. s, we have that

f&)= lim fy(s), D[ lim fyl(s) = lim D[fy](s).
N—o00 N—o0 N—oo
Collecting these results together, we can deduce for all p € N that
Ep(f) = Ep(lim fy) < liminf &,)(fx). (5.29)
N—o00 N—o00
Then, from (5.28) and (5.29), we obtain
. - L of T Lo~
() = b () < limint [+ 1 kg, |
.. -~ L. ~ 5
<l inf 6 () + - tim sup 171, (5.30)
Note that (5.30) holds for all p € N. From (5.28) and (5.30), we then obtain
&(f) < liminf &(fy). (5.31)
N—oo
Putting these together, we obtain
E(f) < liminf@@(f;\/) by (5.31)
N—o00

= liminf & (ﬁ/) by the 0[5 ] — measurability of ﬁv
N—o0 N

<liminf &Y (fv) by (5.24). (5.32)
N—oo
Finally, we have (5.21) from (5.32). O

5.2 Upper schemes of Dirichlet forms and proof of Theorem 3.1

In Sect. 5.2, we check Definition 4.4 (2). Let a, g be asin (5.1). For a, g and alabel [ = ([;);
satisfying [[;(s)| < |l;4+1(s)| for all j, we set
Je.r(8) ={j; j > ac.r, j(s) € Sg},
1
der@ =] Y ®R-1E)}".
J€Je R (5)

Let p € C®°(R) be a function satisfying p(¢) € [0, 1] forany t € R, p(¢t) = 1 fort < 0,
p(t) =0forr > 1,and p'(r) < +/2 for any r € R. We set

X, R(8) = p ody r(5).
Let R, r = {s € &; s(Sr) < a,,r} be as in (5.2). We set

R =15€6: s(Sp-1) < acr).

@ Springer



Partial Differential Equations and Applications (2022) 3:27 Page 31 of 51 27

Then, K, r C ﬁ+ g by construction. The next lemma shows that y, g is a cut-off function of
R r- Let éa(])(f g) &(f, 8)+(f, 8) 2y We can prove Lemma 5.5 in a similar manner
to [24, Lemma 2.5].

Lemma 5.5 Let ¢s be as in (2.1). For each «, R € N, the following hold:

(1) xe.rf € DL foreach f € V.
(2) XKR—10nRK-RandXKR—00nG\R:R

(3) D[xk,rl =0o0n (R+R\~QK R)C and 0 < D[y, r] < cs 0n R,( R\-ﬁl( R-
) Gk f) <26 + 3¢5l 2, for each [ < T

Proof A straightforward calculation shows that
D~ [Xe,r] < ¢sD[ Xk, r]
p'(di,r (9))
= S|P BN S R @)

/(R(5) jeder(s)

= 50 (der@)? < cs. (5.33)
From (5.33), we have
D“Dxe.g 1= X2 gDLF1+ £2DDte. k] + 2.8 f D* Lt ]
< 2{x2 gDLf1 + f2D" [xe.r 1}
< 2{DO[£]+ esf?). (5.34)

From (5.34), we see that &(x«,r f) < oo, which implies (1). (2) is clear by construction. (3)
follows from (2) and (5.33). (4) follows from (5.34). ]

Let (&N, @é\’) be as in (3.1). Then, using Lemma 2.3 (1), we see from (B1) (1) that
(&N, 2Ny is closable on L*(u"). We denote the closure of (&, 2Y) on L?(uV) as
&N, M.

Proposition 5.2 Let ry be as in (5.7). For each f € Lz(u,), there exists a sequence {gn}NeN
satisfying the following:

gn is o[m,, ] — measurable, lim sup ||gN||L2(MN )y < 00, (5.35)
N—o0
lim gy = f strongly in the sense of Definition 4.2, (5.36)
N—o00
lim &V (gn) =&(f). (5.37)
N—o00

Proof 1If f ¢ 2, then &(f) = oo and we can easily take gy so as to satisfy (5.35)—(5.37).
We next suppose that f € 2. Then, &(f) = &(f) < oo. Furthermore, there exists a
sequence { f,}nen in 2% such that

Tim &) (fu = ) =0. (5.38)

Because each f, € 2% is a local function, we can assume that f; is o [7r,]-measurable.
Let {gn} be a non-decreasing sequence of natural numbers such that gy + 1 < ry for
ry > 2and limy o gy = 00. We set x§ = Xgy-+1,qy- L€t

&N = XN fqn- (5.39)
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Because xy and f, are o[my, ]-measurable and gy + 1 < ry, we find that gy is o[, ]-
measurable. From f,, € L%(u), we have that gN € L3(w). Combining these results with
(B4), we find that lim supy _, o lgn [l z2¢,v ) < 0o. Thus, we obtain (5.35).

N

We next check (5.36). Recall that we take € = 2'. For gy = xn fan- wetake gy = fy,-
Then, gy, € €. Using (5.38) and limy;— oo gy = 00, we have

o ,
Jim 18w = flgag = Jim gy = £, =0 (5.40)

Let ®n(-) = xn- Then, @n(Sm) = Pn(fyy,) = XN fqy by construction and (5.39). Hence,
from this, (5.4), and Lemma 5.5, we have that

hm lim sup ||®
Jim N_mpll N(Em) — gN||L2(u£VN)

= hm Limsup || xn fgy — XN faqn ”LZ(M,N y by definition

-0 N-oco

< hm limsupen (N, gn + 1. gy + 1, gv)IIXN fa — XN Jan l2) bY (5-4)

M—o00o N o

< lim limsupcip(N)IXN fau — XN Fan lL2wy = 0. (5.41)
M—0o N oo

Here, we have used ¢ (N, gy +1, gy +1, gn) < c12(N), which follows from gy +1 < ry.
The last equality follows from Lemma 5.5 and (5.38).

Thus, we see that {gx } and {gy/} satisfy (4.1) and (4.2) from (5.40) and (5.41), respectively.
We have already checked gy € €. Hence, we obtain (5.36).

