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Abstract. Let X “ G{AGK, resp. Y “ ΓzG{AGK, be a symmetric
space, resp. a locally symmetric space, associated to a split reductive
group G{Q, its maximal compact subgroup K and an arithmetic sub-
group Γ. In this paper, motivated by Zucker’s reductive Borel-Serre

compactification Y
rBS

of Y , we construct new but genuine topological

spacesXred and Y red, together with their natural compactificationsXred

and Y red respectively, for the purpose to uniformly understand reductive
structures involved at different parabolic levels, based on Saper’s tiling
theory. We show that for a regular representation ρ : G ! GLpV q, there
is a natural isomorphism

IH˚
pY red,Vq » IH˚

pY
rBS

,Vq,

where V denotes the natural associated local systems on the associated
spaces induced by ρ. Furthermore, when X is of equal rank, we show

that, for the interiors Y o
0 of the central tile Y0 “ Y

red
G of a tiling Y red “

Ů

P Y
red
P , and for the equal rank Satake compactification Y ˚ of Y , there

are natural isomorphisms

H˚
p2qpY o

0 ,Vρq » H˚
p2qpY,Vρq » IH˚

pY
rBS

,Vq » IH˚
pY ˚,Vq

based on Looijenga, Saper-Stone’s solution to the (Borel-)Zucker con-
jecture and Saper’s confirmation to the Rapoport/Goresky-MacPherson
conjecture.

1. Borel-Serre Compactification and
Reductive Borel-Serre Compactification

Let G{Q be a split reductive group and let K be a maximal compact
subgroup of G. Denote by X :“ G{AGK the associated symmetric space,
where AG denotes the identity (connected) component of a maximal split
torus in the center ZG of G. And for an arithmetic subgroup Γ of G, denote
by Y “ ΓzX the induced locally symmetric space.

To facilitate our ensuing , we first recall some details on the Borel-Serre

compactifications X
BS

and Y
BS

of X and Y , respectively, and Zucker’s

reductive Borel-Serre compactifications X
rBS

and Y
rBS

of X and Y , respec-
tively.

For a parabolic (Q-)subgroup P of G, denote its associated structural
(split) exact sequence by

1 ! NP ! P ! MP ! 1,

where NP denotes the unipotent radical of P and MP the reductive Levi
quotient of P , which, via the splitting (associated to the Cartan involution
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with respect to K), will also be viewed as a Levi subgroup, often denoted

by ĂMP , of P .
As usual, let AP be the lift to P of the identity (connected) component

of the maximal split torus ZMP
of MP . Since G “ PK, the action of P on

the symmetric space G{K is transtive. Following Borel-Serre [4], define the
geodesic action of AP on X via

a ˝ ppkq :“ pka “ pak p@p P P, a P AP , k P KP “ P X Kq

since AP and KP commute.
It is well known that the simple roots occurring in NP defines an isomor-

phism

AP » p0,8qrpP q

where rpP q denotes the parabolic rank of P . Let AP be the enlargement
of AP obtained by transporting of structures from the naturally embedding
p0,8q Ă p0,8s. Set XpP q “ X ˆAP

AP .

Let 8P be the zero dimensional AP -orbit in AP corresponding to the
point p8, . . . ,8q P p0,8srpP q. Accordingly, it maps canonically to X{AP »

epP q Ă XpP q. We know that epP q is homogeneous under 0P :“
␣

p P P :

|pχ| “ 1 @χ P MorQpP,Gmq
(

, isomorphic to P {AP . Denote by

πP : XpP q ! epP q,

the geodesic projections. There is a natural P -action on epP q with AP acting
trivially. In particular, AP ˆ 0P acts on X by the product of the geodesic
action and the usual multiplication of 0P , from which we obtain an analytic
isomorphism

paP , πP q : X
»
! AP ˆ epP q

of AP ˆ 0P -homogeneous spaces. We normalize aP such that aP px0q “ 1,
where x0 denote the base points of X corresponding to K. In this way, X is
trivialized as a principal AP -bundle with canonical cross sections epP q given
by the orbits of 0P .

