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Chapter II.l.

Chapter 11.1. Grothendieck-Riemann-Roch Theorem..

243

In this cbapter, we will give tbe Grotbendieek-Riemann-Roch theorem in algebraic
geometry and its proof. During tbe proCes5 , we introduce some concepts which will be
used in the arithmetic Riem811n-Roch theorem. Later, we state and prove the arithmetic
Riemann- Roch theorem in a similar way. .

For any regular algebraie variety X, there is a Chow group assoeiated witb it, denoted
by CH(X), wbich is a quotient group of th~ free abelian group of algebraic eycles modulo
rational equivalence. By the Cbow moving lemma, we ean introduce a unique interaection
pairing on CH(X)Ql and witb this interaeetion pairing, CH(X)Q beeomes a commutative
ring. There are also two Grothendieek K-groups, denoted by Ko(X) (resp. KO(X», which
are defined as the quotient groupe of the free abelian group generated by vector sheaves
(resp. coherent sheaves) modulo exact sequenCeB. Sinee every coherent sheaf over a regular
variety has a finite vector aheaf resolution, we know that the two Grothendieck K-groups
in fact are isomorphie. There is a natural multiplication on K(X) and we know that there
is a natural isomorphism .

eh : K(X)Q - CH(X)Q.

Furthermore, with respeet to proper morpbiams, there are functorial properties for the
objects defined above. One roay now state tbe Grothendieck-Riemann-Roch theorem
in these terms as follows:

For aoy proper morphisffi / : X - Y of regular algebraic varieties, the diagram:

i.B conunutative.

K(X)
fK !
K(Y)

ch~J) CH(X)Q

1 fCH

~ CH(Y)Q

In particular, ifY ia a point, it becomes tbe remarkable Hirzebruch-Riemann-Roch
theorem: For any vector aheaf E on a regular variety X, we have

x(X,l') =Lch(l')td(X).
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§II.l.l Some Basic Concepts

We now introduce seme basic concepts which will be used later.

1I.1.1.a. Length and Order

Let R be a noetheriari ring and M a finitely generated R-module. We aay that M has
finite length if there exist a positive integer I aod a chain of submodules of M

aod maximal ideals Pi of R such that

for aH i. Then I ia the length of M aB a R-modulej more exactly, I = IR(M). It is not
difficult to prove that I iB weU·defined. Tbe dimension of R ia defined as tbe maximum of
the lengths of maximal ideals of R.

Now"let R be an one-dimensional integral domain and K := Frac(R) the field offraetions
of R. Let f = ab- 1 E K· with a, b E R, tben we define

and caU it the order of f. This ia well-defined: In fact, tbe obvioUB map ord : K· - Z is a
homomorphism from the multiplicative group K· to the additive group Z.

II.l.l.b. Torsion Modules

Let R be a Noetherian ring and M, N two R-modules. We define the torsion modules
Torr(M, N) as follows: For projective resolutions P. aod Q. of M aod N respectively,

II.1.I.c. Intersection Multiplicity

Let X be a noetherian aod separated scheme. We Bay that two closed integral BUb

schemes Y, Z of X intersect properly, if

codimx (Y n Z) = codimx Y + codimxZ.

In this CB.Se, we define the intersection multiplicity of Y and Z at a point ;r: E Y n Z to
be
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It ean be proved that this definition is compatible with the geometrie definition in the case
of compact complex manifolds.

II.l.l.d. Rational Equivalence and Chow Groups

Let X be a noetherian and separated scheme. For any integer p ;::: 0, let X(p) (resp.
X(p) be the set of points of dimension (resp. codimension) p in M, i.e. for x E X(p) (resp.

X(p), {x} ia an irreducible closed subscheme of X of dimension (resp. codimenaion) p. Let
Zp(X) (resp. ZP(X)) be the free abelian group generaled by X(p) (resp. X(p»). Usually,
we eall tbe elements of Zp(X) (reep. ZP(X») dimension (resp. codimension) p-algebraic
cycles; they are finite integer linear combinations of dimension (resp. codimension) p closed
integralaubschemes of X. We say a pair of dimension (resp. codimension) p-algebraic eycles
Y, Z are rationally equivalent if there exist finitely many rational functions f. E k(Yi)
with y, E X(p+l) (resp. X(p-l), auch that

y - Z = E div(fi),
i

where
div(Ji) := E ordor;;r.• (li) {x}.

zE Xe,)(reap.X('»)n{Vi}

If Z is zero, we say that Y ia rationally equivalent to zero. This equivalence relation is
compatible with the addition on algebraic cycles. Hence, aH elements which are rationally
equivalent to zero form a subgroup Rp(X) (resp. RP(X» of Zp(X) (resp. ZP(X)). The
p-th Chow homology group (resp. Chow group) ia

CHp(X) := Zp(X)/Rp(X)

(resp.
CHP(X) := ZP(X)jJlP(X).)

There is also a relative theory for the above concepts. Let Y be a closed aubscheme.
Then we let Z~ (X) be the set of codimeDBion p-algebraic cycles with support contained in
Y, R~(X) the subset of elements in Z~(X) which are rationally equivalent to zero, and

CH~(X) := Z~(X)/~(X).

In a similar way, we have eH; (X).

II.1.1.e. Spectral Sequences

A spectral sequence consists of the following data:
(1) A family (Er") of objects of an abelian category, where p,q, rare integers and p, q ;:::

0, r ~ 1.
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(2) Morphisma

such that

Grothendieck- Riemann- Roch Theorem

~+r,9-r+l~,9= O.

(3) The objects ~~l on the (r+ l)lt level are derived from those 00 the r th level aB fallows:

Ir there is a family of objects E n
, n;:: 0, and for each E" a filtration:

oc ~ C ~-l C E~ = E"

such that
[;111 / [;111 _ D'O.n - p
L p Lp+l - L oo I

where for each (p, q), there is an ro depending on (p, q) such that for all r ;:: rOt eP,:.9 =0 =
~-r,9+r-l, then we let

D'O,9 _ EP,9 - _. D'O,9
L;'o - ro+l - •.. -. L oo .

Usually, we denote this situation by

The relation betweeo E" and the E~,9 may be made explicitly for small n. In fact, we
have

EO,o _ EO,o - EO
2 - co - .

Then

Hence we have an exact sequence

~,1

O E l.O EI EO,l' E 2,o E 2 E1,1 E3,O
-2- -2-2-1-2-2'

The most important fact for the present discussion ia the following

Theorem. Let A,B and C be abelian categories. Assume that A, B have enough
injectives. Let F : A - Band G : B - C be left exact functors. If F takes injeetives
to G-acyclics, then there is a speetral sequence
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for any A E A ob. In particular, we have the exact sequenee

Furthermore, if F is e.xact, then

RP(GF)(A) ~ (RPG)FA.

247

The proof of this theorem can be found in any stal"fldard book on homological algebra.

11. 1. I.f Simplicial Category

Let adenote the category of totally ordered finite sets with monotonie maps. That
is, the objects of ß are the finite sets [n] := {O < 1 < ... < n}, n = I, 2, 3, ... , and the
morpbisß1S of ß are generated by faees and degeneracies:

{)i : [n - 1] - [n)

and
(fi : [n).- [n - 1],

which are defined by

{
j if j < i

{)i(i) = ).'+ 1, th .o erwlsej

and

{
. if j :S i

(fi(i) ~ ~'_ I, otherwise.

For any category C, tbe simplicial category SC of Cis defined aB folIows: Tbe objects
of SC are eontravariant functors S, S : ß - C, 'and the morphisms are natural transfor
mations. H A ia an abelian category, we denote by CA the category of .ehain eomplexea
associated with A. There ia a natural funetor N, N : SA - CA: For any object S of SA
let

(NS) .- {So, ifn=Oj
n'- n~=IKer(l4:Si -+ Si-d, otherwise.

Conversely, there is also a natural funetor K, K : CA - SA: For any object C in CA, let

where 1] rUM over all surjective monotonie map8 .,., : [n] - [q]. It is not difficult to prove that
the funetors K N and N K are naturally equivalent to tbe corresponding identity functors.
In particular, N and K are exact functors.
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II.l.l.g. K· Theory

G rothendieck-Riemann- Roch Theorem

In this aubsection, we briefly give the definition for algebraic K -theory. For more details,
see {Qu 73], or Chapter 8 later. -

Roughly speaking, a eategory & ia an exact category, if there exists an abelian cate
gory A such that Eisa fuil subcategory of A, whieh is closed under extensions, Le. for aoy
exact sequence

o- EI - E2 - E3 - 0

in A, EI, E3 E ObE implies E2 E ObE. •

Followiog Quillen, for aoy exact category E, we defioe the K-groups Km(E) by using
tbe classifying space of tbe Quillen construction of the categorYI BQE, and let

Km(E) := 1rm +I(BQE),

the (m + l)-th homology group of BQE. Note that Km(E) does not depend on the choiee of
A, and that Ko(E) is isomorphie to the Grothendieck group of E: The quotient group of
the free abelian group generated by tbe objecta of E modulo exact sequences.

Let X be a noetherian separated scheme and Y be a closed subscbeme of X, tben tbe
follbwing are ~xact categories:

M(X): the category of coherent sbeaves on X;
My (X): the category of cüherent sheaves on X, supported in Y;
P(X): the category of vector sheavea on X.

~or m E Z~o, we let

Km(X) := Km(M(X)), Ky(X):= Km(My(X)), Km(X):= Km(P(X)).

It follows from the definition that

Ky(X) ~ Km(y).

Also if Y ia a closed subscheme of X with U =: X - Y I then there exists a natural exact
sequence

Examples. Let F be a field. It is known that

Ko(F) ~ Zj

K 1(F) ::::: F-;

K2(F) ~ F· ~z F- / < x ® (1 - x) : x E F· - {I} > .

More precisely, K 'l( F) may be defined by: the generators are {Z', y} for x I Y E F· - {1};
and, the defining relations are

{XIX'l'Y} = {Xl'Y} + {x2,yh

{X,YIY2} ={x,Yd + {x,Y'l}'
{x,l-x}=O.
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There is also a loeal-global long exaet sequenee in algebraic K-theory. To explain, we
need more terminology aod notation. A eategory S is called Serre exact if there exists an
exact eategory E such that S is a full subcategory of E and for any exact sequence

in &, EI, E3 E obS is equivalent to E2 ES. For such a pair (S I E), there ia a oatural quotient
category EIS and there is the long exact sequence

•

We will not go into greater detail, hut instead, we give the following

Example. Let A be a Dedekind domain with field of fraetions F, E the exact category
of finitely generated A-modules, S the Serre exact (full subcategory) of torsion A
modules. Obviously,

S ~ llp~oP(Spec(k(p))), EIS ~ P(SpecF).

Hence we have

... - Kp+1(F) - €Bp~oKp(k(p)) - K~(A) - I<p(F) - ....

In particular, the map K1(F) - €Bp~oKo(k(p)) is the valuation mapping

defined by f 1-+ (vp(f)).

In general, if X is a regular scheme, Y a closed subscheme and M~(X) the category of
coherent sheaves :F on X I supported on Y with codimx (Supp:F) ~ p, then M~ (X) defines
a filtration of tbe exact category My(X) by successive Serre exact subcategories.

Theorem. With the same notation as above, there exists a spectral sequence E~: (X)
with differential

cE,f . EP,'(X) _ EP+r,,-r+l(X)
r . rY rY ,

which cooverges to K';;P-'(X). In particular,

EJ:" - {K_p_f(M~(X)IM~+l(X)), if P ~ 0, aod p + q ~ 0;
1Y - 0, otherwise.
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II.l.1.h. A-Ring

Grothendieck-Riemann-Roch Theorem

A A-ring ia a unitary ring with operatioIl5 AP , AP : R - R, for each p E Z>o, which
satisfy the following conditions: -
(1) AO = 1, Al = IdR1 and AC(1) =0 for aille > 1.

(2) A'=(X + y) =L~=o Ai (3:)A C
-

i (y).
(3) A'=(XY) = P,I;(A l (x), ... , AJ:(X); Al (y), . .. ,AJ:(y)), wbere Pr are certain universal integral

coefficients polynomials. .
(4) ,\1:(AI(X)) =PI:.,(AI(Z), ... ,AJ:/(X}), where 11,,= are c;rtian universal integral coefficients

polynomials.

Ir we let
At(Z) := L A.l: (x)t",

I:

then by (2) we have
At(X + y) = >'t(X)At(Y).

Further, if x =Xl + ... + X rn with AI:(Xt} =0 for k > 1 and any i, we have

m

>.,(x) =TI(1 + tXi).
i=l

So one may easily find what are the universal polynomials Pie". Similarly we can also find
ß. From this, we get the following

Verification Principle. If a universal relation among operations on a >.-ring ia valid
for the elements of the form x =Xl +... + X n so that >.I:(x.) =0 for any k > 0, i, then
thia relation holds in general.

Let
-JtAt(X)

tP-t(x) := -t >'t(x) .

Tben the Adams operations .pJ:(x) on R is defined so tbat

L: ,pJ:(z)tJ: := tPt(x).
J:~l

The Adams operation is c1early a ring endmorphism of R.

§II.1.2 Algebraic Intersection Theory

There are several wayB to introduce algebraic interseetion theory, but basically, they
have two reots: one ia provided by the famous Chow moving lemma. The other ia given by
a natural pairing induced from higher algebraic K -theory. The Chow moving lemma has
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the ad vantage that it gives a completely geometric picture; while the ](-theory approach ia
suitable to do everything algebraically and axiomatically. Further, the"Chow moving lemma
only works for a restricted numbers of categories, while the K -theory method is valid for a
larger range of cases.

We conaider first the algebraic intersection theory for a regular scheme X by using the
K-theory approach. We then discu8B the Chow moving lemma approach at the end of the
chapter.

I1.1.2.a. Main Theorem

In this subsection, we prove the following

•

Main Theorem. Let X be a regular scheme aod Y be any closed subscherne. Then
(1) There is a decreasing filtration on KJ' (X):

a group isomorphism 0",

such that for any morphism f : X -+ X'I

(2) For any closed subscheme Z, which is not contained in Y, there ia a unique product

FP Kl: (X) F~Kl (X) C Fp+q Kl:nz (X),

such that under the natural roap 0", if Z1, Z2 intersect properlYI then

[Zd[Z2] = [ L mz(ZlJ Z2){Z}].
~eZlnZ2

As an application, we then have the following

Theorem.. Let X be a finite-dimenaional regular scheme and Yl Z be closed sub
schemes, then there exists a pairing

CH~(X)@ CH~(X) - CH~~'z(X)q

satisfying
(1) EBY,pCH~(X)Q iB a commutative ring with a unit element [X].
(2) The ring structure ia compatible with the change of supports Y' C Y, Z' C Z.
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(3) For [Yd E CH~(X), [Zd E CH~(X), where Y1 , Zl intersect properly, we have

[Yd[Zd = [
zEY1nZlnX(I'ff)

Proof. Hy the main theorem, we know that there is a natural isomarphism n. \Vitb
tbe help of this isomarphiBm, we can define a pairing aB stated above and tbe rest ia trivial.

Ir Y = Z = X, there is a multiplication on CIf{"X)Q = EBpCHP(X)Q and under
this multiplicatioD, CH(X)Q is a unitary ring. Obviously, this multiplication is a direct
generalization of the usual intersection pairing.

Proof Of The Main Theorem. This will be achieved in four steps:

Step 1. Putting a '\-ring structure on EByCX Kr (X).
Step 2. Giving two different definitions of ppKr (X).
Step 3. Using a product from higher K-theory.
Step 4. Coincidence of two filtrations.

II.1.2.b. The '\-Ring Structure

Step 1. We start with tbe following

Lemma. Let X be a regular scheme. Then there exists a '\-ring structure on the direct
surn €ByCX Kr (X) with the following properties:
(1) (Naturalness) ,\1: maps Kr(X) to itself.
(2) (Functoriality) The '\-ring structure IS functorial.
(3) (Uniqueness) Ir X = Spec(R), Y = Spec(RjaR) with a E R, then for the dass of
the Koszul comple.x

Kos(a) : 0 - R ~ R - 0,

we have tPl:«(Kos(a)]) =k[Kos(a)].

Proof. First, we prove that there is a natural '\.ring structure on Ko(X). Let Mn be
the set of n X n-matrices and let H := Z(Mnl be the associated Hopf algebra aver Z, where
the coproduct JJ : H - H ~ H is defined by

JJ(X,j):= LXil:~Xl:j.
I:

Let

be defined so that, for the standard basis ei,

ei 1-+ L Xij ® ej.

j
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Tbis gives zn the structure of a left H-comodule. Denote the correaponding element in
Rz(Mn) by A1(Idn). Here Rz(Mn) denotes the Grothendieck group of isomorphism dasses
of H-left comodules, free and finitely generated over Z. Denote ..\i:(Idn) the corresponding
k-th exterior power of .\l(Idn). We know that

and that there ia a A-ring structure on Rz(Mn ): Indeed, by the theory of charactera,
...

Hence we have the above isomorphism over Q. Now the result over Z ia a consequence of a
global-Iocal discussion. On tbe other hand, since Rz(GLn) ia imbedded in the Grothendieck
group associated witb the group of diagonal matrices of size n, and aH representations of Tn
are direct sums of one-dimensional representations, tbus there is a natural .\-ring structure
on Rz(Mn ).

Now, using tbe natural indusion Mn ~ Mn+l, we take

Let A be a unitary ring. For any m = (mij) E Mn(A), tbe evaluating map defines a
bomomorphism m : H -+ A. Hence for any representation p : V -+ H ~ V, we obtain an
action p(m) on A ~ V. AB an application, we get a natural action of Rz(Moo ) on Ko(A):
For any projective A-module P, there exists an A-module Q such that PfBQ = An for same
n. Let pE Mn(A) be tbe projection from An to P. And define

([Pool, (P)) ~ [Im Pn (p )],

wbere Pn denotes the restriction of Poo to Mn. Obviously, this action is weH-defined.

Tbe above process may be made globally sa that for any regular scheme X, there is
a natural action of Rz(Moo } on Ko(X). And hence, we can define the ..\-ring structure on
Ko(X) by letting Poo = ..V:(Id); and for any (.r] E Ko(X),

(Written in conerete form, we see that Ai:F ie the usual k-th exterior power of :F, which is
also tbe beginning of the ..\-ring theory.) .

We consider the relative situation and let :F. be a finite complex of vector sheaves
over X, acyeUe outside Y. 5inee ..\I:(:F.) may not be acyclic outside Y, we cannot simply
give the direct definition. However we can UBe tbe discussion in tbe simplicial category
of the laBt secti"on to avoid this diffieulty: For the category of vector sheaves 1'(X) and
.\1: : P(X) -+ P(X) tbe k-th exterior power, we have .\I:(:F.} := (N..\I: K)(:F.) induces
a homotopy preserving functor from CP(X) to itself. So we obtain the operators ..\ on
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Kr (X). Hence we get (1) and (2) of the lemma. Finally, we need to consider 3, the
uniqueness. In general, by definition,

.
where 71i are the n surjective monotonie maps from [n] to [1], given by

(') {O, if j < i (' n )
TJi J:= 1, if j ~ i J = ~ ... , n .

Ir we write (KC)n =F fB E1 fB ... fB En , where Ei is the eopy of E belonging to rJi, then by
the fact that- 1

{

1]1, if i :5 j, (i, j) i (n, n);
rJi 0 {ji = 0, if i =I., j =O,or i =j =n;

1]i -1, otherWlBe,

we know that

if j =0;
if 0 < j < n;
if j =n.

Also, AI; KC is given by the sequence

(AI; KC)n =fB <>+~t+ ...+~ ... lo AQ F @ Aßt E l ~ ••• ~ >l". En,
(a.ßl.···,ß .. )€N ..+1

where the faces d; on A.lI KC are indueed by the faces on KC deseribed above. Thus, we
get, by a direet ealeulation,

(N)'.I: KC)n = n7=lKer(dj) = fB Q+~l+"'+~"' • .10 ).a F e9 ).ßt E1 e9 ... e9 >.13". En.
(a,ßt, ...•fJ .. )EN"+' ,{ji >0

Henee, since F = E = R, we have a =0,1 and ßi = 1. Therefore, N)".I: KC =C[l- k], and
so

).1;[K08(a)] = )...1: [Cl = [N)..I; KC] =[C[l - k]] =(_1)I:-l[C].

[0 particular, (3) comes from the faet that [Kos( a)]2 =O.