By Lemma 5.5, (5.38), and (5.39), we have that

sup &1y (gn) = sup &y (XN fan) < 00. (5.42)
NeN NeN
Obviously, we have
16N (gn) — (] < 16N (gn) — Egn)| + 16 (gn) — ECF)I. (5.43)

From Lemma 5.3, (5.4) and (5.42), we see that

16N (gn) — E(gn) <cii(N, gy + 1, gy + 1, gn)E(gn)
<c12(N)E(gn) m 0. (5.44)

By a straightforward calculation, Lemma 5.5, (5.40), and (5.42) imply that
156 = £ = | [ DLxw fuy] = D1
IS
_ a 2 a 2 ma a
=| /6 DLOv 12, + 2D 1w San DX fay + XAD Ufan ] = DO Lf 1|

<| [ 2o, + 20w fundan|+| [ 13210 =71 11w

— 0. (5.45)
N—o00
From (5.43), (5.44), and (5.45), we obtain (5.37). This completes the proof. ]
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Proof of Theorem 3.1 Assume that {fy}yen with fy € Lz(uﬁ\jv) weakly converges to
f € L?(uw) in the sense of Definition 4.2. From Proposition 5.1, we see that (&, 2) and

~N .
(&N, T )} e satisfy

E4f) < liminf &1 (fx). (5.46)

By (A2) we have (&,2) = (&,%). From this and (5.46), we see that (&, ¥) and

(&N Sy —rN)}NEN satisfy (4.5). Thus, we obtain Definition 4.4 (1).
Let gy be as in Proposition 5.2. From (5.37), we see that
E(f) = lim &N (gy). (5.47)
N—oo

Because gy is o[, ]-measurable, we find that (é’rlx , .@ ) satisfies

&N (gn) = &) (gn)- (5.48)
Combining (5.47) and (5.48), we obtain

E(f) = Jim &¥(gn) = lim & (en).

Hence, we obtain Definition 4.4 (2) for (£, 2) and {(&N S :rN)}NEN

Thus, the Mosco convergence in Definition 4.4 holds for (&, ) and {(&N A 7?/2)} NeN-
The Mosco convergence of Dirichlet forms implies the strong convergence of the associated
L?-semi-groups, which yields the convergence of finite-dimensional distributions of erN to
X (see [18, Section 7]).

6 Cut-off Dirichlet forms in infinite volumes

In this section, we construct schemes of cut-off Dirichlet forms in infinite volumes. We shall
use these schemes in Sect. 7 to prove Theorems 3.2-3.5.
Let O, be asin (3.11). We set

xS g) = f D4 f. gld. 6.1)
R,v

Lemma 6.1 Assume that  satisfies (QG) with {O%’U}R,mel\ﬁ Assume that (3.12) holds. Then,
(Er.v, DY) is closable on L* ().

Proof Using Lemma 2.10, we see that (é"o" OD”) is closable on Lz(,u). From (3.12) and
(6.1), we have é"R " = &g,v. Hence, we find that (&%, v, @?") is closable on Lz(u). Com-
bining this with 2% C 22", we conclude that (& ,,, Z%') is closable on L2(w). O

6.1 Lower schemes of Dirichlet forms in infinite volumes

We assume that (3.12)—(3.14) hold. From Lemma 6.1, we see that (&%, 2% is closable
on Lz(u). Hence, we denote the closure of (&%, v, 2! on Lz(u) as (6g,vs Zg.,)- Then, we
deduce from (3.12) that, for each v € N,

(ERvs Zg\) < vy Dgy) for R< R (6.2)
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From (3.13), it is easy to show that, for each R € N,
(Erv: D) < Ry Dg.,y) forv <y (6.3)
From (6.2) and (6.3), we have that, for f € ﬂR,veN DR

lim [nm gR,V(f,f)} = lim { lim & o(f, f)}. (6.4)
R—oo0 lv—>o00 V—>00 | R—>o0 '
For f, g € 2, we set

gm,v(fv g) :/ ]D)a[f’ g](5)d[,l,

v

Because & (f, f) = Erv(f, f) for f € DL N Br, we naturally extend the domain of
Soo,v 10 D g - By (6.2), we see that {(g,v, Zg )} ReN is increasing for each v € N. Hence,
we set the closed form (65,1, Z ,,) ON L2 (i) such that

oo (fs f) = Rli_)moo Erp(f, f) for f e Dy,

Do = :f € ﬂ DRy Rli_)mooé"R,u(f, < oo} . 6.5)

ReN

From (6.2), (6.3), and (6.5), we see that the sequence of the forms (£x,v, 2, ,,) is increasing
in v € N. Hence, we define the closed form (s 0, Doo.00) 88

bso0o(f- )= im S (f. [) for f € () Zogyr

v=1

Loc,00 = {f € () Zoows Jim Soon(f. f) < oo}. (6.6)

v=1

Lemma6.2 Assume that | satisfies (QG) with {O% )R meN for each v € N and that
{Og,v}R,u,mEN satisfies (3.12)—(3.16). Assume that (ZC) holds. Then,

(50,000 Zoo,00) = (&, D). (6.7)
Proof From (6.3), we set the closed form (£, 00, 2 R.c0) DY
ERoo(fs ) = vliy;oé‘k,u(f, 5,

o0
Dioo = {f € (N Zros Jim Ero(f, f) <oof. (68)

v=1
Obviously, we have
(ER.00s DR.oo) < (ER, Dg) < (ER. DR). (6.9)

It is easy to show that (g, Zp) is a quasi-regular Dirichlet form. From (6.9), we have that
@R < Capp, where @R is the capacity given by the Dirichlet form (&g, Zz) on L?(uw).
Using (ZC), (3.15), and the inequality of the capacities as above, we obtain

%R(G\GDR,V) —0. (6.10)

v=lI
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Using (6.8) and (6.10) and the definition of (&&, Zp), we deduce

(ER.00s ZR.00) = (ER, D R)- (6.11)
Using (2.7), (6.4)—(6.6), (6.8), and (6.11), we obtain
(éaoo,oo’ zoo,oo) = Uli)ngo(éaoo,ua Qoo,,,) by (6.6)
= lim_ lim (6p. Zg.,) by (6.5)
= lim_lim (&g, Zg.,) by (6.4)
= lim (€Rr,00, Zk o) by (6.8)
R—o00 ’
= lim (&g, Zy) by (6.11)
R—o0
=(£,92) by (2.7).
This completes the proof of (6.7). m}

6.2 Upper schemes of Dirichlet forms in infinite volumes

We now proceed with the upper scheme. We define the domain %, such that
PBr.v ={f € PBr; f is constant on each connected component of S\Og ,}. (6.12)
From (3.12) and (6.12), we deduce the following for each v € N:

Bry C Bryt,y forallReN. (6.13)