For parabolic subgroups P, Q of G satisfying Q Ď P , there is a canonical
embedding of XpP q in XpQq. Note that there is a natural decomposition
AQ “ AP ˆ AQ,P where AQ,P Ă AQ denotes the intersection of kernels of
simple roots for AP . Then there is an embedding

XpP q “ X ˆAP
AP

»
`

XpP q ˆAQ,P
AQ,P

˘

ˆAP
AP

Ď
`

XpP q ˆAQ,P
AQ,P

˘

ˆAP
AP

ĎX ˆAQ
AQ “ XpQq

(1)

Accordingly, we can view epQq as a part of the boundary of epP q. This
is achieved by considering the geodesic action of AQ,P on epP q (AP acts
trivially), so that epQq » epP q{AQ,P “ epP q{AQ.

By definition, the (partial) Borel-Serre compactification of the symmetric
space X :“ G{K is given by

X
BS

:“
ď

P

XpP q “
ğ

P

epP q “ X
ğ

´

ğ

P :PĹG

epP q

¯

,
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where P runs over ParapGq, the collection of all parabolic Q-subgroups of
G. By Borel-Serre [4], for the weak topology from the XpP q’s, there is

a manifold-with-corner structure on the Borel-Serre compactification X
BS

which naturally becomes a stratified manifold with strata epP q’s.
Clearly this construction is compatible with the action by the arithmetic

subgroup Γ Ď G. In fact the action by an element γ P Γ yields a homeomor-

phism of X
BS

. Accordingly, passing to the quotient, we obtain the so-called

Borel-Serre compactification Y
BS

of the locally symmetric space Y :

Y Ď Y
BS

“ Y
ğ

´

ğ

P :PĹG

ΓP zepP q

¯

,

where ΓP :“ Γ X P . In particular, for ΓP Ă 0P , its action commutes with
the geodesic action of AP . Denote by YP :“ ΓP zepP q the corresponding

faces of Y
BS

. By §9 of [4], there is a neighborhood of YP in Y
BS

on which
geodesic projection πP descends.

For many purposes, the Borel-Serre compactification Y
BS

of Y is not
fine enough. Indeed, in this parabolic reduction, passing from the reduc-
tive group G to parabolic Q-subgroups P yields structural discrepancies, in
addition to the fact that at infinity, what really added is a stratified nil-
manifold fibration. In the sequel, for our limited purpose, we introduce a
much better reduction via the process of starting with a reductive G and

ending with a lower rank reductive MP , or better, the Levi subgroup ĂMP of
P . To understand this, let us first recall some details on Zucker’s reductive

Borel-Serre compactification X
rBS

and Y
rBS

of X and Y , respectively.
Recall that, for P P ParapGq, its unipotent radical NP acts naturally

on XpP q » epP q ˆ AP via multiplication u ¨ pp, aq :“ pup, aq and that this
action commutes with the action of KP ¨ AP since NP X pKP ¨ AP q “ t1u.
Consequently, there is a canonical projection XpP q ! NP zXpP q. Set now
e1pP q :“ NP zepP q, and form the space

X
rBS

:“
ğ

P

e1pP q “ X
ğ

´

ğ

P :PĹG

e1pP q

¯

.

