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1 Torsion Murmurations for Elliptic Curves:
An Abelian Theory

Theory of elliptic curves has been at the center of mathematics for many decades.
Besides the Mordell-Weil theorem on finite generations of the basic group struc-
tures of rational points over number fields, there is a Millenmium Prize Problem
of the Birch-Swinnerton-Dyer conjecture on the relations between fundamental
arithmetic structures and L-functions of the curve. Of the fundamental impor-
tance, we have the beautiful Sato—Tate conjecture on the statistical structures
on Artin zeta zeros established by Taylor and his collaborators, and the famous
Shimura—Taniyama on modularity of elliptic curves over Q, confirmed by Wiles
in his celebrated proof on the Fermat’s Last Theorem.

Still it came as a surprise when He-Lee-Oliver—Pozdnyakov [2] in 2022 ex-
poses a newly discoveried intriguing murmuration phenomenon for families of
elliptic curves & defined over the field Q of rationals, using statistical tech-
niques and artificial intelligence. Their discovery offers an aesthetic intuitive
relation between the averages of the a-invariants apg [Py, of Artin zeta functions
Ce/w,, (s) for the p;-reductions E/F, of £/Q and the arithmetic ranks of £(Q).
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Since then, while mathematicians have been trying to unlock the reasons be-
hind the pattern, see e.g. the works [1], [3] and [13], murmuration itself has
been examined in great details, say via the work [6].

Our interests on murmurations are rooted in the (geometric) rank n zeta
functions (g/r,;n () of Weng ([7], [8]) for elliptic curves, which are known to be
given as follows [?]:

1—ag/m,m(qg )"+ (¢"2)"
Sorean(e) = e O T mn = @

(for n > 1),

among which, abelian zetas of Artin are the initial family of n = 1, since

Cryr,1(s) = Ceyr,(8).

Here, the so-called o and B-invariants agr,:n(0) and Bg/r,;n(0) in rank n for
E/F, are defined by

OBV

1
ap/m,n(d) = . FAu(Y) and B /r,m(d) :%:#Tt(l})’

where V runs over rank n semi-stable vector bundles on E/F, of degree d, and
the a-invariant in rank n for E/F, is defined by

n_ 1) BE/]Fq;n(O)

In the paper of Weng-Zagier [?], the Riemann hypothesis is established for Weng
zeta functions of elliptic curves E/F,, based on detailed analysis of the Atiyah
bundles over elliptic curves. Indeed, in [?], the so-called counting miracle

/BE/]Fq;n(O) = aE/Fq;n—l(O) (fOI‘ n > 2)7

and a 3-step recursion relation, for n > 3,

(¢" =1)Be/r,m(0) = (¢" — " - ag/F,;1)BE/F,m-1(0)— ("' - 9)Be/F,in—2(0)
are established. Consequently,

< ﬂE/Fq;n(O) < q”/2 + 1

1 ;
aE/]Fq;n(O) qn/2 -1

or better,

n/2

—2q <ag/F n < 2,

which clearly implies the Riemann Hypothesis in rank n for elliptic curve E/F,.

Based on these works of Weng-Zagier, we, in [4] and [5], are able to show
that, for £/Q or better for the family {E/F,,}, the murmuration structures on
the a-invariants ag /Fpi;n’s in rank n (n > 2) are exactly the same as that of
He-Lee-Oliver—Pozdnyakov for the Artin a-invariants ag /Byl = OE/F, ’s. In
fact, two different approaches are adopted in [4] and [5] — In our first paper [4],
a traditional approach based on the Riemann hypothesis for the rank n-zeta
Ce/F, (s) is used. Later on, after realizing that the Sat-Tate conjecture in rank



n exposes a genuine deeper level structure than RH, we develop a new approach
based on a much refined structure than the RH. For details, please refer to [5].

In this section, as a start point, for the Artin a-invariants ag /F,, ’s, we expose
a refined structure of He-Lee—Oliver—Pozdnyakov’s murmuration [2]. This offers
a new angle in understanding the structures of HLOP murmuration. As to be
expected, in the next section, we will deal with their geometric rank n structures,
i.e., on the refined murmurations in aE/Fpim’s for n > 2.