Using Lemma 2.10, we see that (é‘}?”, 900”) is closable on L2 () foreach R, v € N. Because
N Br., C 22" and

Ef, ) =ED(f, ) for f e PN B,

we have that (&, 22 N ZBRr.v) 1s closable on Lz(p,). Hence, we define (&g v, Zr,v) as the
closure of (&, 2¥ N PBRr.v) on L?(uw). Note that, by construction,

(éBR,w QR,V) = ((g)R,ua -@R,v)~ (614)

Lemma 6.3 Assume that | satisfies (QG) with {O% }r meN for each v € N and that
{O}’;N}R,U,meN satisfies (3.12)—(3.16). Then, {(&r,v, QR,V)}ReN is decreasing in R for each
v € N. The strong resolvent limit (&xo,v, Zoo.v) Of {(ERv, DR,v)}ReN IS the closure of
(éaoo,w UR@R,I))-

Proof From (6.13), we have the following for each v € N:
YN Bry C PN Briyy forall R € N (6.15)

Because (r,v, Zr,v) is the closure of (&R, y, 2% N PBr,v), we see that {(Er,v, Zr,v)}ReN 1S
decreasing in R for each v € N from (6.15). This implies the first claim.

The strong resolvent limit (&xo,y, Zoo,v) 1S the closure of the largest closable part of
(%0,v, URDR,v). Hence, it only remains to prove that (&xo,v, Ur Zg, 1) is closable on L2(/L).
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We set 2L, = Ur(2L N Br.,). Then, 2L, C 2L Recall that (&, L) is closable on
L*(w). Hence, (£, Z%,) is closable on L% (j1). Note that &(f, f) = &wov(f, f) for f € TL,.
Hence, the closability of (&x, v, 2% on L2(w) follows from that of (&, Z%,) on L2 ().

Note that 2%, C Ug Pr.v and that 2%, is dense in U RZR,v» with respect to the inner
product &g (-, %) + (-, *)Lz(ﬂ). Combining these facts with the closability of (&x, v, 25
on L2(w), we deduce that (50,v, URDR,v) 1s closable on L2(w). This completes the proof
of the second claim. ]

Lemma 6.4 Consider the same assumptions as for Lemma 6.3.
(1) {(¢0,vs Do, v)}ven is decreasing in v € N. For each v € N, we have that
(&0, Doo,v) = (8, D), Cgoo,v(fs =&, f) forall f € Do,y (6.16)

Furthermore, (8, U2 | Z,v) is closable on L2(w).
(2) The closure (&, Do) 0f (&, US| Do) satisfies

(Eoos Do) = Uli)ngo(éz’oo,u, Doo,v) In the strong resolvent sense, (6.17)
(650, Do) = (&, D), sl f, f)=E(f, f) forall f € D. (6.18)

Proof From (3.13), we have Og , C Og.v+1. Hence, Br,, C Br.v+1 by (6.12). Then,
(&, 98 N Bry) > (&, 78 N Bry+1) foreach R,v e N. (6.19)

Taking the closures of both sides of (6.19) and using Zg ,+1 C Zr, we obtain
(ERvs DRyv) = (ER 11, PRy+1) = (ER, PR) foreach R,v € N. (6.20)

By Lemma 6.3, (&x,1, Zoo,v) is the strong resolvent limit of {(&r,v, Zr,v)}ren for each
v € N. From this and the first inequality in (6.20), {(50,v, Zco,v)}veN is decreasing.

We see that (&, Z) = limg_,0(Er, Zr) in the strong resolvent sense from Lemma 2.4
(1). We can deduce (s, v, Zoo,v) = iMg—00(ER, vy Zr,v) in the strong resolvent sense from
Lemma 6.3. Hence, taking R — oo in (6.20), we obtain the inequality in (6.16).

From &(f, ) = &rv(f, f) for f € D ., we have the equality in (6.16).

From (6.16), we have (&', ) < (&, U2 | Zwo,v)- Recall that (£, 2) is a closed form on
Lz(u). Hence, (&, U2 | Zwo,v) is closable L2(w). Thus, we obtain (1).

By (1), {(&0.,v> Zoo,v)}ven 1s decreasing. Therefore, (6x0,v, Zoo,v) converges to the clo-
sure of the largest closable part of (6o, U2 | Z,v) in the strong resolvent sense. By (1),
we see that (650, U2 | Zno,v) is closable. Hence, we obtain (6.17). Equation (6.18) is clear
because of (6.16) and the fact that (6, Zwo) is the closure of (&', U2 | Zeo,v). O

Proposition 6.1 Consider the same assumptions as for Lemma 6.3, and furthermore assume
that (ZC) holds. Let (65, Z0) be as in Lemma 6.4. Then, P is dense in 9 with respect to
the inner product &1y := & (-, %) + (-, %) 2(,)- Furthermore,

(&, D) = (60, Do) (6.21)
(&, 2) = lim (Eo.v, Poo,v) in the strong resolvent sense. (6.22)
V—>00

Proof We regard D%’v as a subset of Cf(Sg). Then,

(9%, = [ Jts € CI"(Sr): o} (5) = 0). (6.23)
v=1

m=1
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From (ZC), we see that

Capg (U {s € Cf"™(SR); of(s) = 0}) =0. (6.24)

m=1

Using (3.13), (6.23), and (6.24), we obtain
lim Capg (D% ,) =0 foreach R € N. (6.25)
V—>00 ’

Hence, for each R € N, there exist a decreasing sequence of open sets {Mg ,}yen and a
sequence of functions {¢g . }yen satisfying

O% , CMg,y, lim Capp(Mg,) =0, (6.26)
’ V—>00
Yry=1onMgr,, 0<g@gr.,(s) <1 forallse G, (6.27)
@Ry € PR, lim &k (1)(¢r,v) = 0. (6.28)
v—>0

Here, &g 1) = Er(-, %) + (-, *)2(up)- FOr O < R, the set O, can be regarded as an
open set in Cf(Sg), and the function ¢ ,, can be considered as an element in Z¢. Recall the
definition of 2%, given before (6.14). Then, because of (6.26)—(6.28), we have the following
foreach R € N:
R
Yro = [[(1 = 00.1) € Zry N L (). (6.29)
0=1