Since NQ Ě NP whenever Q Ď P , there is a globally defined quotient map

π : X
BS

−! X
rBS

. Clearly there is an induced action of Γ on X
rBS

which is
compatible with the stratifications since Γ takes the stratum XP onto that
of a conjugate parabolic subgroup, with P preserves e1pP q. Consequently,
we get a quotient map

π : Y
BS

! Y
rBS

:“ Γ Ď GzX
rBS

“
ğ

P

pYP “ YG
ğ

´

ğ

P :PĹG

pYP

¯

,

where pYP :“ ΓP ze1pP q. This Y
rBS

is Zucker’s reductive Borel-Serre com-
pactification of the locally symmetric space Y ([20]). In particular, π is con-
tinuous with respect to the induced quotient topology, and hence, similar to

Y
BS

, Y
rBS

becomes Hausdorff. Clearly, if we denote by X
rBS

pP q the image

of XpP q in X
rBS

, then we get an open neighborhood Y pP q :“ ΓP zX
rBS

pP q

of e1pP q “ NP zepP q.
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2. Saper’s Tiling Theory

To construct our reductive modifications Xred and Y red of X and Y , re-
spectively, we need to make modifications withinX with respect to parabolic

subgroups P , by cutting the P -part off first, then gluing back the ĂMP -part.
To make this operation as canonical as possible, we use Saper’s tiling the-
ory [12], a geometric realization of Arthur’s analytic truncation, based on
Langlands’s cone decompositions for root spaces.

Following Saper ([12]), a tiling of X
BS

is a cover X
BS

“
Ů

P XP by
(nearly) disjoint sets (called tiles), having the following properties

(i) The central tile X0 :“ XG is a closed, codimension 0 submanifold
with corners contained in X.

(ii) The closed boundary faces tBPX0uP of X0 are indexed by P P

ParapGq so that P 7! BPX0 is an incusion preserving bijection.
(iii) Each boundary face BPX0 lies in a canonical cross-section tbP u ˆ

epP q.
(iv) The P -tile XP pP ­“ Gq is obtained from BPX0 by flowing out under

the geodesic action of the strictly dominant cone AP p1q “ exp
`

a`
P

˘

,

that is XP “ AP pbP q ˝ BPX0, where a`
P denotes the positive Weyl

chamber in aP and AP pbP q :“ bP ¨ AP p1q.

Furthermore, the tiling is called Γ-invariant if γ ¨ XP “ X γP for all γ P Γ
and P P ParapGq, where γP :“ γPγ´1. Directly from the definition, it is

not difficult to conclude that for a fixed tiling X
BS

“
Ů

P XP we have

(a) Each P -tile XP is a codimension 0 submanifold with corners.
(b) The closure of any two tiles are either disjoint or intersect in a com-

mon closed boundary face. That is, for P, P 1 P ParapGq,

clpXPq X clpXP1q “

#

clpApP_P1qpbP_P1q˝BPXP1
X0, P X P 1 P ParapGq

H, else

Here P _P 1 denotes the smallest parabolic subgroup of G containing
P Y P 1.

Furthermore, if the tiling is Γ-invariant, then

(c) The central tile ΓzX0 is compact.
(d) For all P P ParapGq, the natural projection ΓP zclpXPq “ APpbPq ˝

ΓPzX0 ! π
`

clpXPq
˘

is a homeomorphism.

Note that for any P P ParapGq, the associated bP in the correspond-
ing canonical cross-section tbP u ˆ epP q is determined as the intersection
of the canonical cross-section tbQu ˆ epQq for Q Ě P . Therefore among
all bP ’s, only tbQ : Q maximalu are essential. For this reason, we call
b “ tbQuQPMaxpGq the parameter of the tiling. In fact, a tiling is uniquely
determined by its parameter b as we can apply the following discussion to

X
BS

: For any open subset M Ă X
BS

, there exists at most one decom-
position M “

Ů

R MR for which MR Ď XpRq is clpARp1qq-invariant and
satisfies

MR “

´

ARpbRq ˆ πRpMRq

¯

X M.
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In fact if P Ď R, MP X epRq “ πRpMP q and hence

M X epRq “
ğ

P

MP X epRq “
ğ

PĎR

πRpMP q.

Therefore

πRpMRq “

´

M X epRq

¯

∖
ď

PĹR

πRpMP q.

