日時 | 4月25日(金) 16:00--18:15 |
---|---|
会場 | 西新プラザ 2階 中会議室 |
講師/講演時間 | Miguel Escobedo 氏(バスク大学)/ 16:00--17:00 |
---|---|
題目 | Power laws and Boltzmann equation with soft potential |
概要 | Some recent results will be presented on the Boltzmann equation with soft potentials and the role played by powerlaws, via Landau currents. To this end I will briefly explain some of the ideas and arguments of the wave turbulence theory started in the 70's, that serve as strong inspiration of our work. |
講師/講演時間 | Ludovico Marini 氏(福岡大学)/ 17:15--18:15 |
---|---|
題目 | Boundedness results for the Riesz transform on Riemannian manifolds |
概要 | In this talk, we investigate L^p boundedness properties of the first and second order Riesz transform on Riemannian manifolds. On complete, non-compact manifolds we show their dependence on curvature bounds and large-scale geometry by providing both positive results and counterexamples. This is a joint work with S. Meda, S. Pigola and G. Veronelli (UNIMIB). |
日時 | 5月9日(金) 16:00--18:15 |
---|---|
会場 | 西新プラザ 2階 中会議室 |
講師/講演時間 | 北川 潤 氏(ミシガン州立大学)/ 16:00--17:00 |
---|---|
題目 | 凸領域の境界上での最適輸送とモンジュ解の存在について |
概要 | 本講演ではコスト関数をユークリッド距離の2乗を凸領域の境界へ限定したものとした最適輸送問題を考える.Gangbo-McCannにより球面上であっても写像の形の解(モンジュ解)が存在しない場合があることが知られている.主結果では一定の条件のもとで境界が$C^1$の場合モンジュ解が存在することを示す.本講演はSeonghyeon Jeong氏(National Sun-Yat Sen University)との共同研究に基づく. |
講師/講演時間 | 相木 雅次 氏(東京理科大学)/ 17:15--18:15 |
---|---|
題目 | On the Long-time behavior of an Arc-shaped Vortex Filament |
概要 | In this talk, we introduce a recent result which investigates the stability of an arc-shaped vortex filament. An arc-shaped filament is an exact solution of an initial-boundary value problem for the Localized Induction Equation, which models the motion of a vortex filament immersed in an incompressible and inviscid fluid. An arc-shaped filament travels along an axis at a constant speed. We show that, in general, perturbations along this axis can grow linearly with respect to time. We also apply these results to investigate the stability of a circular vortex filament, which is an approximation of a vortex ring. |
日時 | 5月30日(金) 16:00--18:15 |
---|---|
会場 | 西新プラザ 2階 中会議室 |
講師/講演時間 | 北野 修平 氏(東京大学)/ 16:00--17:00 |
---|---|
題目 | 完全非線形方程式におけるCalderón―Zygmund 型評価について |
概要 | Calderón―Zygumund 評価は楕円型方程式の解の二階微分導関数に対する$L^p$評価である. 完全非線形方程式に対してはCaffarelliによって指数$p$が十分大きい場合に証明されたが, より一般的な仮定においてはよく分かっていない. 本講演では$L^1$空間における評価を考察する. |
講師/講演時間 | 石井 裕太 氏(福岡大学)/ 17:15--18:15 |
---|---|
題目 | $Y$字グラフにおける移流項を持つGierer-Meinhardtモデルのピーク解について |
概要 | Gierer-Meinhardtモデルは活性因子と抑制因子に関する反応拡散系であり、適当な条件の下で物質の凝集現象を表す定常解(ピーク解)を持つことが知られている。特に、1次元区間であれば、ピークの位置を明示的に記述することができる。ここで、ピーク解の構成を$Y$字グラフと呼ばれる3つの線分を1か所で繋ぎ合わせた領域上で考える。一見、領域の形状の複雑さが解析を困難にさせると感じるが、局所的には線分であるため、1次元区間の解析手法を利用することができ、ピークの位置も明示的に記述することができる。本講演では通常のGierer-Meinhardtモデルに加えて、移流項を持つモデルも扱い、$Y$字グラフにおけるピーク解について、解の形状やピークの位置について考察する。 |