II.1.2.e. Two Descriptions oe Filtrations

Step 2. In this step, we give two different methods to construct a filtration of KJ' (X).
The first one comes from the )"-ring structure for Kr (X), from which the natural product
may be given easily; while the Becond one comes from the algebraic cycles with supports,
which gives a natural relation with the Chow groups. Finally, aB one may imagine, once we
have proved that the two coincide, then we have the praof of the maiD theorem.
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We begin with the first method. Since there is a '\-ring structure on K6 (X), thus for
a fixed k > 0 aod i 2: 0, we naturally let the weight i-part of /(6 (X) be

Kr (X)(i) := {ö E Kci (X)Q : ~k(ö) =kiö}.

By the property of a '\-rin~, we know that this definition does not depend on k. Now we let

Next we introduce a produet on FP K ö(-X): lf

ö =: Lö; E FPKci(X)Q, ß=: Lßi E F'iK;(X)Q,
i~p i~'i

are their correspondiog decompositions, we define their product aB folIows:

Ö"ß := L Öi ßi'
ij

By the fact that
~1:(Öißi) =ki+iÖißil

where i + j 2: p + q, we know that ö'ß E FP+'iKJ'nz(X)Q aB desired.

Hut on the other hand, we do not know if this definition gives a filtration. So we
introduce another interpretation, whicb ia based. on the foUowing very easy

Lemma. Let X be a regular scheme and Y a closed subscheme. There exists a ahort
exact sequence

0- u Zcy Im(K; (X) - Kci (X)) - Kr (X)
codimx Z~codimxY +1 "

- $:reynx(...)KJ:r}(Ox,~) - O.

Proof. Since there is the following exaet sequence

and KO(y) =Kr (X), we get an exact sequence

0- Im(Kl(X) - KJ'(X») - Kci - Kci-z(X - Z) - O.

We take tbe inductive limit over all closed subschemes Z C Y with codimx Z 2: codimx Y+1,
to get tbe exact sequence

0- u "zcy Im(Kt(X) - K6 (X» - K6 (X)
codimx Z~codimxY +1

-lim Zcy KÖ-z(X - Z) - O.
codimxZ~codimx Y +1
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Now the assertion eomes from the fact that

!im Zcy Kr -z (X - Z)
codim x Z~codim x Y +1

:: lim .scy KO(Y - Z)
codimx Z~codimxY +1

= E9rE Ynx( ..)KO({z}):: (BrEynx< ... )KfT(Ox,z).

We ean now define a filtration of Ktf (X) by lettin~

F'PKr (X) := U ,zc y Im(Kl (X) - Kr (X)).
codlmxZ~p

The advantage of this definition ia that there is a natural map between it and the relative
Chow groupe: Let Z E Z~(X) be a eodimension p-eycle eontained in Y, then there is a
finite vector sheaf resolution :F. of tbe direct image of Oz on X. DefiDe a map

0' : CH~ (X) - F'P Kr (X)

by letting
O'([Z]) = [.1'.].

Furthermore, taking tbe quotient, we have the m~p

ThuB the maiD theorem may be proved from the following

Theorem. (1) Let X be a regular scheme, Y a closed subseheme. Then

(2) O'Q ia an isomorphism.

Proof. We only prove (1) here, and leave (2) for later.

We begin with a proof of the assertion

which is equivalent to: For a E F'P Kr (X)Q' there exists a unique decomposition a =
L:i~P 0', 80 that 1jI.I: (0',) = k' 0',. This ean be proved by induetion on the dimension of Y.

Ir the dimension is 0, Y is a point x and

So we have to show that the action of 4>1: on a single non-zero element of KJr} (X) =
FdimX Kr (X) is multiplication by kd . For this, let R be the regular loeal ring 0 X,z with



Chapter 11.1. 257

maximal ideal m = (G 1, ... , Gd), where al , ... , Gd ia a regular sequence, whieb gives a system
of parameters. We know that

is a resolution of R/m = ~(z). So we get an element in KJ.t:1(X). Thus the assertion ia a
consequenee of the lemma in step 1.

Now we assurne the assertion is valid for all closed subsehernes of dimension less than
d-m and eonsider the ease with dirn Y = d-m. One nattU'ally tries to UBe the exact sequence
in the previous lemma. In fact, if p > m, then 0' E F,m+l KJ'(X), i.e. a E Im(Kl(X) -;.
Kr (x)) for same Z with codimz(X) ~ m+ 1. Hence, the desired decomp08ition comes from
tbe induction bypotbesis. On the other hand, if p = m, we bave the short exact sequence

Hence,
,pl:(e(a)) = kme(a).

Tbat is, ~(a) - kma E F,m+l Kr (X). By the induction hypothesis, we get a decomposition
for

~(o:) - kma = L: ßi.
i>m

Thus we get a decomposition by setting

ifi> m;
ifi = m.

Tbe uniquenesa is rather trivial: Suppose we have another decomp08ition Li>m o~, then
apply ,pI: to each of them and find that -

E(ki
- km)O:i =L:(k i

- km)ai.
i>m i>m

By induction bypothesis, ai = aj for i > m, and hence a m = o::n.

Now we consider
F'PKr (X)Q 2 FPKr (X)Q.

Ir a e FP Kr (X)Q with a e F" Kr (X)Q - F'9+ 1Kr (X)Ql we have

L:Oi = a = L:ßj,
i2:p i~,

where ßq #; O. Hence a, ::f; 0, 80 P :$ q. So we have the assertion.
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In order to prove that the natural map

crq : CH~(X)Q - GrPKr (X)q

is an isomorphism, we need another description of the Chow groups.

II.1.2'.d. Completion Of The Proof

Step 3. Another Description Of Chow Groups via ~~Theory.

By result.s from the algebraie K -theory in l.g, if X is a regular scheme, Y a closed
subscheme, t~en there exists a speetral sequenee E~}!(X) whieh eonverges to KYP-'(X).
On the other hand, we know that

Thus we ean deseribe E;-/,P(X) and E~;;l,-P(X) preeisely. In fact, by definition, we have

d1 =eP;.-l,-p : Ei;;l,-P(X) - Eiy-P(X) - O.

For a field F, Ko(F) ~ Z, K1(F) ~ F·, so we bave

d1 : $lIEX(I'- qny k(y)· - Z~(X) - O.

Then, by a loeal realization in the sense of Example l.g, we bave the following

Lemma 1. Witb the same notation aB above,

In the same spirit, note that sinee

we bave tbe natural morphism

We know that d1 : K2(k(z)) - k(yt is zero, unless y E Z :== r;}. Ir y E Z, dl may be
deseribed as folIows: First, if the loeal ring CJ z ,lI is regular, it is a diaerete valuation ring
with a valuation v, tbe quotient fjeld ia .1:(:) and the residue field k(y). In this ease , the
map d1 is nothing but the tame symbol ßv :
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In the non-regular ease, let W := Spee(Oz,lI) with OZ,v the normalization of OZ,v inside
k( z) and denote by Yl, ' .. I Yl the preimages of Y in W. Then

I

d1({!,g}):= II N k(v;)!k(V)8vi ({f,g}),
i=l

where Vi is the corresponding valuation of Yj. Therefore, by the fact that

we have

Lemma 2.

Step 4. Relation Of Two K-Theory Descriptions: O'Q Is An Isomorphism.

In this step, we prove the following

Lemma. There is a natural isomorphism

Henee O'Q ia an isomorphism.

To prove thia lemma, we need still another description of KY(X). Denote by K, the
Zariski simplicial sheaf associated with tbe presheaf

By constructing ßasque resolutions for Zariski simplicial sheaves, we obtaiJ;l a cohomology
theory for them. In particular for K" we have

There is a big advantage for this description wben we introduce tbe A-ring structure on
$m,Y KY(X). In fact, for all integers k, 0 :s k :s n, there are exterior power maps of
sheaves

AC : GLn(Ox) - GL(:)(Ox).

Then, we have a map of sheaves
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which is compatible wi th the iodusion G Ln c......o. G Ln+1. Hence, there is an operation

We know tbat these operations ..\& induce operations on the spectral sequenee

which eonverge to the original operation

In particular, for the isomorphism

i. : EBrex(p)nyK_p-q(k(z)) =::: EfiJ(X),

the Adams operations 4J& satisfy 4J1:(i./)) = kPi.(4J&(f)) for aoy ehoiee of the element
f E EBre x (p) nY K -P- f (k( z)). Thus, we know that tbe operations 4J1: act on E~}1 (X) aB

multiplieation by k- t for q =-p, -p - l.

Sinee the differentials ~-l.-p eommute witb the Adams operations 4Jl, we have the
relation

(kr-l _ l)~-I,-p =O.

After tensoring with Q, this implies ~-I,-p vanishes. Therefore

With this, the final result is a eonsequenee of the fact that for a regular scheme X, if Y is
a closed subset, then

This eompletes the proof of the lemma, aod benee the main theorem.

§II.l.3 Grothendieck-Riemann-Roch Theorem

II.1.3.a. Algebraic Theory Of Chern Character

We have seen above that witb a regular seheme X, we eao assoeiate a Chow ring and
a '\-ring K(X). There is also a natural filtration on K(X)Q, from whieh we construct
the associated graded ring GrK(X)Q. After a loeal discussion, we know that there ia a
natural isomorphism Q'Q between CH(X)Q and GrK(X)Q, hence we have an algebraic
intersection pairing on CH(X)q. This intersection pairing coincides with tbe classical one.
In this subsection, we introduee a natural homomorphism from K(X) to GrK(X)Q. The
composition of this homormrphism with the inverse isomorphism of Q'Q is usually called the
ehern character.
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The Chern character
ch : K(X) - CH(X)Q

ia characterised by the following axioms. If X ia a regular scheme:

(1) ch ie a homomorphism of rings;
(2) If': Y - X is a mOIl'hism of regular schemes, then ,. 0 ch = ch 0 f*.
(3) If C ia a line sheaf on X, then

cb [.q := exp(div(sl),

where 8 is a non·zero section of C.

261

,i :K(X) -+ K(X)

There are several ways to define tbe Chern character. Here we adopt some algebraic
methods: Eitber projective bundles or Gr88Smanniana can be used to describe them pre
cisely. We do not discU88 either here; instead, we give a construction from the '\-ring
structure on K(X). Let E be a vector sheaf on X. Define an operator ,i on the '\-ring
K(X),

by tbe series

rt(Z) := '\t/(t-l)(z) = L ,i(x)ti .

Then tbc ,i's define another '\-ring structure on K(X). In particular, with thia new '\-ring
structure , we bave another description for FP K(X). That is,

F1 K(X) := Ker(K(X) ~ Z)

and FP K(X) = the Z-module generated by the elements ,"1 (zt} ... ,"" (Zk) with Xi E
F 1K(X), Li ri ~ n.

For any vector sbeaf E on X I we define the i-th ehern clus Ci by letting

For example, we know that if C ia a line sheaf on X, then Cl(.C) = [[Cl - 1] and c;(.c) = 0
for i > 1. (In general, by tbc splitting principle, we know tbat Ci (E) = 0 for i > rk E.)
Tberefore, if we put

00

Ct(E) := 1 +L ci(E)t i
,

i=l

the induced map
Ct : K(X) -+ 1+E9~1 Gri K(X)t i

is a group homomorphiam; since for any ahort exact sequence of vector sbeaves
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we have

Finally, if we let

then

is a ring homomorphism

Grothendieek- Riemann- Roch Theorem

rkt

c1(E) := I1(l +<li(E)t),
i=l

ch(E) := L exp(adE)l

eh : K(X) - GrK(X)Q.

We ean also prove tbat chQ is an isomorphism between K(X)Q to Gr(X)Q. Tbe inverse
map is defined by

9 : Gr(X)Q - K(X)Q

with the relations

and
~ =g(x) mod Fm +1K(X)Q,

for any x E Grm K(X)Q aod P 2: 2. So finally, we get the Chern ehara.cter. One mayaiso
show that if X is a eomplex manifold, then the above definition coincides with that given
in Part I.

With the help of Chern classes, we ean define other characteristie classes by using
splitting principle. For the applieation to Grothendieek-Riemann-Roeh theorem, we need
the following

Definition-Lemma. There is a unique natural map

td : K(X) - GrK(X)Q

such that the following conditions are satisfied:

(1) td(Zl + :1:2) =td(zt}td(x2).
(2) For any morphism f : Y - X,

td 0 ro = f- 0 td.

(3) For any line sheaf L,
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We caB td the Todd characteriBtic class.

263

1I.1.3.h. Push-Out And Pull-Back Morphisms For Chow Rings And Algebraic
K-Groups

A closed imbedding i : X e-. Y, where X, Y are sehemes, ia a regular imbedding
of codimension d if every point x in X has an affine neighborhood U in Y, such that if
A is the coordinate ring of U, I is the ideal of A deflping X, then I is generated by a
regular sequence of length d. A morphism f : X - Y of regular schemea is caBed a Ioeal
complete interseetion morphism, l.c.i. morphism for ahort, of codimension d if f admits
8 factorization into a c10sed regular imbedding, followed by a smooth morphism. By a loeal
discussioD, we know tbat if I =goi is aoy factorization with i a closed imbedding and 9
a·smootb morphism of a l.c.i. morphism I, then i is a regular imbedding. It follows that
certain propertiee da not depend on tbe chosen factorization.

We now give tbe definitions of the push-out morphism aod the puB-back morphism of
tbe Chow rings and algebraic K -groups for algebraic regular varietiee.

ICH: CH(X)Q - CH(Y)Q, fCH: CH(Y)Q - CH(X)Q;

fK : K(X) - K(Y), I K
: K(Y) - K(X).

First, let us look 8t the push-out morphism. This ie very simple. In fact, we can
go fu~ther. Say, we define the push-out for a proper morphism. (Tbe ehoice of proper
morphisffiS ia very natural. In fact, onee we try to define the pusb-out morpbism, tbe first
thing we need to know is that tbe morphiam in question mapa c10sed subsets to c10sed
aubsets, which is the most important property of proper morphisms.) Then we make the
following definition:

fCH[Z] := deg(Z/ /(Z))[/(Z)),

where Z is a subvariety of X, and

deg(Z/ /(Z)) := { O[k,(Z) : k(f(Z))), if dirn /(Z) = dirn Z; 
otherwise.

It ia not difficult to check that the definition does not depend on the representative we
choose. On tbe other hand, if / is proper, we know that for aoy eoherent sheaf E on X, its
higher direct images R} /.(E) are coherent sheaves on Y [Ha 77]. Thus we may use them to
define fK by

fK(E) := L(-l)iRi/.(E).
i

Now let us look at the puB-back morphism. The K-theory morphism is very simple: Ir
E ia a vector aheaf on Y, then

/K (E) := f*(E).
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The morphisma for the algebraic Chow rings are slightly complicated. Hy the definition
of I.c.L morphisma, it is enough to make the definition for regular closed immersions aod
smooth morphiama respectively. For closed immersions, with the help of algebraic intersec
tioo theory, we naturally let i-([Z]) := [Z Xl with Z X tbe algebraie intersection of Z aod
X. For smooth morphisms, we ean go alightly further: We may only assurne that j : X - Z
ia a Hat morphism. Then we set

(Since j ie fiat, j-l(Z) is a pure dimension dimZ + dirrfl subvariety.) We koow that all of
them are well-defined. FinaIly, for any loeal eomplete intersection morphiam j : X - Y,
we get the corresponding morphiemB by takiog the eomp08itioo. Usually, if there is 00

riak of eonfusion, we let f- and f- denote tbe puah-out morphiam aod pull-back morphism
respectively. There are several very i~portant properties for these morpbisms, such as tbe
funetorial property, ete. among these, we reeall the followiog

Projective Formula. Let j : X - Y be a l.c.i. morpbism, then for Q E CH(X), ß E
CH(Y), we have

We end this subsection by noting tbe foUowing properties for the puB back of relative
Chow groupe. Obviously, it ia possible for us to eonsider slight further , Le. those for regular
sehemes whicb are Hat and of finite type over a fixed exeellent regular noetherian domain
A in our discussion. (Later we usually assurne that our schemes bave sueh a property.) Hy
the definitioD, after a tediOUB diacussion, we have the following

Theorem. Let f : X C-+- Y be a elosed immersion of regular schemes. If T C Y is a
closed subset, there is a morphism

i- : CHT(Y) - CH~nT(X)

such that
(1) Ir a E ZT (Y) is an algebraic eyele supported on T, tben i- (a) is given by Serre 's
multiplicity formula.
(2) If 9 : Y C-+- Z ia another regular elosed immersion with a el08ed aubset S C Z, we
bave

f- g- = (g Ir :CHs(Z) - CHsnx(X).

(3) Suppose that 9 : Y - W is a fiat map so that S C W ia a closed aubset. Then if
either h =gof ia Hat or 9 is smooth aod h is a regular closed immersion, we have

h- =r 0 g- : CHs(W) - CHh-l(J)(X),

(4) Suppoee tbat 9 : W - Y is fiat aod form the Cartesian s.quare:

9-
~v Xy X ~

19 l
W

X
1 I
Y.
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Suppose W x y X is of the type we want, then

265

(5) Suppose that D is a Cartier divisor on Y and that the support IDI meets both T
and X properly. Then if 0' E CH~(Y),

in CHIDlnxnT(X),
(6) The map f· : CHr(Y) - CHxnT(X) givess the same map

CHT(Y)Q - CHxnT(X)Q

88 induced by the isomorphiBm

With the above preparatioo, we may go to our main result in this chapter.

II .1.3.c. Grothendieck.-Riemann-Roch Theorem

Let f : X - Y be an l.c.i. morphism of regular varieties. Then there is a decomposition
of f given by a closed immersion i : X ~ P followed by a projection p : P - Y. Here P is a
pn-bundle on Y. We define the tangent element of f associated with this decomposition
88 the element in K(X)

i.e. as the difference of tbe relative tangent vector sheaf of p and the normal vector sbeaf
of the c10sed immersion i. (This ie a very natur~1 choice at this stage, since if f itself is
smooth, tben we have the ahort exact sequence

Furtbermore, by tbe fact that for any two decompositions of I as above, we may chose a
tbird one, wbich dominates the original two, then it follows that 88 an element in K(X),
tbe above T, ia well-defined.

The Grothendieck-Riemann-Roch Theorem. Let I : X - Y be an l.c.i. mor
pbism of regular varieties X, Y. Then we have the following commutative diagram:

K(X)
IK !
K(Y)

ehOtd(T, )-
eh-

CH(X)Q
! ICH

CH(Y)Q.
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Proof. If we let

Grothendieck-Riemann- Roch Theorem

Err(E, J) := JCH(ch(E) td(7j)) - Ch(JK(E)),

..

the theorem states tbat, for any vector aheaf E on X, Err(E, J) = O. We prove this last
statement by the following steps.

Step 1. Prove Err =0 for projective bundles.
Step 2. Prove Err = 0 for closed immersions.
Step 3. Prove Err =0 in general.

As aremark, we first look at the properties of Err. 8y definition and the properties of
characteristicclasses, we know tbat Err is compatible with any Hat base change. That is, if
9 is a fiat base change, we have

g- Err = Err g- .

On tbe other band, if h : Y -+ Z is any l.c.i. morphism, then one can check that

Err(E, go J) =Err(JK(E), g) + 9cH(Err(E, J) td(~ )).

(Since tbe algebraic K group K(X) is generated by the J-acyclic vector sheaves, we only
need to check those properties for f -acyclic vector sheaves.) Thus, in the proof, we may
make any fiat base change, aod decompose tbe morphism f into several others.

Step 1. Projective Bundles.

Let p : P =Py(F) -+ Y be a projective bundle over Y with a vector sheaf :F on Y of
rank r. We prove tbe theorem in this situation by induction on the rank r. The basic idea
is to use the precise description for a pi-bundle and the deformation technique for algebraic
K-theory.

Ir r = 2, then Pisa pi-bundle. So K(P)Q as a K(Y)Q-module is generated by two
elements ()p aod ()p( -1). Then, the theorem follows from the calculation for th08e two
elements by considering the following natural exact sequence

0-+ Op -+ p-E0 ()p(1) -+ Tp -+ O.

Tbe details are left to tbe reader.

Now let :F be a vector sheaf with r > 2. Since Err is compatible with a smooth base
change, by the splitting principle, we may assurne that F has a quotient vector sheaf ;F" of
rank r - 1. Coneider i : pi := P(F') C-t P, the Cartier divisor of ()p(l) on P. Then, as a
K(Y)Q.module, K(P) is generated by [«(P') and 0 p( -1). Ir we can prove that

for any coherent sheaf E on P', by induction, we only need to prove Grothendieck-Riemann
Roch theorem for CJp ( -1) for p.



We first prove that

Chapter 11.1.

Err(Op(-1),p) = O.

267

For this, we need BOrne more notation. Let Flag F be the flag scheme which classifies
complete filtratioDB

o= :Fa C :FI C ... C Fr =F.