Therefore MR is uniquely determined if R is minimal, and by recursion on
parabolic rank in general.

In other words, from stratified manifold point of view, we may reconstruct
a tiling by first determining the most deepest tile for minimal parabolic
subgroup P0 by setting

πP0pXP0q “ epP0q,

then use recursion on parabolic ranks to recover outer tiles XR via

πRpXRq “ epRq ∖
ď

PĹR

πRpXP q.

In particular, the central tile is given by

X0 “ XG “ cl
´

X∖
ď

P:P ­“G

πGpXPq

¯

.

Saper ([12]) divides his tiling constructions in three steps. Namely, the
first on the root space aP , and hence on

AP :“
ğ

R:RĚP

xAP yR with xAP yR :“ exp
`

xaP yR
˘

by using the famous Langlands’s cone decomposition for the root space aP
in terms of parabolic subgroups R pP Ď Rq of G:

aP “
ğ

R:RĚP

xaP yR,

where

xaP yR :“
!

v P aP : γRpvq ą 0 @γR P ∆R & ϖP
α pvq ď 0 @ϖR

α P p∆R
P

)

;

the second on XpP q “ AP ˆ epP q by using the first step to get

XpP q :“
ğ

R:RĚP

XpP qR with XpP qR :“ bP ¨ xAP yR ˆ epP q.

In particular, with XpP q0 “ XpP qG,

BRXpP q0 :“ bP ¨ BRxAP y0 ˆ epP q Ď BRXpRq0 “ tbRu ˆ epRq

then finally on X, by setting

XR :“
č

P :PĎR

XpP qR and BRX0 :“
č

P :PĎR

BRXpP q0.

Ideally, this three-step construction would offer us a tiling of X
BS

. How-
ever, in Saper’s discussion, say in Theorem 5.7 of [12], there is a very impor-
tant technical condition: The parameter b involved should be sufficiently
regular in the sense of Arthur ([1]). Indeed, whether the XR’s above cover

X
BS

depends heavily on the classical reduction theory, for which to work,
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the associated Siegel sets should be chosen to be sufficiently large, say ap-
proaching to the P -cusps for each P . This is quite similar to the discussion
in trace formula using Arthur’s analytic truncation ΛT , where T is always
assumed to be sufficiently regular.

However, there is an alternative modern treatment to the classical reduc-
tion theory using stability. This new stability approach has proven to be
very powerful, and indeed significantly simplifies the matters involved: After
all to get a reduction theory, as what was done in Lafforgue [9], there is no
need to require the parameter T to be sufficiently large: T “ 0 is already
sufficient! This Lafforgue’s work for G “ SLn, i.e., for vector bundles on
curves over function fields, was generalized to number fields first for OF -
lattices by myself in [16]. Later, I was able to treat general split reductive
groups G{F to obtain Theorem16.3 in [17]. Back to the point whether the

XR’s cover X
BS

, it suffices to show that Arthur’s truncation ΛT01 for the
constant function 1 on Y yields a compact subset ΣT0 for a fixed T0 P a`

0 ,
the positive Weyl chamber in a0. Once this is achieved, then we can form
a tiling of Saper, by letting ΣT0 to be the central tile X0: Indeed, despite
of the fact that in Saper’s paper [12], Arthur’s truncation was not used,
but in essence, Saper’s tiling theory is a geometric companion of Arthur’s
truncation theory. All tiling constructions of Saper can be carried out us-
ing Arthur’s truncation theory: This is certainly the case for the AP level
tiling in the first step – Saper’s construction is simply equivalent to (Arthur-
)Langlands cone decomposition of aP . (See e.g. Osborne–Warner [11].) On
the other hand, Arthur’s ΛT is a well-designed device taking care of each
P -level carefully so as to offer a uniform treatment for all P ’s. Viewing from
this, it is only natural to assume the sufficiently regularity for the parame-
ter b in Saper’s titling theory – After all, in Arthur’s truncation theory, the
parameters T are always assumed to be sufficiently regular, to make sure
that ΛT1 becomes a compact subset in X after carefully removing from X
the P -contributions for all P ’s, with the help from the classical reduction
theory. Once this central tile is obtained, the P -direction extension using
geodesic action becomes rather direct following Saper.

