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The notion of analytic torsion was first introduced by Ray and Singer {3]. Since
then, there are two major breakthroughs in this field. The first one, given inde-
pendently by Cheeger and Miiller, relates the Reidemeister torsion and the analytic
torsion. The second one, given by Quillen, defines the so-called Quillen metric,
which leads to the study of its curvature, in particular, the arithmetic Riemann-
Roch formula of Gillet and Soulé.

While a lot of progresses have been made in the qualitative study of analytic
torsion, comparably few results in the quantative study are known. In fact, the
latter is also very important, for example, in order to find the right arithmetic
Todd genus [1], we need to use the analytic torsions of the structure sheaves of
projective spaces with the Fubini-Study metric.

The value of the analytic torsion, by definition, depends on the eigenvalues and
their multiplicities of the associated Laplacians. In practice, there are two ways to
compute it. One is done by a certain general formalism. For example, the (logarith-
mic) analytic torsion for an even dimensional compact Riemannian manifold is zero
by duality, and in [5], the analytic torsions of all line bundles over projective spaces
with respect to the Fubini-Study metric are given by the arithmetic Riemann—-Roch
formula. The other is done by using the precise eigenvalues and their multiplicities,
which are, in general, hard to find. In this paper, we will adopt the second method.

The main result of this paper is to give the analytic torsions of unit spheres in
Euclidean spaces with the standard Riemannian metric.

Theorem. For M = S$*™7) with the standard metric, the analytic torsion for
M is
27™
(m—1)t"
Such a result is somehow quite surprising as the expression is extremely simple and
the only term involving the zeta function is ¢’(0): T can be naturally written as

T =

1

—2m(’ (0
om—1(m — 1)1° ‘o,
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and a similar result for projective spaces P& in complex geometry does involve (%)
and ¢'(7) withiodd and i = 1,...,n.

As it is known, analytic torsions for (complex) projective spaces are used in an
essential way to find out the exact form of the arithmetic Riemann—Roch theorem
in complex geometry [1]. Therefore we hope that our result could play a similar
role in Riemannian geometry.

The paper is organized as follows. In the first section, we introduce the analytic
torsion of Ray and Singer for a Riemannian manifold. For the sphere S™ we state a
theorem of Tkeda and Taniguchi, which gives the eigenvalues and their multiplicities
of the associated Laplacians in terms of representation theory. In Sec. 2, we compute
explicitly the multiplicities using the Weyl dimension formula. In Sec. 3, we state
two technical results. One is for the derivative of the generalized zeta function, and
the other is purely combinatorial. Both will play crucial roles in proving the main
result. Finally, Sec. 4 is devoted to giving the proof of the above theorem.

1. Preliminary

For a compact Riemannian manifold (M, g) of dimension =, let D = 3 DI(M)
be the space of C*°-differential forms. We have the usual exterior differential d :
DI(M) — DIt (M). The metric g defines a dual operator d* of d. Let A = dd*+d*d
be the associated Laplacian. For 0 < ¢ < n, let A, ; be the eigenvalues of A on
D?(M). Then associated with them we have the zeta function {,(s) of A defined
by

Cols) = Z(/\q,j)_s ‘

This is a well-defined function for Re(s) > 7. And we extend it to the whole
complex plane meromorphically. The resulting function is holomorphic at s = 0.
Following Ray and Singer, the analytic torsion of M is defined by

n

T(M,9) = expl5 3" (~1)6;(0)]. (11)

gq=0

It is known that if M is an oriented even dimensional compact manifold without
boundary, the (logarithmic) analytic torsion is identically zero [3]. We are interested
in computing the analytic torsions of unit spheres S™ with the standard Riemannian
metric. From the above remark, we need only consider the case that n is odd.

For doing so, we need the following work of [2]. For the sphere 8™, §™ = G/K
where G = SO(n + 1) and

K= {<ég) € Moii(R); A€ SO(n)} .

It is well known that the Laplacian in this case is exactly (up to a possible scalar)
the Casimir operator of the Lie algebra of G. In general the space D? contains a
dense subspace which is decomposed into a sum of irreducible representations of G,
all of them are of highest weight. In [2], the explicit irreducible representations of
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the group G occurring in DP are given. The result there is (the notations in the
statement will be explained in the next section)

Theorem 1.1. [2] (a) Suppose p < 2. The highest weight A of the irreducible
representation p intervening in D, with multiplicity at least one, are as follows:
(i) In case n = 2m,

k‘Al +Ap,kA1 +Ap+1, (03p§m—2)
A=< kA + A1, kA + A, (p=m~1)
kAL + A (p:m)

where k runs over all non-negative integers.
(ii) In case n =2m — 1

KA1+ Ay, kAp + Ay, (0<p<m-3)
A=<L kA + Ao, kA1 + Ay, (p= m — 2)
kA, +A;;,kA1 + Apm_1,kM +A;L, (p:m—l)

where k runs over all non-negative integers.