To be more precise, in addition to He-Lee-Oliver-Pozdnyakov’s murmura-
tion, we analyze how torsion structures affect. Recall that, for an elliptic curve
£/Q, the a-invariants ag /F,, associated to the Artin zeta function of E/F is
defined via:

1-— G,E/]th + qt2
(1 =1)(1 —qt)

In practice, as in [2], we use the HLOP’s mumuration function

Cer,(8) = Zgyr, () = (for t = q7%).

N 1
fT(Z) = #gr[Nl,NQ] Z QE/Fp, -

£€&,.[N1,Na]

Here N1 < N are strictly positive integers, p; are the i-th rational prime, and
E-[N1, No] denotes the set of elliptic curves over Q of arithmetic rank r and
with conductor belonging to [Ny, N3], modulo isogeny (to avoid unnecessary
repeating). It is a beautiful discovery in [2] that there is a natural murmuration
phenomenon emerged among the histograms of {(4, f.(7))}:>1, depending on r,
the arithmetic rank, or better the Mordell-Weil rank of £(Q).

Our refinement of adding torsion structures into the murmuration consid-
eration is motivated by the classification of Mazur on the torsion subgroups of
E(Q).! In other words, we are asking, within the same murmuration group of
fixed arithmetic rank r, whether there is naturally a subdivision into smaller
groups according to their associated torsion subgroups — It is very natural to ask
such a question since we know that (1) By Mazur’s classification, there are only
15 torsion types and (2) for each fixed torsion type, there are infinitely many
E/Q’s. It came as a very sweet surprise when torsion murmurations did emerge
in our first numerical tests. To illustrate this, we give the following histograms
on arithmetic rank 3 family of elliptic curves over Q:

1Mazur’s classification theorem claims that there are only 15 possibilities for the torsion
subgroups of £(Q), namely, the cyclic Z/NZ,N = 1,...10 or N = 12 or a product of the form
Z)27 x Z/2NZ,N = 1,2,3,4.
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Figure 1: Plot of f3(¢) for elliptic curves with conductor in [5000, 300000000].
f3(i) for trivial torsion are in blue and f3(i) for Z/2Z%? torsion are in red.

This plot clearly indicates a torsion murmuration pattern. But it is not very
satisfied. To improve it, we introduce a new method to plot: In stead of simply
plotting (4, f3(i))’s, we introduce new parameter d, the depth, measuring the

gaps of f,.(i) for p’s between f,.(p;) and f,(pi+q). In other words, we reformulate
our murmuration function as

f9n):= max {fr(z)} —  min {fr(z)}

n<i<n+d+1 n<i<n4d+1

This then yields the following clearer murmuration structures:
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Figure 2: Plot of f$%(i) for elliptic curves with conductor in [5000,300000000).
352)(1') for trivial torsion are in blue and f?EQ)(i) for Z,/27%? torsion are in red.



Value of £,

100

1000
nth prime

1250 1500 750

2000

Figure 3: Plot of fég) (¢) for elliptic curves with conductor in [5000, 300000000].
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Figure 4: Plot of fén) (¢) for elliptic curves with conductor in [5000, 300000000].
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(i) for trivial torsion are in blue and f:,EN)(i) for Z/27%? torsion are in red.
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Figure 5: Plot of f3 (500) (¢) for elliptic curves with conductor in [5000, 300000000].
(500)( ) for trivial torsion are in blue and f(soo)( ) for Z/27Z%?% torsion are in

red.

2 Torsion Murmurations for Elliptic Curves:
Non-Abelian Structures

2.1 Non-Abelian Zeta Function: Background

Recall that, associated to a(n integral regular projective) curve X/F, of genus
g (defined) over the finite field F, with ¢ elements is its Artin zeta function,
defined by

Cx/F, = Z N R(s) > 1,

D>0

where D runs over all effective divisors on X/F,. Here as usual, a formal sum
D =", npP with rational integral coefficients is called a divisor on X/F, if
np = 0 for all but finitely many algebraic points P of X. Moreover, such a D
is called effective, denoted by D > 0, if np € Z>q for all P. Set accordingly
N(D) :=[]p N(P)"", where, for each (algebraic) point P on X/F,, the norm
N(P) of P is defined by N(P) := ¢*P)Fal with k(P) the residue field of the
algebraic point P of X.