There ia a natural morphiam
1r : FlagE - P, ...

which ia a composition of the forgetting maps. Hence 1r ia a composition of projective
bundles of rank at most r - 1. Sinee for any projective bundle, tbe direet image of the
strueture aheaf upstairs ia tbe structure sheaf downstairs, so by the projective formula, it is
enough to prove

Err(1I"*Op( -1),1r' 0 p) =O.

To get tbis assertion, we use another decomposition of 11' 0 p. Let FlagJF be the flag scheme
which cla.ssifies partial filtrationa

o=:Fa C :F2 C ... C :Fr =F,

wbere :F; is of rank i. Then Flag:F ia a projeetive line bundle over Flag'.1'. That is, we have
tbe following commutative diagram:

Flag.1'
',II"!
P

pl
- Flag':F,

!
L Y.

With respect to this projective line bundle, the eanonicalline aheaf OFlagF(-1) ia nothing
but 1r*Op(-1). Therefore, by the eas:e for r =2, .

Err(1r·Op(-I), Flag.1' - Flag'F) = O.

On tbe other hand, we know tbat with respect to the projective line bundle, both terms
in tbe formal difference of Err for O( -1) are zero, henee the Grothendieek-Riernann-Roeh
theorem holds for 0 (-1) in any case.

Now we eorne back to sbow that for tbe codimeMion one closed irrunersion i : P' c....... P,

This ia a eonsequence of tbe following facts about tbe deformation to tbe normal eone: Let
i : X t....+ Z be a c10sed immersion over Y with amooth structure morphisms / : X - Y,
9 : Z - Y and let W := Bxx{oo}Z X pI be tbe blowing-up of Z x pI along X x {oe}.
By 1.9.1, the fiber Wo of W over 0 is isomorphie to Z; the fiber W oo of W over oe is a
union of two Bubschemes: W~, which is isomorphie to P(M €B Ox), and a scheme W~,

which is isomorpbie to the blowing-up BX Z. Here Ni denotes the normal bundle of X in
Z. Let I : X x pI c....... W be tbe eanonieal embedding. The fiber 10 of lover 0 is essentially
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io : X c-. Wo, whieh is the original closed imbedding. The fiber at infinity, the morpbism
100 , is essentially the morphiam ioo : X c-. W~, whieh ia the zero sec tion of P, by the fact
that X x pI does not intersect W~.

Lemma. With the same notation as above, for the eodimension ooe closed immersion
i, we have •

Proof. In fact, "
Err( io.. &,90) - Err( i oo .. &, 900)

=90.. (eh( io..&)td(~o)) - 900.. (eh(ioo.&)td(~_))

=G. {ja. (eh(io.&)td(TGo )) - ioo. (eh( ioo .. l')td(TG_))},

sinee X x pI does not intersect W~. We know that if we let Dl' be tbe puH-back of l' to
X x pI, tben ia.l' = ia (I. Dl'). Furthermore, eh(I. Vi:) is Bupported on I (X x P I ), aod
if T( -log 00) denotes the relative logarithmic tangent vector sheaf of W/Pl along W00/00,
l.e.,

T(-logoo):= the dual of nt.v/Y(dlogWoo)/O~,(dlogoo)),

tben, near io(X), T(-logoo) is isomorphie to Tz. Similarly, near ioo(X), T(-Iogoo) is
isomorphie to Tw1. Henee, the differenee of two Err terms above ia the G image of tbe
product of ch(/.Dl')td(T( -Iogoo)) witb the divisor of the rational funetion t : W _ pI
indueed by the seeond projection. Tbus, the lemma is a direct eonsequence of the fact that
the divisor of a rational function is rationally equivalent to zero.

Henee, we ean always eonsider a eodimension one closed immersion aB the zero section
of a projective bundle. Hut, for tbe zero section of a projective bundle, we bave the following

Lemma. Let 1 : X c....... Y be a smooth morphism. Let :F be a veetor sheaf on X of the
form ()x e N. Denote by P tbe projeetive bundle Px (:F) on X. Let i : X - P be
the eodimension one closed imbedding eorresponding to the morphism :F - ()x. Let
p: P - X be the strueture morphism. Tben the Grothendieek-Riemann-Roch theorem
for pimplies that

Err(l', f) = Err(i.l', f 0 p).

Proof. In fact, by definition, we have

Err(i.l',/op) = (/op).(ch(i.l')td(Tjop)) -cb(/op).(i.l'))

=(f. 0 P.) (eh(i.&) p. (td(7j ))td(1p)) - eh(f.&)·

By the 888umption that the Grothendieck-Riemann-Roch theorem is valid for p and the fact
that p. ()p = 0 X I the projection formula implies that

Err(i.l', / 0 p) =/. (ch(p.(i.. l')) td(Tj)) - ch(/.l')

=1. (ch(&) td(Tj)) - eh(f.l')

=Err(l', f).
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Now we can finish the proof of the theorem for pr-bundles. It follows from the fact
that i : pi '- P is a codimension one closed immersion.

Step 2. Closed Immersions. We start with a special situation i : X '- Z := P x (.1"):
As above, .1" has the form Ox €EI Nasa vector sheaf on X, aod the closed immersion is
induced from :F. - 0 x - O. That is, X is the zero section of P over X. (The motivation
for considering this special situation comes from the deformation to the normal cone.)

Lemma. For any vector sheaf & on Z I we have ..

ch(i.E) =i.(td(M)-l ch(E)).

Proof. Let Q be tbe universal quotient bundle on Y. Let s be tbe section of Q
determined by the projection of the trivial factor in p. (M €EI Ox) to Q, which vanisbes
precisely along X. By 1.9.1, we know that the K08zul complex determined by s:

is a resolution of i.0 x. Therefore, for any vector sbeaf E on X, we bave a concrete vector
sheaf resolution of i.E:

Therefore,
d

cb(i.E) = 1)-1)9ch(,VQV)ch(p·E).
q=O

On tbe other band, by definition, we know that

80 that

But, for any Q e CH(Y), tbe projective formula gives us

Thus, by the fact that i·Q = Ni togetber with the definition that 8 is tbe section of Q
determined by the projection of tbe trivial factor in p·(M €EI Ox) to Q, which vanisbes
precisely along X, we get

Q i.[X] =Q Ctop(Q),

which proves tbe lemma.
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In general, let & be a veetor sheaf on X, and DE =pi E, where PI is the first projection
from X X pI to X. Choose a resolution {/. on W for /.(D&):

0-+ (In -+ 9n-l - ... - 90 - /.DE - O.

Sinee .X. x pI aod Ware ftat over pI, it follows that the restrictions of this exaet sequenee
to the fibers Wo aod Woo remain exact. Therefore iö9. ia a resolution of iöU.(DE)) and
i~9. ia a resolution of i~(/.(DE)). Since iö(I.(DE)) = /o.(tö(DE)) = /a.(E), on Z = Wo,
iög. resolves /0.&' Similarly, on Wco , i~9. resolves /00.6. Hut lco(X) is disjoint from W~,

henee k·g. resolves ico.E on W~ =P(Ni E9 Ox) aod ,.g. ia aeyclie, where , is the natural
morphism W~ ~ W. Therefore in CH( W)Q, we have

io. (eh( io.E)) =io. (eh(jög·))

=ch(Q.) ia.([Z])

=ch(9.)(k.([W~])+ I. ([W;,])) ,

sinee in CH(M), [Wol = [WooL were k is the natural morphism W~ ~ W. Tbus by the
projective formula agam, we have

io. (eh(io.E)) =k. (eh(k·g.)) + I. (eh(rg.))

=k. (eh(ioo.E)) + O.

In this way, we deduee tbe ealculation on the section of a projective bundle. So, by the
lemma above, we bave '

Now let q : W - Z be the eomposition of the blowing-down from W to Z X pI, followed
by the projeetion to Z. We have q 0 ia =Idz aad q 0 k 0 i co =i. So applying q., we have

Theorem.. In CH(Z)Q,

Step 3. L.C.I. Morphisms.

Hy the re!ult above, we know that if we let f ; X - Y be the composition of a closed
imbedding i : X ~ P aod a projection P : P - X, then

f. (eh(E)td(TI ))

=P. (i.(eh(E) td(J'Ji)-l i·(td(-z;.))))

=P. (i. (eh(&) td(Nd- l
) td(Tp ))

=p. (eh( i.E) td(~»

=eh(p.(i.E»)

=eh(f.E).
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All the results above are from algebraic geometry. In what folIows, we will generalize
them to the arithmetic situation. Then, we can obtain an arithmetic version of the Riemann
Roch theorem by putting ihe results in the corresponding arithmetic notation. That is, we
have the commutative diagram

KAr(X)Q
IK !

KAr(Y)Q

ChA.OtdA.(J,PJ)
--+ CHAr(X)Q

""1 ICH

CHAr(Y)Q.

§II.1.4. Algebraie Intersection Theory: A Geometrie Deseription

In section 2, we gave a K-theory description of algebraic intersection theory. Here we
give a more geometric definition, which is much more concrete. Tbe price we pay for this ia
that now we can only deal with non-singular projective varieties. We will not give aU the
details, instead, we explain the basic idea behind the proof and also give the Chow moving
lemma at the level of K 1.

Let X be a regular projective variety. If Y and Z are two integral subschemes of X,
which intersect properly in X, Le. codimx (Y n Z) = cod.imxY + codimx Z, tben there ia a
natural intersection

[Y][Z] := L: JA I: [SI:],
I:

where SI: is the irreducible component of Y n Z, and JAI: the intersection multiplicity of Y
and Z along S/c. This is not always true in general, since two algebraic cydes do not usuaUy
have proper intersedion. In order to deal with the general situation, we first note that for
any rational function Ion a dosed subscheme, the intersection of div(/) with any algebraic
cyde is zero. (In fact, even through it is very simple, this is the most important principle
in the intersection theory, e.g., for any meromorphic function I on C, the number of zeros
is exactly the same as the number of poles.) Therefore, for any two inte-gral subschemes
Y, Z, there always exist rational functions I, such that Y + div(/) intersects Z properly.
Hence, we may get the algebraic intersection generally. Such an easy exarnple give us the
motivation to introduce the foUowing

Chow Moving Lemma. Let X be a regular projective variety and 0., ß algebraic
cyeIes on X. Then, there exiets an algebraic eyeIe 0.', which ie rationally equivalent to
0., such that 0' meete ß properly.

We rnay assurne that 0. and ß are prime algebraic cyeIes Y and Z, then one can prove
the moving lemma aa folIows: We need BOrne further notation. For Y and Z aa above, we
define the exceeds e(Y, Z) of Y with respect to Z by

e(Y, Z) := codimx Y + codirnx Z - codimx (Y n Z).
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The proof is achieved by induction on e(Y, Z). Since X ia projective, there is a closed
immersion i : X '- pn. Let L C P" be a linear subspace, and Y C P" a subvarlety for
which Ln Y = 0. Then, there is a subvariety CL(Y) c P", called the cone over Y with
the vertex L, viz. CL(Y) := 1t'L't(7rL(Y)), where 7rL : P" - L - pr' is tbe projection and
T + 1 is the eodimension of L in pn. We know that:

(0.) For a generie L,.CL(Y) meets X properly, aod this intersection is generically
transversal along Y, i.e.

i-[CL(Y)] = [V] + fL,

where fL is a cyele on X whieh does not eontain ~
(b) Ir e(Y, Z) > 0, then for generie L,

codimx (1j n Z) > codimx(Y n Z),

where fL := Lj nj [1j].

From these two results there is a elear way to make induction on e. Theo, we eau
deduce the Chow moving lemma from the fact that algebraic cycles on P" eaD be moved.
See Roberts [Ra 72] for more details.

The application to the arithmetic intersection theory requires a refined version of the
Chow moving lemma at the level of algebraie Kt-ehains. '

For a regular scheme X, let

For example,

~(X) = zP(X), R~-l(X) = $zEx<,-1)k(z)".

The elements of Jq:-t(X) are Kt-chains, aod we write a Kt-chaio aB / =Lw[fw], where
/w E k(Wt and W runs through a finite set ofintegral eodimenBion p-l closed subscbemes
of X. For each p 2: 1, we have a natural homomorphism

div: ~-l(X) - RPtiX) = ZP(X)
Lw[fw] t- Lw div(fw).

For auy K t-chain f = Lw [fwL the support of f is the union of 0.11 W for w hieh
/w #; 1. We say that a K 1 chain f meets a eollection of integral closed subschemes L:
of X almost properly if for any element ZEL, div(fw) meets Z properly, and that a
Kt-chain f meets L properly, if f meets Lalmost properly, while each W, for which
fw #; 1, meeta L properly.

For any closed integral subseherne W of eodirnension p - 1 in X I we think of f E k(Wr
aa a K t-ehain. The produet of K t-ehains wi th algebraie cycles ia defined a.s follows.
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(1) Let Z be a codimension q algebraic cyde of X I which meets Wand div(f) properly.
Defioe a K t-chain {f]Z aB follows: Since W meets Z properly, we have

Hy the fact that div(f) also meets Z properly, we have rational functions f1s ... E k(Sk t,
aod hence can define

(2) Ir Z meets div(/) almost properly, then {W]Z = Ek IJk[Sk] + t, where W n IZI =
S U T, with S is the wbole proper part. Usually, t is a dass in CH~+'-t (X)Q. Since fT is
a unit, we have a dass [j]t E CHP+9,P+9- 1(X)Q, and we can define

which is well~defined 88 an element of (R~-t(X)Q/d(R~-2(X)))Q'Obviously, by algebraic
intersection tbeory, we bave

div([J]Z) =div(f)Z.

(3) In order to introduce a product of Kt-chains witb algebraic cydes in general, we
need the following

Chow Moving Lemma For KI~ChainB. Let X be a non-singular quasi-projective
variety. Suppose that / E ~-l(X) is a KI~chain such that div(/) meetB a finite
collection L = {ZI,"" Zr} of subvarieties of X properly. Then, there exists a J(I
chain 9 I such that
(a) div(g) = div(/).
(b) 9 - f represents 0 in CHP,p-1 (X).
(c) g meetB Lalmost properly.

Surely, by thia moving lemma and the definition in (1), (2), we have a product of
K 1~chains with algebraic cycles.

Proof Of The Lemma. Let L, L C P", be a linear subspace, and Z, Z C P", a
Bubvariety for which Ln Z = 0. Ir dirn Z < r, then, there exists an open dense Zariski set
in tbe GraB8mannian of alt (n - r - 1) planes in P", such that, for any L in this subset, the
map Z ~ 1I"L(Z) is birational, and heuce, there is a canonical indusion k(Z) C k(CL(Z)),
Therefore if / e ~+t (P") and p 2: n - r + 1, then for a generic L, we have a·well~defined

K1-chain CL(f) e R;t;::+I(P") aod div(CL(f)) =CL(div(f)). Also, if f is supported on
a subvariety X C P" with Ln X =0, then CL(f) meets X properly. Thus, by (a) and (b)
after tbe Cbow moving lemma, there exist linear subspaces LI,' .. ,L., such that

e

f = L(-1)i-1CLj(li)X + (-1Y le,
i=1
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where fe meets Lalmost properly. We can also find Tj E Aut( P") such that Tj CL j (fj )

meets L properly. Joining each Tj to [d in Aut(P") by a rational curve, we obtain a family
It of K l·chains on X, parameterized by t E pI, such that 10 = I, f 00 meets L al most
properly, and for aB but finitely many values t, div(lt) meets L: properly. That is, the
family It forms a Kl-chain DI =Lv[Dlvl on X x pI with each V fiat over pI and DI
meeting div(t) properly. Since each V is fiat over pI and meets div(t) properly, we have an
element

L{t,fw} E EBre(XxPl)(p-n K2(k(z)).
w ,.

Under the differential

we have
d(E {t, /w}) = div(t)Dj - {t}div(Df),

w

which equals
10 x {O} - 100 x {oe} - {t}div(Dj).

Hence, for each ZEL, the Kt-chain [tl div(DI) meets Z x pt almost properly. Push-out
this element to X by the aatural projection p : X x pI - X, and we see that p. ({t }div( Df))
meets Z almost properly and

d(p.(L{t,fw})) =f- (foo +p.{{t}div{Df))).
w

Therefore 9 = 100 + P.{ {t}div{Df)) satisfies the conditions of the lemma above. This
completes the proof of tbe lemma.
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Chapter 11.2
Arithmetic Intersectiol! Theory
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We now generalize tbe results in the last a few chapters to the arithmetic situation.
Clasaically, this procedure was noticed by A. Weil and Russian mathematics school, guided
by Shafarevich. For dimension 1 CMe, A. Weil noted a certain analogy between function
fields of curves aod number fields. For Russian mathematicians, they achieved this kind
of analogy by studying the famous Shafarevicb conjecture, which deals with the relative
dimension 1 CaBe, i.e. a curve over a function field or a number field. Since for a function
field, the model is a complex surface, which is complete, there is a classical procedure to
introduce intersection tbeory and corresponding reaults, such as tbe Riemann-Roch theorem.
However, for the object over a number field, tbe problem is ratber difficult, since this model
ia non-complete: We only consider the objects over the spectrum of tbe ring of integers,
which is affine. At first sigbt, we do not get' a satisfactory theory for this model. A natural
idea is to complete this arithmetic model. One found that points in the function field case
correspond to valuations. Therefore, in order to complete tbe arithmetic model, one needs
to include also the archimedian valuations. There is then another problem: Ta find a local
intersection theory wbich is valid for hoth finite valuatioos aod Archimedian valuations.
In order to salve this problem, mathematicians spent almost thirty years. By the work
of Neron, we can define the intersection for tbe relative model by a purely local method.
Parsbin aod Arakelov were tbe first to solve the Shafarevich conjecture for funetion fields
at tbe beginning of 1970's. After that, Arakelov obtained a good analogy for tbe concept
of the p-adic distance at infinity, the Arakelov- Green function, by choOBing tbe so-called
Arakelov metric at infinity on tbe corresponding Riemmln surfaces. Hence one knows how
to introduce tbe local intersection 8t infinity. In western couotries, it was Faltings who
first gave a systematic treatment of the theory for arithmetic surfates. But this was almost
ten years after Arakelov introduced bis wonderful idea. Witb tbe Arakelov theory, at that
time, Faltings also proved the Mordell conjecture for number fields. Soon after that, Deligne
developed a more general theory for arithmetic surfaces with ao arbitrary metric 6t infinity.
Several important ideas are introduced in [De 86]. Now we follow Gillet and Soule to define
a higber dimensional arithmetic intersection theory [GS 91].

This chapter consists of Beven sections. In section one, we disCUBS arithmetic varieties.
After this, we know that there are two well-organized parts in the theory of an arithmetic
variety: Tbe finite part and the infinite part, which correspond to the modelover the
spectrum of the ring of integers and the modelover archimedian valuatioDS, respectively.
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For the finite part, there is a natural local intersection, which comes from the algebraic
intersection theory. For the infinite part, eince we may associate with a complex manifold.
Thus, we have to discuss certain objecta in complex geometry. All this ia basically the
contents in section 2. In section 3, we introduce arithmetic Chow groups and their homology
properties. In section 4, we use the result in section 2 and tbe resulta from algebraic
intersection "theory to giv& the arithmetic intersectioD theory. In section 5, we discuss the
functorial properties for the arithmetic intersectlon theory. In section 6, we give a few
cancrete examples. Finally, in eection 7, we give a geoeralization of arithmetic interaection
theory, Le. we give a cap product between arithmetic Chow cohomology aod homology. Tbe
reader is advised to skip this final section in tbe first reiding.

§II.2.1 Arithmeiic Varieiies

1I.2.1.a Arithmetic Rings.

Even through we restrict ourselves generally to tbe varieties over number fields, we
ean go slightly further. Iostead of number fields, we introduee a more general eoncept of
an arithmetic ring. We say a tripie (A, E, Foo ) is an arithmetic ring, if A is an excellent
regular noetherian integral domain, E ia a finite nonempty set of monomorphismB " : A - C
aod Foo : CE - CE is a conjugate linear involution of C-algebras, such that tbe diagram

6-
6-

commutes. Here 6 ia the natural product map induced by the family of maps {" : A - C :

" E E}.

Examples.

(1) Let A be a ring whose field of fractions is a number field F, let E := Hom(A, C) be
the set of all embedding of A into C and let Foo be tbe uaual Frobenius on C ~ C ~Q F
induced by complex conjugation.

(2) Let A = C. There is an isomorphism C ~R A:::: C x C sending z 0 w to (zw, zw).
The composition of this map with tbe natural map A - C 0R Asending a to 10 a is the
map lJ : G1-+ (G, ä). Therefore (C, {Idc, c}, F(0) ia an arithmetic ring. Here c : C - C is
complex conjugation and Foo(a,b) = (b, ä).