Further, the multiplicity of the above p is exactly one except for the case n = 2m
and p = m, in which case the multiplicity is two.

(b) The Laplacian has eigenvalue Cy on a SO(n + 1)- irreducible submodule of
differential forms on S™ with the highest weight A.

We will give the precise values of Cy, as well as their multiplicities in the fol-
lowing section.

2. Representation Aspect

For a compact semi-simple Lie group G, let go be the complexified Lie algebra
of G. Fix a maximal torus, say, the dimension is [. Denote by II the corresponding
root system, and we choose a positive root system II.. For an invariant bilinear
form (:]-) on ge (which is a scalar of the Killing form), we have the Casimir operator:

§ : *
7

where {u;} is any basis of g¢ over C and {u;} is the dual basis with respect to
(|)- Let A1,..., A be the fundamental dominant weights. Given an irreducible
representation V(A) of G with highest weight A, the Casimir operator C' acts as a
scalar C = Cy = (A + 2p|A), where p is as usual the half of the sum of the positive
roots. The dimension of V(A) is given by the Weyl dimension formula:

(A + pla)

dimV(A) = [] )

aclly

For G = SO(n), we choose the invariant form (-|-) so that the scalars Ca for
the A’s occurring in Theorem 1.1 is the same as the eigenvalues of the Laplacian on
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the sphere listed in [2], which we will give below as well. (For n = 2, although the
group G is not semi-simple, the final result in this section is still valid.)

Due to the nature of the two different types of orthogonal groups, we consider
the case for n even and odd respectively.

For G = SO(2m), let h be an Euclidean space of dimension m with orthogonal
basis e;, then II can be chosen so that Il = {+e; + e;|¢ # j}. Choose the positive
roots so that Iy = {e; —e;,e; +¢e;|i < j} and let {e1 —ez,e2 —€3,...,€m_1 —
€m,€m—1 + em} be the simple roots. Then the fundamental dominant weights
are given by \; = e; +ex+...+e forl1 < i <m-—2and Ay = %(el+
ezt ...+ em-1+em), Am = 5(e1 + €+ ...+ €n_1 —€y). It is known that the
infinitesimal representations with highest weights Ay, ..., Am—2, Am—1, A,in generate
all the irreducible finite dimensional representation of G, where A; = A; for ¢ <
m—2, A1 = Am—1 + Am, AF, =21 and A, = 2),,. We have

p=(m—-1)e; +{(m—2)es+...+emn_1.

For the highest weight A occurring in the representation of G on the sphere S™,
n = 2m — 1, we give the scalars Cy and dimV(A) below.
Case 1. A=kA,,Cp =k(k+n—-1),n=2m —1 and

k+m—1(2m+k—3)

dimV(A) = 1 k

Case 2. A=kA1 +A,,2<p<m—-2,Cr=(k+p)(k+n+1-p)and

dimV(A) = 2

(k+m)(@m+k—1) ( Im +k—2

(k+p) (2m+k—p) p—1 2m—p—l).

Case 3. A =kA; + AL, Cp = (k+m)?

dimV(A) = (m+:—1)<2m+k—1>.

m-—1

Case 4. A=kA1+ Ay, Cr=(k+m)? -1

T ]

Similarly, for G = SO(2m+1), let h be an Euclidean space of dimension m with
the orthogonal basis e;, then II can be chosen so that II = {*e; +e;|7 # j}U{xe;}.
Choose the positive roots so that TI,. = {e; — ej,e; + ;|7 < j} U {e;} and let
{e1 —e2,e0 —€3,...,€m_1 — €m,em} be the simple roots. Then the fundamental
dominant weights are given by \; =e; +es +...+e; for 1 <i<m —1and A, =
%(el +ey+...+€mn_1+ey). It is known that the infinitesimal representations with
highest weights A;,...,Am—_2,Am_1,An generate all the irreducible dimensional
representation of G, where A; = A; fori <m —1, A,, = 2X,,. We have

(2m —1) (2m - 3)
g At

1
2++§€m
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For the highest weight A occurring in the representation of G on the sphere 5™,
n = 2m, we give the scalars Cx and dimV(A) below.
Case 1. A=kA;,Cp =k(k+n—1) and

dimV(A) = 2k+2m—1(2m+k—2>'

2m —1 k
Case 2. A=kA 1 +Ap,2<p<m—-1,Cp=(k+p)(k+n+1-p)and

(2k +2m + 1) <2m+k><m+k—1>.