We will leave our further discussions in this direction to some other occa-
sions (see e.g. [18]). Instead, for our limited purpose here, let us next recall
the following qualitative main theorem of [12], besides the existence result
mentioned above.

Theorem 1 (Theorem 6.1 of [12]). For Γ-invariant parameter b and t P

clpAGp1qq, let tXP,tu be a tiling of X with parameter t ¨ b.

(1) For all t P clpAGp1qq, there exists a unique Γ-equivariant piecewise-

analytic retraction rt : X
BS

! X0,t satisfying rtpAP p1q ˝ yq “ y for
y P BPX0,t and P P ParapGq.

(2) For all t P clpAGp1qq, there exists a unique Γ-equivariant piecewise-

analytic diffeomorphism st : X
BS

! X0,t such that for all P P

ParapGq

(i) st preserves the AP p1q-orbits in XP,1.

(ii) The family of diffeomorphisms induced on the AP p1q-orbits in
XP,1 is constant with respect to the canonical cross-sections.
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(iii) In terms of the coordinates a 7! pa´αqαP∆P
, each coordinate

function of the diffeomprphism induced on AP p1q is the expo-
nential of a polynomial having degree at most 1 in each variable.

Both rt and st depend piecewise-analytically on t. As t tends to infinity
under the action of a strictly dominant 1-parameter subgroup, rt and st
converge to the identity; and as t tends to 1, st converges to r1.

3. Reductive Modifications Xred and Y red

and their Compactifications Xred and Y red

For Zucker’s reductive Borel-Serre compactification X
rBS

, working over
various boundaries, the P -level reductive structure 0MP {KMP

Ă NP zepP q

can be glued with the R-level reductive structure MR{AMR
KMR

Ă NRzepRq

even when P Ĺ R. This is because the fact that, by the construction,
the P -boundary epP q » epP q ˆ pt8urP q is disjoint from the P -boundary
epRq » epRqˆpt8urRq. However, within the symmetric space X, since epRq

and epP q are well organized, a simple gluing does not work. To solve this,
we examine the structure on Saper’s tiling associated to the central tile X0

first, and then make crucial reductive modifications on each P -tiles when
flowing out under the geodesic action of the cone AP p1q for the canonical
cross-sections.

Recall that the P -boundary BPX0 of X0 is contained in BPXpP q0 “

tbP u ˆ epP q, and inside X
č

P :PĎR

BRXpP q0 “ BRX0 with BRXpP q0 “ bP ¨ BRxAP y0 ˆ epP q.

As remarked after (1), we view epP q as a part of the well-organized part
of epRq when P Ď R. This is achieved by considering the geodesic action
of AP,R on epRq (on which AR acts trivially), so that epP q » epRq{AP,R “

epRq{AP . Accordingly there is a natural stratified structure when taking the
NP -quotient: Since NP Ě NR, there is a natural morphism

NP zepP q ! NRzepRq

induced by the projection epP q ! epRq. We may identify NP zepP q with

AP,R ˆ

´

NRzepRq

¯

. Thus for x P epRq, the fiber over NRzx P NRzepRq in

NP zepP q includes the AP,R-directions, ensuring smooth transition. In other
words, if we set

BRXpP qred0 :“ bP ¨ BRxAP y0 ˆ NP zepP q,

then BPXpP qred0 “ tbP u ˆ NP zeP . And for P Ď R, we may and hence
will view BPXpP qred0 and BRXpRqred0 as the subspace contained in different
strata. Then it makes sense to talk about

