REDUCTIVE MODIFICATIONS OF
LOCALLY SYMMETRIC SPACES

LIN WENG

ABSTRACT. Let X = G/AgK, resp. Y = I'\G/AgK, be a symmetric
space, resp. a locally symmetric space, associated to a split reductive
group G/Q, its maximal compact subgroup K and an arithmetic sub-
group I'. In this paper, motivated by Zucker’s reductive Borel-Serre
compactification v of Y, we construct new but genuine topological
spaces X" and Y4, together with their natural compactifications X red
and Y'red respectively, for the purpose to uniformly understand reductive
structures involved at different parabolic levels, based on Saper’s tiling
theory. We show that for a regular representation p : G — GL(V), there
is a natural isomorphism

TH*(Y™d, V) ~ TH*(Y™°, W),

where V denotes the natural associated local systems on the associated
spaces induced by p. Furthermore, when X is of equal rank, we show
that, for the interiors Yy of the central tile Yy = ?réd of a tiling Yred =
Lp ?ﬁgd, and for the equal rank Satake compactification Y* of Y, there

are natural isomorphisms

HE (Y, V) = Hiy (Y, V,) ~ IH* (Y0, V) ~ TH*(Y*,V)

based on Looijenga, Saper-Stone’s solution to the (Borel-)Zucker con-
jecture and Saper’s confirmation to the Rapoport/Goresky-MacPherson
conjecture.

1. BOREL-SERRE COMPACTIFICATION AND
REDUCTIVE BOREL-SERRE COMPACTIFICATION

Let G/Q be a split reductive group and let K be a maximal compact
subgroup of G. Denote by X := G/AgK the associated symmetric space,
where Ag denotes the identity (connected) component of a maximal split
torus in the center Zg of G. And for an arithmetic subgroup I' of G, denote
by Y =TI'\X the induced locally symmetric space.

To facilitate our ensuing , we first recall some details on the Borel-Serre

compactifications X% and ¥7° of X and Y, respectively, and Zucker’s
reductive Borel-Serre compactifications X and V'™ of X and Y, respec-
tively.
For a parabolic (Q-)subgroup P of G, denote its associated structural
(split) exact sequence by
1—-Np—P— Mp—1,

where Np denotes the unipotent radical of P and Mp the reductive Levi
quotient of P, which, via the splitting (associated to the Cartan involution
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with respect to K), will also be viewed as a Levi subgroup, often denoted
by M P, of P.

As usual, let Ap be the lift to P of the identity (connected) component
of the maximal split torus Zys, of Mp. Since G = PK, the action of P on
the symmetric space G/K is transtive. Following Borel-Serre [4], define the
geodesic action of Ap on X via

ao (pk) := pka =pak (Vpe P, a€ Ap, ke Kp =P nK)

since Ap and Kp commute.
It is well known that the simple roots occurring in Np defines an isomor-
phism
Ap ~ (0,00)"P)

where r(P) denotes the parabolic rank of P. Let Ap be the enlargement
of Ap obtained by transporting of structures from the naturally embedding
(0,00) = (0,00]. Set X(P) =X x4, Ap.

Let cop be the zero dimensional Ap-orbit in Ap corresponding to the
point (o0, ...,0) € (0,00] ). Accordingly, it maps canonically to X /Ap ~
e(P) = X(P). We know that e(P) is homogeneous under °P := {pe P :
[pX| = 1 ¥x € Morg (P, G;,)}, isomorphic to P/Ap. Denote by

wp: X(P)— e(P),

the geodesic projections. There is a natural P-action on e(P) with Ap acting
trivially. In particular, Ap x 9P acts on X by the product of the geodesic
action and the usual multiplication of P, from which we obtain an analytic
isomorphism

(ap,7p): X = Ap x e(P)

of Ap x %P-homogeneous spaces. We normalize ap such that ap(xg) = 1,
where 2y denote the base points of X corresponding to K. In this way, X is
trivialized as a principal Ap-bundle with canonical cross sections e(P) given
by the orbits of °P.