. A) =
dimV'(A) Cm+k-p+1)\ k+p k

Case 3. A=kA1 + Ap, Cp =(k+m)(k+m+1)

m+k—1> (2m+k+1)2m+2k+1

dlmV(A):( k m omtk+1

3. Two Technical Results
We define the generalized ¢ function by

Carye( Z m (3.1)

where « and ¢ are complex numbers. The series (3.1) is convergent for Re(s) >> 0,
and we extend it to a meromorphic function which is holomorphic at s = 0. We are
interested in computing the derivative of {, . at zero.

Lemma 3.1. Assume o and c are positive integers, then we have

5]
C.o(0) = 22 <2l>a2l "(21 — 2¢) +Z(k°(k~a) Ylog k

k=1

where (' denotes the derivative of the usual Riemann zeta function.

Proof. We have

, 1
Coe(8) = st - k+ — logk — Z———-—ks Tk oy o8k +a)
= logk o >, 1
- _ “y—stc _ 1
Zk?s 2c k) g (1 k+a)s c(k+ )23 2¢ Og(k+a)
- log k > logk e
st ck+a)s c k2s 2c(l+k)

=1 k=a+1
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i log(k + a) (1- a J-s+e
* (k+a)?- =5 k+ao

Iogk > logk
= - (L4 )7
s—c¢ 2s—2c¢
k (k+ a) M k
— logk ete
- k23—2c (1 - E)
k=a+1
logk = logk & (—s+c) PN
= _Z s—c s—c s—2cZ [1+(_1) ](—)
k (k + «) Mt k2 — { k
log k 2. logk s+c¢ .
= -2 o
Z ke~ c(k ta)e k=a+1 e—ze l§n ( )( :

[

log k logk (—s+c\, o,
= 2 -2 _
Z ks—¢ k + Ot)s c + k:lzl:e‘,en k2s—2¢: ( l )(k)

o0

logk [(—s+c\,a,
-2 Z k23—2c< ! >(E)

k=1,l even

logk = logk —s+c\,, a,
= 2 — E =
Z ks c k+a)s c + k2s—2c < l ))(k)

k=1 ! even

+y ( 5+c) [0!¢(2s — 2c +1)]

! even

=h+L+13

Let s — 0, then

-2y (;) al¢'(=2c+ 1)) = 2

! even

o

(5]
(21) o?¢' (20 - 2¢),

1=

and the limit of I; + I5 is

—Z k°(k + a) )logk+22k2clogk 3 () %

! even

= Za: k*(k + a)°) +Zkzclogk[(1+ 2= )]
k=1 k=1

; (k°(k — a)®)logk .

=1

=

Next, we give a combinatorial identity which will be used later.
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Theorem 3.2. As polynomials of x, we have the following:

=y 2m -2\, 3
(-1)P [ (x+2m—p—1i)(z +i—Dp)
,,}::1 (p_l ) i:g;ép

+ ﬁ (—x+2m—p—z’)(—x+i—p)]
i=1,i#p

m—1
+ (-1)™ (27:?__12) H (z+i)(z-i)+m[(2m —2)] =0.

=1

Proof. The originaI one is equivalent to the following:

p=1 =1 l?fp
+ H ((=k+m —p)? — (m —1)?)]
1=1,i#p

m—1
+ (-1)™ (27;" - 2) H (k? — (m ~i)?) + m[(2m — 2)!] = 0.