We aay a pair f = (ft, 12) ia a homomorphism of arithmetic rings,

if ft : A - A' is a ring homomorphism, h : CE - C
E1

is a homomorphism of C-algebras,
such that hfJ =6'ft and ft F00 = F~ 12- Obviously, Z aa an arithmetic ring is an initial
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object in the category of arithmetic rings. More generally, if ElF is an extension of number
fields, then the natural homomorphism

induces an homomorphiaffi of arithmetic rings.

II.2.1.b Arithmetic Varieties

Let (A,E,Foo ) be an arithmetic ring. We aay (X,;: X -+ S:= SpecA) ia an arith..
metic variety over A, if 1r ia projective, of finite type, and X p ia amooth. Here F denotes
the fraction field of A aod Xp ia the generic fiber of X. Usually, if 8 E S we denote by X, the
fiber of X over 8, while if q E E, we write X q := X 0 q C and Xr; := llqer;Xq = X 0A Cr;.
Finally, we also denote by X oo := Xr;(C) the analytic space associated with the scheme XE.

It follows that an arithmetic variety cOßsists of two parts: One is the Bat finite type
scheme X over S, while the other is its associated infinite part Xr;(C). In the next section,
we deal witb tbe aspect of X at infinity, which is a complex manifold.

§II.2.2 Green's Currents

We consider tbe Green current on a complex manifold, which is needed to introduce
the arithmetic intersection on an arithmetic variety.

1I.2.2.a Currents

Let X be a complex compact manifold of dimension d. Denote by

the space of differential forms of degree n on X. There are natural boundary morphisms

and d : An(X) -+ An+l(X) is the usual differential. We say tbat a linear function T
on An(x) is a current, ie T is continuous in the sense of Schwartz: for auy sequence
{Wr } C An(x) with the supports contained in certain fixed compact subset K, tben T(wr ) -+

o if all tbe coefficients of Wr togetber with their derivatives tend uniformly to zero for
r -+ 00. Tbe set of currenta forms a topological dual apace A(X)· of A(X). We denote by
Dn(X) := An(x)·. There ie a natural decomposition of Dn(X):

Dn(X) =E9p+f =n Dp,,(X),

where Dp,,(X) is the dual of AP,9(X). It is convenient for U8 to let

lY"'(X) := Dd-p,d-,(X).
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The morphism B, B, aod d induee morphisms from the space DP,q to the following spaces
of currents Dp+l,q(X), DP,t+ 1(X), DP+l,q+l(X) respectively. We denote them by &', ä', cf,
e.g. we have

(B'T)(a) := T(8a).

Examples. (1) There ia a natural indusion

DP,"(X)
[w]

where

[wHa) := Lw /\ 0'

for any 0' e Ad-V,d-,,(X). We aay that a eurrent T ia smooth if there exists a amooth form
w such that T = [w]. In particular, if p+ q =n, it follows by Stokes' theorem that

[dw](O') = Ldw 1\ 0'

=Ld(w 1\ 0') - L(-1)"w /\ da

=(_1)"+1 r wl\dO' =(_1)"+l (tf[w])(er) .. Jx

Therefore, if we let 8, äI d on the currents be (-1 )"+18', (-1 )"+ Ity, (-1)"+ 1d' respectively,
aod let dC := 4;i (8 - 8). Then

1 
d~ = --.f)8

211"1

ia a real operator, aod we have the following commutative diagram:

etc..

AP,"(X) c......

8 !
AP+l,,,(X) c......

DP,"(X)
! 8

DP+l,,,(X)

(2) Let i : Y c-. X be an irreducible subvariety of eodimension p. We get a current
6y e DP,P(X) by letting

6y (o):= f i·oJy ..
for any er e Ad-P,d-p(X). Here yns denotes tbe non-singular locus of Y. We eaB this current
the Dirae symbol of Y. Hy one of Hironaka's theorem, another equivalent definition is
that there erists a resolution of singularities :Y of Y with the following properties:

(a) Y is smooth;
(b) The exceptional divisor E ia a divisor of Y with normal crossings;
(c) The natural morphism 'Ir : Y - E - yru ia an isomorphism.
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We end this subsectio.n by the following basic

Theorem. (1) With tbe boundary morphisms 8, 8, d, there exist natu ral isomorphisms
between the cohomologies of X in the sense of differential forms and currents.
(2) Let 'Y be a current on X such that ddc, ia smooth. Then there exist currents w, 0', ß
such that 'Y = w + 80' + 8ß, with w smooth. •
(3) Aa a current, if w is smooth and w =Bu + lJv , then there exiat amooth currenta
0', ß such that w =8a + [}ß.
(4) Ir X ia a Kiihler manifold, and "1 E DP,q(XL p, q ~ I, is d-closed and is either
d, 8, [} exact. Then there exiats r E DP- 1,q-l (X) such that

dcJC; = "1.

In particular, if"1 = 0, we may choose r = w + Ba + aß, where w ia a harmonie form.

Proof. (1) Just aB in the situation for de Rham complex

we have a complex
0- OP - 'DP'o ... _ 'Dp,d'_ O.

A(p,lJ)(r")(M XN)

be the CCO-forms having the type (p, q) with respect to z and (r, s) with respect to w. We
set

Here 'D denotes the sheaf of currenta and we note that the sheaves 'D admit partitiona of
unitYI so that Hi:(X, 'DP'f) = 0 for k > O. Therefore, by the proof of de Rham theorem aod
Dolbeault theorem, (1) ia a consequence of the exactness of tbe above complex for currents.
We have to establish tbe 8-Poincare lemma for currents. Since this ia a loeal problem, we
may work over Cd. For any two complex manifolda M, N with local holomorphic coordinates
z aod W , let

~(e) := d~l /\ /\ df.d,

~i(e) := (-1)i- 1eidf.l /\ /\ ~i /\ ., ./\ d{d,

and define the Bochner-Martinnelli kerne! on Cd x Cd by

L( ) .= c L ~i(Z - w) A <)(w)
/Ii; Z J w. d 1I Z _ w 11 ~d

Thus
k(z w) E a:.d L(O,IJ)(d,d-P)(Cd X Cd loc), \1Iq=l I I
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and k(z, w) is a local integrable form. Thus there is a natural morphism

defined by

• (K tP)(z) = 1. .k(z, w) /\ tP(w).
wEC"

With this definition, we know that ...
K8+&K=Id.

The above homotopy formuls now csn be used to prove the 8-Poincare lemma, and
hence completes tbe proof of (1). In" fact, if we onIy consider the situation for smooth
farIns, then, for a 8-c1osed form tP E AO,q(U), where U C C" is an open set, we may find
a relatively compact open subset V C U and bump function pe C;o(U) with p:: 1 on V.
Tben p4J E A~,q (C" ), and

(p4J)(z) =8(KfJ4JHz) + K(8(fJ4J))(z).

Restricting to V I we get
tP(z) = 8(Kpep)(z)

for all z E V. With this, we easily see that the above process works also for a compactly
supported current T, if we define KT by

KT(tP) =T([(tP),

for all <P E A~,"-9-1(C). Indeed, we see that for any test form rp E A~,"-9(C"),

(8(KT»)(rp) + (K(BT»)(!p) =(KT(Brp) + (8T)(Krp)

=T(K8rp + BKrp) = T'P'

So, the homotopy formula above even makes sense for compactly supported currents. Hence,
we get (1).

(2) iB a direct consequence of (1). In fact, as a smooth form dcJC; =: TI, we have
1] = d(äg) for a certain current g, i.e., TI is a d-exact form. ThuB, by (1), there exists a
smootb form ,p sucb that 1] =d,p. In particular,

d(8; - 4J) = o.

Hence, by (1) again, we know that there exists a c10sed smooth form () and a current S such
that

a.., - ,p =() + dS..
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That is,
B, = 0' + dS

with 0.' sffiooth. So, there exists an expression

where 4>', 8SI , as'J are sffiooth. Hut then, from (1),

witb 01, O'J smootb. With this J we get

B, =4>" + aä(u - v)

with q," smooth. Equivalently,

8(i + 8(u - v)) = <pli.

Therefore, using (1) onee more, we get

1 =z +8w + 8(u - v),

with z smooth, whieb eompletes tbe proof of (2).

(3) is a eonsequence of (1) aod (2). Indeed, [)w =aBu is sm60th. So, by (2),

u = 0 + {)z + 8y,

where 0 is smoothj and hence
Bu =BQ +8ay.

Similarly,
8v =8ß + a{)z

with ß smooth. Therefore
w = 8Q + äß+ aa(y - z).

By (2) agam, y - z = 4> + 88 + lit with tP smooth. So, we have

w =8(Q + ä4» +aß,

which completes the prao! of (3).

281

(4) may be deduced from the Hodge theorem. In fact, if 1] ie smooth, we obtain an
explicit solution of alry =1] by ±B·ljC11], wbere Gß ia the Green's operator associated with
the 8-Laplaciari, whicb ie a emooth form. Since the operators 8·, Er and Gn extend to
currents, the same expression also gives a solution of the equation when 1] ie a current. Now
the assertion comes from the Hodge decomposition theorem.
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1I.2.2.b. Green's Currents

•

Let Y be a codimensien p analytic subvariety ef X. We aay that a current g E
DP-I,p-I(X) is a Green's current of Y if

drfg = [w] - 6y

for same w E AP.P(X). Tbe main result for Green'! currents is the following

Theorem. Ir X is a Käbler manifold, then
(1) Green's currents exist on X.
(2) Ir gl and g'J are two Green's currents for Y, then

where Tl E AP-l,p-I(X).
(3) (The Poincare-Leloog equation.) Let (.c, p) be a hermitian line sheaf on X aod s
a non-zero ~eromorphic section of C. Then -loglsl; E LI(X), and hence induces a
distribution [-logisi;] E DO,O(X). We tben have

d~[-loglsl;] = [CI('c,P)] - Ddiv(.).

Tbat is, [-loglsl~] is a Green's current of div(s).

Proof. Note that by Stokes' formula, we know that d6y = O. So, by the fact that

6 - [w] = da,

which is a consequence of (1) of the theorem in the last section, we see that (1) and (2) are
consequeoces of (4) and (3) of tbe theorem in the last au bsection respectively.

(3) Hy definition, we know that

-d«flog!51; =Cl('c,P)

on X - div(,,). Thua we ooly need to consider the equali ty over div(8). Let {U, ... } be a finite
open covering of div(.) sucb that 'clu ia trivial aod on U, div(.) is defined by the equation
ZI = 0, where Z = (Z1, ..• , Zd) ia a local coordinate of U. Hy tbe Weierstrass preparation
theorem, we may a.saume that div(,,) n U does not contain any singular point. Thus it is
sufficient to prove that for any w E Ad

-
l

•
d

-
1(X),

Now note that since CI ('clu, pu) = 0 aod 8 = ZI h for same non-vanishing holomorphic
function h, it is ,enough to prove
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On the other hand,

li~_o j loglzl1 2dd'w = jloglzl12ddCw.
U,lld~C' U

So the final assertion is obtained by using Stokes' theorem for the left hand side.
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From above, we see that for a given closed subvariety Y of X, there exist many Gree.n '9

eurrents associated with Y. We also know how to me~ure the differenee of two different
Green's currents. On the other hand, we ean give an explieit Green's eurrent for a divisor.
In the intersection theory, there ia a general prineiple, whieh says that if eertain objeets
ean be eonstrueted for a divisor, then we ean deduce the general situation from this special
situation. With this in mind, we introduee the next subsection.

1I.2.2.e Green's Currents with Logarithmic Growth

In this subseetion, we give a generalization of the Poincare.Lelong equation for higher
codimension subvarieties.

We always 888ume, from now on, that X is a (quasi)-projeetive eomplex manifold. For
any irreducible subvariety Y, we say a smooth form ()' on X - Y has logarithmic growth
along Y, if there exists a proper morphism 'A" : X - X such that E := 1r- 1(y) is a divisor
with normal cfossings, 'A" : X- E::::: X - Y and 0' ia the direct image of a form ß on;izE by
11" with the following property: ..,L-E.

Near each z EX, let %1 ••• Z,I; =0 be a loeal defining equation of E. Then, there exists
d-closed sffiooth forms Qi and a smooth form "y sueh that

,I;

ß=L Qi logl zil 2 + "}'.
i=1

Obviously, such an 0' is always loeally integrable on X, and henee defines a current [0'],
which ja the direct image by 1r of the eurrent [ß].

By the definition, we easily have the following properties of forms with logarithmic
growth.

Pull-Back Property. Let f : X' - X be a morphism of smooth projective varieties,
and let a be a form on X - Y of logathmie growth slong Y. If 1-1 (Y) does not contain
any component of X', then the form f- (Cl) is of logarithmie growth along /-1 (Y).

Push-Out Property. Let f : X - X' be amorphism of smooth projective varieties,
aod let Q be a form on X - Y of logathmic growth along Y. If f is smooth outside Y
and f (Y) does not eontain any eomponent of X I, then the form I. (Q) is of logarithmic
growth along f(Y) and /.([a]) = [/.(0')].

it.
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AB a generalization of the Poincare-Lelong equation, we have tbe foUowing

Theorem. For every irreducible subvariety Y cX, there exists a smooth form gy on
X - Y with logarithm growth along Y auch that [gyJ is a Green's current for Y.

Proof. We prove thiA theorem by the following steps.

Step 1. Suppose Y is an irredueible codimenaion-l subvariety. In this case, we may
associate Y with a line sheaf r.. Sinee X is projective, there ia a natural metric on C,
one induced by the pull-back of the Fubini-Study metri~. Now the result follows from the
Poincare-Lelong equation in subsection b.

Step 2.- Let i : Y c.......- X be an irreducible subvariety of X of codimension p. Then,
by Hironaka's theorem, there exist a smooth projective complex variety X aod a proper
morphiam i'I" : X -+ X such that X - E:::: X - Y, where E = UiEi := lI"-l(y) ia a divisor
with normal erossings. Consider the eycle {V] E CH~(X): we have

Hence 1f'-[y] = Li[11i] with 11i e CH(Ei). Therefore, we see that the corresponding eoho
mology cl88B 'Il"- cl(Y) e H~P (X, R) decomposes aa Li ji- (cl(ai», where (}i is a closed
form of AP-l,p-l(EI ), and ji : EI c.......- E is the natural inclusion. Therefore, the result is a
eonsequence of tbe following leriunaa.

Lemma 1. With the same notation aB above, we have

Dy = Li'I".(ji.[OiJ).
i

Lemma 2. Let X be a complex manifold and let i : Y c.......- X be a closed immersion of
a codimenaion-p amooth Bubmanifold Y. Then, for any closed form 0 E An,n(y), there
exist a form 9 on X - Y, whicb ia of logarithmic growth along Y, of type (n +p - 1, n +
p - 1) and a amooth (p + n, p + n )-form ß, auch that

dlf[gl = [ß] - i.[a],

Proof of Lemma 1. Consider the resolution of singularities Zi of Zi := i'I"(E;) C ,,'fe
we have the following diagram

Ei
i, Zi-

qi 1 1Pi

Ei ~ Zi
j

X,c.....o.

where qi is birational aod Ei smooth. Hence
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Note that if codimx Zi > codimx Y, then Pi. (;Ti .. [q; aa:J) =0, so we have Zi =Y aod

codimx Zi = codimx Y.

Therefore

L 1r. (ji. [Oi]) =P.(S)
i

285

for P : Y - Y a resolution of singularities of Y aod 9-E DO,oCY) ie a closed current. In
particular, we know that an S ie a constant multiple of 01" Hence

k

1r.(Lii.[aiD;: a6y
i=l

for sorne a E R. Hut ao represents it.('A'"·[YJ) in H;Y(X,R). So, by the fact that 11" ie
birational, (and hence ,.... (11". (YJ) = [Y],) we have a = 1. This gives the proof of Lemma 1.

The second lemma is a consequence of the following more general

Lemma 3. Let f : Y - X be a holomorphic map of complex rnanifolds of dimension
ff, d respectively. Then, for the graph f(f) := {(y, z) : z =f (y)} C Y x X, there exists
a logarithmic growth Green'e current gr along f for f.

Step 3. Proof of Lemma 3.

The basic idea here ie to transform the situation to the divisor situation by a blowing-up
process and then use the Poincare-Lelong equation.

Let W := Br(Y x X), then we have

E
1I"r 1

f
Pr'\.

cl... W
l1f' '

i
'-+ YxX

.( PI
Y

with E the exceptional divisor. We claim that there exists 0' E Ad-I,d-I(W) such that
1r.(OE A [0']) = or.

In fact, the cohomology elass eI(f) ie an element of H#,d(y x X, R), hence

But
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Hence EBp HP,P (E IR) is a free module over EBp HP,P (r, R) with basis €o I ... I€d-t and € =
r cl(E) is the first ehern claas of the tautologicalline bundle 'f'r 10- (p;Tx)). Hence we have

lI'-cl(f) n cl(W) = L :rrr(ad€i,
i

where 0i E Hd-t-i,d-t-i(r,R). Thus, by the fact that 11'"- =r:rr-p-(pf)-t, ifwe let

bi := 'f'- 0 p·«pr)-l(ad) E Hd-1-i,d-i-l(W, R),
..

we have

Now set er := [Li bi cl(E)i] and by tbe projective formula, we have tbe claim.

Since Eisa divisor on W, it follows by tbe Poincar~Lelong equation tbat

dcfOogl"l~a]= -(ß 1\ er] +6E 1\ [al,

for BOrne section 8 of tbe line sheaf O(E). Hy the claim above, we know that [,Bl\a] represents
tbe cohomology claas lI'-cl(r). Taking w E Ad,d(y X X) such that 'lI"·W represents 1I'·cl(r),
we know that there existB ,p E Ad-1,d-l(W) such tbat

ddcI/J =ß1\ a - K·W.

Let 9r := -(loglsI2a +t,6) and denote by gr the form corresponding to §r via the isomorphism
W - E :::::: Y x X - f. Since

dcf[(logllslrl)a + q,] = -[,6 1\ 0] + 6E 1\ [0] - [1r·w]'

by the claim above,

So we onIy need to check the logarithmic growth condition. But then it is a direct conge..
-quence of the push-out property listed previously.

Step 4. The Proof of Lemma 2.

For the closed immersion i : Y c....... X is a closed immersion, from the proof of Lemma
3, we have a Green's current !Ir for r with logarithmic growth in Y x X. In particular, the
form 9 := pt-(gr 1\ P2a) is smooth on X - Y of type (n +P - 1, n +P - 1). Here Pi denotes
the projeetions of Y x X to its faetors. Furthermore l by the push4 0ut property listed above,
9 is of logarithmic growth along Y. On the other hand, for alt 11 of approciate degree,

Pt. (6r 1\ [p;a])( 11) =(6r A [P;o])(Pt.1J)

= lr P;o 1\ pi 11 =lr Pr er 1\ pi 1J

=i (}'!I (Pr)-lpi'l =i (}'!I j"'I

=[o](i·TJ) =i.[o](1J).
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Here Pr = P21 r : r =: Y. Therefore, we finally get

d!f[g] =dde[Pl.(gr I\P2a)] = [Pt.dcf(gr A p;a)]

=(Pt.(ddegr A P2n)] = Pt. (dde(gr] 1\ P2a)

=Pt-(([w] - 6r) 1\ [p;a]) = [ß] - i.[a].
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Here ß := pl.(Wr I\pia) E AP+n,p+n(x). This completes of the proof of Lemma 2 and hence
the theorem.

The use of forms with the logarithmic growth sins--Iarities has many advantages. For
example, we have the following

Proposition. Let X be a smooth projective complex variety and Y a c10sed analytic
subset. Suppose that er is a smooth form on X - Y which has logarithmic growth along
Y, then

Proof. Tbis is a local problem and we may assurne that X ia the polydisc

Ö d := {z =(Zl, ... ,Zd) E Cd: IZil < I}

and Y = Uj'=l Yj 1 witb Yj := {z E Öd : Zj = O}. For aoy E > 0, let

u~ :={Z EX: infjIZjI < E},

W/ :={z EX: IZj I=E,lz~1 ?: E, Je 1:- i}, and

rxr .- U. W J,-yc'- J ~

which is tbe boundary of U~. 8y Stokes' theorem, we have

(d[a] - [do])(w) =liITlt_o [ a 1\ W = -li~_o ( er Aw.
18(x ...:u.. ) Jw..