From (6.27) and (6.29), we have ¥g,, = 0 on Mg ,. Hence, from (6.27)—-(6.29) with a
straightforward calculation, we have that

lim &)(1 = ¥ry) = lim &g )1 — Yry) =0 (6.30)
V—>00 V—>00

and a subsequential limit such that

R
lim . (s) = Ql lim (1—¢g,y(s)) =1 for p-as.s. 6.31)
Combining (6.30), (6.31), f € 2 N L*°(u),and |1 — ¥g.»| < 1, we obtain

EOf — fUrw) = E0(F(1 = YrD))
= fe DALFIT = Yo l® + [ FIPDAL — Yrroy] 4+ 2D F, 1 — el + | F121 — Yroldp

< /6 2{DALFIL =Ygl + L FIPDAL = Wrol} + L FPL = YroolPdi

— 0, v— o0. (6.32)
For f € 2 N L*° (), we have that fyg, = 0on Mg ,. For f € 2 N L>(w), this yields
FVRy € DRy N L(1) C Doy N L (). (6.33)

From (6.32), (6.33), and U2 | Zoo y ML (1) = PooNL™> (1), we deduce that Zoo ML (1) is
dense in 2N L () with respect to &(1). Furthermore, it is not difficult to see that Z N L (1)
is dense in 7 with respect to &(1). Collecting these results, we see that Z is dense in Z with
respect to &(1), which completes the proof of the first claim.

The second claim (6.21) follows immediately from the first claim and (6.18). The third
claim (6.22) follows from (6.17) and (6.21). ]
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6.3 Construction of {OF' g v men

In this subsection, we construct {O}’QV}R,V,W,GN satisfying (3.12)—(3.16).

Lemma 6.5 Assume that | satisfies (QG) with {S}}r men and (ZC). Assume that oy is
uniformly continuous on Sy for each R,m € N. Then, we have a sequence of symmetric
open sets {O% YR v.meN such that p satisfies (QG) with {O% }r.men for each v € N and
that {0 }g.v.men satisfies (3.12)~(3.16). ’

Proof Let (®g, ¥) be as in (2.18). Let R, v,m € N be fixed. Let 71 = §; and Ty =
So \ Sp—1for2 < Q < R.Forx = (x;) € S, we set

R
Fo.r(X) = Z‘Po(xi)-i- Z Yo (xi, xj) + Z Z Yo (xi, xj)-

x,‘GTQ x,',?(jE.TQ Q'=0+1 XiETQ,XjETQ/
i<j

Let Té ={x=(x) e SF; tli; xi € To} =1}. We set AOQ,R = (). Furthermore, we set for
QOeNand/ eN

AZQ,R =i{xe TIQ ; Jo,r(X) = 00} (6.34)

LetL(m) = {(Ig) € {0, ..., m}R; Y-8 _ 1o = m}. We set

R
Bi= Y Y AR (6.35)

(lp)eL(m) 0=1
Let %R(p'lp be as in (2.16). We set
Hr(x) = A" (u(x)).

Recall that (@9, ¥p) is bounded from below because p satisfies (QG) with {S%} g nen. Let
c6(R, k, m, my(s)) be as in (2.17). We set

Q) =1{s€6&;n" <co(R, k,m,w(s)) < n}.

Let a,':n be the density function of p(- N £2(n)) on S%. Suppose that 11(£2(n)) > 0. Then,
from (2.17) and (2.18), we have a positive constant c3 such that

e exp{—cr R (X)} < o, (X) < ciyexp{—c; ' HR(x)} forx € Sf. (6.36)

Thus, for x € S%, we deduce that al'é”n(x) = 0 if and only if %% (x) = oo. It is clear that
w(U,2(n)) = 1. Hence, {x € S§: og'(x) = 0} if and only if x € B;.
Let ¢, v € N, be functions defined on N2 such that, for each 0,1l eN,

ev(Q.1) > ev41(Q, 1) > 0, lim &,(Q,1) =0. (6.37)

We set

N(Q.)={xeT,; inf |x—y|>e(Q.]¢,
yeAIQYR

R
O, = > Y NQ.lp).

(Ig)eL(m) =1
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Then, it is easy to show that OZ”V is a symmetric open set satisfying (3.12) and (3.13).
Recall that ,u(nEl (u({x; og'(x) = 0}))) = 0 from (ZC). Then, pL(]TE] (B%)) = 0 from
(6.34) and (6.36). Hence, using (6.37), we obtain (3.14). Equation (3.15) follows from (6.34)
and (6.36). Equation (3.16) is clear because o' is uniformly continuous on S% and B’y is
relatively compact in S7.
To prove that p satisfies (QG) with {075,1;} r.meN for each v € N, we begin by checking
Definition 2.2. Definition 2.2 (1) is obvious. Using (ZC), we have

o)

Hence, taking ;g » = n(-NOg,,), we obtain Definition 2.2 (2) (replacing g x by itr.v). By

assumption, u satisfies (QG) with {S?{,’} r.meN. Hence, applying (2.17) to S;ﬁ‘ with a simple
calculation, we find that

X7 P

g e R ARWY) < uiy go(dD) < cem R AR(dY). (6.38)

Using (6.38), O} , C Sk, and retaking OF  if necessary, we can easily find that p is a

(@, ¥)-quasi- GlbbS measure with {0’} R »JR,meN. Thus, Definition 2.2 (3) holds. Collecting

these results, we obtain Definition 2. 2 which implies (QG1). By assumption, (QG2) is

satisfied. Hence, we find that u satisfies (QG) with {OQ’V} R.meN for each v € N. This

completes the proof of Lemma 6.5. O

7 Proof of Theorems 3.2-3.3

In this section, we shall prove Theorems 3.2-3.3.

For simplicity, we make the following assumption.
(B4)* Either (B4), (B4)', or (B4)” holds.
We introduce condition (B4),,, which is similar to (B4).
(B4), Foreach R,v,m € N,

Lemma 7.1 Assume that (B4)* is satisfied. Then, (B4), holds.

=0. 7.1
by =0 (7.1)

N—oo Rov

Proof 1f (B4) holds, then we obviously have (B4),. From (B4)’, we have that

lim Hag’m —op
N—o00

=0 foreach R,v,m € N. (7.2)

R.v

From (3.16), we see that o' is uniformly positive on O . Hence, (7.2) yields (7.1). This
implies (B4),. Because (B4)” implies (B4)', (B4)” ylelds (B4)U m}

7.1 Lower schemes of cut-off Dirichlet forms

The main result of this subsection is Proposition 7.1, which presents an inequality for the
lower scheme.
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Let D’};’U and O, be as in (3.11). Note that D’I';’V N D’};jv = () for m # m’ and that
Oy C Ory = Uy Ok - Replacing u by 1om U,uN and 1o, u", we introduce the cut-off
bilinear forms gg " and 601’?\{ , such that

ggbm(f’8)=/0m D4Lf, gldu™,

R.v

N (f2 ) =Z£,§Y;m(f,g)=/o D4Lf, gldp®.

m=1 v

Lemma 7.2 Assume that uV satisfies (QG) with {OZL,V}R,meN for each v € N. Then,
(éagv, 95\’) is closable on LZ(MN).