=1

After changing m — p to p and m — ¢ to i, we need to show that

= m—p 2m - 2 m-1 9 i m—1 .
p=1 =1 <m -p- 1) [i=0,i;£p((k +p)° ~i%) + i=g¢p((_k +9)? - 2)]

+ (- l)m(2m 2> H (k% — ) + m[(2m — 2)1] =

(n2s) = ()

and changing p to —gq for the last term, we need to show that for all m,

Note that

—(m+ D[2m)] + (-1)™ <21:) ]:[(k2 —1?)

i=1

+ i (—1)m+q<nqu) '—H ((k+q)*—4%) =0.

g=-1
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That is,

m m

m+vlemy) = Y ()] (- ) o,
p=—m i=0,i#|p)

After changing & +m to k and m + p to p, we only need to show that

meniem) =3 (7)) ] (Gerr-).
p=0 1=0,i#|m—p|
That is,
1 (2m\ (k+p+m) 1 1
(m + 1)[2m)1] = 5;(_1) ( p)(k+p—-m—1)!(k+m + k+2p——m)’

or equivalently,

2m
. o (ktptm) 1 !
2(m+1)*§)(—1) P!(Qm—:ll)!(k+p—m——1)!(k+m + k+2p—m).

After changing k + m to k, the left-hand side is just

L (k + p)! 1 1
;(—1) p'(2m - p)l(k+p—2m — 1)!(% + k+2p—2m)

ISy (k +p)!

B ko p!(2m — p)l(k+p— 2m — 1)!

2y (k +p)!
+ pzz;)(_l) pl(2m — p)l(k + p — 2m — 1)k + 2p — 2m)
I P (k + p)!(2m)!
- EPZO(_I) p!(2m — p)i(k + p — 2m — 1)!(2m)!

\- » (k + p)(k + 2p — 2m — 1)!
" :é;,(_l) p'(2m — p)l(k + p — 2m — 1)k + 2p — 2m)!

=)L) £ ()

p=0
2m 2m
2m +1 2m\ [ k+p 2m k+p> 2m +1
= —1)? _1)? LT
k pzz:o( )(p><2m+1)+pz:%( )(p><2m+1 k+4+2p—2m

Hence, it suffices to show the following:

Lemma 3.3. With the notation as above, we have

Sy (T)(5%7) = ome (3.2)

p=0
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Z( 1),,< )(:ziﬁ) k:r;:—lm = 1+(2_1)m : (3.3)

The Proof of the Lemma. We prove (3.2) and (3.3) by induction. Obviously,
the identities are true for m = 0 and 1. On the other hand,

S () ()
Sw([m ) (E1n) S () (40)

=0

S () () S () ()
(s - (6]

p=0

()6

So by induction, we have the first identity.

Also, we have,
'{21( 1y m+1 k+p> m+ 2
= m+2/k-m—1+2p
_"’f( p (") () 2
m+2/k—m-—1+2p
k+p m+2
_1)?
+2% )( )(m+2>k m—1+2p
- P m+2 Jk—-m+1+2p
oM\ [(k+p m+2
+Z( 2 (p)(m+2 k—-m—-1+2p m-—1+4+2p

p=0

_ k+p k+p-— m—1+ k+p+1
a m+1/|lk-m—-14+2p k-m+1+2p
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_i(_l)p(m>(k+p D + m—p
o p/\m+1) |k—-m~-142p k—m+1+2p

i o k+D m!p
- (-1) (m+1) [pg(m_p)g(k_m—1+2p)

p=0

m!(m — p)
+ p(m—-—p)(k-—m+1+ 2p)]

m

k+p m—1 1
= - —~1)? _—
m’;( )(m+1) [(p—l)k:——m—-1+2p
m—1 1
+ e —
( P )k—m+1+2p]
m—1
_ e m~—1 k+p+1 1
mZ( 1)< D )[( m+1 Jk—-—m+1+2p
_(k*tpy__ 1
m+1/k—m+1+2p
m—1
m-—1 1 k+p+1 k+p
— —1)? N —_
mpz:;( )( p )k—m+1+2p[( m+1) (m-f—l)}

_m—1(_1)p m—1\(k+p m
- — P m Jk—-m+1+2p

p

Hence by the induction assumption, we have our result.