For parabolic subgroups P, Q of G satisfying () < P, there is a canonical
embedding of X (P) in X(Q). Note that there is a natural decomposition
Ag = Ap x Ag,p where Ag p < Ag denotes the intersection of kernels of
simple roots for Ap. Then there is an embedding

X(P)ZXXAPZP

10

(X(P) XAQ,P AQJD) X Ap Zp
(X(P) XAQ,P ZQ’p) X Ap Zp
X XAQ ZQ = X(Q)
Accordingly, we can view e(Q) as a part of the boundary of e(P). This
is achieved by considering the geodesic action of Ag p on e(P) (Ap acts
trivially), so that e(Q) ~ e(P)/Aq,p = e(P)/Aqg.

By definition, the (partial) Borel-Serre compactification of the symmetric
space X := G/K is given by

X = Yxw) = ery = x| em),

P P:PCG

(1)

N

N
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where P runs over Para(G), the collection of all parabolic Q-subgroups of
G. By Borel-Serre [4], for the weak topology from the X(P)’s, there is
a manifold-with-corner structure on the Borel-Serre compactification YBS
which naturally becomes a stratified manifold with strata e(P)’s.

Clearly this construction is compatible with the action by the arithmetic
subgroup I' € GG. In fact the action by an element v € I' yields a homeomor-
phism of x5, Accordingly, passing to the quotient, we obtain the so-called
Borel-Serre compactification Y5 of the locally symmetric space Y

yev®-v| | ( || Fp\e(P)),

P:PcG

where I'p := I' n P. In particular, for I'p ¢ 9P, its action commutes with
the geodesic action of Ap. Denote by Yp := I'p\e(P) the corresponding

faces of 0. By §9 of [4], there is a neighborhood of Yp in " on which
geodesic projection wp descends.

For many purposes, the Borel-Serre compactification Y5 of Y is not
fine enough. Indeed, in this parabolic reduction, passing from the reduc-
tive group G to parabolic Q-subgroups P yields structural discrepancies, in
addition to the fact that at infinity, what really added is a stratified nil-
manifold fibration. In the sequel, for our limited purpose, we introduce a
much better reduction via the process of starting with a reductive G and
ending with a lower rank reductive Mp, or better, the Levi subgroup M p of
P. To understand this, let us first recall some details on Zucker’s reductive
Borel-Serre compactification X and Y™ of X and Y, respectively.

Recall that, for P € Para(G), its unipotent radical Np acts naturally
on X(P) ~ e(P) x Ap via multiplication u - (p,a) := (up,a) and that this
action commutes with the action of Kp - Ap since Np n (Kp - Ap) = {1}.
Consequently, there is a canonical projection X (P) — Np\X(P). Set now
¢/(P) := Np\e(P), and form the space

xS :=|_|e’(P)=X|_|< || e'(P)).
P P:PS@

Since Ng 2 Np whenever Q < P, there is a globally defined quotient map

X0 xS, Clearly there is an induced action of I" on X% which is
compatible with the stratifications since I' takes the stratum Xp onto that
of a conjugate parabolic subgroup, with P preserves €¢/(P). Consequently,

we get a quotient map
—vr=ve (L ).
P P:PCG

BS —rBS L rBS

7:Y " =Y T =IcG\X

where Yp = Ip\e/'(P). This Y™ is Zucker’s reductive Borel-Serre com-
pactification of the locally symmetric space Y ([20]). In particular, 7 is con-
tinuous with respect to the induced quotient topology, and hence, similar to

7BS, Y becomes Hausdorft. Clearly, if we denote by YYBS(P) the image

of X(P) in YrBS, then we get an open neighborhood Y (P) := I‘P\YrBS(p)
of GI(P) = NP\Q(P)
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2. SAPER’S TILING THEORY

To construct our reductive modifications X" and Y™ of X and Y, re-
spectively, we need to make modifications within X with respect to parabolic
subgroups P, by cutting the P-part off first, then gluing back the M, p-part.
To make this operation as canonical as possible, we use Saper’s tiling the-
ory [12], a geometric realization of Arthur’s analytic truncation, based on
Langlands’s cone decompositions for root spaces.