Proof We obtain Lemma 7.2 from Lemma 6.1 by replacing u with u? . O
We denote the closure of (éagv, @f’) on Lz(,uN) as (ﬁlévv, Q% ) -

Lemma 7.3 Assume that i satisfies (QG) with {Oﬁ,v}R,meNfor eachv € N. Let Qg be as
in (3.2). Then, forall R,v, N € N, (&, 2} ) satisfies

&R, 2N ) < &Y, D). (7.3)

Proof We have (&3,. 7N N #g) < (&3, 2Y N Br). Hence, (67, 2R ) < (67 . Z%).
Combining this with (3.3), we obtain (7.3). O

Let ry be as in (5.7). We set

7N =

Do =1{f¢€ Zf\jw ; fiso[m,, ] — measurable}.

Lemma 7.4 Assume that i and uN satisfy (QG) with {OQ,U}R,meN for each v € N such
that (3.12)—(3.15) hold. Assume that (B4)* holds. Assume that { fx}nen With fy € Lz(ufllv)
weakly converges to f € L*>(w) in the sense of Definition 4.2. Then, for each v € N,

Eson{f) < liminf & (fiv) (7.4)

~N
holds for (Exc,vs Zsg.) and {(EN . TN )inen.

Proof Using Lemma 7.1, we deduce (B4), from (B4)*. Then, we obtain (7.4) from (B4),

in the same fashion as in Proposition 5.1. Indeed, we replace ((?,N éﬁ;) and (&, 2) in

N

Proposition 5.1 by (éa,%,w QZW) and (&x,v, Zo.1)> respectively. The remainder of the
proof is the same as that of Proposition 5.1, and so we omit the details. O

Proposition 7.1 Consider the same assumptions as for Lemma 6.5 regarding (v and V.
Assume that (B4)* holds. Assume that { fy}nen with fy € Lz(,uf]{]) weakly converges to

f e L2(w) in the sense of Definition 4.2. Then, (&, 2) and {(éarlx, érNN)}NeN satisfy

E(f) < liminf 61 (fn). (7.5)
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Proof From the definition of £(-), (6.7), and (6.6), we have the following for f € L(w)

E(f) = Exopolf) = lim_ Exon(f). (7.6)

From (7.4) and (7.3), for f € L%(u), we have that
Sson(f) <liminf £ (fiv) <liminf §1(f). (7.7)
Combining (7.6) and (7.7), we obtain (7.5). ]

7.2 Upper schemes of cut-off Dirichlet forms

The main result of this section is Proposition 7.2, which presents the convergence of the
upper scheme of the cut-off Dirichlet forms. The argument is similar to that in Sect. 5.2, with
the replacement of (3.4) by (B4), .

Let O, be asin (3.11). We set

N (fr ) = / D4 f. gldu®.

v

Lemma7.5 Assume that uN satisfies (QG) with {O% ,}R.men for each v € N. Then,
((g)l}e\{w I N BR) is closable on L*(uM).

Proof Using (B2), we have 25 C NyenZY. Then,
4N Br C 9" C Nyen?y c V. (7.8)

From Lemma 7.2, we see that (é”lévv, @év) is closable on LZ(u). Combining this with (7.8)
completes the proof. O

We denote the closure of ((flévv, I N Br) on L2(uN) as (é”lévv, .@gv) . We set

w@fi,v(f,g>=/ D f. gldu™.
Similar to Lemma 2.3, we see that (&Y ,, Ux_, 25 N #g) is closable on L?(u"). Let
((E’OIZ .@o[g’v) be the closure of ((E’OIZ’V, u;;’:l.@# N Bg) on L*(u"). Then, similar to
Lemma 2.4, we see that {(@@Iévv, _@I[gu)} converges to (@”O]X’U, Q@o]\é’v) on L2(uV) as R — o0
in the strong resolvent sense. Let (6.1, Zoo,v) be as in Lemma 6.3.

%

Lemma 7.6 Assume that (B4)* holds. Then, (éeolg’v, .@ol\é’v) and (xo,v, Poc,v) satisfy the fol-
lowing. For each f € L*>(i1), there exists a sequence {gn vIneN satisfying

gN,v is o[,y ] — measurable, gy ,, € Lz(uf}]v), (7.9)
lim gy, = f strongly in the sense of Definition 4.2, (7.10)
N—o00
lim &5, (gn,0) = oo (f)- (7.11)
N—o00

Proof From Lemma 7.1, we deduce (B4), from (B4)*. We then obtain (7.9)—(7.11) from
(B4), in the same fashion as in Proposition 5.2. We omit the details of the proof. O

Next, we check Definition 4.4 (2).
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Proposition 7.2 Consider the same assumptions as for Lemma 6.5. Assume that (B4)* holds.
Then, (&N, 2N) and (&, D) satisfy the following. Forany f € L(w), there exists a sequence
{gn}neN such that

gn is o[y ] — measurable,gy € Lz(uﬁ\llv), (7.12)
lim gy = f strongly in the sense of Definition 4.2, (7.13)
N—o00
lim &N (gn) = E(f). (7.14)
N—o00

Proof From Lemma 6.5, we see that the assumptions of Proposition 6.1 are fulfilled. Using
Proposition 6.1, we find that U5 | .@ol\é’v is dense in 7. Hence, without loss of generality, we
can assume that f € U2, @O’\é’v. From Proposition 6.1, we obtain

E(f) = lim Euwu(f) (7.15)

Let gn,, denote the sequence in Lemma 7.6. Then, gy, satisfies (7.12). Combining (7.9)—
(7.11) and (7.15), we can take gy satisfying (7.13) and (7.14) by choosing a subsequence of

{gn.vIN,veN. ]

7.3 Proof of Theorems 3.2-3.3

Proof of Theorem 3.2 We first assume that (B4)” holds. Assume that { fy}yen With fy €
Lz(uﬁ\;v) weakly converges to f € L%(w) in the sense of Definition 4.2. Let (£r1NV, éﬁ:’v) be
asin (3.3) with R = ry.