Second proof. We may write Eq. (3.3) as

g(_nz’ Cfliﬁ) (2) k— 771 Y2p 122.”5;11:» : (3.4)

For each fixed k, consider
i k+p\ [/m\ zkt?—m
= —1)? —_—
am(@) pgo( 2 (m+1)<p)k—m+2p

This turns out to be a polynomial in . Then the left-hand sides of Eq. (3.2) and
(3.4) are just a},,(1) and a,,(1). Notice that k+2p—m = k+ p — (m — p), we have
that a!,(z) is the coefficient of 4™ in the product G,,(z,u)H,.(x,u) where

Gm(x,’u,) _ Z <k +p)zk+p—1up

p=0

Hy(z,u) = Z <TZ> xPuP .
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Using 3.2 (2)uP = ymer, We get

m k—1
Gn(z,u) = z’lu_k—M—- —z gk E P (uz)?
ma (1 — uz)m+2 e Am+1

u—-=r

H(z,u) =(

)m
so that

(u — g)my—ktm+1 k-1

G ) i) = = oy — 27w D (5 ) wer =2y,

The second term does not contribute anything to ©™, hence

(w—z)™

e (3.5)

al (z) = coeff. of u*~1 in
Setting « = 1 in (3.5), we have

a,, (1) = coeff. of u*~1i (=1)

m (—i——’u,)2 = (“l)mk

which is (3.2). Also, integrating both sides over [—1,1] in (3.5), we obtain

1 m
B T el - (v —x)
am(1) — am(—1) = coeff. of u*~1 in /—1 @ —ar)™? dx .

Equivalently,
oo 1 1
e 1™ — k-1
71;)(%1(1) am(—1))t™ = coeff. of u*~! in /_1 (RS ey ey, dz
1
= coeff. of u*~! in log e

t(1—u2) °1-—t’

Observe that a,,(1) = am(—1) unless k + m is odd, and
1 14+t o= ons= 14 (=)™
(=) 81y =D ) et

It follows that for k£ even

> 2an,(1)t" =0,

m odd

and for k odd 9
S 20,17 = 2

m+1

meven

Therefore (3.2) and (3.4) hold for infinitely many choices of k. Since it is polynomial
in k, they must be identically true.
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4. Analytic Torsion of Spheres

Recall the analytic torsion of a Riemannian manifold (M, g) is defined by
1 n
T(M,g) = exp[5; 3 _(~1)"a¢;(0)]. (41)
q=0

From Sec. 1, to compute the analytic torsion of the unit sphere 5™, we need only
consider the case n = 2m — 1 (for n even it is zero, or, we can see the cancellation
directly from the lists in Sec. 1 and Sec. 2).

By definition, using Theorem 1.1, we can evaluate the analytic torsion 7" by the
relation 2log T = 2'(0) where for Re(s) > 0,

dlmV kAL + A, ma dimV (kA + A,
Z(s) = ZZ _cs 148 4 p-pymh C(s ! )
k>0 i=1 kA1+A; kAi+Am 1
dimV (kA; + A, dimV (kA; + A,
+ (yn ETER A A) |y GV R+ ),
kA1+AL kA1+AT

which can be extended to a meromorphic function on the whole complex plane,
holomorphic at s = 0. Using the duality and the formulae we gave in Sec. 2 (notice
that the dimensions corresponding to the spin representations are the same), we
find that

m

II (k+i)(k+2m—4)

i=1,i#p
)=4
Z(p—l 2m p—-l'z (k+p)s(k +2m — p)°

(k+1i)(k+2m —1)
2(-1)™ < i=£[¢p l n

T moe P kT m)=
Set
o0 ﬁ (k +1)(k + 2m — 1)
Zy(s) = ;} i_z,:;rp)s(k o =
o ﬁ (k—p+3)(k+2m—p—1i)
B ,;, e ks(k + 2m — 2p) (4.2)
so that
i (-y~

Z(s):4p§ = Diam =12 2o e 2 (4.3)
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Consider the function Z,(s) first. Using

H(z +a;) = Zem_i(al, )T
j=1 1=0

where ey, ...,e,, are the elementary symmetric polynomials in a,...,a,, we see
that N X

2=y Y miilh ).

P (k+2m — 2p)s—J
where
df =: (i~ p)(2m — p — 1)
fori=1,2,...,m,i # p. Use the notation in Sec. 3, we have
m—1 p—1 1
Zp(s) = 2 em—j—1(df, ..., d},) (sz—zp,j(S) - kz_:l e — 2p)s_j> :

(4.4)

Lemma 4.1. Let S = {-d?|i=1,2,...,m,i # p}. Then S = S; US> where
Si={k(k-2m+2p)1 <k<2m-2p-1}
and

Sy ={k(k+2m—2p)|1 <k <p—1}.

Proof. The index i and the number k are related by k = p— ¢ if i < p and
k =2m — p — i if p > i, which enumerate the elements in the two sets S; and S,
respectively.