Following Saper ([12]), a tiling of X is a cover X° = Llp Xp by
(nearly) disjoint sets (called tiles), having the following properties

(i) The central tile Xo := X is a closed, codimension 0 submanifold
with corners contained in X.

(ii) The closed boundary faces {0 Xo}p of X are indexed by P €
Para(G) so that P+ 0" X is an incusion preserving bijection.

(iii) Each boundary face 0¥ X lies in a canonical cross-section {bp} x
e(P).

(iv) The P-tile X p (P = G) is obtained from 0F X by flowing out under
the geodesic action of the strictly dominant cone Ap(1) = exp (EIJS),
that is Xp = Ap(bp) o 0¥ X, where ajg denotes the positive Weyl
chamber in ap and Ap(bp) := bp - Ap(1).

Furthermore, the tiling is called T'-invariant if v- Xp = X +p for all y € T
and P € Para(G), where 7P := yPy~!. Directly from the definition, it is

not difficult to conclude that for a fixed tiling X7 = Llp X p we have

(a) Each P-tile X p is a codimension 0 submanifold with corners.
(b) The closure of any two tiles are either disjoint or intersect in a com-
mon closed boundary face. That is, for P, P’ € Para(G),

CI(K(pr/)(bpvp/)OGP“P/XO, P n P’ € Para(G)

c(Xp) N el(Xpr) = { %] else

Here P v P’ denotes the smallest parabolic subgroup of G containing
PuUP.

Furthermore, if the tiling is I-invariant, then

(¢) The central tile I'\ X is compact.
(d) For all P € Para(G), the natural projection I'p\cl(Xp) = Ap(bp) o
I'p\Xo — m(cl(Xp)) is a homeomorphism.

Note that for any P € Para(G), the associated bp in the correspond-
ing canonical cross-section {bp} x e(P) is determined as the intersection
of the canonical cross-section {bg} x e(Q) for Q 2 P. Therefore among
all bp’s, only {bg : @ maximal} are essential. For this reason, we call
b = {bg}gemax(q) the parameter of the tiling. In fact, a tiling is uniquely
determined by its parameter b as we can apply the following discussion to
X . For any open subset M < YBS, there exists at most one decom-
position M = | |, Mg for which Mp < X(R) is cl(Ag(1))-invariant and
satisfies

Mg = (ZR(bR) x WR(MR)> A M.
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In fact if P < R, Mp ne(R) = nr(Mp) and hence

Mne®R)=| |MpneR) = | | mr(Mp).
P PCR

Therefore
wr(Mp) = (Mm (R)) < | m(¥p).
PSR
Therefore M g is uniquely determined if R is minimal, and by recursion on
parabolic rank in general.
In other words, from stratified manifold point of view, we may reconstruct
a tiling by first determining the most deepest tile for minimal parabolic
subgroup Py by setting
TPy (YPO) = e(PO)v
then use recursion on parabolic ranks to recover outer tiles X g via
mr(Xr) = e(R)~ | ) 7r(Xp).

PSR

In particular, the central tile is given by
XO = YG = CI(X N U Wg(KP)>.
P:P=G

Saper ([12]) divides his tiling constructions in three steps. Namely, the
first on the root space ap, and hence on

Ap = |_| <ZP>R with <ZP>R 1= exp (<aP>R)
R:RDP

by using the famous Langlands’s cone decomposition for the root space ap
in terms of parabolic subgroups R (P € R) of G:

ap= | | ),
R:RDP

where
{ap)p = {v eap:vr(v) >0 Vyre Ar & @l (v) <0 Vwle Ag};
the second on X(P) = Ap x e(P) by using the first step to get
X(P):= || X(P)r  with X(P)g:=bp-{(Ap)r x e(P).
R:R2OP
In particular, with X(P)o = X(P)q,
X (P)o:=bp - 0%(Apdy x e(P) < 0% X (R)y = {br} x e(R)
then finally on X, by setting
Xp= (] X(P)r and  0%Xo:= () o"X(P).
P:PCR P:PcR
Ideally, this three-step construction would offer us a tiling of X, How-
ever, in Saper’s discussion, say in Theorem 5.7 of [12], there is a very impor-

tant technical condition: The parameter b involved should be sufficiently
regular in the sense of Arthur ([1]). Indeed, whether the X r’s above cover

X5 depends heavily on the classical reduction theory, for which to work,
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the associated Siegel sets should be chosen to be sufficiently large, say ap-
proaching to the P-cusps for each P. This is quite similar to the discussion
in trace formula using Arthur’s analytic truncation AT, where T is always
assumed to be sufficiently regular.