If we regroup the D’s according to their rational equivalence classes [D], we

arrive at D>0: 0
e () =3 e S (A
~ q (1)
) qh"(X,E) -1, _ de (L)
= > Ry @

LEPic(X/F,)

where Pic(X/F;) denotes the Picard group of X/F, and for each line bundle
L € Pic(X/F,), h°(X, L) denotes the dimension of the 0-th cohomology group
HO(X, L) of £ over X. Indeed, there is an one-to-one correspondence between



the set of effective divisors D in a rational equivalence class [D] and the set of
divisors (s) for a F,-line F, - s of a nontrivial global sections s of the line bundle
Ox (D).

As such, with the boundedness problem and the Riemann hypothesis in
mind, with some struggles, we are naturally lead to the following:

Definition 1 ([8]). Fiz an integer n € Z>1. Let X/Fy be an integral reqular
projective curve of genus g. Then the rank n zeta function of X/F, is defined
by
CX/Fq;n(S) ::(qis)n(gil) . CX/]Fq;n(S)
th(X,V) 1

=% a0 >

(2)

where V runs over all rank n semi-stable vector bundles over X/Fg, whose
degrees are multiples of n.

Tautologically, by standard zeta techniques and the vanishing theorem for
semi-stable vector bundles, the Riemann-Roch theorem and the Duality, we are
able to prove the following:

Theorem 2 (Zeta Facts [8]). Fized n € Z>1. The rank n non-abelian zeta
function (xr,in(s) of an integral regular projective curve X/F, satisfies the
following standard zeta properties:

1. (Naturality) We have

CX/IFq;l(S) = CX/]Fq (8)
That is to say, the rank one zeta function CX/Fq;l(s) coincides with the
classical Artin zeta function (x/r,(s) of X/F,.
2. (Rationality) There ewists a polynomial Pxr .,(T) € Q[T] of degree 2g,
such that
PX/]Fq;n(T)
(1-T)1-QT)
In the above, we have set T =T, :=1",Q = @Qp = ¢".

Cx/pyin(s) = Z(X/Fq;n)(T) =

3. (Functional Equation) (x/r,;n(s) satisfies the standard functional equation
ZX/]Fq;n(l —s) = ZX/]Fq;n(S)'
4. (Geometric Interpretations of Special Values)
P(0) =ap/p,m(0)  and  P(1) = Bg/F,a(0).

As to be expected, we have the following

Conjecture 3 (Riemann Hypothesis, [8]). The rank n non-abelian zeta function
Cx/F,in(8) of an integral regular projective curve X/F, satisfies the Riemann
hypothesis. That is to say,

Cx/eyn(s) = 0 = R(s) = 3.




2.2 Riemann Hypothesis in Rank n for Elliptic Curves
We begin this subsection with the following:

Theorem 4 (Weng—Zagier [9]). Let E/F, be an elliptic curve. Then, forn > 2,
Ce/r,m(8) satisfies the Riemann hypothesis.?

By the rationality of the rank n zeta functions for an elliptic curve E/Fg,
there exists a degree 2 polynomial Pg g, .,,(T) € Q[T] such that

PE/Fq;n(T)
CE/]Fq;n(S) = (1 _ T)(l _ QT)

Moreover, we define the so-called o and fS-invariants in rank n for a curve X/F,
by
hY(XV) _q 1
q
o n(d) = —_— and 8 n(d) = _—
E/Fq — #Aut(V) E/Fq zv: #Aut(V)

where V in the summations runs over all semi-stable vector bundles over X/F,
of rank n and degree d. In particular, Sg/r ;n(d), a classical rank n invariant
introduced by Harder-Narasimhan [?], counts semi-stable vector bundles natu-
rally, by introducing the weight m for each V, being compatible with the
language of algebraic stacks. We have the following fundamental relation.

Theorem 5 (Counting Miracle. Theorem 3 of [9]). For all n > 0,

ag/F,in+1(0) = Be/r,n(0).