BRXred
0 :“

č

P :PĎR

BRXpP qred0 ,

and hence introduce a stratified manifold Xred
0 by

Xred
0 :“ Xo

0

ğ ď

P ­“G

BPXred
0 with Xo

0 :“ X0 ∖
ď

P :P ­“G

BPX0.
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Accordingly, for each P P ParapGq, we modify the corresponding P -tile
XP “ AP pbpq ˆ epP q to Xred

P :“ AP pbpq ˆNP zepP q and its partial reductive

Borel-Serre compactification X
red
P :“ AP pbpq ˆ NP zepP q. And finally, from

a new stratified topological space Xred by setting

Xred :“ Xo
0

ğ ğ

P ­“G

Xred
P and Xred :“ Xo

0

ğ ğ

P ­“G

X
red
P ,

we obtain a commutative diagrams with horizontal maps being natural strat-
ified quotients

X “ Xo
0

ŮŮ

P ­“GXP −! Xo
0

ŮŮ

P ­“GXred
P “ Xred,ã−

!

ã−
!

X
BS

“ X0
ŮŮ

P ­“GXP −! Xred
0

ŮŮ

P ­“GX
red
P “ Xred,

for which the bottom morphism factorizes through X
BS

! X
rBS

. In partic-

ular, Xred and Xred are Hausdorff.

Theorem 2. Let tXP uPPParapGq be a Γ-invariant tiling of Saper associated
to parameter b. Then, with the same notation as above,

(1) tXred
0 u Y tX

red
P uP form a tiling of the stratified space Xred. That is,

(i) The central tile Xred
0 “ X

red
G is a closed, codimension 0 subspace

of the stratified topological space Xred.
(ii) The closed boundary faces tBPXred

0 uP of Xred
0 are indexed by

P P ParapGq so that P 7! BPXred
0 is an inclusion preserving

bijection.
(iii) Each boundary face BPXred

0 lies in a canonical reductive cross-
section tbP u ˆ NP zepP q.

(iv) The P -tile X
red
P pP ­“ Gq is obtained from BPXred

0 by flowing out
under the geodesic action of the strictly dominant cone AP p1q “

exp
`

a`
P

˘

, that is X
red
P “ AP pbP q ˝ BPXred

0 .

(2) For Γ-invariant parameter b and t P clpAGp1qq, let tXP,tu be a tiling

of X with parameter t ¨ b.
(a) For all t P clpAGp1qq, there exists a unique Γ-equivariant piecewise-

analytic retraction

rredt : X
rBS

“ X
ğ

´

ğ

P :P ­“G

XP

¯

! Xo
0,t

ğ

´

ğ

P :P ­“G

BPXred
0,t

¯

“ Xred
0,t

satisfying rredt |X “ rt|X , and

rredt pAP p1q ˝ NP yq “ NP zNP y p@y P BPXred
0,t , P P ParapGqq.

(b) For all t P clpAGp1qq, there exists a unique Γ-equivariant piecewise-

analytic diffeomorphism st : X
rBS

! Xred
0,t such that for all

P P ParapGq

(i) st preserves the AP p1q-orbits in X
red
P,1.

(ii) The family of diffeomorphisms induced on the AP p1q-orbits

in X
red
P,1 is constant with respect to the canonical reductive

cross-sections.
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(iii) In terms of the coordinates a 7! pa´αqαPDeP , each coor-

dinate function of the diffeomprphism induced on AP p1q

is the exponential of a polynomial having degree at most
1 in each variable.

Both rt and st depend piecewise-analytically on t. As t tends to in-
finity under the action of a strictly dominant 1-parameter subgroup,
rt and st converge to the identity; as t tends to 1, st converges to r1.

(3) Let ρ : G ! GLpV q be a regular representation fo G. Denote by V
the induced local system on Xred. Then

IH˚pY red,Vq » IH˚pY
rBS

,Vq.

