無限粒子系の確率解析学【基盤研究(S)課題番号16H06338】(長田博文/九州大学大学院数理学研究院)

HOMEJapanese

Research results

Awards/ICM invited lecture

ページトップへ

Preprints

ページトップへ

To appear

  • Yosuke Kawamoto, Hirofumi Osada, Hideki Tanemura
    Infinite-dimensional stochastic differential equations and tail σ-fields II: the IFC condition
    to appear in JSMJ. https://arxiv.org/abs/2007.03214
  • Hirofumi Osada
    Stochastic analysis for infinite many particle systems: translation of Sûgaku 69 (2017), no. 3, 225--254
    to appear in Sugaku Expositions. PDF File
  • Takashi Imamura*, Matteo Mucciconi, Tomohiro Sasamoto
    Determinantal structures in the q-Whittaker measure
    to appear in Adv. Pure Appl. Math.
  • Takashi Imamura, Kirone Mallick, Tomohiro Sasamoto*
    Distribution of a tagged particle position in the one-dimensional symmetric simple exclusion process with two-sided Bernoulli initial condition
    to appear in Comm. Math. Phys. http://arxiv.org/abs/1810.06131
  • Zhen-Qing Chen, Takashi Kumagai, Jian Wang
    Stability of heat kernel estimates for symmetric jump processes on metric measure spaces
    to appear in Memoirs Amer. Math. Soc. http://arxiv.org/abs/1604.04035
  • Makoto Katori, Shinji Koshida
    Gaussian free fields coupled with multiple SLEs driven by stochastic log-gases
    to appear in ASPM https://arxiv.org/abs/2001.03079
ページトップへ

FY 2020

  • X. Chen, Z.-Q. Chen, T. Kumagai and J. Wang
    Homogenization of symmetric jump processes in random media.
    Rev. Roumaine Math. Pures Appl. 66 (2021), no. 1, 83--105.
  • Zhen-Qing Chen, Takashi Kumagai, Jian Wang
    Stability of parabolic Harnack inequalities for symmetric non-local Dirichlet forms
    J. Eur. Math. Soc. (JEMS) 22 (2020), no. 11, 3747–3803.
    http://arxiv.org/abs/1609.07594
  • Z.-Q. Chen, T. Kumagai and J. Wang
    Heat kernel estimates and parabolic Harnack inequalities for symmetric Dirichlet forms
    Adv. Math. 374 (2020), 107269, 71 pp. https://arxiv.org/abs/1908.07650
  • Takato Matsui, Makoto Katori, Tomoyuki Shirai
    Local number variances and hyperuniformity of the Heisenberg family of determinantal point processes
    Journal of Physics A: Mathematical and Theoretical
    https://doi.org/10.1088/1751-8121/abecaa
  • Makoto Katori, Shinji Koshida
    Conformal welding problem, flow line problem, and multiple Schramm-Loewner evolution
    Journal of Mathematical Physics 61, 083301 (2020) https://doi.org/10.1063/1.5145357
  • Makoto Katori, Tomoyuki Shirai
    Scaling limit for determinantal point processes on spheres
    RIMS Kôkyûroku Bessatsu B79 (2020), 123--138.
  • Yosuke Kawamoto, Hirofumi Osada, Hideki Tanemura
    Uniqueness of Dirichlet forms related to infinite systems of interacting Brownian motions
    Potential Anal. (2020). https://doi.org/10.1007/s11118-020-09872-2
    http://arxiv.org/abs/1711.07796v2
  • Takashi Imamura, Matteo Mucciconi*, Tomohiro Sasamoto
    Stationary Higher Spin Six Vertex Model and q-Whittaker measure
    Probability Theory and Related Fields 177, 923--1042 (2020).
    https://doi.org/10.1007/s00440-020-00966-x http://arxiv.org/abs/1901.08381
  • Hirofumi Osada, Hideki Tanemura
    Infinite-dimensional stochastic differential equations and tail σ-fields
    Probability Theory and Related Fields 177, 1137--1242 (2020). https://doi.org/10.1007/s00440-020-00981-y
    http://arxiv.org/abs/1412.8674v12
  • Chen, Xin; Kumagai, Takashi; Wang, Jian;
    Random conductance models with stable-like jumps: Heat kernel estimates and Harnack inequalities.
    J. Funct. Anal. 279 (2020), no. 7, 108656. https://doi.org/10.1016/j.jfa.2020.108656
ページトップへ