From Proposition 7.1, we see that (&, Z) and {(éar%, éﬁf\,)}NeN satisfy
E(f) < liminféar’,\v’(fN). (7.16)
N—o0

From (A2), we have (&, ) = (&, Z). Combining these results, we see that (&, ) and
{(éarx, Q%)}NeN satisfy Definition 4.4 (1).

Let gy be as in Proposition 7.2. Applying (7.16) to {gn}, we have that

E(f) < 11Nm'nf &N (gn). (7.17)

Clearly, @@,% (gn) < &N (gn). Hence, from Proposition 7.2, we obtain

lim sup & (gn) < limsup & (gn) = &(f). (7.18)

N—o00 N—o00

Combining (7.17) and (7.18), we have

E(f) = Jim & (en). (7.19)

Hence, we find that (&, 2) and {(éjfl\'v, éﬁt’v)} NeN satisfy Definition 4.4 (2).
From (7.16) and (7.19), we see that the Mosco convergence of (5,%, éi\llv) on Lz(uf/’v) to
(&, 9) on L%(u) holds. Combining this with Lemma 4.1, we conclude that (3.6) holds.

Next, we suppose that (B4)” holds. Combining (3.18) and (3.19), we see that

sup p" (Xp) < cg'm10M, (7.20)
X €S
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Then, from (3.19) and (7.20), we obtain

o0
—1 n
oﬁ”%xm>==§257;11/npN”+"um,ywdym (7.21)
n=0 : R
o
(="
oR (m) =) f P X Y)Y (7.22)
n=0 n! Slll?

Combining (3.18), (7.21), and (7.22) and using the Lebesgue convergence theorem, we obtain
(3.17), which implies that (B4)" holds. Hence, (3.6) follows from the first part of the proof. O

Proof of Theorem 3.3 We first check the Mosco convergence of ((”,%, @N ) on LZ(M,N)
Assume that { fy}yeny With fy € Lz(uﬁ\]'v) weakly converges to f € Lz(,u) in the sense of
Definition 4.2. From (7.16) and the first inequality in (3.21), (&~ _@N ) satisfies

N’

E4f) = liminf G0 (fn). (7.23)

Combining this with (A2) implies Definition 4.4 (1).
Let 8N be as in Proposition 7.2. Then, from (7.18) and the second inequality in (3.21),
&N @N) satisfies

N’

limsup & (gv) < £(f). (7.24)
N—o00
Taking fy = gn in (7.23) and combining this with (7.24) and (A2), we obtain Definition 4.4
2).
Thus, the Mosco convergence of (é",’x, @N ) on LZ(M,N) to (&, Z) on Lz(u) holds. Using
this and Lemma 4.1 completes the proof of Theorem 3.3. O

8 Proof of Theorems 3.4-3.5

Let (%,N, ‘B ) be the unlabeled diffusion given by the Dirichlet form (&~ v 2 @ ) as in

Theorem 3.1. Orlglnally, %rNN was a Cf(S,, )-valued process. We regard %rN as a W(S;s)-
valued process in an obvious manner.

Let (X, ), P = {Bs}ses, be the G-valued, p-reversible diffusion associated with (&, 2)
on L2(u) (see Lemma 2.5). Let £ be as in (B3). Let PBeay = fG Ps&(s)d .

Recall that the diffusion processes % ., and X are given by %N (1) =rw(()and X(t) = w(¢)
as functions defined on W (&), where 6S is defined by (2.8). Thus we write [V h(%N (w)) =

path (to) and [path (X(0)) = path (o).
We consider the discontinuity set of the sequence {[Qgth(m)(t)}NeN converging to
Ipath (0) (¢) such that

pat

Disc[lpath (1) (1)] = {m € W(S); v ¢ W(&;) or there exists {roy}yen in W(Sy)
such that hm toy = tv and hm [path(m)(t) # lpatn (0) (1)}

We set Disc[lpath (t0) () — lpatn (t0) (£)] similarly.
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Lemma8.1 Foreach0O <t <u < 0o,

PBeay (Disc[lyan () (1)]) =0, 8.1
PBeap (Disclpah (0) (1) — lpam (W) (H)]) = 0. (8.2)

Proof Let WNg(Ggi) and WNE(Sg) be as in (2.9). By definition, Wng (Ssi) € WNg(Ss) C
W (8s). Recall that B, (WNe(Si)) = 1 by (A4).

Let ¢ be fixed. It is easy to show that [y (10)(7) restricted on WNg(Ss) is a continuous
function in (I(10(0)), ) in the sense that if ([(toy (0)), ton) converge to ([(t0(0)), ), then
h(m N)(t) converge to [pan () (7). Hence, from (C1), we have

pm
P (Discllpan (r0) (1)]) = 0. (3.3)
Because ¢4, is absolutely continuous with respect to 3., we deduce (8.1) from (8.3).
From (8.1) with a simple calculation, we obtain (8.2). O

Proof of Theorem 3.4 From (A4), (C2), and (3.22), we can construct the labeled processes
Xﬁi] = (lpath (%f\;v), 0,0, ...) and X = [pan(X). Note that the initial distribution of xﬁVN has
a density in Lz(uﬁ\}’v) from (B3). Hence, it is sufficient for the tightness to prove the case in
which %fi’ start from the stationary distribution Mﬁ\,’v . Let

" = o ! (-15(Sry) Z m).