As mentioned in the previous section, the approach of Weng-Zagier in [9]
to establish the associated rank n RH is through a detailed analysis of the
semi-stable vector bundles on E/F, which then can be narrowly down to the
so-called Atiyah bundles, based on some additional complicated combinatorial
discussions. As a direct consequence, we are able to show the following:

Theorem 6 (Equation 6 and Theorem 3 of [9]). With the same notation as
above, we have

PE/Fq;n(T) = aE/]P‘q;n(O) (1 - aE/Fq;nT + QnTz)a

where the a-invariant of E/F, in rank n is defined by

BE/]Fq;n(O)

aE/qu = (Qﬂ + 1) - (Qn - 1)/8E/IF ] 1(0) .
Here we have set Bg/r,0(0) = 1.

In particular, when n = 1, we have

/BE/FQ;I(O)
BE/HTq;O(())

2When n = 1, the Riemann hypothesis was established by Hasse.

agr; = (@+1)—(¢—1) =q+1-#E[F,) =agr,




which is nothing but the classical a-invariant of E/F,. Consequently, the rank n
zeta function of E/F, is completely determined by the S-invariants { 8g /r,:n (0)}-

Obviously, the Riemann hypothesis for the rank n zeta function of E/F,
is equivalent to the fact that the degree two polynomial 1 —ag/p ., T + Q,T?
admits only non-real complex zeros. That is to say, the associated discriminant
is strictly less than 0, or the same

AE [Fyin

2VQ,

With a sophisticated combinatorial discussion, what we finally arrive in [9] is
the following sophisticated upper and lower bounds:

<1 (3)

Theorem 7 (Theorem 6 of [9]). Forn > 2, we have
BE/F,m(0) - V@, + 1.
ﬂE/Fq;n—l(O) \/@n -1

This then leads to the following stronger inequalities

2> apm,n > —2v/Q, (5)

which are already noted in [9]. In other words, (4), or the same (5), is much
refined than (3).

1<

2.3 Sato-Tate and Murmurations in Geometric Rank n

In fact, much refined structures on the g-invariants are structurally exposed by
the following beautiful recursion in Weng-Zagier [9].

Theorem 8 (Theorem 13 of [9]). With the initial conditions Bgr,.0(0) = 1 and
ﬁE/Fq;_l(O) = 0, the B-invariants for elliptic curve E[F, satisfies the following
recursion formula: for n > 1,

(" = 1)Be/r,:n(0) = (¢" + ¢ - ag/F,)Be/Fm—1(0) — ("' - 9)BE/F,n—2(0).

Consequently, all the S-invariant invariants and hence the rank n zeta func-
tion (E/qu(s) are completely determined by ¢, n and ag/r,. Based on this, the
following asymptotic result is obtained in Shi-Weng [4]:

Theorem 9 (Theorem 6 of [4]). We have
AE/Fy;1 = QE/F,s ap/r2 =1+agwra—q (6)

and

ap/Fyin = (5—n)+(n—Dagmr,1—(n—1)g+ O(\}ﬁ) (n=>3) (7)

In particular, forn >3

ap/Fyn ~ (5—n)+(n—1agmr,1—(n—-1)g<0 (q — 00). (8)



Consequently, following the classical approach to formulate the Sato—Tate
law for the distributions of the zeta zeros of elliptic curves E/F,’s associated to
E/Q, we are led to the construction of the big A-distributions. However, even
it is very natural to use the Riemann hypothesis, or equivalently, the bounds

-1< a;\;%;" <1, to introduce O/, € [0, 7] via

AE/Fyin
08 Op/F m = 20

for an elliptic curve E/Q, one easily verifies that the corresponding 0k, .,'s
have an obvious limit point 7 when n > 3. This then yields the first level
of structural distributions in the Dirac symbol 4./, for the 6 /me’s' Unfor-

tunately, 0g/r, .;n» — 5 18 too tiny to be observed. Motivated by Theorem9, a

huge multiplicative factor 4/ pffl should be introduced so that the secondary

level distributions of 0 [F,,m Can be studied. However, with this enlargement,
a further blow-up of additive scale —(n — 1)p; is automatically mtroduced It
is for the purpose to eliminate this new complication, a term of 1 54/Di is added,
and hence to arrive finally at the normalized big A-distributions:

\/ﬁcoseE/Fp;g—i—%(\/ﬁ—ﬁ) n =2
AE/]Fp;n = (9)

n—1
rffl (%_GE/Fp;n) 2\[""2

In Theorem 4 of [5], we are able to establish the following:

7

Theorem 10 (First Version of Sato—Tate Law in Rank n). Fiz a natural number
n > 2. Let E/Q be a non-CM elliptic curve. For a, 8 € R satisfying 0 < o <
B <, we have

#{p < N :p prime, cosa > Agp, ., > cos 3} 2 /ﬁ i 06
N—oo #{p < N : p prime} o ’

Our proof of this theorem is based on Taylor and his collaborators’ works
on the classical Sato—Tate law on the abelian a-invariants ag/r,’s. For details,
please refer to [4]. Still to motivate our reader, we include the following his-
tograms:

10
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Figure 6: Sato-Tate distribution of 3-rank zeta function (g, 3(s) over elliptic
curve E : y? = 23 + 22 — 412 — 116 and ¢ < N = 10, 000, 000.

Motivated by this and the work of He-Lee—Oliver—Pozdnyakov, we in [4]
introduce the following rank n-murmuration functional: the following average
value:

1 AE/F,, 1 n=1

frn(i) = ————x Z Qg ota—1 neo
#E[N1, No] o |

e a1’ (“E/Fp,i,n"‘(”—l)pri-n—f)) n>3

(10)

where N7 < Ny € Z*, and &,[N1, N2| denotes the set of elliptic curve over Q of
rank r with the conductor in the interval [Ny, N3]. We should notice that for
every isogeny class, only one curve is considered in &[Ny, Na].

Then according to the asymptotic property and the result in [4], we have
the following proposition:

Theorem 11 (Theorem 4(1) of [4]). Fiz a natural number n > 2. We have
Jr2(i) = fra(t) and frn(@) ~ fra(i)(for n >3 & i — o0).

In particular for families of reqular (integral) elliptic curves £/Q’s, when plotting
the points (i, frn(i) (¢ > 1), in a sufficiently big range, the murmuration phe-
nomena appear in exacxtly the same way as the one associated to the (i, f(i))’s
(of teh same families).

For our reader’s convenience, we include the following histograms of [4] in-
dicating high rank murmurations for elliptic curves.

11



Plot of List f,, where r€ (0,1} and n=7
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Figure 7: Plot of f,7(i) where r € 0,1, for elliptic curves with conductor in
[5000, 300000000]. fo 7(%) is in blue and f1 7(%) is in red.

Plot of List f., where r€ {0,2} andn=6
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Figure 8: Plot of f, (i) where r € 0,2, for elliptic curves with conductor in
[5000, 300000000]. fo,6(¢) is in blue and fa,6(4) is in green.

2.4 Torsion Murmurations in Geometric Rank n

With the preparations above on rank n murmurations, we next introduce our
torsion oriented murmuration in geometric rank n for elliptic curves over Q.

Accordingly, introduce the d-th generation murmuration function fr(CQ(z) in ge-
ometric rank n and arithmetic rank » for elliptic curves £/Q by

F93) = max {fm(k)}— min {frm(k)}.

i<k<i+d+1 i<k<itd+1

12



Similarly, instead of [4], motivated by [5], based on a stronger estimate
ap/F 1
/5= (6= 1) + (0= Dag, — (0= 1)g =3 10 1),

we introduce, for n > 3, a new murmuration functional f23"(i) by setting

1
newi —
() #E[N1, No]
—Pi
X Z ?<aE/Fm;n+(n—1)pi—(n—1)aE/Fpi +(n—5)).
E€E. [Ny, N3]

(11)

and accordingly, a new depth d torsion murmuration functional f,g 7Y (i) by

JLme (i) = {rm=i} = _min @0 (k)}.

z<k<z+d+1 i<k<i+d+1
Then with the same method as in [5], we have the following

Theorem 12 (Rank n Murmurations). We have
FERev (i) ~ fi (@) (for i — o0).