Hence, by the logarithmic growtb condition,

o Aw =I:(aidzt + bidzi)II dZj A dZj,
j~i

where
lai I, Ibil :5 CI I: loglzj l'l~

j

for same positive constant C. Therefore

I { ,a A wl:5 { (laildzi + Ibildzi) II dZj 1\ dZj
Jw: Jlz;I=~ j#

:5 2CE1.'. ( IL loglzj I' + E21~dOi rr dZ i 1\ di j =O(E),
o JtJ.~-1 j"#i j"#i
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where Bi ia arg( z.). This completes the proof.

In general, if 0' is a smooth form on X - Y such that a and da are lacally integrable
on X, then we call the difference

dJ:cr] - [da]

the residue of a aod denote it by Resy(O'). The above proposition may now be stated as
folIows:

Proposition'. If 0 has logarithmic growth alang Y, then its residue is zero.

We need the following technicallemma, which will be used in the arithmetic interaection
theory.

Lemma 4. Let Y = Uj Yj be a divisor of a sffiooth complex projective variety X with
normal crossings. Suppose 0 is smooth over X - Y and 0 is O(r- 1) near Y. Then

Resy(o) ='l:Til
i

where Ti is'a current of order 0 supported on Vi; i.e. if {U} ia an open covering of
X such that U is isomorphie to same open subset of Cd and Ü is compact, and A is
a positive constant, then there exists a positive constant B such that for any smooth
form W of X with wlu = LI,J fI,J,udzfAdzJ, l/f,J,ul < A, we have IT(w)1 :5 B.

Proof. This is also a loeal problem. We let X and Y have the forms as in the last
proposition. With the same notation, we have

Resy(o)(w) =-li~_o L1.0 Aw.
j W;

Since
oAw = ~:::)aidzi + bjdij) II dZj A dEjl

i i"#.i·

wbere laiLlbd :5 c IZI ..• Zn 1- 1 for some constant C, we have

Now it ia sufficient to prove the e~istenceof liITlc_ 0 fw10: /\ w. Choose a COO cut-off funetion

hJ on II d such that

(a) 0 ~ h1 ~ 1;
(b) hJ =0 for IZjl > 6;

(c) hj = 1 for IZil < 6/2.
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We claim that lim,s_o Res (())(whJ) exists. ]n fact, jf 61 > 62 > 0, and [ <.62 /2, then
on wj,

and for Je f. i,
· f () 1\ w(hJt - hJ:J) =0(6 1 - 62 ),Jw;

which is independent of e. Therefore liffib_o Res (() )(whJ) exists, say Tj (w) .
..

For ! < 6/2, we have

So
f () I\whJ - f .() I\w = 0(6).JWr Jw:

Thus the assertion follows by noting that

I f .ol\w-Tj(w)1JWJ
~

~IJ. .ol\w- f ol\whJI
Wi Jw. .

+ I { 01\ whJ - Resy(o)(whJ)1Jw.
+IResy(o)(whJ) - Ti(w)l·

We end tbis section with tbe following observation: Let X be a non-singular quasi
projettive variety over C and Y a codimensjon-p algebraic cycle on X, then we may ap
proximate an L 1 Green 's form (COO on X - IY I) for Y by a CC'IJ fonns aB folIows: Choose a
locally finite open covering of X by coordinate sharts and, for each E > 0, let Pr be a c;oo
real valued function on X such that

1. 0 ~ Pr ~ lj
2. Pr == 1 outside tbe neigbborhood Nr(Y) of radius! of IYI in each coordinate charta;
3. Pr == 0 in same open neighborhoocl of IYI·

Tben we have tbe following

Lemma 5. For each e > 0, let gy = Prgy with gy a Green's current of Y. Then
(a) gy is a CC'IJ form on X;
(b) ddc gy =wy - wy with wy a COO form Bupported in the union of the closures of the
Nr(Y)j .
(c) lilIlt_o[gy] = [gy] i
(cl) li~_o[wy] =6y.
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The proof of thia lemma which is easy ia left to the reader.

§II.2.3 Arithmetic Chow Groups

II.2.3.a Arithmetic Chow Groups

We iiltroduce now the arithmetic Chow groupa and their cohomological properties.

Let X be a regular arithmetic variety over an arithmetic ring (A, E, Foo ). Tbe conjugate
linear automorphiBm F00 of CE induces an orientation reveraing continuouB involution on
X oo • Since XF ia a smooth variety, X oo is a complex manifold. We define

AP,9(X) := AP,9(Xoo ), DP,9(X):= DP,,(Xoo );

AP,P(XR ):= {a E AP,P(X): P;'w =(-l)pw};

lJP,P(XR):= {a E DP,P(X): P;'(a) = (-l)Pw};

ÄP,P(XR) := AP,P(XR)/(lm8 + Im8); Ä(XR):= $pÄP,P(XR)i

y,P(Xa ) := lJP,P(Xa)/(lm8 + ImO); D(XR):= tBpi)P,P(XR).

Similarly, if X is projective, we let

Since ddC is a real operator, we know that ddC is compatible with all of these definitions.

Let Y be a codimension-p integral subscheme of X, then Y00 ia a Foo-invariant analytic
subspace of X oo ' Hence, integration over Yoo defines a current in DP,P(XR) and we denote
this current also by Oy. We say that an element (Z, gz) E ZP(X) tB DP-l,P-l(XR) is an
arithmetic p-cyc1e if gZ ia a Green's current of Z, Le.

dcfg: =w(Z, gz) - Oz

for some wz := w(Z, gz) E AP,P(Xa ). We denote by Z~r(X) tbe abeliao group generated
by aritbmetic p-cycles.

Next, we define arithmetic rational equivalence among tbe arithmetic cycles. Let i :
Y c...... X be an integral subacheme of codimension p- 1. There is a resolution of singularities
of Y00, 7r : Y00 - Y00 wi th 7r proper. For any rational fuaction f E k(Yt, define a rational
function i on Yoo such that loglil2 is LI on Yco . Hence i is contained in DO,O(y). Let
ioo : Yco - X oo be the natural induced morphism, then
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and ia independent of the choice of Y. We denote it by i_ [logl/12
]. Sinee f ia Foo-invariant,

by the Poincare-Lelong equatioß, we know that

We aay that such an arithmetic cyde ia arithmetically rationally equivalent to zero.
Let R~r(X) be the subgroup of Z~r(X) generated by divAr{ f) for f E k(wt I wi th W a
codimension-{p - 1) integral subscherne. We define the p-th arithmetic Chow group,
denoted by CH~r(XL to be the quotient group Z~r(X)'R~l/Y).Let

CHAr(X) := $pCH~r(X),

We define in a similar way the p-th homology group CH~r{X). In order to define the
arithmetic intersectioo, we first need to define a product among Green's currents, whicb is
what we will do in the next subsection.

II.2.3.b The *-product of Green's Currents

. Let X be_ a smooth projective complex variety, Y C X a closed irreducible subset and
f : Z - X a proper morphism of irreducible projective varieties over C auch tbat f(Z) rt. Y.
There exists a differential form gy of Y such tbat gy ia amooth on X - Y aod has logarithmic
growth along Y; that is, there exists a proper birational morphism 1r : X - X such that X
ia amooth and projective, E := i'I"-l(y) is a diviBOr with normal croasing, 71" : X-E =::: X - Y
and the form 71"- gy ie O(llog r 2

1
2K ) near E, while 1r. dgy is O(r- 1) near E. In this case,

we denote the associated current by [gy]. Thus by resolving the singularities of Z, we ean
construct a commutative diagram

-z L X
p! '\.q !1r
z L X,

euch tbat D = j-l(E) is a divisor witb normal crossings, Z ia projective an~ smootb, and p
ja birational. (In fact, we may cho~ Z a.s the resolution of tbe singularities_ of the Zariski
cl08ure of Z - Y embedded in Z x X as the graph of f.) Obviously q-gy on Z has the same
growtb SB !/Y on X, 80, if Z is smooth, it makes sense to define

Also, if / ; z '-+ X ie a c10sed immersion, we define a current [gy]" Oz = 6z " [gy] in
Dm+n-l,m+n-l(X) by

[gy]" Oz := q_[q-gy].

Furthermore, if gz ia an arbitrary Green 's current of Z, we define the *-product of [gy] and
gZ by

[gy] • 9z := [gy] " 6z + [dcfgy +6y ] " 9z .
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Theorem.. Let X be a smooth projective variety aver C, aod let Y =Li ai{~] be a
cadimension-n cyde on X such that gy;, a Green's form of Yi, has logarithmic growth.
Then
(1) If Z = Lj bj (Zj] is a codimension-m cyde on X such that Zj cf- IY I for all j, and

gz a Green'a current for Z, then

dtF([gy] *gz) = [wy 1\ wz] - (L JJA:6S" + t).
~

Here IYI n IZI = 5 U T, where S ia the uniob of the componenta 51,'" ,Si of
codimension-(m+ n), T is the union of the components of codimension < (m + n).
That ia,

[Y][Z] = L: JJA:SA: + T,

~

and t is a current aupported on T whicb representa the homology dass of T.

(2) For any two Green'a currents gy, 9~ of Y with logarithmic growth, aB an element
of D(X), we have

for aoy Green's current gz. Hence, we mayaiso def1.ne the *-product among Green's
currents.

(3) Let Y, Z be two algebr~ie cycles with Green's currenta gy, 9Z, then

gy *gZ = gZ *gy .

(4) Let Y, Z and W be algebraic cycles of X with Green's currents gy, gz aod gw,
respectively, we have

(gy,.. gz) • gW = gy * (gZ *gw).

Proof. (1) We may 888ume that Y aad Z are prime cydes, i.e. irreducible aubvarieties
of X. With tbe notation as above and by tbe result about residues, we have

d~([gy] ,.. 9Z) =dcf(q. [q. gy]) =q. ddC[q. gy]

=q.ResD(tfgy) + 6z 1\ wy = R + 6z 1\ wy,

where R:= q.ResD(dCgy ) is a current of order zero supported on Y n Z.

On the other hand, cl(Y) E Hfn( X) is represented by (6y 10) E D1n (X)E9D1n
-

l (X) aod
also by (wy I ( -1)2n+ 1dCgy ). SimilarlYl for Z, we know tbat d( Z) e H~m (X) is representecl
by (6z , 0). Since 6z 1\ dCgy extenda to a current dC (6z 1\ [gy]) on X I hence cl( [Y][Z]) =
cl(Y) U cl(Z) E H~~i1n (X) is represented by (wy6z,(_l)2m+2n+ldc(6z 1\ [gy]) , which ia
also represented -by (R, 0), where R represents cl(Y Z) in H~~i1n (X).

If T = 0, (1) is a consequence of the followi ng
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King's Lemma [Ki 74]. Ir Y aod Z intersect properly, R = EA: I1A:Oslc.

Otherwise, we consider the restriction of R on X - T. Obviously, we have

.l:

Rlx-T = EJliOS;lx-T.
i=l

Hence t = k + L:=l JliOs; is a current of order zero supported in T, which necessarily
represents the cohomology dass of -T E H:;'m+2n(X). H.:nce we have the assertion with the
help of King's lemma. The proof of King's lemma is not really complicated: One may uee
the smooth approximation to deal with it. We leave the proof to the reader.

For the proofof(2), (3), (4), we first give equivalent statements. We start with (4). Hy
(1), we know that

[gy] • ([gz] • gw) = [gy] *g[Z][W]

=gy /\ 6(z)[w) +wy /\ gZ /\ 6w +Wy /\ Wz "gw.

On the other hand, by tbe Coo approximation at the end of the last section, we have

([gy] • [gz ]) • gW
=li~_o([gy] • (gz]) 1\ Ww + Wy Awz /\ 9W

=liI11e--09Y /\ Oz /\ Ww + liI11e-_owy A 9z A Ww + Wy 1\ Wz A 9W

=liI11e--oUY /\ Oz Aww +wy A 9Z A Ow +wy AWz A 9w .

=(gy /\ 6z /\ Ww -li~_09Y A 6z A dcJCgw)+ Wy "9z 1\ 6w +Wy /\ Wz 1\ 9W

=9Y A 6z Aww -li~_odcf(9YA 6z) 1\ 9w + Wy A 9Z A 6w +Wy 1\ Wz A 9w

=9Y A 6z Aww -liI11e-_o( -6[y][z) A 9w + wy /\ 6z 1\ gw) + wy /\ 9Z 1\ Ow +Wy 1\ wz /\ 9w

=gy 1\ 6z Aww - (-6[Y][Z] + wy 1\ 6z) A 9W +Wy 1\ 9Z 1\ Ow +Wy /\ Wz 1\ 9w·

Therefore, in order to prove (4), after interchanging Z and W, it is enough to show the
following

Claim.

[gy] A(L Jli 6S. + t) + wy /\ [gz] 1\ 6w =Oty][W] /\ 9Z + 9Y 1\ Wz /\ 6w.
i

Here Si is the proper part of the intersection of Z and W.

But this formula also gives the proof of (3), since for that Ca8e, we may let W = X.

x.

w
p! "h
W 4

Proof of the claim. The details are rather formal and tedious. Hy Hironaka's theorem
II [Hi 64], there exists a diagram
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Eh}?

11
!.

X
!
x.

such that
(1) W is non-singular and quasi-projective;
(2) p is birationalj
(3) The inverse image of Y UZ, Y, Z, Y nZ of h are aH divisors witb normal erossings;
(4) h·gy, h·gz have logarithmie growth near the inverse image of Y, Z, respectively;
(5) For each irreducible eomponent E of h- 1(y n Z), there exists a eommutative

diagram

Here i:: is smooth, h(E) ia eontained in a smooth aubvariety TC}? of codimension
at least p + q + r aod 1 ia the blowing-up of }( along T.

Henee h·gy aod h·gZ have logarithmie singurities near h- 1(Y) and h- 1(Z) respectively.
On the other hand,

and
d~(h.(h·gz]) =Wz A 6w - (L JJItDs. + t).

k

Also h·(gy A ßgz) ia O(r- 1Ilogr1 Ik ) near h-1(y U Z), hence it ia an L1 form on W. Now
by a Ioeal caleulation, we have

8(h.(h·(gy A 8gz») = h.(h·(8gy 1\ 8gz)] - 21ri(6w A gy Awz - gy A(L JJkDS. + i».
k

Interchanging ß aod 8, Y and Z, we have

ä(h. (h· (gZ A ßgy)] =h.(h· (ägz A 8gy)] - 2n-i(Dw A gZ A wy - gZ A D[yl[W)'

Therefore in jjP+q+,.-l,P+f+,.-l(X), we have

[gy] 1\ (2:: JJkDS. + t) +Wy A (gz] A 6w = 6[YJ[w] A gz + gy A wzAw,
k

which proves the lemma.

So we have (3) and (4). Now (2) ean be proved as follows. We know that in D(X),
aoy Green's current may be represented by a Green's current with the logarithmie growth.
Thus by

gy * gZ - g~ • gz = (gy - gy) A az.

But gy - gy = 0 in D(X), so the fact that az ia c10sed implies (2).
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II.2.3.e Cohomology Properties oe Arithmetic Chow Graups
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We study now the cohomology properties of arithmetic Chow groups. For this purpose,
we need several morphisms involving CHAr(X), viz.

(1) ( : CH~r(X) -+ CH(Ji), (Z,gz) 1-+ Z.
(2) a: ÄP-l,P-l(XR) -+ CH~lX'), 0' 1-+ (0,0).
(3) w : CH~r(X) -+ AP,P(XR), (Z,gz) 1-+ dd'gz + bz.
(4) p: CHP-l,p(X) -+ Äp-l,p-l(X), (I,,) 1-+ E" -(10i1/" 12).

(5) c: CHP(X) -+ HP,P(XR), the eycle cl88S map;
(6) h : ZP,P(X) -+ HP,P(XR), where ZP,P(X) := the closed forms in AP,P(XR), seDds a

closed form to its cohomology class.

Theorem. The above morphisms are well-defined. Furthermore, there are two exact
sequences

(1) ... -+ CHP-l,p(X) ~ HP-l,p-l(X) ~ CH~r(X) (,~w) CHP(X) €B ZJ',P(XR) e=.!'
HP,P(XR ) -+ O.

(2) ... --.. CHP-l,p(X) ~ ÄP-l,P-l(X) .!. CH~r(X) ..s CHP(X) --.. O.

Proof. (a) Clearly, the last morphisms c - h, ( in the sequenees (1) aod (2) are
surjective.

(b.)Exactness at CHP(X) EB ZP,P(X):

We have

(c - h)([Z],w) = 0 <:> 3g E DP-l,p-l(X) : d~g = (w] - Dz <:> (c, -w)([(Z, g)]) = «(ZLw).

(c) Exactness of CH~r(X). For (2), we have

«[Z, gz]) =0<:> Z =L div(/,,), I" E k(y)-, y E X(P-l).

" .

That is,

[(Z, gz)] = [(2: div(/,,), gz)] =[(0, gZ + LOogl/y 1
2
])].

p "

Let 9= gZ + Lp ~oglfL'12] E CH~r(X) and we bave

dcfg =[wzL

Hence there exiat '7 E AP-l,p-l(X), SI E DP-1,p-l(X), 82 E DP-l,P-2(X), such tbat

, 9= [7]] + 881 + 8S1•

Thus
([(Z, gz)]) =0<:> [(Z, gz)] =[(0, g)] =[(0, [7]])) = a([7]]).
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For (1), we note that in addition,

def.g =O.

Then 1] ia a closed form. •

(d) Exactness at ÄP-l,P-l(X) (resp. HP-l,p-l(X)): In fact,

0(1]) = 0 (:> (0, [17]) =I)div(!y), -Oogl!l' 1
1
]) + (O,dSl + tJS1 ) e Z~r(X)

y

~ L: div(!l') =0, and [17] =L: -[loglfl' 1
1

] + aSl + tJS1 (:> p«ftl )) =1].

tI Y

(e) Finally, we need to prove that p ia well-defined. Sy the definition in 1.4, we know
that

CHP-l,P(X) =E~Xl,P(X) == ((fy) e $vEx(.-l)k(yt : L div(fl') =O}/Imdl ,
v

where
dl : EBzEX<.-1)J(2(k(x) - EBvEx<.-I}k(y)·

is given by the tarne symbol. Thus it ia sufficient to prove that po d 1 =O. Ir X is a smooth
projective complex variety, Z C X an irreducible subvariety of codimension-(p - 2), then
for I,g E C(Z)\ we ahould have

po dl ({I, g}) =O.

For this, we first reduce the problem to the situation in which div(f) U div(g) ia a divisor
with normal crossings. In fact, we have the following fact:

Let 11" : Z - Z be a resolution of singularities of div(f) U div(g) with 11" proper and

D =lI'-l(div(j) U div(g))

a divisor with normal crossings. Sy the functoriality of algebraic J(-theory, we have the
commutative diagram

bl,l(Z)
11r.

.!.. bl,l(Z).

EB yEZ(I)C(yt .!..
1 11".

EByEZ(I) C(y)·

K 2(C(Z)) ~
11

K 2(C(Z» ~

Thus dl 0 p = 0 will follow from dl 0 p = 0, which ia an immediate consequence of the
following
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Lemma. With the same notation aB above, we have

- z-
po d1( {I, g}) =- 211" (8[a] + 8(ß]),

where a =log 1912 A älog 1/1 2 and ß=log 1/12 A alog Ig12 .
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.
Proof. The problem is a local one, we may assume that Z = am ; and by the linearity

of the symbols {I, g}, we are redueed to the following two eaBes:

(a) 1= ZI = g. By definition, we have.

d1({ZI,zd) =(_l)v(Jldv(Jldz~('dz~v('d =-1.

So
po d1( {Zi, zd) =-[Iogl- 112

] =O.
On the other hand, we have

(8[a] + 8[ß])(w)

= [ ({J0:+8ß)AwJt. ....
=li~_o1 (er + ß) Aw.

IZII=,.

Ir we write ZI = re l !, 0: + ß beeomes 2/r log r2 dr, and henee the integral vanishes when
g- O.

(b) div(f) and div(g) interseet properly. By defini ti6n, we have

po d1({I, 9}) =+ßog 1/12
] 1\ 6div(l) - [log 19l~ A 6div(J)'

So
po d1({I, g}) = -Oog 1/12

'" [log Ig1 2
] + ßog Ig12

] '" ßog 1/12
].

Now the result follow8 from the more refined .

Claim. Let Y and Z intersect properly, and let gy, gz be Green's forrns for Y and Z
with the logarithmic growth along Y and Z respectively. Then we have

1
(gy] '" (gz] - [gz] '" [gy] = -2.(8 [gy A 8gz] + 8 [9Z A 8gy ]).