(4) If Y is of equal rank, then

IH˚pY red,Vq » IH˚pY ˚,Vq » H˚
p2qpY

o
0 ,Vq.

Here, Y ˚ denotes an equal rank Satake compactification of Y and we
have use the diffeomorphism between Y o

0 and Y in (2) to pull back
the metrics of pV, Y q to pV, Y o

0 q.

Proof. (Sketched) By our construction, the same proof for (1) and (2) in
Saper [12] works here as well, since Saper’s arguments are concentrated in
the AP ’s, for which our constructions remain the same–the only part we
altered is about the nilpotent radical, which has nothing to do with the
torus parts AP ’s, being nilpotent versus torous. Hence it suffices to treat
(3) and (4). We first deal with (3). Recall that the intersection cohomology
is determined by the perverse (intersection cohomology) sheaf IC˚, which
depends on the stratification and codimensions of singular strata. To show

that Y red and Y
rBS

have the same intersection cohomologies, we first note

that the only difference between Y
rBS

and Y red comes from P -level nilman-
ifold fibration epP q −! NP zepP q or better ΓP zepP q −! ΓP zMP {KP with
nilmanifold fibers ΓNP

zNP . But it is well known that such a nilmanifold
fibration collapses interior topology appropriately to the boundaries, since
nilmanifolds have cohomology concentrated in degree up to their dimension.
In other words, relative to codimension dimNP `dimAP of the P -stratum,
the nilmanifold’s contribution is trivial in high degrees, not affecting the
perverse sheaf IC˚. Therefore, this modification from epP q to NP zepP q in

Xred and X
rBS

, or better in Y red and Y
rBS

, does not alter the perverse
sheaves IC˚. This essentially gives (3).

In a more concrete term, associated to the nilmanifold fibration epP q !
NP zepP q, the fibration is rooted from epP q » X{AP » NP ˆ MP {KP so
that the map epP q ! NP zepP q coincides with the quotient NP ˆMP {KP !
MP {KP by the action of NP . But NP is a unipotent group and hence
admits a filtration whose graded pieces are isomorphic to R, accordingly
ΓNP

:“ ΓP X NP may be viewed a successive quotient lattice in R, so the
fiber over points in ΓP zpMP {KP q is a nilmanifold, i.e. a quotient ΓNP

zNP .

Now on Y
rBS

, the P -tile in Y is given by XpP q XY “ AP ˆ epP q » AP ˆ

pNP ˆ MP {KP q, while in the reductive Borel-Serre compactification Y
rBS

itself, the first AP -direction is compactified to AP via p0,8qrP ã! p0,8srP

and the NP -direction is quotient out to form ΓP zpMP {KP q. Clearly, the
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map epP q ! NP zepP q reflects the collapse of the NP (nilmanifold) to a
point in the P -boundary stratum.

Turning to Y red, the P -tile is given by AP ˆ ΓP zpMP {KP q for which the
NP -factor is absent in the interior, so that Y red is constructed to approach
ΓP zMP {KP directly. That is, the compactification only involves AP ! AP ,
while mapping ΓP zMP {KP identically to itself.

What is the impact of our construction to the intersection cohomol-
ogy: The key point is the nilmanifold fibration epP q ! NP zepP q or bet-

ter ΓNP
zNP ˆ ΓP zMP {KP ! ΓP zMP {KP in Y

rBS
describes the topology

of the interior P -tile approaching the boundary. But the nilmanifodls are
homologically trivial in high dimensions relative to their codimension. So
the fibration NP ! epP q ! NP zepP q implies that the NP -directions con-
tribute no additional singularities to the P -boundary stratum ΓP zMP {KP .
Consequently, in the perverse sheaf, the cohomology of the nilmanifold fiber
does not alter the truncation conditions, which are set by the codimension

of ΓP zpMP {KP q. Moving to Y red, the absence of the NP -factor simplifies
the interior: Within Y red the P -tile is given by AP pbP q ˆ ΓP zpMP {KP q

lacking the nilmanifodl fiber, but the boundary stratum is the same as in

Y
rBS

, while the compactification AP ensures the same topological collapse
to ΓP zpMP {KP q.