FY 2019

  • T. Funaki, Y. Gao, D. Hilhorst
    Existence and uniqueness of the entropy solution of a stochastic conservation law with a Q-Brownian motion
    Math Meth Appl Sci., 43 (2020), no. 9, 5860–5886. https://doi.org/10.1002/mma.6329
  • T. Endo, M. Katori
    Three-Parametric Marcenko–Pastur Density
    J Stat Phys 178, 1397–1416 (2020). https://doi.org/10.1007/s10955-020-02511-5
  • Borodin, Alexei; Corwin, Ivan; Petrov, Leonid, 笹本智弘
    Correction to: Spectral theory for interacting particle systems solvable by coordinate Bethe ansatz.
    Comm. Math. Phys. 370 (2019), no. 3, 1069–1072.
  • Hiroki Moriya*, Rikuo Nagao, Tomohiro Sasamoto
    Exact large deviation function of spin current for the one dimensional XX spin chain with domain wall initial condition
    Journal of Statistical Mechanics: Theory and Experiment, 2019, no. 6, 063105, 37 pp.
    http://arxiv.org/abs/1901.07228
  • Chen, Zhen-Qing; Kim, Panki; Kumagai, Takashi; Wang, Jian;
    Time fractional Poisson equations: Representations and estimates.
    J. Funct. Anal. 278 (2020), no. 2, 108311. https://doi.org/10.1016/j.jfa.2019.108311
  • D.A. Croydon, B.M. Hambly, Takashi Kumagai
    Heat kernel estimates for FIN processes associated with resistance forms
    Stochastic Process. Appl. 129 (2019), no. 9, 2991–3017. https://doi.org/10.1016/j.spa.2018.08.011
  • Guan-Yu Chen, Takashi Kumagai
    Products of random walks on finite groups with moderate growth
    Tohoku Math. J. (2) 71 (2019), no. 2, 281–302. https://projecteuclid.org/euclid.tmj/1561082599
  • K. Tsunoda, T. Funaki
    Motion by mean curvature from Glauber-Kawasaki dynamics.
    J. Stat. Phys. 177 (2019), no. 2, 183–208. 60K35 (74A50 82C22) https://doi.org/10.1007/s10955-019-02364-7
  • De Masi, A.; Funaki, T.; Presutti, E.; Vares, M. E.
    Fast-reaction limit for Glauber-Kawasaki dynamics with two components
    ALEA Lat. Am. J. Probab. Math. Stat. 16 (2019), no. 2, 957–976.
  • T. Funaki
    Invariant measures in coupled KPZ equations
    Stochastic dynamics out of equilibrium, 560–568, Springer Proc. Math. Stat., 282, Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-15096-9_20
  • Yosuke Kawamoto, Hirofumi Osada
    Dynamical Bulk Scaling limit of Gaussian Unitary Ensembles and Stochastic-Differential-Equation gaps, Journal of Theoretical Probability, 32(2), 2019, 907--933.
    https://doi.org/10.1007/s10959-018-0816-2
  • Zhen-Qing Chen, Takashi Kumagai, Jian Wang
    Elliptic Harnack inequalities for symmetric non-local Dirichlet forms
    J. Math. Pures Appl. (9) 125 (2019), 1–42. https://doi.org/10.1016/j.matpur.2017.10.011
  • Alexander I Bufetov, Andrey V Dymov, Hirofumi Osada
    The logarithmic derivative for point processes with equivalent Palm measures
    J. Math. Soc. Japan, 71(2), 2019, 451--469. https://doi.org/10.2969/jmsj/78397839
  • T. Imamura, T. Sasamoto
    On the q-TASEP with a random initial condition
    Theoret. Mat. Fiz. 198 (2019), no. 1, 79--100; transition in Theoret. Math. Phys., 198 (2019), 69--88. https://doi.org/10.4213/tmf9554
  • T. Imamura, T. Sasamoto
    Fluctuations for stationary q-TASEP
    Probab. Theory Relat. Fields 174 (2019), no. 1--2, 647--730. https://10.1007/s00440-018-0868-3
ページトップへ