'f'1

Proof of the claim. In fact, by definition

[gy] • (gz] - [gz] '" [gy]
=[gy] A 6z + [wy] 1\ [gz] - [9z] 1\ 6y - [wz] 1\ [gy ]
= - [91'] A ([wz] - 6z) + [gz] 1\ ([wy] - hy)

= - [gy] 1\ dtf[gz] + [gz] 1\ dcf[91']
1 - -

=-2.(8([gy] 1\ 8[gz]) + 8((gz] 1\ 8[gy])
""1 15-

=-2. (8(gy 1\ ogz] +8[gz 1\ Bgy]).
11"1
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§II.2.4. Ariihmetic Iniersection Theory

[n this section, we obtain an arithmetic intersection theory for aritbmetic varieties by
using tbe results in the previoUB sections.

Let X be an arithmetic variety over an arithmetic ring (A, 1;, Foo ). Let

Z~n(X) :::{Z E ZP(X) : zn Xp :: 0};

CH~n(X) :=Z~n(X)/ < div(/) : 'VI E k(y)';y E X(p-l) - X F >;

Z~r(Xr) :::{(Z,gz) : Z E ZP(Xr),gz Green's current for Z}.

Tben there ia a natural morphism:

which ia given by
divAr(/) := (div(f), -~oglfl~),

where div(f) =Zl + Zl, Zl E Z~n(X) aod Z'2 E ZP(XF ). Then we have proved

Lemma. Witb tbe notation aB above, there is an exact sequence:

Suppose that Y and Z are iutegral subschemes of X with codimensions-p, q, respec
tively, and tbat Y, Z intersect properlyon XF. Note that [Y][Z] ia not necessarily well
defined aB a cyele on X, since Y and Z may not intersect properlyon X. However [Y][Z] is
well-defined as a dass in CH~~9Z(X) Q. On the other hand, there ia a canonical morphism

where W ia a closed subscbeme of generic codimension-p. So [Y][Z] may be thought as an
element of

Ir gy, 9z are Green '8 currents of Y J Z, respect ively, we define

([Y]l gy )([Z], gz) ::: ([Y][Z], gy *gz),

which is an element of (ZP+~(XF) ffi CH~~f(X))Q EB DP+f- 1,P+9- 1(Xa). Hy the result for
the *-product of Green's currents, we have the following

Fact. Ir Y and Z intersect properlyon the whole of X, then
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Now we may state basic facts of arithmetic intersection theory in the following

Theorem. Let A = (A, E, Fro ) be an arithmetic ring with field offractions F. Suppose
that X ia an arithmetic variety over A whicb ia regular and haB a quasi-projective generic
fiber XF. Then

(1) For each pair of natural numbers (p, q), there ia a pairing

CH~r(X)@ CH~r(X) - CH~~q(X)Q
a@ß .-11' aß.

Tbe pairing is uniquely determined by the following property: If Y aod Z are
integral Bubschemes of X which intersect properlyon X F , and gy and gZ are

. Green's currents for Y and Z, then ([Y], gy )([Z], gz) is given as above.
(2) The product above makes CHAr(X)Q := EBpCH~r(X)Qa cornmutative, associative

Q-algebra.
(3) The natural morphism

is a Q-algebra homomorphism.

Proof. Let ([Y], gy) E CH~r(X) and ([ZL gz) E CHlr(X). To define tbe arithmetic
product, we assume tbat Y and Z are irredueible. If Y and Z interseet properlyon Xp, we

already have tbe definition for tbe interseetion. Therefore, we need to deal with tbe situation
when Y and Z da not interaect properlyon XF. Hy the Chow movfng lemma, we know

tbat there are rational functions Ir e k(y)· ,Y E Xi!-l), such that (Y +L y div(Iy » p aod
ZF intersect properly 80 we ean reduce to the generic proper intersection case. It remains
to prove tbe following

Claim. Ir gy e k(yt, y e X~-l) is another cboice of rational funetians such that
(Y + L~ div(g~»F and ZF intersect properly, then

(E divAr(/r) - E divAr(gy»(Z, gz) e< divAr(/); (0, 1mB + Im8»Q C z~~q(X)Q'
r P'

By the Chow moving lemma for K l-chaina, there exists an element

such that if (hr) := (/J/g;l) + d1(u), then the Kl-chain (h y ) intersects Z alm08t properly,
i.e., div(hy ) meet Z properly for all Y, even through (fyg;l) does not have this property.
Note that since div 0 d1 =cq =0, we have

L div(hr ) = L div(/y) - div(gy).
y ...
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Furthermore, since po d1 = 0, we have

Lnogl!y 1
2
] - Lnoglglll2] = LVoglhy1

2
]

y V V

modulo Imß + 1mB. Therefore, it is Bufficient to prove the foUowing

Lemma 1. With the same notation as above, we have that divAr(hy)(Z,gz) lies in

< divAr(!); (0, Im a+ Iro..ä) >Q .

Proof. Since arithmetic intersection is a natural generalization of algebraic intersection,
we may negleet the finite part. Hence, without 1088 of generality, we may assurne that
Zftn = 0. Also, we will simply write h as hy • Now if W:= Supp(h), then IWFlnlzFI = SnT,
where codimx,. 8 = p + q - 1 > codimx,. T. In CH~t;'-l(XF )Q, we bave

[WF][ZF] =Ltll:{SI:] + T .

..
Here 81: are the irreducible components of S, tll: the Serre interseetion multiplicities, and
T E CH~+'-l(XF)Q' Since (div(h))F intersects ZF properly, by tbe fact that (div(h))F
does not have -a component of codimension- (p +q - 1), we know that his. E k(SI:) -; and by
the fact that (div(h))F nT = 0, we have hIT is a unit. With this, by.the definition of the
algebraic intersection of a K l-cIiain and an algebraic cycle in 1.4, we know that

hZ =II(hls;)Jj; (hIT t) E $lIEx~+.-1)Kl(k(y)),
i

where t E Z~+'-l (XF)Q is a representative of T and the product (hiT t) has to be understood
in K-tbeoretic terms. Also by tbe fact that hZ is only defined up ta ImdlJ SO by tbe fact
that div 0 d 1 = 0, po d1 = °of the cohomological properties of arithmetic Chow groups,
we know that divAr( h Z) is weH defined. In particular, we see that the claim is a direct
consequence of tbe following

Lemma 2. With tbe same notation as above, we have

divAr(h) (Z, gz) =divAr(h Z) mod(O, 1mB + 1mB).

Proof. First consider the part for algebraic cycles. Let H E k(X)- be such that
Hlw = h. Tben

div(H) W = div(Hlw) = div(h).

Furtbermore, we have

div(h) Z =(div(H) W) ZF = div(H)(WF ZF)

=div(H) (L PiSi + t) = L Pi div(HlsJ + div(Hlt)
i i

=L Pidiv(hl si ) + div(hlT t) = div(h Z).
i
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On the other hand, for Green '9 currents, the left hand side becomes

,( -[logjhI 2
]) * 9Z =9z * (-loglhI2

)

= - 9z /\ 6div (h) + [wz] /\ (-[logj h I2]) mod (1mB + Imß).

While for the right hand side, we have

-[loglh Z12] =VogIH 21]/\ Ow z

= - [loglH21] * (gW *9z) = gZ *1: -OoglH 2n*9W)

= - 9Z /\ 6div (H) W + [wz] /\ (-nogIH2 1] * 9W)

= - 9Z /\ 0div(h) + [wz] /\ ([logIH 211/\ Ow)
1 -= - 9z /\ Odiv(h) - [""Z] /\ (-[Ioglh U) mod (1mB + 1mB).
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Here, in the last atep, we uae the following discussion. Since -log 1/12 is a Green 's current
for div(f),

log 1/1 2
/\ Oz = log 1/1 2 * 9Z,

for any choice of 9Z. Thus

log 1/11 1\ 6z = log 1/11
/\ w - 6div (J) 1\ 9z.

If 1is chosen 80 that !Iw = I, then

j([Z]) =!([W][Z]) =!(E p." [Si] + t),
l:

for [W][Z] = L:" Jl.l:[SiI] + t. Hence

log l'zl1
=log"liI

1
/\ (~ .. Jf .. [s.. l + 0,)

-2
=log 1I1 1\ Wz 1\ ~W - 0div(i) /\ 9z

:=:log 1/12
/\ Wz - 6div (J) 1\ 9Z

:=:log 1/11 1\ Oz.

With the above definition CHAr(X)Q ie a commutative associative Q.algebra, aince we
know that the *-product ia aasociative and commutative.

511.2.5. Functorial Properties.

Gnce we have the definitions tor arithmetic intersection theory, we can es:tabliah the
properties of it with respect to morphisms of arithmetic varieties. Thia is what we diBCUBS
now. AB uBual, in order to give a good definition for the puB back morphismB, we need
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certain condition on the fibers, whieh allow ua lo assurne that the morphism is Hat sinee we
ooly need the puB back morphism. On the other hand, we should also have a natural puB
back with respect to closed immersions. Naturally, onee we discuss the puah out morphism,
we need to know that tbe image of a closed subset should also be a closed subset. So,
when we talk about push out morphisms, we shaB assume that the morphism for aritbmetic
varieties ia proper.

Theorem. Let f : X -+ Y be a morphism of regular arithmetie varieties over an
arithmetic ring A. Then

•
(1) Ir f ie flat, there ia a puB-back morphism

I- = fCH : CH~r(Y) -+ CH~r(X)Q'

(2) If I ia proper, fF : XF - YF is smooth and X, Y are equidimensional, then there
is a push-out morphism

f- = fCH : CH~l,Y) - CH~;r (Y).

Here r denotes the relative dimension of f.
(3) Where the notation makes sense, we have the projective formula

Proof. (1) Let [(Z, 9Z)] E CH~r(Y)' We assume that Z is irreducible. If it happens
that codimx,.(f-1(Z)F) =P, then we have f-[Z] E CH~_l(Z)(X)Q, aod we also denote the
image of f-([Z]) under tbe map

CHj-l(Z)(X)Q -+ CH~n(X)Q EB Z;-I(Z)r (XF)Q

by I-([Z)). This ia the definition for the algebraic cycles. Since f- 9Z ie defined, we may put

f- [(Z, gz)] := [(r [Z], f- 9Z)] E CH~r(X)Q'

Obviously, thie is well-defined. In general, if we do not have the exact codimension relation,
we may use the moving lemma to aehieve the required result; this has tbe same pattern as
in 2.4. Tbe details are len to the reader.

(2) We first construct a map from Z~r(X) to Z~;r(y) as folIows: Let (Z, gz) E Z~lX),

with Z irreducible, i.e. Z =W with z the generic point of Z. As in section 1.3, we set

f_(Z) := {[k(Z) : k(f(z»] {f(z)}, if dirn!(z) = dimzj
O! otherwlse.

Then, for Green's currenta, we know that for aoy 7] E AdimY(C)-p,dimY(C)-p(X(C»,

(/_6z )(7]) =6z(/-7]) = r '-7] = r j-(7]I/(z(c»))
JZ(C)· JZ(C)

_ {deg(Z(C)/ j(Z(C») JJ(Z(C») 11, if Z(C) -+ j(Z(C» is finite;
- 0, otherwise.
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Hence 1.6z = o/.(Z), and
dfiC(/.gz) =[j.wz] - o/.(Z).I

That is, I.gz defines a Green's current of I.(Z). Therefore we may put

• f.(Z,gz) := (f.Z,f.gz) E Z~;r(y).
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Furthermore, it is not difficult to check that this definition ia compatible with the arithmetic
rational equivalence, and hence we get a push-out morphism f. for arithmetic Chow rings .

•
(3) The proof here comes from the fact that the projective formula is valid for both

algebraie cydes and Green 'a currents.

Next, we define the pull back morphism for regular closed immersions. This may
be done formally by the arithmetic intersection theory. Let j : X '-+ Y be a regular
closed immersion of arithmetic varieties over an arithmetic ring A. If Z ia a eodimension-p
eyde in Y, which meets X properly on the generie fiber I then there· ia a wen defined eyde
j·[Z] E ZP(XF ) e CH~n(X), Sinee ZF meets X F properly, let gz be a Green's current for
Z on Y, then i· 9Z is a Green's eurrent for i· [Z] by a slight modification of Theorem 2.3.c.
We ean define

j·(Z,gz):= (i·[Z]'i·gz) E Z~r(X)eCH~n(X),

Suppose now that 4> E ~-l(YF) is a K1-chain such that div(tjI) meets XF properly. Hy
the Chow moving lemma for K1-chains, there is a K1-cbain <p such that div(tjI) = div(tp)
and ep meets X F almost properly. Furthermore, V' - q, representa zero in CHP-l,p(YF)'
Hence, log lepf = log 14>1 2

, and therefore divAr(lp) = divAr(lj6) E Z~r(Y) e CH~n(Y)' If
Z := Supp(div(ep)), j.(ep) ia weil defined in CHP-l,p(X - (X n Z)). Hy the theorem above,
we have j·divAr(ep) =divAr(j·tp). So j. induces a map CHAr(Y) - CHAr(X).

In practice, the situation is aB folows: We may first try to use the cohomological
properties of tbe arithmetic Cbow groups. Since we have tbe definition aod properties for
algebraic cycles in 1.3.b, we now tonsider the situation for K1-chains. We assume that we
work with regular schemes which are flat and of finite type over a fixed excellent regular
noetherian domain A. .

Iflj6 E ~-l(y) is a K1-chain, we let Z:= Supp(q,), T:= Supp(div(4>)) aod U:= Z-T,
tben q, determines, and is determined by the dass {4>} E CH~-l,n(y - T). Furthermore, the
image of {tP} under the boundary map

8 : CH~-l,n(y - T) - CHT(Y)

ia the dass of div(Ij6), where 8 is the boundary map induced by the exact sequence of
complexes:

o-+ ~(Y)T -+ ~(Y)z - ~(Y - T)u - O.

Here we use the foUowing notation: for V C W,

R:(W)v := Ker(R~(W) -+ ~(W - V)),
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and heuce a map

and CH~ (W) := Hi(Rj(W)v). Now, for the proof of the fact that the definition above ia
well-defined, we ueed to use the deformation to the normal cone. Let A ~ =Spec A[t], A~ =
Y xA.A~, and let W be the blowing up along X x {O} C A~. If p: W -- A~ is the projection
map, p-l(O) is the union of two divisors, P(Nx(Y) EB I), which ia the projective completion
of the normal bundle from X to Y, and to Y, which is tbe blowing up of Y along X. Define
W:= W - Y. We have

(1) The projection p : W - A~ is Bat;
(2) Wo := p-l ({O}) :::::: N x(Y);
(3) W - Wo:::::: Y x Gm =Y XA Spec(A[t, t- 1

));

(4) f : X - Y induces a map i :X X Al - W, such'1t that for t =0, X X {O} - Wo =
Nx(Y) is the zero section,while for t 1= 0, X x Gm -- Y X Gm is the map induced by
the base _change from f : X - Y.

Observe that t is a unit on W - WO ,.BO that t defines a dass {t} in HO(W - Wo, K 1(Ow) =.
0w)' For the construction of f- {4J}, it is convenient to consider the deformation to the nor
mal cone construction for the indusion of .x - (X n Y) in Y - T. We write f' : X' - y'
for this indusion, and W' for the corresponding scheme Bat over A~. Since p' : Y ' X Gm =
W' - W'o -- Y' is Hat, there is a puB back map

p'- : CH~-l>n(y,) __ CH~:~n... (W - Wo).

Associated with the ahort exact sequence

~(W~)[l] - R~_1 (W' ) - R~+1 (W' - W~),

we have a long exact sequence

... _ CHV(W~) - CH~-H,j+l(~V') - CH~+~~:l(W - ~V~)!!.. CH~l>j(W~) - ....

Here Ü ia the Zariski closure of U x Gm in \tV' and V =Ün Wo = Cunx' (U) ia the normal
cone of U n X' in U. By [Gi 81], there is a natural product for any noetherian scheme S,

where 'Tl- s ia the complex of sheaves U 1-+ R:n( U) on S. Hence there are productsm,

By the fact that V C 11"-1 (X' n U), we may combine the boundary map and the product,
and get a map

(7t: CH~-l,n(y,) _ CH~-l,n (yV~)

{t,iJ}
- CH;::}(~'nu/Wo)
1-+ 8( { t} * {t,iJ}).
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We observe finally that

• CHn-1,n(X' ) CHn-1,n (TU)
1r: X'nU - ,..-I(X'nU) HO

is an isomorphism. Composing this with the map (Tt above, we get a map
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Theorem. Suppose that f : X - Y is a regular clesed immersion. Ir,p E ~-l(y) is
a K1-chain with support Z, Supp(div(,p» =T aod U = Z - T, then we have
(1) 8(f·{,p}) = f·(8{t/J}) E CHxnT(X) where {j is the boundary map

CH~:~n(A - C) - CHc(A)

for Ce Be A.
(2) If tP = l]gw] meets X alm08t properly, with g regular at the generie point's of S,

and div(g) n T is empty, then

f-[gw] = LJJi[gwlsJ + LgW Tj,

i j

aod f-(,p) = Lw f·[gw]. Here JJi is the interseetion multiplicity of Z aod W
at the generic point of tbe irredueible component Si of S, aod Tj is the eyde
class on tbe connected eomponent Tj of T representing the eomponent of f- [W]
in CHr-:-1(X) c CH~~j.(X). The produet gw Tj is defined sinee gW iB a regular

• J

functlOD on 7j.

Before proving tbe theorem, we need the following

Lemma. Let S be a noetberian scheme, A and B closed subsehemes, and C := An B.
Let DeS be any closed subset. Then the square

CHj)i_Dn(AUB,(S - (A U B»
81

i+lJCHDn(A_C)(S - B)

is eommutative up to a factor -1.

Proof. This ie a direet eonsequence of the following diagram

Rj(S)cnD - Rj(S)AnD - Rj(S - B)A-cnD
1 ! !

Rj(S)BnD - Rj(S)D - Rj(S - B)Dn(S-B)
1 1 1

Rj(S)(B-C)nD - Rj(S - A)(S-A)nD - Rj (8 - B)D-(AUB)nD.
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Proof Of The Theorem. In the lemma above, let S =M, D be the Zariski cl05ure
of Z x Gm in W, A the Zariski closure of T x Gm in ~v and B = Wo. Then C = Crnx(T)
and C is contained in D n Wo = Cznx(Z). We have the diagram

In this diagram, square I is commutative because p is fiat. It can be checked at the level
of complexes that square 11 is anti-coinrnutative, while square 111 is anti-commutative by
the lemma. It follows that if tP E CH~-l,n(y,), then 8Ut(q,) = Ut(8t/J) E CH~":'l(TnX)(Wo),

which gives (1). For (2), suppose tP = [uw] for 9 E k(W)\ aud let 9 e k(Y)· be a rational
function which ia regular at the generic point of W aud X, and is such that g:lw = g. Write
iJ =div(g), so that iJ n W =D. Then tP ={gl [W] uoder the product

HO(y - V, K dOy)) @ CH~-l(y) -+ CH~~b(Y - D).

One cao see from the construction of

f· : CH~_D(Y - D) - CH~~~';_D)(X n (Y - D))

that if a: E H"(Y - iJ,K.(Oy)), and (3 E CH~_D(Y - D), then f·(a:ß) = f·(o:)f·(ß),
where f· (0:) is the puB back on the sheaf cohomology ioduced by the pull back on the
K-lheory. Hence, if X W = Li JJi[Sd +Lj Tj,

j. [gw] =f- {gl f· [W] = {glxHL JJdSi] + L Tj)

i i

= LJJdgls;] + LgTj = LJJdglsJ + EgTj,
i j i j

which completes the proof of (2) of the theorem, aod hence justifies the discussion above
for the closed immersions.

§II.2.6. Examples

In this seetion, we consider seme examples which explain the general discussion in a
more concrete way. Let X be a regular scheme, projective and fiat over Z. Then we have
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(b) Denote by PiCAr( X) the group of isomorph iBm classes of hermitian line sheaves on
X. Then we have

Proposition. There is an isomorphism

Cl,Ar: PicAr(X) -+ CHir(X)
" c1(.c, p) ~ [(div(s), -[logIs I;])],

where s is a non-zero section of .c.

Proof. We need to conatruct tbe inverse map:

where tbe metric p is given locally by tbe formula

Here 1 ia the section of .c with Z as its divisor. Tbe other properties are obvioUB.

(c) We may consider X = Spec(OF) aB an I-dimensional arithmetic variety, where OF
is the ring of integers of a number field F. In this special CR5e, c1assically, we have

CHO,l(X) =Oj;.;

ÄO,o(X) =Ao,o(X) =€tl17EER;

CH1(X) =CI(OF)'

The cohomological properties of tbe associated arithmetic Chow groups give the exact se

quence

... - Oj;. .!.. Rrl+r~ ~ PiCAr(X) i. Cl(OF) -+ O.