Using the S, part of Lemma 4.1, we see that the second term in (4.4) actually
vanishes. Hence

m—1
Zy()= > em—ja(d, ..., d%) Com—2p,s($) . (4.5)
=0

We have by using the technical result Lemma 3.1

m—1 .
50 = Y ensm@on ) {2 T (5 2m - 2021 - 23
=0

Y <[4

2m—2p
+ Z [k(k — 2m + 2p))’ log k} .

k=1
Consider the logarithmic term first. When p = m, there is no logarithmic term
at all. For p < m, by the S; part of Lemma, 4.1.

m—1
S emejo1(@®)[k(k - 2m + 2p)} = 0
7=0
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for all k except k = 2m — 2p, where d? = (df,...,dE). So the only nonzero
logarithmic term is

Zem_j_l(d”)[(2m—2p)(2m—2p—2m+2p)]j log(2m—2p) = em—1(d?) log(2m—2p) .
J=0

Since
P _ —1(p—=1!(2m - p—-1)!
emr(@) = [[ df = [[G—p)@m ~p i) = (-1 . :
i£p 1#p

the logarithmic term in Z’(0) is

m—1 m—1

-2 Z log(2m — 2p) = -2 Z log(2p) . (4.6)
p=1 p=1

Next we need to compute the zeta part of Z’(0). We need to evaluate

m—1

= (=1)7 » 2L _
7 42 (p-Dl2m —p-1) & Eem—f 1(d )22(2,) 2m — 2p)*('(21 — 2j)
-H™ & m
+2( e Z em—j—1(d™)2¢"(~27) .
Multiplying @—mfz)—! to both sides, we have
—2)! m_1
(2m4 2)-0 =2 Z(_l)p(zm 2) Z em—s—1(dP)
p=1

xZ(m)(zm 2p)*¢'(20 ~ 2s)

1
1

T 2)m em_sa(d™)C (~2))

j=0
m—1
=Y 0;¢'(~29)
j=0
where
s 2m — 2 s

J— P P — 9p)25—2j
o= Y 2(-1) (p 1)em_s_1(d)<2s_2j>(2m p)

p=1,s=0
mf2m—2 m
(1 e yalam).

To compute each o;, we consider the generating function

m—1
o(z) =: Z orz*
k=0
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o@ =3 3 3 21 (M T P e @)y, Ty ) om - 2

+ 3 1( 1m< )em k_1(d™)z2* .

Since
 9.\2i—2k, 2k
2 (2] —2k) (2m — 2p) z
j z 2k
— - 25 —
= 2(2m - 2p) ; (2]' - 2k) (2m - 2p)
j z 2521
— _ 27 —_
-2m-27 S () (753)
2m — 2p
— 972
=22 () (23 )
. 2m —2p. . 2m — 2p..;
— 22 J _ J
T [(1+ . Y+ (@1 . )]
= [&® + (2m - 2p)z)’ + [2? - (2m — 2p)z}’,
we deduce that
m—1m—1
2 2
=2 2. ( " )3m—j—1(d”)
p=1 ;=0
x [(z? + (2m — 2p)z)’ + (% — (2m — 2p)z))’
m—1
m 2m -2 m\ .2k
w3 () emeatama
As
m-—1
> emosa(@)fe? + (2m — 2p)ap = [[(* + (2m — 2p)a + &)
j=0 i£p
= H (z+2m—p—i)(z+i—p),
1=1,i#p
m—1

em—j—1(dP)[z® - (2m — 2p)z} = [[(=* — (2m - 2p)z + &F)
i#£p

= H (z—-2m+p+i)z—i+Dp),
i=1,1#p

=0
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and
m—1 m—1
> emp1(d™)z* = [[(a+d™) = [[ @+ i)z —i).
k iAm i=1

We conclude that

1 E+iz-9

=1

o) = - (2 2) it

+Z_(—1)p<2m_2> H (x+2m—-p—i)(z+1i—p)

p=1 p-1 1=1,i#p

+ H (x—2m+p+i)(z—i+p)
1=1,i#p

Therefore, by Theorem 3.2, o(z) is a constant:
o(z) = —m(2m — 2)!.
In particular, o; =0 for § > 0, 0 = —m(2m — 2)!, and

Ma = —m(2m — 2)1¢'(0).

It follows that

o = —4m('(0). (4.7)
From (4.6) and (4.7) we deduce the main result of this paper.

Theorem 4.2. For M = §2™~1 with the standard metric, the analytic torsion
for M is

1 _chl(o) _ 27rm

T= onim o) CE
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