However, there is an alternative modern treatment to the classical reduc-
tion theory using stability. This new stability approach has proven to be
very powerful, and indeed significantly simplifies the matters involved: After
all to get a reduction theory, as what was done in Lafforgue [9], there is no
need to require the parameter T to be sufficiently large: T' = 0 is already
sufficient! This Lafforgue’s work for G = SL,, i.e., for vector bundles on
curves over function fields, was generalized to number fields first for Op-
lattices by myself in [16]. Later, I was able to treat general split reductive
groups G/F to obtain Theorem 16.3 in [17]. Back to the point whether the

XR’s cover YBS, it suffices to show that Arthur’s truncation A701 for the
constant function 1 on Y yields a compact subset X7, for a fixed Tj € ﬁar ,
the positive Weyl chamber in ag. Once this is achieved, then we can form
a tiling of Saper, by letting ¥7;, to be the central tile Xy: Indeed, despite
of the fact that in Saper’s paper [12], Arthur’s truncation was not used,
but in essence, Saper’s tiling theory is a geometric companion of Arthur’s
truncation theory. All tiling constructions of Saper can be carried out us-
ing Arthur’s truncation theory: This is certainly the case for the Ap level
tiling in the first step — Saper’s construction is simply equivalent to (Arthur-
)Langlands cone decomposition of ap. (See e.g. Osborne-Warner [11].) On
the other hand, Arthur’s AT is a well-designed device taking care of each
P-level carefully so as to offer a uniform treatment for all P’s. Viewing from
this, it is only natural to assume the sufficiently regularity for the parame-
ter b in Saper’s titling theory — After all, in Arthur’s truncation theory, the
parameters T are always assumed to be sufficiently regular, to make sure
that A1 becomes a compact subset in X after carefully removing from X
the P-contributions for all P’s, with the help from the classical reduction
theory. Once this central tile is obtained, the P-direction extension using
geodesic action becomes rather direct following Saper.

We will leave our further discussions in this direction to some other occa-
sions (see e.g. [18]). Instead, for our limited purpose here, let us next recall
the following qualitative main theorem of [12], besides the existence result
mentioned above.

Theorem 1 (Theorem 6.1 of [12]). For I'-invariant parameter b and t €
cl(Ag(1)), let {X ps} be a tiling of X with parametert - b.

(1) For all t € cl(Ag(1)), there exists a unique I'-equivariant piecewise-
analytic retraction ry X2 Xo satisfying ri(Ap(1) oy) =y for
ye 0P Xy, and P € Para(G).

(2) For allt e cl(Ag(1)), there exists a unique I'-equivariant piecewise-

analytic diffeomorphism s : X% Xo, such that for all P €
Para(G)
(i) st preserves the Ap(1)-orbits in Xp.
(i) The family of diffeomorphisms induced on the Ap(1)-orbits in
YPJ 18 constant with respect to the canonical cross-sections.
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(iii) In terms of the coordinates a — (a™%)aerp, each coordinate
function of the diffeomprphism induced on Ap(1) is the expo-
nential of a polynomial having degree at most 1 in each variable.

Both r; and s; depend piecewise-analytically on t. As t tends to infinity
under the action of a strictly dominant 1-parameter subgroup, r: and S
converge to the identity; and as t tends to 1, s; converges to r1.

3. REDUCTIVE MODIFICATIONS X'd ANp Yred
AND THEIR COMPACTIFICATIONS X'ed AND Yred

For Zucker’s reductive Borel-Serre compactification YrBS, working over
various boundaries, the P-level reductive structure °Mp/Ky;, = Np\e(P)
can be glued with the R-level reductive structure Mr/An, K, © Nr\e(R)
even when P < R. This is because the fact that, by the construction,
the P-boundary e(P) ~ e(P) x ({o0},,) is disjoint from the P-boundary
e(R) ~ e(R) x ({0},,). However, within the symmetric space X, since e(R)
and e(P) are well organized, a simple gluing does not work. To solve this,
we examine the structure on Saper’s tiling associated to the central tile X
first, and then make crucial reductive modifications on each P-tiles when
flowing out under the geodesic action of the cone Ap(1) for the canonical
cross-sections.