In particular, for families of a regular (integral) elliptic curves E/Q’s, when
plotting the points (i, r(i)’new(z)) (1 > 1,n > 3) in the sufficiently large range,
the murmumtwn phenomenon appears in exactly the same way as that for the

(3, fr ( ))’s on different torsion groups of elliptic curves £/Q.

Our numerical calculations give the following beautiful histograms on torsion
murmuration structures in geometric rank n and arithmetic rank r:

Plot of List fin,tor Where r=3, n=7 and tor € {(11,2,2]}

Figure 9: Plot of f5,7(i) for elliptic curves with conductor in [5000, 300000000].
f3.7(4) for trivial torsion are in blue and f3.7(i) for Z/2Z%? torsion are in red.
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Figure 10: Plot of fé?mew(i) for elliptic curves with conductor in

[5000, 300000000]. 3527) () for trivial torsion are in blue and f§27) () for
7)27%% torsion are in red.

Pt of List £9,  where r=3, n= 7, tor & {[11,12,2]} and =9
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Figure 11: Plot of f§97) (¢) for elliptic curves with conductor in [5000, 300000000].

3597) (7) for trivial torsion are in blue and fé?; (i) for Z/27Z%? torsion are in red.
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Plot of List #9187 where r= 3, n = 7, tor € {(11,12,21) and d= 17
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Figure 12: Plot of f?g??);new(i) for elliptic curves with conductor in

[5000, 300000000]. :§;177);new(i) for trivial torsion are in blue and fé}77);new(i)
for Z,/27%? torsion are in red.

Plo of List 972" where r= 3, n =7, tor € {[11,[2,21} and d= 500

100

Value of f9 5

Figure 13: Plot of fé?ﬁo);new(i) for elliptic curves with conductor in

[5000, 300000000]. f$7”" (i) for trivial torsion are in blue and f§y """ (i)
for Z,/27%? torsion are in red.

3 Why Torsion Murmurations

There are many new aspects emerged from this torsion-murmuration consider-
ation. For example, we note that the murmuration histograms for the family
of elliptic curves with trivial torsion are concentrated on a thin curve, while
the murmuration histograms for the family of elliptic curves with non-trivial
torsions are widely sprayed. We here give some partial theoretic reasons to end

15



the paper.

3.1 Torsion versus Non-Torsion: Same Rank

Recall that by a result of Nagell-Lutz, we know that for an elliptic curve £/Q
defined by Weierstrass equation

y? = 2% + Az + B, (A,Be€Z)

with discriminant Ag/q = —16(A4° 4+ 27B?), if P = (2,y) € £(Q)tor is a non-
trivial torsion point, then (z,y) € Z?, and either y = 0 (so that P is a 2-torsion)
or y2|Ag /- This them implies the following well-known

Theorem 13. If E/F, is a good reduction of £/Q at p, then the natural pro-
jection
g(@)tor — E(Fp)

is injective. In particular,
E(Q)tor < E(Fp)

Consequently, for good reduction p’s, #(E(Q)tor) divides N1 (E/F,) = p+
1 —ag/p,. In other words, there is a very restricted constrain for ar,, since it
is congruent to p+ 1 modulo the order of the torsion subgroup £(Q)toy. This in
fact is the dominant force why the histograms for the torsion submurmurations
behave in the way explained above.

Indeed, the murmuration pattern is fundamentally an average of the global
root number, expressed as a product over local factors:

e(€/Q) = [[ en(E/F,) € {£1}

where ¢,(E/F,) depends on a, = a(E/F,) and p, predicting the parity of its
rank via BSD via

£(£/Q) = (—1)mE@,

Therefore, for a family of elliptic curves with trivial torsion, the a,’s are (con-
jecturally) distributed according to the Sato-Tate distribution, modulo no extra
congruence conditions. In particular, the law of big numbers can be applied —
The average root number

1
O = g AR Y

as a function of discriminant becomes a smooth, coherent sum. However for a
family of elliptic curves with fixed non-trivial torsion, from the theorem above,
we see that the congruence condition

ap = p+ 1(modn)

filters the Sato-Tate distribution so that only certain a, values are allowed for
each p. Accordingly, this filtering alters the average value of the local factor
(ep) over this family: The average is no longer the “generic” one used in the
original murmurations analysis. Critically, the effect of this constraint depends
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on p relative to the discriminant A. For small primes dividing A (additive
reduction), the constraint interacts with the conductor exponent. For good
primes, it biases the local factor. But the formula for (¢)(log|A|) is now a
sum over primes weighted differently for each torsion subgroup. This leads to a
different murmuration waveform for each torsion structure.