FY 2018

  • M. Katori
    Two-Dimensional Ellptic Determinantal Point Processes and Related Systems
    Commun. Math. Phys. 371, 1283–1321 (2019)..https://doi.org/10.1007/s00220-019-03351-5
  • T. Funaki, S. Yokoyama
    Sharp interface limit for stochastically perturbed mass conserving Allen-Cahn equation
    Annals of Probability, 47 (2019), no. 1, 560–612. https://doi.org/10.1214/18-AOP1268
  • Makoto Katori
    Macdonald denominators for affine root systems, orthogonal theta functions, and elliptic determinantal point processes
    Journal of Mathematical Physics 60, 013301(2019), https://doi.org/10.1063/1.5037805
  • T. Imamura, T. Sasamoto
    On the q-TASEP with a random initial condition
    Theoret. Math. Phys., 198 (2019), 69--88. https://doi.org/10.4213/tmf9554
  • Tadahisa, Funaki
    Hydrodynamic limit for exclusion processes
    Communications in Mathematics and Statistics, 6(4), Dec. 2018, 417--480.
    https://doi.org/10.1007/s40304-018-0161-x  
  • Guan-Yu Chen, Takashi Kumagai
    Cutoffs for product chains
    Stochastic Process and their Apllications, 128(11), Nov. 2018, 3840--3879.
    https://doi.org/10.1016/j.spa.2018.01.002 
  • Masato Hoshino
    Global well-posedness of complex Ginzburg–Landau equation with a space–time white noise, Annales de l'Institut Henri Poincaré Probabilités et Statistiques, 54(4), 2018, 1969--2001. https://projecteuclid.org/euclid.aihp/1539849790 
  • Trinh Khanh Duy, Yasuaki Hiraoka, T. Shirai
    Limit theorems for persistence diagrams
    Ann. Appl. Probab. 28 (2018), no. 5, 2740--2780. https://doi.org/10.1214/17-AAP1371
    https://projecteuclid.org/euclid.aoap/1535443233
  • Z.-Q. Chen, P. Kim, T. Kumagai and J. Wang
    Heat kernel estimates for time fractional equations.
    Forum Mathematicum, Volume 30, Issue 5, Pages 1163–1192
    https://doi.org/10.1515/forum-2017-0192
  • A. Dembo, T. Kumagai and C. Nakamura
    Cutoff for lamplighter chains on fractals
    Electron. J. Probab. 23 (2018), paper no. 73, 21 pp
    https://projecteuclid.org/euclid.ejp/1532678636
  • Y. Kawamoto, H. Osada
    Finite particle approximations of interacting Brownian particles with logarithmic potentials
    J. Math. Soc. Japan, Volume 70, Number 3 (2018), 921-952. doi:10.2969/jmsj/75717571
    https://projecteuclid.org/euclid.jmsj/1529309020 PDF File
  • Hirofumi Osada
    Infinite-dimensional Stochastic Differential Equations with Symmetry
    In: Eberle A., Grothaus M., Hoh W., Kassmann M., Stannat W., Trutnau G. (eds) Stochastic Partial Differential Equations and Related Fields. SPDERF 2016. Springer Proceedings in Mathematics & Statistics, vol 229. Springer, Cham
    https://doi.org/10.1007/978-3-319-74929-7_38e PDF File
  • Zhen-Qing Chen, Takashi Kumagai, Jian Wang
    Mean value inequalities for jump processes
    In: Eberle A., Grothaus M., Hoh W., Kassmann M., Stannat W., Trutnau G. (eds) Stochastic Partial Differential Equations and Related Fields. SPDERF 2016. Springer Proceedings in Mathematics & Statistics, vol 229. Springer, Cham
    https://doi.org/10.1007/978-3-319-74929-7_28
  • C. Denis, Tadahisa Funaki, Satoshi Yokoyama
    Curvature motion perturbed by a direction-dependent colored noise
    In: Eberle A., Grothaus M., Hoh W., Kassmann M., Stannat W., Trutnau G. (eds) Stochastic Partial Differential Equations and Related Fields. SPDERF 2016. Springer Proceedings in Mathematics & Statistics, vol 229. Springer, Cham
    https://doi.org/10.1007/978-3-319-74929-7_9
  • T. Funaki, Y. Gao, D. Hilhorst
    Convergence of a finite volume scheme for a stochastic conservation law involving a Q-Brownian motion
    Discrete and Continuous Dynamical System - B, 23(4), 2018, 1459--1502. https://doi.org/10.3934/dcdsb.2018159
  • H. Baba, M. Katori
    Excursion Processes Associated with Elliptic Combinatorics
    J. Stat. Phys. 171(6), June 2018. https://doi.org/10.1007/s10955-018-2045-6 
  • Z. Chen, J. de Gier, I. Hiki, T. Sasamoto
    Exact confirmation of 1D nonlinear fluctuating hydrodynamics for a two-species exclusion process
    Phys. Rev. Lett. 120, 240601 (2018). https://doi.org/10.1103/PhysRevLett.120.240601 
  • I. Hotta, M. Katori
    Hydrodynamic Limit of Multiple SLE
    J. Stat. Phys. 171(1), Apr. 2018, https://doi.org/10.1007/s10955-018-1996-y 
  • M. Hoshino
    Paracontrolled calculus and Funaki–Quastel approximation for the KPZ equation
    Stochastic Processes and their Applications, 128(4), April 2018, 1238--1293.
    https://doi.org/10.1016/j.spa.2017.07.001 
  • T. Fukadai, T. Sasamoto
    Transient Dynamics of Double Quantum Dots Coupled to Two Reservoirs
    J. Phys. Soc. Jpn. 87, 054006 (2018). https://doi.org/10.7566/JPSJ.87.054006 
ページトップへ