Recall that the P-boundary 07Xy of Xy is contained in 0¥ X(P)y =
{bp} x e(P), and inside X

(] o%X(P)o=0"X,  with 07X(P)y=bp 0%(Apyy x e(P).
P:PCR
As remarked after (1), we view e(P) as a part of the well-organized part
of e(R) when P < R. This is achieved by considering the geodesic action
of Apr on e(R) (on which Apr acts trivially), so that e(P) ~ e(R)/Apr =
e(R)/Ap. Accordingly there is a natural stratified structure when taking the
Np-quotient: Since Np 2 Ng, there is a natural morphism
Np\e(P) — Ng\e(R)
induced by the projection e(P) — e(R). We may identify Np\e(P) with
AppR x (NR\e(R)>. Thus for z € e(R), the fiber over Nr\z € Ng\e(R) in
Np\e(P) includes the Ap g-directions, ensuring smooth transition. In other
words, if we set
OEX (P = bp - 0%(Ap)y x Np\e(P),

then 0P X(P)ied = {bp} x Np\ep. And for P € R, we may and hence
will view 0 X (P)5d and 0F X (R)54 as the subspace contained in different
strata. Then it makes sense to talk about
ofxpd = () o"x ()i,
P:PCR

and hence introduce a stratified manifold X§°¢ by

Xped=xg ] oPxet with Xg:=Xo~ | 0"Xo.
P=G P:P=G
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Accordingly, for each P € Para(G), we modify the corresponding P-tile
Xp = Ap(by) x e(P) to X34 := Ap(b,) x Np\e(P) and its partial reductive
Borel-Serre compactification Yl}fd := Ap(by) x Np\e(P). And finally, from
a new stratified topological space X™4 by setting

xred= xgl ||| Xt and  Xredi= xg| ||| XB
P=G pP=G

we obtain a commutative diagrams with horizontal maps being natural strat-
ified quotients

X =XgUUpcXp  — X§UUp_g X = X,

X = X, UllpeaXp — XFLp-¢ legd = Xred,

for which the bottom morphism factorizes through X X m partic-

ular, X™d and Xred are Hausdorff.

Theorem 2. Let {YP}Pepara(G) be a I'-invariant tiling of Saper associated
to parameter b. Then, with the same notation as above,

(1) {Xged}u {Y;Bd}p form a tiling of the stratified space X . That is,

(i) The central tile X§*4 = YrGed s a closed, codimension 0 subspace

of the stratified topological space Xred,

(ii) The closed boundary faces {0F Xt p of X5d are indeved by
P € Para(G) so that P +— 0P XEed is an inclusion preserving
bijection.

(iii) Each boundary face 0¥ X% lies in a canonical reductive cross-
section {bp} x Np\e(P).

(iv) The P-tile Y?d (P = Q) is obtained from 0¥ X4 by flowing out
under the geodesic action of the strictly dominant cone Ap(1) =
exp (a}), that is Y;fd = Ap(bp) o 0¥ X¢d.

(2) For I'-invariant parameter b and t € cl(Ag(1)), let {X pi} be a tiling

of X with parameter t - b.

(a) Forallt e cl(Ag(1)), there exists a unique I'-equivariant piecewise-
analytic retraction