This then leads to torsion submurmuration. Each torsion subgroup defines a
vertical slice of the full set of elliptic curves. The murmuration phenomenon (the
oscillatory average rank) persists within each slice, but its phase and amplitude
are modulated by the specific torsion constraints. When we superimpose these
different waveforms, we certainly get a “spray.” In fact, the spray is a form of
interference: The family of all elliptic curves is a superposition of families with
torsion Z/27,7Z/3Z, etc., and trivial torsion. Each has its own murmuration
curve:

(0) For trivial torsion, we get the “baseline” wave, the thin curve.

(1) For Z/2Z-torsion, we get a different wave, shifted and shaped by the con-
straints on a, mod 2. Its average rank behavior is known to be different
(e.g., the average rank of curves with a rational 2-torsion point is likely
higher than the overall average).

(2) For other torsions, similarly each contributes its own distinct waveform.

Consequently, when we plot them all together without separating by torsion,
the combined locus appears as a wide spray because we are seeing the union of
several shifted, distinct concentration paths.

More broadly, our observations above are compatible beautifully with and
refine known theoretical results. Say, in terms of Bhargava-Shankar type aver-
ages, by working on average ranks/Selmer groups, we quite often treat curves
with prescribed torsion separately (e.g., “elliptic curves with a rational 2-torsion
point”). Our discovery suggests that the discriminant-dependent oscillation
within these subfamilies is the finer structure underlying those different global
averages; in terms of refined probabilistic models, we conclude that the 7-model
or similar Selmer group heuristics must be conditioned on the torsion subgroup.
The local conditions at primes p (defining the Selmer structure) are directly
affected by the presence of torsion points over Q; In terms of L-function zero
statistics, we see that different torsion might correspond to different symmetry
types in the Katz-Sarnak sense within certain families, which would manifest in
the murmuration waveform.

All these then suggest that what we should plot our histograms.

We first should separate torsions and plot: Generate separate murmura-
tion plots (average analytic rank vs. log|A|) for each torsion subgroup (Z/2Z,
Z/3Z, ZJAZ, etc). They should each show their own coherent, concentrated
“thin curve,” but the curves will be different from each other and from the
trivial torsion curve. This would be a stunning visualization. Then we should
quantify the constraint: For a given torsion subgroup G of Mazur types, de-
rive the theoretical effect on the average local factor (¢,)q. Compare this to
the empirical murmuration wave for that family. Finally, we should investigate
the width. The “thinness” of the trivial torsion locus versus the “spray” of the
combined plot is a measure of the variance introduced by mixing these distinct
distributions with the hope to potentially quantify this width.
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Our work is moving from observing the murmuration phenomenon to de-
composing it into its harmonic components based on arithmetic invariants like
torsion. This is an interesting and natural next step in the study of this beautiful
pattern. It strongly supports the idea that murmurations are not a monolithic
mystery, but a composite effect arising from the interplay of deep arithmetic
constraints.

3.2 Trivial Torsion versus Arithmetic Ranks

It is now only natural to ask whether this thin curve for trivial torsion within
the same rank murmuration histogram appears when comparing different ranks.
Our numerical tests yield the following two figures.

Plot of List f, where r€ {0, 1}

Value of f,

® . . & oo®
RETERT N A I
A *ome ®

th Prime

Figure 14: Plot of {f.(i)}r=01’s for elliptic curves of trivial torsion with con-
ductor in [5000, 10000].
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Plot of List f; where r€ {0,1,2)

Value of £,

Figure 15: Plot of {f,(i)}r=0,1,2’s for elliptic curves of trivial torsion with con-
ductor in [5000, 10000].