By construction, ppy" ({s; m < 5(§rN) <oo}) = 1.
MW

We assume that %N 0) = /L,N in the rest of the proof. We write Xf[{/ = (X,].\;v’)oo1 To

apply the Lyons—Zheng decomposition to X f\zlv’i, 1 <i < m, we use the m-labeled process
such that

ny
N,[m] _
XrN[m]—( VN l 1° Z 8 Nl).

i=m+1
Then, XN‘[mJ is the diffusion process associated with the Dirichlet form (éarx’lmj, Qﬁ\;’[m])

on LZ(S,N X Gy try [m]) Here, ,uN Ml the m-Campbell measure of /LﬁVN’m and (frlx’[m] is

the Dirichlet form such that

Y= [ D gl

rN 6 N
Furthermore, D™ is the carré du champ on f:nN x &, such that

m

1 m
]D)“’[m][f,g](x,s)ziz alxi 1Y 8¢ +5| Ve f(x5), Vyg(x.5)
i=1 i R
+D[f, gl(x, 9),

, —=m .
where x = (x1,...,x,) € S, and we regard D“ as the carré du champ on S,N x &, inan

obvious fashion. The domain @ 1s taken to be the closure of

[fecesm ez ¥, ) <o f e L2, x &y uli ]
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N, [m

We see that XY ,N , ]-symmetric, conser-

vative diffusion X,N . Moreover, xN ™ ' is a Dirichlet process of XrN oml Here, a Dirichlet
process is an additive functional of a Markov process associated with a Dirichlet form given
by the composition of the Markov process with a function belonging to the domain of the
Dirichlet form locally. Thus, we can apply the Lyons—Zheng decomposition to X f\zlv”. Note

l <i=<m,is an addltrve functional of the /L,-N

that we cannot apply the Lyons—Zheng decomposition to X, Z\,/V’i as an additive functional of
the unlabeled diffusion .%fl'v directly, because X fVN” is not a Dirichlet process of .’{ﬁ\l'v See
Section 9 in [16] for the proof of the Lyons—Zheng decomposition.

Let M™il be a continuous martingale additive functional of XN ") Such that

t
MP (XN ) =f0 o (XN ), X1 u)d BN (u). (8.4)
For T > 0, we set Z7(w)(t) := w(T —t).ForeachO <t <Tand1 <i <m, we set
M = ME (X))
M = MY (97 (XN — M (27 (XD, (8.5)
Using the Lyons—Zheng decomposition for solutions of SDE (3.24) with the function x;, we
have that, foreachO <t < T and 1 <i < m, that

) ; L, . i
XN = X)) = S{ M) + ;) ®.6)

Nlml_y e, (x,8), M and M*® are continuous martingales such

[m]

and that under ‘B (x o) for piry

that M) = M = 0. Here, B!

associated with the Dirichlet form (53", Z)") on L2(S) x &, ul"™) starting at
(x,59).

From (2.1) and (8.4)—(8.6), there exists a constant c14 independent of i such that

is the distribution of the diffusion process XN’

ENXN @) = XN @)l") < cult —ul* forall0 <t,u <T. (8.7)

Using (3.22), we see that {X}\;' (0)}yen is tight in S for each 1 < i < m. Combining this
with (8.7), we easily obtain the tightness of {Xﬁ\}{,’i}NEN in C([0,T]; S) foreach1 <i <m.
Because T is arbitrary, this implies the tightness of {Xﬁ,’i}NeN in C([0, o0); S) for each
1<i<m.

Taking an arbitrary m € N, we obtain the tightness of { S’V’i} NeN in C([0, 00); §) for
all i € N. From this, we deduce the tightness of va (X )O"1 in C([0, 00); SN). Here,
we endow C ([0, 00); SN) = [;en € ([0, 00); S) with the product topology. We use the fact
that, in general, the tightness of random variables with the value of a countable product of

Polish spaces follows from that of each component-wise random variable.

Recall that XY, = (lpan(X]Y,), 0, 0, ...) and X = [pyn (X). From the tightness of X", (0),
(C3), and (8.7), it easily follows that %ﬁ\llv is tight in W(&).

From Theorem 3.1, Lemma 8.1, (LIN), and the tightness of %ff\, in W(&), we see that the
random variables X[ (r) and X} (u) — X} (1) converge weakly to X(7) and X(u) — X (1),
respectively. Thus, we have the convergence of the finite-dimensional distributions of Xﬁ\llv
to those of X. From this, we deduce the convergence of the finite-dimensional distributions
of XN:™ to X" Collecting these results, we obtain Theorem 3.4. o
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Proof of Theorem 3.5 From the proof of Theorem 3.4, we see that {}f } is tight in W(6).
Hence, Theorem 3.5 follows from Theorem 3.4. O

9 A sufficient condition for (C3)

In this section, we present a sufficient condition for (C3) in terms of initial distributions. Let (v

and ,u,’\i/ be asin Sect. 3.2. Let Z(t) = floo(l/\/ 271)e_|"|2/2dx be a (scaled) complementary
error function. We specify the following condition on the initial distributions Mﬁ\zlv o (M1,
N e N.

(D) For any positive numbers R and T,

lim sup/Z%('sl S ([N)*l(ds)}zo. 9.1)

NEN i>l

~

Lemma 9.1 Assume that (D) holds. Then, (%rN, ‘,Bi\i]) satisfies (C3).

~

Proof Let (%rN, ‘f? ) be the diffusion defined in Sect. 3.2. Then, (%rN, ‘,BN ) is the diffusion

associated with (é"rlx, j ) on L2(,ur ). We denote the distribution of the diffusion with the
initial distribution urN using the same symbol %m

From (2.15), we have that

B (mpr @ ) > 1) =B (U{ it 11 < &)

>

<Z‘}3m< 1nf |X§| < R). 9.2)

Let ((frlx’[m], éﬁ\i”[m]) be the Dlrlchlet form on LZ(S”V X Syys try [m]) given in the proof

of Theorem 3.4 in Sect. 8. Let %r/v (X 5) be the distribution of the associated diffusion process
starting at (x, s), as before.

From (8.6), we see that, under &]3 for urN " (x, 5), the stochastic processes

(x s)
M' and M* are continuous martmgales with M0 = M§' = 0 satisfying

XNH) — X0y = o {M] + M} (9.3)

N\—‘

We set X! = X,N , XM = (X1, ..., X™), and X™* = ZDm dyi. Here, ny is the number
of particles in S,N such that ny = }f?/’v (§,N)(O). By construction, X" = [N-7 (%fi/). Using
(2.18) of Theorem 2.4 in [26], we have the identity

N,[m
=N, (x 5)

Py —‘43 (XX e - (X, XM)(0) = (x, 9)). 9-4)
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Using (9.3) and (9.4), we see that X! = X,I.VN’i satisfies (9.3) under iﬁ; Hence, we have that

N \re€lo, 1€[0,T]

NN NN . . .
B < inf |X|<R>§‘BVN< sup |X;—X6|2|X6|—R>

te[0,T] te[0,T]

=%, ( sup |M;| = |Xp| — R) +%,, < sup M| = |Xg| — R) by (9.3), (9.4)

o 1€[0,7]

2" ( sup |M]| > |Xf| — ) ©.5)

~N . . ~N . . . .
Let €, denote the expectation with respect to @r}v. Then, using the martingale inequality,
we see that there exists a positive constant c15 such that

~ . . ~ XL — R
B sup w1z x5 - R) <@ (2 2 F
N \tef0,7] csT

_ Isil =Ry o (V)1
—/%( T Yy © (7)) (ds). 9.6)

Combining (9.1), (9.2), (9.5), and (9.6), we can deduce that

sup q3 (R 7 (5 (X)) > 1) < 2 sup Z/ ('S’ ) uh o (M)~ (ds).