FY 2017

  • T. Kumagai, C. Nakamura
    Lamplighter random walks on fractals
    J. Theoret. Probab. 31(1), Mar. 2018. https://doi.org/10.1007/s10959-016-0718-0
  • Hirofumi Osada, Shota Osada
    Discrete approximations of determinantal point processes on continuous spaces: tree representations and tail triviality, Journal of Statistical Physics, 170(2), 421--435.
    Jan. 2018, https://doi.org/10.1007/s10955-017-1928-2
  • Takashi Kumagai
    Anomalous random walks and diffusions on disordered media(in Japanese).
    "Sugaku", Iwanami-shoten, 70 (2018), no. 1, 81--100.
  • P. Kim, T. Kumagai, J. Wang
    Laws of the iterated logarithm for symmetric jump processes
    Bernoulli 23 (2017), no. 4A, 2330-2379.
  • D. A. Croydon, B. M. Hambly, T. Kumagai
    Time-changes of stochastic processes associated with resistance forms
    Electron. J. Probab. 22(82), Oct. 2017, 1--41.
    https://doi.org/10.1214/17-EJP99
  • M. Katori
    Elliptic Determinantal Processes and Elliptic Dyson Models
    SIGMA 13 (Oct. 2017) 079, 36 pages https://www.emis.de/journals/SIGMA/2017/079/
    https://doi.org/10.3842/SIGMA.2017.079
  • Rahul Roy, H. Tanemura
    Percolation Clusters as Generators for Orientation Ordering
    J. Stat. Phys. 168(6), Sep. 2017, 1259--1275.
    https://doi.org/10.1007/s10955-017-1856-1
  • J.Y. Wakano, T. Funaki, S. Yokoyama
    Derivation of replicator-mutator equations from a model in population genetics
    Japan J. Ind. Appl. Math., 34(2), Aug. 2017, 473--488.
    https://doi.org/10.1007/s13160-017-0249-9
  • T. Funaki, M. Hoshino
    A coupled KPZ equation, its two types of approximations and existence of global solutions
    J. Funct. Anal., 273(3), Aug. 2017, 1165--1204.
    https://doi.org/10.1016/j.jfa.2017.05.002
  • H. Osada
    Stochastic analysis for infinite many particle systems
    Sûgaku 69 (2017), no. 3, 225--254, Iwanami.
  • T. Imamura, T. Sasamoto
    Free energy distribution of the stationary O'Connell-Yor directed random polymer model
    J. Phys. A, 50(28), June 2017, 285203, 35 pp.
    https://doi.org/10.1088/1751-8121/aa6e17
  • Naoto Miyoshi, T. Shirai
    Tail asymptotics of signal-to-interference ratio distribution in spatial cellular network models
    Probability and Mathematical Statistics Vol. 37, Fasc. 2 (2017), pp. 431–453. https://doi.org/10.19195/0208-4147.37.2.12
  • Yasuaki Hiraoka, Tomoyuki Shirai
    Minimum spanning acycle and lifetime of persistent homology in the Linial–Meshulam process
    Random Structures and Algorithms 51 (2017), 315--340. https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.20718
  • T. Imamura, K. Mallick, T. Sasamoto
    Large deviations of a tracer in the symmetric exclusion process
    Phys. Rev. Lett. 118, 160601 (Apr. 2017) https://doi.org/10.1103/PhysRevLett.118.160601
ページトップへ