From these histograms, we observe that for elliptic curves with trivial torsion,
within the same arithmetic rank (e.g., comparing rank 0 vs rank 1 vs rank
2), thin curves do not appear?the points are sprayed like when considering all
elliptic curves. This is quite different from the examinations on cross torsion
types (trivial vs non-trivial) within the same arithmetic rank, where thin curves
(concentrated loci) for trivial torsion do appear.

This reveals something profound about the nature of rank variation vs
torsion-induced constraints. There are some fundamental distinctions in the
above numerical tests.

In fact, when detect the role of torsion vs rank constraints we see that
torsion constraints are deterministic local conditions. For example, if £(Q)tor =
7./27%2 then for every good prime p coprime to 2, we must have

#E(F,) =0 mod 2%

This constraint is global in nature but local in manifestation, and creates a sys-
tematic precondition that affects all curves in the family uniformly as a function
of discriminant.

On the other hand, arithmetic rank constraints are (conjecturally) statistical.
For example, the condition of “rank = 1” like imposes no direct local congruence
conditions on #E(F,) for individual primes, even arithmetic rank is a global
property emerging from the interplay of many local factors. In particular, two
elliptic curves of the same rank can have very different distributions of a, values.

By contrast, for the murmuration mechanism for trivial torsion families, the
only strong constraint is that, for good primes p,

#E(F,) #0 modn

for n (absolutely) small (except by coincidence). In particular, the distribution
of a, is essentially unconstrained Sato-Tate. Accordingly, the murmuration
waveform for average root number (¢)(log A) becomes
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(€)trivial (log A) & smooth function of log A,

and this waveform applies to the entire trivial torsion family, not to rank subsets.

To address the point that the rank subsets do not form thin curves but rather
sprayed, we note that if we fix both trivial torsion and a specific arithmetic rank,
two conditions are imposed, the torsion has to be trivial (so that there is and
the arithmetic rank is fixed to be 7.

However, among trivial torsion curves, the arithmetic rank r is not deter-
mined by a simple function of log A. Instead, for a given A, there’s a probability
distribution over ranks P(r|A). Hence, when we select only curves with arith-
metic rank 7, we are sampling from the conditional distribution, but this con-
ditional sampling doesn’t create a new murmuration waveform?it just samples
from the existing distribution.

In real life analogy, this is somehow similar to comparing height vs age in a
population. If we plot all people, smooth average height curve vs age, but if we
plot only people exactly 180cm tall, we only get scattered cloud across all ages
since the condition “height = 180cm” does not create a new relationship with
age.

We may understand this structures using the following mathematical formu-
lation.

Let fr(A) be the murmuration waveform for torsion type 7. For trivial
torsion (T' = 0), we get

(ari.rank)p—o(log A) = fo(log A) + noise
— The distribution of ranks at a fixed A is conjectured to be something like

P(arirank = 0|A, T =0) = 0.5+ a - fo(A)
P(arirank = 1|A, T =0) = 0.5 — a - fo(A)
P(arirank > 2|A, T =0) = e¢(A) (small)

With the condition on arithmetic rank r, we are essentially plotting

{log A : rank(E(Q)) = r} with no functional relation to fo(A)

This gives a spray, not a thin curve.

For non-trivial torsion T # 0, the torsion imposes systematic local con-
straints that create a different murmuration waveform fr(A) so that the corre-
sponding waveform is inherent to the torsion structure, not just statistical, even
when we condition on a specific rank within this family, the torsion constraints
still apply This explains why non-trivial torsion behaves quite differently. In
other words, when we compare trivial torsion with different arithmetic rank r,
we just test conditional sampling. Accordingly, the plot would spray. But for
non-trivial torsions within same arithmetic rank r, we are dealing with con-
ditional sampling plus systematic torsion constraints. This leads to different
distributions.

So this thin curve versus spray spots reveals that murmurations are funda-
mentally about how local constraints (torsion) create global statistical patterns,
not about how global properties (rank) organize themselves. In this sense our
torsion numerical tests clearly indicate that murmurations are primarily a phe-
nomenon of families defined by local constraints (torsion, root number parity),
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not of global properties like arithmetic rank. This is a refinement of the original
HLOP murmurations picture!
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