X = xU( L) F) =l (L) o) -

P:P=G P:P=G
satisfying ri°d|x = r¢|x, and
ri°Y(Ap(1) o Npy) = Np\Npy (Vy € 0" X(5', P e Para(G)).
(b) Forallt € cl(Ag(1)), there exists a unique I'-equivariant piecewise-
analytic diffeomorphism s; : X X(ﬁ‘ftd such that for all
P € Para(G)
(i) s; preserves the Ap(1)-orbits in Y;ﬁ. B
(ii) The family of diffeomorphisms induced on the Ap(1)-orbits
mn Y;ﬁﬁl 18 constant with respect to the canonical reductive
cross-sections.
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(iii) In terms of the coordinates a — (a~)aepep, €ach coor-
dinate function of the diffeomprphism induced on Ap(1)
s the exponential of a polynomial having degree at most
1 in each variable.
Both ry and s¢ depend piecewise-analytically on t. Ast tends to in-
finity under the action of a strictly dominant 1-parameter subgroup,
r¢ and S; converge to the identity; ast tends to 1, s; converges to r.
(3) Let p: G — GL(V) be a regular representation fo G. Denote by V
the induced local system on X'ed. Then
[H*(Yd V) ~ TH*(Y°, V).
(4) If Y is of equal rank, then

[H*(Y*,V) ~ TH*(Y*,V) ~ Hy (Y, 7).

Here, Y* denotes an equal rank Satake compactification of Y and we
have use the diﬁeomorphzﬁm between Yy and Y in (2) to pull back
the metrics of (V,Y) to (V,Yy).

Proof. (Sketched) By our construction, the same proof for (1) and (2) in
Saper [12] works here as well, since Saper’s arguments are concentrated in
the Ap’s, for which our constructions remain the same-the only part we
altered is about the nilpotent radical, which has nothing to do with the
torus parts Ap’s, being nilpotent versus torous. Hence it suffices to treat
(3) and (4). We first deal with (3). Recall that the intersection cohomology
is determined by the perverse (intersection cohomology) sheaf IC*, which
depends on the stratification and codimensions of singular strata. To show
that Y74 and Y™ have the same intersection cohomologies, we first note

that the only difference between Y5 and Yed comes from P-level nilman-
ifold fibration e(P) — Np\e(P) or better I'p\e(P) — I'p\Mp/Kp with
nilmanifold fibers I'y,\Np. But it is well known that such a nilmanifold
fibration collapses interior topology appropriately to the boundaries, since
nilmanifolds have cohomology concentrated in degree up to their dimension.
In other words, relative to codimension dim Np + dim Ap of the P-stratum,
the nilmanifold’s contribution is trivial in high degrees, not affecting the
perverse sheaf IC*. Therefore, this modification from e(P) to Np\e(P) in

Xred and YrBS, or better in Yred and VrBS, does not alter the perverse
sheaves IC*. This essentially gives (3).

In a more concrete term, associated to the nilmanifold fibration e(P) —
Np\e(P), the fibration is rooted from e(P) ~ X/Ap ~ Np x Mp/Kp so
that the map e(P) — Np\e(P) coincides with the quotient Np x Mp/Kp —
Mp/Kp by the action of Np. But Np is a unipotent group and hence
admits a filtration whose graded pieces are isomorphic to R, accordingly
I'np, := I'p n Np may be viewed a successive quotient lattice in R, so the
fiber over points in I'p\(Mp/Kp) is a nilmanifold, i.e. a quotient I'x,\Np.

Now on ?rBS, the P-tile in Y is given by X(P)nY = Ap x e(P) ~ Ap x
(Np x Mp/Kp), while in the reductive Borel-Serre compactification e
itself, the first Ap-direction is compactified to Ap via (0,00)"? < (0, 00]"?
and the Np-direction is quotient out to form I'p\(Mp/Kp). Clearly, the
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map e(P) — Np\e(P) reflects the collapse of the Np (nilmanifold) to a
point in the P-boundary stratum.

Turning to Y*ed, the P-tile is given by Ap x I'p\(Mp/Kp) for which the
Np-factor is absent in the interior, so that Y™ is constructed to approach
I'p\Mp/Kp directly. That is, the compactification only involves Ap — Ap,
while mapping I'p\Mp/Kp identically to itself.