Clearly, the intersection cohomology depends on the stratification at the
boundary, not the interior topology, as long as the interior is homologi-

cally compatible with the boundary. Thus the nilmanifold fibration in Y
rBS

ensures that the NP -dierctions do not introduce additional perversity con-

straints beyond of ΓP zpMP {KP q, and similarly, in Y red, the direct approach
to MP {KP skips the NP -fibration but lands on the same boundary. This
then clearly preserves the perverse condition and hence the perverse sheaf.

That is to say, the nilmanifold fibration epP q ! NP zepP q in Y
rBS

ensures
that the interior P -tile’s topology (with NP q collapses homologically triv-

ially to the boundary, matching the way how Y red proceed under a much
simpler interior structure.

To complete our proof of (3), let us finally check that in both spaces, the
P -stratum codimensions are given by dimNP ` dimAP even with different

interiors. Indeed, both Y
rBS

and Y red admit the same interior Xo
0 for the

central tile X0 and with the same P -boundary ΓP zMP {KP . So the perverse
sheaf truncations are identical

dimpsupppξq X ΓP zpMP {KP q ď i ´

„

dimNP ` dimAP

2

ȷ

Consequently, we obtain an identification on perverse sheaves

ICpY
rBS

q » ICpY redq,

since the nilmanifold fibration in Y
rBS

ensures that the NP -factor does not
alter the perverse conditions, to give the same structure using Y red with the
much simpler interior. This proves (3).

Finally let us verify (4). But this is a direct consequence of (3) and the
well-known conjecture of Rapoport and Goresky-MacPherson, verified by
Saper in [13], and the famous conjecture of Zucker for Hermitian type X,
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proved by Looijenga [10] and Saper-Stein [15] independently, and generalized
by Borel, based on Borel-Casselman [2] for equal rank X, proved by Saper-

Stein [15]. Indeed, by (3) we have IH˚pY red,Vq » IH˚pY
rBS

,Vq. So it
suffices to verify

IH˚pY
rBS

,Vq » IH˚pY ˚,Vq » H˚
p2qpY

o
0 ,Vq

under the condition of equal rank. As explained above, this becomes rather
direct as to be indicated below.

We first treat the isomorphism IH˚pY
rBS

,Vq » IH˚pY ˚,Vq. Under the
equal rank condition, this is exactly the content of the well-known conjecture
of Rapoport and Goresky-MacPherson, verified by Saper in [?] using his L-
module theory.

Then, let us verify the second isomorphism. Note that, by Theorem1(2),

there is a diffeomorphism contraction Y
BS

! X0 which implies that there is
a diffeomorphism contraction Y ! Y o

0 . Therefore, we have an isomorphism
H˚

p2q
pY o

0 ,Vq » H˚
p2q

pY,Vq. Now under the equal rank condition, by Borel-

Zucker conjecture, verified by Saper-Stein in equal rank situation, we have
H˚

p2q
pY,Vq » IH˚pY ˚,Vq. Therefore, IH˚pY ˚,Vq » H˚

p2q
pY o

0 ,Vq.

□

Remark 1. Under the equal rank condition, using the natural rational
structure on the intersection cohomology, we can and hence will define a
new type of regulator, unique up to rational factors, as the determinant of
the isomorphism in Theorem2(4). Many examples suggest that for SL2 over
real quadratic fields F , or the same over the assocaited Hilbert modular
surfaces, these regulatore are essentially the Beilinson regulators associated
to Hilbert modular form f of parallel weight (2,2) in S2,2pSL2pOF qq via the
special values Lpf, p1, 1qq. We leave the details to the reader.

Disclaim: This work has not been supported by any grands.
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