Notice tbat pis, up to a factor, the classical Dirichlet regulator map, hence Ker p = IJF, the
roots of unity of F. Furthermore, we get a arithmetic degree morphism

degAr: PiCAr(X)

cl(.c,p)

where 8 is a non-zero sedion of l. Thus tbe compactness of PiCAr(X),

is equivalent to tbe finiteness of the ideal class group Cl(OF) together with the Dirichlet
unit theorem, i.e. p(Oj;.) ia a lattice of rank rt + r2 - 1 in Rr1+r:a. We know finally that
vol(Pic~r(X» = hF RF, where hF is the class number of F aod RF the regulator of F,
respectively.
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Dually, we have the following exact sequence in terms of cohomology theory:

Here J.l(F) denotes the group of tbe roots of unity in F. Hence, we mayaiso have the
identification

CH~r(X) ~ F-\J(F)/UF,

where J(F) denotes tbe ideal group of Fand UF is the maximal compact subgroup of J(K).
In tbis content, tbe arithmetic degree is given by •

(d) We now discuss the Arakelov varieties. Aß we stated at the beginning of this
ehapter, Arakelov introdueed his theory for certain admissible metrics at infinity. We eall a
pair (X, 90) an Arakelov variety if X is a regular scheme, projective and Rat over Z, and
90 is a Kähler metrie on X(C), invariant under F(XJ' (Arakelov only considered the situation
when X ia an arithmetie surface, and 90 is given by

where 9 is the genus of X( C), and wl, ... ,wg form an ortbonormal basis of the space of tbe
holomorphie I-forrns on X, r(X(C), 0k(c)' whenever the symbols make sense.)

Hy the Hadge deeomposition theorem, we have

where 'JiP,P(X) := Ker(Lld) C AP,P(X) denates the space of real harmonic forms on X(C)
of type (p,p), invariant under F(XJ up to the factor (-l)P. Reeall then that there are maps

given by (([(Z, gz)]) =([Z], wz). We denote the second component by w, i.e. w(gz) =wz.
Now we may introduce tbe Arakelov Chow group by letting

There is also a Hadge decomposition for currents

and we denote by H : DP,P(X) -1lP'P(X) the orthogonal projeetion. We have the following
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Proposition. With the notation 88 above,
(1) CHArl1(X, 90) ~ (ZP(X)EB1ip - 1,P-l(X»/ < div(f),-H[loglfI2 ] >.
(2) CHAra(X,90) is a direct summand of CHAr(X).
(3) There ia an exact sequence

•
§II.2.7. ArHhmetic Chow Homology Groups
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We now show that tbe arithmetic intersection above may be extended to give a cap
product between aritbmetic Chow cohomology aod homology. These cap products are de
Bcribed somewhat in the style of Fulton'a operation formaliam.

First notice that the real vector space Ä(Xa ) is a contravariant functor from arithmetic
varieties to rings without unit, where we consider the *-product: <jJ.<p := tP 1\ ddC(<p) on
Ä(XR ). Given a class Z E CH:r(X) and tP E Ä(XR), we define their cap preduct

tPnz = tPn(Z,gz):= (O,tP.gz) = a(<jJ"w(z).

Here we bave written z = (Z, gz) and " for tbe product

which is incluced by the wedge product ef forms with distribution coeflicients. Naturally,
we have the following .

Theorem. Given a map f : X :....... Y of arithmetic varieties with Yregular, there ia a
unique cap product:

CH~r(Y) 0 CH~r(x) - - CH~~p(X)Q

y0z ...... y.Jz

wbich we also denote by y n z, or more aimply by Y' z if X =Y, such that
(a) w(y.Jz) = f·w(y) 1\ w(z), aod, for any 11 E Ä(YR), a(tP)·Jz =a(f-<jJ) n z.
(b) CH~r(X)Q is a graded CHAr(Y)Q-module.
(c) Ir 9 : Y - Y' ia a map of arithmetic varieties with Y' regular, y' E CH~r(Y') and

z E CH:r(x), then Y.Jog Z =(g-(y')).Jz. .
(cl) Ir h : X' - X is projective, and smooth over Xp, then, after tensoring with Q,

the push-out map h. ia a map of CHAr(Y)Q-modules.
(e) Ir h : X' -. X ia Bat and amooth over F, or an l.c.i. morphism, then, after

tensoring with Q, the pull back map h· is a map of CHAr(Y)Q-modules.
(f) Let i : D<.....+ X' be tbe indusien of a principal effective Cartier divisor, h : X - X'

amorphism which meeta Dp properly, and ix : h- 1(D) ~ X the incIusion induced
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hy i. Theo for any x e CH~r(x) aod y e CH~r(y), the following holde in
CH~r(lh-l(D)l) :

Proof. First we offer ~he definition for Y'fx, Without loss of generality, we may suppose
that Y ie equidimensional of dimension n.

Let x = (V, gv) e CH:r(X), with V an algebraic prime eycle on X. By the Chow
moving lemma, we may assume that y = (W = Ei n.i ~Vj, gw) e CH~r(Y)' where eaeh
f-1(Wt} meets V properlyon tbe generic fiber XF. So, to define the eap product of
aritbmetic eycles, it will be sufficient to define an algebraic eycle (V]·f [W] e Zq_p(X),
togetber witb a Green's eurrent for it. Here Zp(X) deootes tbe quotient of Zp(X) by the
subgroups eonsisting of all div(f) for which fis a rational function on a (p+ l).dimensional
Bubvariety W C X such that W nXF is empty.

First let UB look at tbe algebraic eycle side. We may uae tbe K -theory description
discussed in the first chapter: In practiee, we shall produee thiB eycle in tbe group CH,_p(Vn
f-1(IWI))Q' whieh maps naturally to Zq_p(X), sinee eacb f-1(Wi ) meets V properly on
the generie fiber X F.

5inee Y is regular, [OWi] e K:;"i(Y), and hence f-[ow;fe Kcinf-t(W;)(X). So we have
f-[OwJ n [Ov] e KO(V n f-1(Wi ». Hut hy Chapter I, we know that

where

Thus it is suffieient to show that

For this, by the fact tbat X is quasi·projective, we ean faetor f aB 11" 0 i, where 11" : U -. Y is
the smooth projection from a Zariaki open subset U of Pi-, and i ia a closed immersion. Hy
tbe 8880eiativity of tbe tensor product, '-[OwJ n [Ov] ean be ealculated in the K-theory
witb supports of U, Le. via the isomorphism FN -' KJ'(U)Q ~ F.Ko(V)Q, where N is the
dimension of U, and F' is tbe filtration induced by the eodimension support 88 in Chapter
1. Tbe assertion ahout the eap produet eycle now follows from the multiplieativity of the
filtration hy codimension of supports on [(.theory witb rational coefficients for a regular
scheme stated in Cbapter 1.

Next, we eonsider the eODstruction of the assoeiated Green's current. Let V(C) be a

resolution of singularities of V(C), and let k : V(C) - X(C) be the map indueed by the
inclusion V c...... X. Then, aB before, sinee Wi meets f properly over F, the eurrent
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is well-defined if we choose for gW; a Green 's form with the logari thmic growth along Wi (C).
By section 2, such a choice always exists after adding an element of the form 8(u) + &(v).
We now set

(V, gv). j (Wi , gwJ := ([V]'j [Wt],6v 1\ f· gw; + gv 1\ ww),

which ia an arithmetic cycle.

As usual, once we have adefinition, we need to check that if it ia welI~defined. In
this caae, just aa in section 4, we have to consider the problem at the K 1 level. Suppoee
that x = (V, gv) with V a subvariety of X, as above,.. and that (W, gW ), (W', gW I) are
arithmetic cycles on X, representing the same dass y E CHAr(Y) and hoth meeting VF and
fF properly. Tben, there is a K 1-chain 4J, which meets VF and fF almost properly, such
that

(W,9W) - (W',9W') =divAr(4J).

Furthermore, we may aBSume that tP = [z]· {~} with ~ a rational functioo on Y, the divisor
of wbich meets VF and fF properly, aod which is a unit on any component of /-1 (VF)nWF
for which .1-1 (VF) n WF haa the exceBS dimension. Thus (V, 9V ). j divAr(tP) = divAr( r,o),
where r,o ia the K 1-chain on X which ia equal to ([V]'j[Z])"f·(~).

Similarly, if (V, 9v), (V', 9V') are representatives of Z, we can write

where tP ia a K l-chain 00 X. Hy tbe Chow moving lemma for K l-chaina and the fact
that the cap product is independent of the choice of representative for y, we can choose a
representative y = (W,9W), witb WF meeting fF and 4JF properlyon tbe fiber over F. Aa
before,

((V,9v) - (V',9v,)).j(W,9W) = divAr(4J'j[W]),

where tbe K1-chain tP'j[W] is defined by the cap product

Hence we see that the cap product above ia well-defined.

Now we turn to the proof of the properties. Almost aU of them are direct consequences
of tbe definition. Here we give only a rough sketch, aod leave the details to the reader.

First, (a) follows immediately from tbe definition. For (b), we &SBUffie that Z, y aad y'
are represeoted by arithmetic cycles (V, gv ) I (W, 9w) and (W', 9W') respect ively, such that
W aod W' meet properlyon YF I meet / F properly,and /- 1(W), j-l (W') meet V properly
on X F • Then the required associativity is a consequence of two facts: First, we have the
following identities in iJ'(Xa )

and
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Second, the product on K-theory with support is associative, which follows from the asso
ciativity of the tensor product.

The proof of (c) for Green '8 current come8 from the fact tbat if we represe ot the clasaes
x aod y by arithmetic cycles (V, gv) aod (W, gw) for which tbe aBSOciated algebraic eydes
intersect properly, then tlte pull.back (/' 0 f)· gW and the product gv * (/' 0 f)· gW are
both defined using puB-backs and wedge products of smooth forms with the logarithmetie
growth, aild hence are· functorial and aasociative. For the cydes, we just appeal again to
the associativity of the tensor product.

For (d), the prooffor cycles uses the projection formula for K-theory, while for Green's
currents, asauming proper intersection a~d representing Green's currents by foerns witb the
logarithmetic growth, we are reduced to the projection formula for the integration of smootb
forms over tbe fibers of a proper smooth map. So it is ratber natural.

To prove (e), we suppose first that h ia Bat. Let x = (V, gv) e CH~r(X) with V a
prime cycle, aod let y =(W, gw) with W a prime cycle meeting VF properly. It follows tbat
W also meets h- 1(VF) properly. The equality h·(gv) * f·(gw) = h·(gv) * (f 0 ht(gw)
follows from Theorem 5, and the fact tbat the puB-back does not destroy the property of
being of logarithmetie growth, 80 that (f 0 htgw = h· 0 f·gw at the level of foerns. Next
we check that there is equality of cycles

h·([V]'1 [W]) =[h- 1(V)]'/Oh[W]

in CHq_p+d(h-1(V) n (f 0 h)-l(W))Q' This is obtained from

h·([Ov] n f·[Ow]) =[Oh-(V)] n (f 0 ht[Ow) e Fq_ p+dKO(h- 1(V) n (f 0 h)-l(W))Q

by the associativity of the tensor product aod the flatness of h.

Ir h is an l.c.i. morphism, since a smootb map is flat, we ooly need to consider tbe case
of a regular immersion h : X' e-.. X. Again the equation of Green's currents follows from
the regular case, since XE- aod XF are smooth. For cycles, we use the compatibility of the
pull-back on cydes via deformation to the normal cone with products on K-theory, which
may be verified by embedding the whole deformation of the normal cone family in a regular
variety.

Finally, by definition, with a process as above, we have (f).

AB expected, we also have a projective farmula for thia cap product.

Proposition. Let f : X - Y be a map of arithmetic varieties with Y regular, and
suppose p : P - Y is a proper smooth map of arithmetic varieties of relative dimension
d. Then if we write f p : X x y P - P and PI: X x y P - X for the projections, i .e.

I-
XXyP ~

PI 1
X

P
1p

Y,
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Proof. Suppose thalt 0' (resp. 'Y) is the elass of the arithmetie eyele (Z, gz) (resp.
(W, gw)), where Z aod Ware prime eyeles whieh are flat over the base. (If not, the
statement is purely algebraie, see below.) We assume that gz aod gw have logarithmic
growth aloog Z(C), W(C), respectively, aod by the Chow moving lemma, that the elosed
sets fp-1(WF ) and PJ1(ZF) meet properly in (X XM prp. When dimp(Wp ) "# dim(Wp ),
the eyele p. (W) ia zero by definition of p. on eyeles. Then any fiber of the natural map
P : W - p(W) bas positive dimension, and henee the same ia true for any fiber of the rnap
PI : PJ1(Z) n f p-

1(W) - zn f- 1(W). It follows tbat in this ease tbe eyele eomponent of
both PI .(Pj(O')·/p 'Y) aod O"IP.('Y) vanish for the eboiee of representatives of er and 1. On
the other hand, when dimp(WF) = dirn (WF), by the transversality 888umptioD we know
tbat aoy eomponent of p,l(Zp) n fp-1(WF) is generieally finite over its image, aod that

tbe eomponent of PI (p,l(ZF) n J-1(Wp)), whieh ia juat ZF n /-l(p(Wp)), has the same
dimension. Furtherrnare, their mu{tiplicities are equal by the Tor formula and tbe projection
formula, sinee PI and P are smooth. ThuB, for the algebraie eyele side, we need to show that
the eyeIe c1a.s:res PI •(Pj[Z]./p[W]) and [Z]·IP.[W] are equal in the algebraic Chow group
CH.(Z n1-1(P(W)))Q. Sinee tbe cap product on Chow homology ia defined using algebraic
K-theory, this follows from the identity of the derived functors Lf· Rp. =Rq. Lg·, Le. the
base change for direct images in K-theory with supports, aay Proposition III.9.3 [Ha 77].

For the current aide, we only need to note that the equality of currents

PI. (pj (gz) * /;(gw)) =p/. (pj (bz) I;(gw) + pj (gz) I; (ww))

=bz p/ .(/;(gw» + gz p/ .(/;(ww)) =gz * PI .(/;(gw)),

when tested on eompactly supported forms of the appropriate degree, ia an equality of indef

inite integrals on the open set X(C) - (Z(C) n 1,-1 (p(W(C)))) , exeept when p(W(C)) =
M( C), in whicb ease tbe statement ia easily eheeked. Thus, the projective formula stated
in tbe proposition followB from the fact that integration of forms along fibers of p and PI
eommutes witb tbe base change by the map Z(C) - M(C). Tbis eompletes tbe proof.
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Chapter 11.3 •
Arithmetic Characteristic Classes

In this cbapter, we will introduce arithmetic characteristic classes by certain axioms,
~hich are very sirnilar to the axioms fqr characteristic classes in algebraic geometry. As one
may imagine, the corresponding concept in arithmetic geometry for vector sbeaves is that
for hermitian vector sheaves. Tbe arithmetic characteristic classes attached to an hermitian
vector sbeaf are the arithmetic cycles in the arithmetic Chow ring.

However, for hermitian vector sheaves, since tbe corresponding characteristic form as
80cjated with an exact sequence in complex geometry usually gives the claasical Bott-Chern
secondary characteristic form, and the Chern characteristic' cl888 gives tbe natural isomor
phism between tbe algebraic K-group and tbe algebraic Chow grouP, thus it is quite natural
to define the bermitian K-theory BS tbe quotient group of the free abelian group generated
by hermitian vector sbeaves and smooth (p,p) forms by a subgroup generated by exact se
quences and corresponding classical Bott-Cbern secondary characteristie fonns. We prove
that the arithmetie K-group also provides a ..\-ring structure which is isomorphie to the
arithmetic Chow ring, but with Q coefficients. If we only consider complex manifolds, aB
of this may be thought BS a refined version of the corresponding results at the level of
differentials. Essentially, this chapter comes from (GS 9Ib].

§II.3.1 Arithmetic K ·Groups

Let X be an arithmetic variety over an arithmetic ring A = (A,.E, Foo ). A hermitian
vector sheaf on X is a pair (E,p) where E is a vector sheaf on X, and P is an Foo-invariant
hermitian metric on tbe puB-back vector sheaf of E over X(C). Then we define tbe arith
wetie K-group KAr(X) 88 the group of the free abelian group generated by «E, P)I11),
wbere (E,P) iB a hermitian vector sheaf on X and 11 E Ä(XR) iB an Foo-iovariant Coo form
on X(C) modulo the subgroup generated by the following relations: For aoy short exact
sequence of vector sheaves on X I

let Pi be Fco-invariant hermitian metrics on the pull-back of Ei over X(C), then
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Here chac(E, Pt, P2, P3) denotes the dassical Bott-ehern secondary characteristic form 8S

sociated with the hermitian vector sheaves eomplex on X (C) corresponding to the exaet
sequence E. on X with respect to eh.

The aim of this chapter ie to define an arithmetic ehern characteristic dass

and to introduce a ..\-ring structure on KAr(X) such tba...chAr ie a ring-isomorphism. To do
so, we first need to introduce the concept of arithmetic eharacteristic c1asses for a bermitian
vector eheaf on X I which will be constructed by using certain axioms aod the universal
property of Grassmannians.

AB an example, reeall that at the end of the last chapter, we introduced the first
arithmetic Chern dass for a bermitian line sheaf: Let (.c, p) be a hermitian vettor sheaf
on an arithmetic variety X. Then for any non zero Bection 8 of 1:" by the Poincare-Lelong
equation, we know that (div(6),-~ogJsl;])is an element of CHlr(X). Define CAr,l(I:"p) B8

the dass of this element in tbe arithmetic Cbow ring. In general, by the universal properties
of Grassmannians, we may split auy vector sheaf. Tbue, by functorial properties, and hence
define the arithmetic eharacteristic dasses.

11.3.2 Axioms For Arithmetic Characteristic Cl88ses

Let B be a subring of real number field R , and let tjJ E B[[Tt , ... ,Tnll be asymmetrie
power series. Tbe arithmetic characteristic dass aasociated with tjJ will satisfy the following
axioms:

To every hermitian vector sheaf (E, p) of rank n on X, there exists an arithmetic
characteristic cl888

Buch that

(1) Functoriality: For aoy morphism f : Y - X of arithmetic varieties,

(2) Summation Rule: If (E, p) = (CI, pr) EB ... EB (.cn , Pn) is an orthogonal direct
surn of hermitian line sheaves,

(3) Product Rule: Let tP, be defined by

tjJ(Tl + TI"" Tn +T) = L tPi(T1, ••. , Tnyr.
i
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Suppose that (L, T) ia a hermitian line sheaf on X, then

tPAr(& @ L, P0 T) =L ~i,Ar(&, p)CAr,l(L, T)i.. .
t

(4) Forgetful Rule: In Ä(XR ), we have ..

The first main result in this chapter ia

Theorem. With the same notation 88 above, there is a unique way to define tP Ar(&, p)
which satisfies axioms 1·4.

There are several methods to prove thia theorem, all of which have their roots in
algebraic geometry. But basically, to do this, we need a kind of splitting prOCe9a. lust at
this stage, we may have its diversity: we may UBe the Grassmannians, or we may use the
projective bundles. For the first, we need to take the pull back; while for the Becond, we
need to consider the push out. Here we shall ooly discUBS the first method, as it is more
in keeping with the axioms. We will give abrief discussion later of the second method in
terms of arithmetic Segre classes.

The proof will be given in the following several sections. Tbe basic idea LS as folIows:
Let f : X - Y be a map of complex manifolds, aod & a vector sheaf on Y. Then the pull
back f- & is a vector sheaf over X. As a consequence, if the Chern classes of & vanish, so
do those of f- & by the fun ctoriality. Thus we may think of the ehern classes as a measure
of the twisting of a vector sbeaf, and we show that the pull back !I dilutes" a vector sheaf,
i.e. makes it lese twisted. One extreme example ia when f ia constant, in which CMe, r- & is
trivia!. Another example ia the flag eonstruction Flag(c) of E. (In thia ease, the puB back
of & on Flag(E) aplits as a direct sum of line sheaves.) Now naturally, one may ask if there
erists a vector sheaf that ia so twisted that every vector sheaf is a pull back of this universal
vector sheaf. Such a vector sheaf does erist, at least for manifolds of finite type: it is the
universal quotient vector sheaf on the Grassmannian.

From this 18ter discusaion, we may first define the arithmetic characteristic classes for
the universal quotient bundle on the Grassmannians. Then we UBe the universal properties of
this data to deal with the general situation by the puB back. This lS quite natural foUowing
Axiom 1. Finally, we have to prove that the definition does not depend on the data we use
in the construction.
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§II.3.3. The Construction On Grassmannians

11.3.3.a. The Definition Of The Grassmannian In The Complex Case.