FY 2016

  • M.T. Barlow, D.A. Croydon, T. Kumagai
    Subsequential scaling limits of simple random walk on the two-dimensional uniform spanning tree, Ann. Probab. 45, (Jan. 2017), no. 1, 4--55.
    https://doi.org/10.1214/15-AOP1030
  • Alexander I. Bufetov, T. Shirai
    Quasi-symmetries and rigidity for determinantal point processes associated with de Branges spaces
    Proceedings of the Japan Academy, Ser. A Math. Sci. 93 (Jan. 2017), no.1, 1--5.
    https://doi.org/10.3792/pjaa.93.1
  • Naoto Miyoshi, T. Shirai
    Spatial modeling and analysis of cellular networks using the Ginibre point process: A tutorial
    IEICE Transactions on Communications volume E99-B, issue 11, pp. 2247-2255, Nov. 2016. https://doi.org/10.1587/transcom.2016NEI0001
  • M. Katori
    Elliptic Bessel processes and elliptic Dyson models realized as temporally inhomogeneous processes, J. Math. Phys. 57 (10) (Oct. 2016) 103302/1--32.
    https://doi.org/10.1063/1.4964253
  • Yosuke Kawamoto
    Density preservation of unlabeled diffusion in systems with infinitely many particles
    RIMS Kôkyûroku Bessatsu B59 (2016), 337--350.
    http://www.kurims.kyoto-u.ac.jp/~kenkyubu/bessatsu-j.html
  • Syota Esaki
    Dirichlet form approach to interacting particle systems with long range interactions on Z^d
    RIMS Kôkyûroku Bessatsu B59 (2016), 321--335.
  • Yasuaki Hiraoka, Tomoyuki Shirai
    Tutte polynomials and random-cluster models in Bernoulli cell complexes
    RIMS Kôkyûroku Bessatsu B59 (2016),289--304.
  • Hirofumi Osada
    Self-diffusion constants of non-colliding interacting Brownian motions in one spatial dimension
    RIMS Kôkyûroku Bessatsu B59 (2016), 253--272.
  • Hirofumi Osada, Hideki Tanemura
    Stochastic differential equations related to random matrix theory
    RIMS Kokyuroku Bessatsu B59 (2016) 203--214.
  • Sergio Andraus, M. Katori
    Characterizations of the hydrodynamic limit of the Dyson model
    RIMS Kôkyûroku Bessatsu B59 (2016), 157--174.
  • T. Kumagai, C. Nakamura
    Laws of the iterated logarithm for random walks on Random Conductance Models
    RIMS Kôkyûroku Bessatsu B59 (2016), 141--156.
  • Lu Xu
    Central limit theorem for finite and infinite dimensional diffusions in ergodic environments
    RIMS Kôkyûroku Bessatsu B59 (2016), 57--68.
  • R. Huang, T. Kumagai
    Stability and instability of Gaussian heat kernel estimates for random walks among time-dependent conductances
    Electron. Commun. Probab. Feb. 2016, Vol. 21, paper no. 5, 1-11.
    https://doi.org/10.1214/15-ECP4347
  • H. Osada, T. Shirai
    Absolute continuity and singularity of Palm measures of the Ginibre point process
    Probab. Theory Related Fields 165 (2016), no. 3-4, 725–770.
    https://doi.org/10.1007/s00440-015-0644-6
  • Takashi Imamura, Tomohiro Sasamoto
    Determinantal Structures in the O’Connell-Yor Directed Random Polymer Model
    J. Stat. Phys. 163 (2016), no. 4, 675–713.
    https://doi.org/10.1007/s10955-016-1492-1
ページトップへ
Copyright © Osada Laboratory All Rights Reserved.