What is the impact of our construction to the intersection cohomol-
ogy: The key point is the nilmanifold fibration e(P) — Np\e(P) or bet-
ter I'n,\Np x I'p\Mp/Kp — I'p\Mp/Kp in Y55 describes the topology
of the interior P-tile approaching the boundary. But the nilmanifodls are
homologically trivial in high dimensions relative to their codimension. So
the fibration Np — e(P) — Np\e(P) implies that the Np-directions con-
tribute no additional singularities to the P-boundary stratum I'p\Mp/Kp.
Consequently, in the perverse sheaf, the cohomology of the nilmanifold fiber
does not alter the truncation conditions, which are set by the codimension
of Tp\(Mp/Kp). Moving to Yrd the absence of the Np-factor simplifies
the interior: Within Y™ the P-tile is given by Ap(bp) x I'p\(Mp/Kp)
lacking the nilmanifodl fiber, but the boundary stratum is the same as in

?rBS, while the compactification Ap ensures the same topological collapse
to FP\(MP/K]D).

Clearly, the intersection cohomology depends on the stratification at the
boundary, not the interior topology, as long as the interior is homologi-

cally compatible with the boundary. Thus the nilmanifold fibration in s
ensures that the Np-dierctions do not introduce additional perversity con-

straints beyond of T'p\(Mp/Kp), and similarly, in Y4, the direct approach
to Mp/Kp skips the Np-fibration but lands on the same boundary. This
then clearly preserves the perverse condition and hence the perverse sheaf.
That is to say, the nilmanifold fibration e(P) — Np\e(P) in Y ensures
that the interior P-tile’s topology (with Np) collapses homologically triv-

ially to the boundary, matching the way how Yed proceed under a much
simpler interior structure.

To complete our proof of (3), let us finally check that in both spaces, the
P-stratum codimensions are given by dim Np + dim Ap even with different
interiors. Indeed, both v and Y7ed admit the same interior X{ for the
central tile X and with the same P-boundary I'p\Mp/Kp. So the perverse
sheaf truncations are identical

dim(supp(€) ~ TP\ (3 /K7) < i — [

dim Np —i—dimAp}
2

Consequently, we obtain an identification on perverse sheaves
1C(Y™) ~ 10(yred),

since the nilmanifold fibration in VrBS ensures that the Np-factor does not
alter the perverse conditions, to give the same structure using Y4 with the
much simpler interior. This proves (3).

Finally let us verify (4). But this is a direct consequence of (3) and the
well-known conjecture of Rapoport and Goresky-MacPherson, verified by
Saper in [13], and the famous conjecture of Zucker for Hermitian type X,
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proved by Looijenga [10] and Saper-Stein [15] independently, and generalized
by Borel, based on Borel-Casselman [2] for equal rank X, proved by Saper-
Stein [15]. Indeed, by (3) we have TH*(Y™d,V) ~ IH*(Y""°,V). So it
suffices to verify
TH* (Y™, V) ~ TH*(Y*,V) ~ Hp,) (Y9, V)

under the condition of equal rank. As explained above, this becomes rather
direct as to be indicated below. —BS

We first treat the isomorphism TH*(Y" ,V) ~ IH*(Y*,V). Under the
equal rank condition, this is exactly the content of the well-known conjecture
of Rapoport and Goresky-MacPherson, verified by Saper in [?] using his £-
module theory.

Then, let us verify the second isomorphism. Note that, by Theorem 1(2),

there is a diffeomorphism contraction Y 5 X which implies that there is
a diffeomorphism contraction ¥ — Y{7. Therefore, we have an isomorphism

H (*2) (Y¢,V) ~ H (”‘2) (Y, V). Now under the equal rank condition, by Borel-

Zucker conjecture, verified by Saper-Stein in equal rank situation, we have

H(*Q)(Y:V) ~ [H*(Y*,V). Therefore, [H*(Y*,V) ~ H(*Q)(YOO,V).

O

Remark 1. Under the equal rank condition, using the natural rational
structure on the intersection cohomology, we can and hence will define a
new type of regulator, unique up to rational factors, as the determinant of
the isomorphism in Theorem 2(4). Many examples suggest that for SLg over
real quadratic fields F', or the same over the assocaited Hilbert modular
surfaces, these regulatore are essentially the Beilinson regulators associated
to Hilbert modular form f of parallel weight (2,2) in S2 2(SL2(Op)) via the
special values L(f, (1,1)). We leave the details to the reader.

Disclaim: This work has not been supported by any grands.
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