NeN NeN 5

Hence, (D) implies (C3). This completes the proof. ]

10 Examples of dynamical universality

In this section, we give some examples of dynamical universality. We consider the sineg
random point field, 8 = 1, 2, 4, and the Ginibre random point field. All examples satisfy
the assumptions in Theorems 3.1-3.5, and the main theorems are thus applicable to these
examples.

For these random point fields, (A1) is proved in [28]. We have (A2) from [15]. Assumption
(A3) obviously holds. We obtain (A4) from [31] based on the result in [25]. We have (AS)
from [27]. We check (A6) in [15]. Both (ZC) and (C2) hold according to [25]. In [25],
these are only proved for R = oo. The current case can be proved in a similar fashion. The
quasi-Gibbs property is checked in [28]. Assumptions (B1) and (B2) are clear because the
random point fields in these conditions are supported on finite particle systems. Condition
(3.19) in (B4)” holds because the correlation functions come from determinants of matrices
given by kernels that are uniformly bounded on Sk x Sk for each R € N (see, for example,
[28, Lemma 10.1] for the Ginibre random point field). As for (C3), we present a sufficient
condition in Sect. 9, which is satisfied by all the examples. Condition (C4) obviously holds.
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10.1 The sineg interacting Brownian motion with 8 = 1, 2, 4

Let ”}\\//,ﬂ,e be the random point field whose density is m(}'.ﬂ’g given by (1.8). Then, the
logarithmic derivative dﬁ\l'v of Ml‘}[, .0 ON Sry is given by

1 !
@ e )

B 1
+7 2

X — 8
S,‘ES,N !

X

N
d,N(x,s) =—

1
e A1 (10.1)
S\S,y X~V

From (3.24), (3.25), and (10.1), we see that the associated SDE is given by

XN () — XN 0) = B (1) /’ 1 /<X£\//v'i(14) n 9>d
s _ s — — u
w & o pv(®) P\Npy(6)
N
B /’ 1 B 1 N1
+ — - —du + — ——p" (y)dy
2 Jo ; XNy — xN ) 2 Jsvs XN —y
1! : .
- 5/0 0 (XN ) LY (du). (10.2)

For 8 =1,2,4 and V as in (1.2), condition (3.18) in (B4)” is proved in [5]. For 8 = 2 with
a real analytic function V satisfying (1.1), condition (3.18) in (B4)” is proved in [6]. Hence,
we apply the results in Theorems 3.1-3.5 to these models.
Proposition 10.1 The following equation holds. In particular, (1.16) holds.

t N 1

lim P xNi(r) — xNi —é/ . 4
Nl—I>noo (OQZXT{ @) © 2 Jo ;XN,l(u)_XN,J(u)du

B
+ Clﬁ(lg)t — E S\SrN XN’i(t) —y

1
= 2/ ——— e I2T gy,
x>a VZJTT

Here we set c16(B) = ¢y for B = 1,2 and c\6(4) = 2c;.

pN’l(y)dy] > a)

Proof We write uV = MOI, FXE We set ;Lf}’v =ulNo T ! Recall that the unlabeled dynamics
%ﬁ\fv are ;Lﬁ\l'v-reversible‘ Let ijlv = ([path (%ﬁ\l'v), 0,0, ...) be as in the proof of Theorem 3.4.
Let i; N = PNo(XN)~!. Wewritew = (w');en. Applying the Lyons—Zheng decomposition
to w', we have that

) ) 1 . )
w' (1) —w'(0) = E{B’(W)(I) + B (Z1 (W) (1)}, (10.3)
where Zr : C([0, T1; RY) — CL[O, T1; RY) such that 27 (w) (1) = w(T — ). The function

B! is a Brownian motion under PV,
From (1.4) and (1.15), we have that

I
lim v,g( t 9) = ¢i6 (10.4)
N oy @) P \Npy 0)
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uniformly in x € Sg for each R € N. Hence, from (10.3) and (10.4), we have the following
for eache > 0

i
lim PV ( max | / V(2 6)du— et 2 €) =0, (10s)
Jim, P g, pv©® *\Npy©)

Because limy . ¥y = 00, (10.3) implies that

tim PN ( max |5 /0 W )L ()| = €) =0. (10.6)

N—00 0<t<T

Under PV , we can rewrite (10.2) as

i iy _ pi to1 (W @) B
w(t)—w(O)—B(l)—/O pV(G)Vﬂ<NPV(9) d T3 /Zw(u)—wf(u)

i b
2 Js\s,, w'(@) =y

1
PN oy + 1 [ W) LE (du).
2 Jo N
Then, we have that

1 i
wi(t)—wf(0)+/ ! v’( w' @) +9)du

o pv(©) P\Npy©®)
ﬁ 1 B 1 N.1
- - - - ’ d
Zw w—ww™ 2 )y, vy OV
t
- %/ 0’V (w' W)L}, (du) = B'(t). (10.7)
0

The boundary of the set {w € C([0, 00); R); maxo<;<7 w(t) > a} has Wiener measure
zero. Combining this with (10.5)—(10.7), and using Theorem 3.4, we obtain

t N
BN iy i _B 1
im P (e {u'©) = w'© + et =3 /0 Zj# o ) — iy

_F !

N1
= —p" (y)dy] >a
2 Js\s,, w'(@) =y )

= P(max B() = a)= 2/ L g,
x>a VZ?TT

0<t<T

Thus, the proof is complete. O
10.2 The Ginibre interacting Brownian motion
We apply our result to the random matrix model with strong non-Hermiticity introduced in

[1]. Condition (3.18) in (B4)” follows from Proposition 1.1. The SDE for the finite particle
system is given by (1.23) with the addition of the following two terms on the right-hand side.:

N,i
Xy =y N | R N,i
— P (y)dy+7/ n'V (X (w) L, (du).
/s\er XA (1) = yP2 2Jo e

Thus, we obtain the results of Theorems 3.1-3.5 for the Ginibre random point field.
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