317

Let V be a complex vector space of dimension m + n. The GrBSBmannian G(n, V) ia
the set of n-dimensionallillear subspaces of V. We write Gm,n for G(n, V); obviously, Gm,n
ia a complex manifold. By the Plücker imbedding, we know that in fact Gm,n is a projeetive
eomplex manifold.

Let cm+n x Gm,n denote tbe trivial veetor bundle ol' rank m + n over Gm,n. We define
tbe universal subbundle S -+ G m •n , whose fiber at eaeb point A E Gm,n is jUBt the
subapace A C V. Then S is clearly a holomorphie Bubbundle of cm +n x Gm,n. The quotient
Q := (cm +n x Gm,n)/S ia also a veetor bundle, which is called the universal quotient
bundle of Gm,n.

Proposition. Let E be a vedor sheaf of rank n over a eomplex manifold X. Suppose
there Me n + m global sections of E whieh span the fiber at eaeh point. Then there is
amap

I: X -+ Gn(cn+m),

such that E is the puB back of the universal quotient bundle Q via I, i.e. E = I-Q.

Proof. Indeed, if 81, ... ,8n +m are n spanning global sections of E, we let V be the
complex veetor space with basis 81, " . ,Sn+m' Then, for eaeh point z EX, the evaluation
map

evz : V -+ Ez

ia aurjective. Henee Ker eV r ia a codimension-k subspaee of V, and tbe fiber of tbe universal
quotient bundle Q at tbe point Ker ev r of the Grassmannian G,t(V) is V/Ker ev r = Er. If
the map I : X -+ Gk(V) is defined by

tben the quotient bundle Q is a puH back to E.

II.3.3.b. The Algebraic Aspect oe The Grassmannians

Let A be an aritbmetic ring. For aoy two positive integers m, n, let G = Gm,n :,=
GraB8n(O~~(A}) be tbe Grassmannian aver Spec(A) representing tbe funetor which asso-

ciates witb eacb Spee(A)-scheme T tbe set of rank n loeally free quotients of 0T+n
.

We consider BOrne properties of G. ABSume m = qn witb q ~ 1. Let P := (G9,t}n and
fJ : P -+ G be the map given by tbe direct sumo Tbere is a natural action of the symmetrie
group Sn on P by permuting tbe fadors.

Lemma. 1. Assurne P :$ q I then IJ induces an isomorphism

p- : CHP (G)Q -+ CHP(P)~· .



318 Arithmetic Characteristic Classes

2. Ir we endow the natural U(m + n)-invariant metric on Gd(C), then as Arakelov
varieties, we have a natural isomorphism

~. : CH~ra(G)Q - CH~ra(P)~".

Proof. We may assume that A is Q by the universal coefficient principle. In fact, for
any Grassmannian G over Z with dimG > 0, there exist Grassmannians G' and G" such
that dirn G' < dirn G > dirn G" and there is a closed immersion G' c G such that G ...:.. G' ia
an affine bundle over G". Thue we may use induction on tbe dimension to prove that, for
any product of Grassmannians X, the morphism •

CH(Xz) - CH(XQ)

is an isomorphismj that the canonical morphiam

CH(Spec(A))Q 0 CH(Xz)Q -+ CH(Xz 0z A)Q

is an isomorphism, and that tbe canonical morphism

is an epimorphism. Therefore, we may assume that A is Q.

The first assertion ie a consequence of a direct calculation. Let [,0 be the line bundle on
P defined by the pull-back of the universal quotient bundle on Gq,l by tbe er-th projectioo,
Z0 := Cl ([,a) E CH 1(P) aod let Ci be the i- th Chern dass of the universal quotient bundle
of rank n on G, then

CH(P) =Z(Zl,' .. ,xn}/(zl+l
! ••• ,Z~+l)

and
CH(G) = Z[Cl l "" cn]/I,

where the ideal I ia generated by elements of degree greater than q. Now by the fact that
~·(Ci) is the i-tb elementary symmetrie function of the :ta's, we have the first assertion.

For the second assertion, we use the five lemma applied to the exact sequence 8SSOciated
with the Arakelov Chow groups.

1I.3.3.c. The Constmction of 4JAr(Qm,n,Pm,n).

Let Qm,n be the universal quotient bundle on G =Gm,n, endowed with a U(m + n)
invariant hermitian metric. Suppose that m =q n and q 2: deg4J. Let JA : P =(Gq,l)" -+ G
be tbe direct sum morpbism. Then the pull-back of (Qm,n, Pm,n) by JA splits aa an orthogonal
direct surn .
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Since w( CA.,l (La, Pa)) = Cl (L aoo •Pa) is Sn-invariant, ~(CA.,1(LI, pd, .. , ,CA., 1(Ln, Pn)) of
CHAra(P)B lies in CHA.a(P)~". By base change, we may assurne that A ie Z. Note that
eince the degree of this element is at most q, therefore by Lemma b, there exists a unique
dass,

sucb that

jJ·(~Ar(Qm,n,Pm,n))= r,b(CA., 1(LI ,pd, "', CA.,l(Ln,Pn)).

So we have a construction of ~A.(Qm,n.Pm,n).

Before going further, let us consider BOrne properties of tPA.(Qm,n, Pm,n)'

Properties. (1) Let i : Gm,n 4-+ Gm+n,n be the C300nical indusion. Then

j. (<PA.(Qm+n,n, Pm+n,n)) = tPA.(Qm,n, Pm,n).

(2) Let IJ : Gml ,nI X Gm:J,n:J - Gm,n be the direct-sum map. wbere m1 =qnl, m2 =
qn2, m = ml + m2. aod n = n1 + n2· Define tPo 'Po by

t/J(T1, . ..• Tn) = E tPa(T1,' .. I TnJ'Pa(Tn1+1, ... , Tn ).

CI

We have

jJ. (tPAr(Qm,n I Pm,n)) = E t/Ja,A.(Qml ,ni' Pml ,ni )'Pa,A.(Qm:J,n:J' Pm:J,n:J)'
CI

(3) Let m" =mm' + nm' + n and let v : Gm,n x Gm',1 - Gm" ,n be tbe map induced
by tbe tensor product. Then '

V·(tPAr(Qm",n)) =E tPi,A.(Qm,n,Pm,n)CAr,I(Qml,I,Pml,d
i

.

i2: 0

(4) Let 9 E GLm+n(A). Tben

Proof. The first three properties corne from the following commutative diagrarm:

(G"d
n

1J1
Gm,n

- (G,+I,t}n

llJ
- Gm+n,n;

(G"t}n l x (G"t}n:J
jJxlJ!
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ii
(G9',dn x Gm',l -

j1xl1
Gm,n x Gml,l

(G,.,dn

IJ.1

Here we let r:= qm' + n' t 1. vskip O.3Ocm For (4), let

Since 9 acta triviallyon CH(Gm,n), we see that z(c(g)) :! 0 aod w(c(g)) = O. Thua c(g) lies
in the image of epHP,P«Gm,n)R). On the other hand, for any two elements g1, 92, we have

Since tbe action of GL on the cohomology ia trivial, we have

Hut c is trivial on the commutators, 80 we have c = o.

II.3.3.d. The CODstrnction In General.

Let X be an arithmetic variety over an arithmetic ring A. Let (E, p) he a hermitian
vector sheaf on X. Since X is quasi-projective over Spec(A), there are ample line sheaves
on X. In particular, there exists a liDe sheaf f, on X such that ,;F := E I&l f, ja spanned by
its global sections. Let { : Ox+n

- F be an epimorphism with m = qn,q ;::: deg(4'). Sy
Proposition a for Gm,n aod Qm,n, we know that there exist a morphism

f: X - Gm,n

over A and an isomorphism

Choose an arbitrary metric r on [, aod let pi be the metric coming from tbe isomorphism
E =::: j. (Qm,n) I&l f,. We define

4'Ar,-C,T,{ (E, p) := L f· (4'i,A,.(Qm,n, Pm,n))CAr,l (C, r)i +4'Bc(Eoo , p', p).
i~O

In the following, we prove that the above construction does not depend on the choice
of (f" r) and {. In fact, this is a consequeoce of the properties of 4'Ar(Qm,n, Pm,") listed in
subsection c.



Chapter ]1.3.

§II.3.4. The Independence oe The Construction

11.3.4.a. The Independence of (C, p).
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First note that since the Picard group of X is generated by these line sheaves which
are spanned by their glob~ sections, it is sufficient to check the assertion for them.

Let 1:,' be another line sheaf on X and let {' : O~'+l --+ C 0 (C')-1 be an "epi
morphism. Hy definition, tbere are the morphism r : X --+ Gm',1 and an isomorphism
,C' ::::: (f't (Qm '.d- 1 ® r.. Choose ametrie on C' such ..that tbe above isomorphism is an
isometry. Let :F' =:F ® C ® ('c')-l. Then { ® {' dominates :F' and defines anisomorphism

Here f ® f' is the composition of tbe morphism v defined in tbe proof of Property (3) in
subsection c with the direct product f x f'. Choose the metric on :F' so that the above
isoffiorphism is an isometry. Then, by a similar prOCe8S, we have the construction for
tPAr,'c',T',HH'(&'p), Next we prove that

Since :F ® J:, ::::: :F' ® (,' is also an isometry for tbe associated metrics, we may assurne that
& = :F 0 J:, even with metrics. Thus, we have

tPAr,.c' ,r',{0{'(&' p) =L({ ~ {'t(tPi,Ar(Qmll,n, Pm" ,n))(CAr.l(C', r'))i.
i~O

Thus, by axiom 3, whicb may be checked independently, we have

tPAr,.c',r' ,{0{'(&' p) = L f· (tPijAr( Qm,n, Pm,n))(j'-(CAr,1 (Qm l ,I, Pm',I))Y cAr,d.c', p')i.
',i2:0

Here t/Jij ia defined by

tPi(T1 +T, ... ,Tn+ T) =: L q'Jii(Tt, ... ,Tn)Ti.
;2: 0

Thus we have,

4J(T1 + T + U, ... ,Tn + T + U) =L 4Ji(T1, ... ,Tn)(T + U)i
i

=L4Ji(TI +T, ... ,Tn +T)Ui

i

=L rPij(TlI ... , Tn)Ti U'.
iJ2: 0
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tPAr,.c I ,T I ,{0{,(E,p) =L j-4>iAr(Qm,n ,Pm,n)(CAr,l(.c, r))i =4>Ar,.c,T,{(E,p).
i

Finally the dependence of tbe metric T may be checked directly.

II.3.4.b. The Independence of {.

With the same notation as above, let {' : O~'+n - :F be an epimorpbism witb m' =
q'n, q' ~ deg 4>. Then we have amorphism f' : X - Gm',n and an i80ffiorphiBm :F ~

(f't(Qml,n)' We show that

First, we bave

Lf-(4)i,Ar(Qm,n,Pm,n))CAr,l('c, r)' - 4>Bc((E, p) - j-(Qm,n,Pm,n) @ (.c, r))
i~O

= E !'-(4)i,Ar(Qm l ,n, Pm' ,n))CAr,l(.C, r)i - tPBc((E,p) - J'-(Qm',n, Pml,n) ~ (.c, r)).
(~O

By tbe result about classical Bott-ehern secondary cbaracteristic forms in 1.1.4, we know
that

ePBc((E, p) - f-(Qm,n, Pm,n) ~ (,c, T)) - 4'Bc((E, p) - j-(Qm,n, Pm,n) ~ (,c, r))

= 4>BC(/'-(Qm',n, Pm',n) ~ (,C, r) - f-(Qm,n, Pm,n) ~ (.c, r))

= E !/JaC(!,-(Qm' ,n, Pm' ,n) - f- (Qm,n, Pm,n))Cl('c, r)i.
i~O

Hence it is enough to prove

To da this, we use properties 1 and 4 for tPAr(Qm,n, Pm,n) in subsection c: Since 0x+n and
o:;'+n are free, we may chaose morphisms

....... om+n oml+n fJ' om'+n .."m+n

.... X - Xl' X - Vx

such that { ={' 0 er and {' = { 0 ß. Thus on Ox+n $ 0x'+n
1 the automorphiBm

_(1 -ßo ß)
9 - -0 1
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and the composition of the projective morphisms

I I {'

• (: LJ~+n EB ()x +n - ()x +n - :F

satisfy the equality

323

Let m" = m + m' + n, then we have

(0 9 = ('.
....

Gm,n
f i
x

1'1

Therefore, we have

- Gmll,"
h/ 1

9

h
'
'''

1- Gmll,n.

,- (cPAr( Qm,n, Pm,n)) - /'- (cP Ar(Qm l ,n, Pml,n»

=h- '-(tPAr(Qmll,n, Pm",n» - h' -!'-(cPAr(Qmll,n, Pmll,n»

=h-(<PBC(g»

=tPeC(r(Qm,n, Pm,n) - P-(Qml,n, Pm',n))'

So far, we have already shown that the arithmetic characteristic dass associated with 4>
defined in subsection 3.d does not depend on the various data used in the definition. Hence,
we may denote it by <PAr(E,p).

We next check the axioms step by step.

§II.3.5. Checking The Axioms

11.3.5.8.. The Functorial Property.

Let I.p : Y - X be 8. morphisffi of arithmetic varieties aud let (E, p) be a hermitian
vettor sbeaf on X. Witb tbe same notation as in the definition, we have

<P Ar( I()- (E, p) )

= :E(' 0 IPf(4)i,Ar(Qm,n ,Pm,n))CAr,l (I()-(.c, T»i
i~O

- 4>BC('P-(l',p) - I()-(:F, ,-Pm,n) ~ /(J.(!" T)).

Thus tbe result now follows from the functorial properties of CAr,l and cPBC'
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1I.3.5.b. The Additive Rule.

Let ([,P) = (CIITI) EB ... EB (Cn,Tn). Choose a hermitian line sheaf (C,T) such that
for every j = 1

"
", n , Cj 0 C-l is spanned by its global sections. Choose epimorphisms

{j : °1-+ 1
- Cj 0 C. Then

Lj 0 C- 1 ~ fj(Q"I).

So :F := €Bj [,j 0 L is classified by 1 = J.J 0 (!i), where

J.J : (Gq,dn - Gm,n ..

is the direct sum morphism. Taking the associated metrics, we have

q,Ar([, p)

=E 1·(4)i,Ar(Qm,nl Pm,n))CAr,I(C, T}' - tPBC«C, p) - (F, f- Pm,n) 0 (C, T)).
'2:0

Hut

I- f/J"Ar( Qm,n, Pm,n) =(/j- )11- 1/J"Ar(Qm,n I Pm,n)

=(Il )I/J,(CAr,l (Qq,l, Pq,I), ... ,CAr,1 (Qq,l, p" d)

=4>,(CAr,I(CI 0 C- 1
, f~ pq,d,···, CAr,I(.Cn 0 C-

1
, l~p"I)).

Hy definition,

L4>dcAr,1 (Cl 0 .c-1, f: pq,d, ... ,CAr,l (.cn 0 C- 1,f~p"d)CAr,1 (.c, T)'
,~o

=f/J(CAr,l(CI @ C-1,f: p"d + CAr,l(C, T)"" ,CAr,I(!n 0 !-1, l~pq,I)+ CAr,I(C, T)).

Note that since

CAr,l (.Cj 0 C-
I

, I; pq,d + cAr,dC, T)

=cAr,d(.Cj 0 C- I )@ C,I/Pq,1 0 T)
=CAr,l (Ci I Tj) + cI,BC (Cj I Ti) - «C j @ C- I

) 0 C, I; Pq,1 @ T)),

we have

4>(CAr,1 ([,1 @ L- 1, I~ Pq,t}, ... ,CAr, 1CC n @ i-I, I~Pq,I))

=4>(CAr,l(!I, Tt}, ... , CAr,I(Cn , Tn ))

+ L: f/J ( Cl (C I, TI), ... , Cl (Ci - I, Tj - I) ,Cl ,BC ((!j, Tj) - « [,j @ .c-1) @ L, f l Pq, I 0 T)) ,
j

Cl (Cj+l @ C- I
, fj\lPq,I) 0 (C, T)), ... ,Cl (C n 0 C- l

, I~pq,d 0 (C, T))).
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The properties of the classical Bott-ehern secondary characteristic c1888es in 1.1.4 again
show that

4>(CAr,I(.c 1 (;9 .c-1,!ipq,d,··" cAr,d.cn 0 .c-1
, !~pq,d)

=</J(cAr,d.c 1 , Td, ... ,cAr,l (.cn,Tn ))

+ <PBc5(E,p) - (:F0.c,$j!j*Pq,1 0 T)).

Therefore, we have

II.3.5.c. The Product Rule.

Let E and .c be the same as in Axiom 3. We assurne first that :F =E 01:.- 1 is spanned
by its global sections. We have

tPAr(E, p) = E tPi,Ar(:P, f* Pm,n)CAr,1 (.c, T)1 - t/JBC (E, p) -+ (:P, f· Pm,n) 0 CC, T)).
1

Hut

<Pec (E, p) - (:P, f· Pm,n) ® (.c, T)) = E tPi,BC( (E, p) (,9 (.c, T)-1 -+ (F, f· Pm,n))cd.c, T)I.
1

Hence, we have

rPAr(E, p) = E rPi,Ar(E,p) ® (.c, T)~I)CAr,I(.c, T)i
i

aB required.

In the general ease, we choose a hermitian line sheaf (.c', r) such that E ® .c 0 1:.
,
- 1

is spanned by its global sections. Now applying the result above to E (,9 .c and .c', E and
.c 0 1:.'-1, respectively, we have -

rPAr(E,p) ® (.c, T)) = E tPi,Ar(E,p) 0 .(.c, T) ® (1:.',T' )-I)CAr,l(.c', i')i
i

and

<Pi,Ar((E, p) 0 (.c, T) ® (1:.',1')-1) = E tPij,Ar(E, p) eAr,} (I:., T) (;9 (.c', T')-I)j.
j

Thus, aB in 3.4.a, we bave

4>Ar ((E, p) 0 (r.., T»)

= L: tPi,Ar(E, p) (CAr,1 (.c, T) ® (,C', T')-I) +CAr,1 (,C', 1'») i
i

=L: tPi,Ar(E, P)CAr,I(.c, T)i.
i



326 Arithmetic Characteristic Classes

II.3.5.d. The Forgetful Rule.

Since

we have

w( t/JAr(E, p)) =L f- t/Ji(Qm,n, Pm,n)Cl (.c, T)i + dcJCt/Jsc(E; P, f- Pm,n 0 T)
j

=t/J(f-(Qm,n, Pm,n) 0 (.c, T)) + dcl't/JBC(E; P, f- Pm,n 0 T)

=t/J(E, p).

1I.3.5.e. Uniqueness.

Since tPAr(Qm,n, Pm,n) is unique, hence the uniqueness is a direct consequence of the
following

tPAr(E, p) - tPAr(&, pi) = t/Jsc(&, P, pi).

This will be proved in establishing some further properties of arithmetic characteristic classes
in tbe next subsection.

1I.3.5.f Properties of Arithmetic Characteristic CI88ses.

Tbe most important properties of arithmetic characteristic classes are fouod in the
following

TheorelIL (I) z(tPAr(E, p)) =tP(E) E CH(X)B.
(2) Let

E.: 0 - EI - E2 - E3 - 0

be an exact sequence of vedor sheaves on X. Put Fco-invariant hermitian metries
Pi on Ej for i = 1,2,3. Then

(3) Let" = "1 + "2 aod define <Pa, 'Pa by

t/J(T1 , ...• Tn1 ,Ul, ... ,Un'l) = l: <Pa (TI , ... ,Tn1 )'Pa(Ul, .. . , Un']).
a

Then
tPAr(EI Ei) :Fa, PI Ei) Pa) =2: $o,Ar(E1, PI )lf'o,Ar(Ea, Pa)·

°
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4J(TI +UI,TI +U2,·.·,Tnl +Un.J = EtP.8(TI , ... ,TnJ<r'.8(U1 , ••• ,Un,).
ß

Then

4JAr(&I ~ &2, PI ~ P2) =E 4J.8(&l' pd<P.8(&2, P2)'
.8

...
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The proofs of (I), (3) and (4) can be deduced from the definitions. For (2), we use
the pI-deformation technique. By the construction of the cl88Sical Bott-Chern secondary
characteristic form associated with &. in 1.1.2.b, with the same notation, we have

Therefore, we have our result by the functorial property .

§II.3.6. Arithmetic Chern Characteristic Classes.

11.3.6.a. Main Results

We prove in this sedion the fact that chAr induces an isomorphism between the arith
metic K-group and tbe aritbmetic Chow group, but with Q-coeffieients. The result is tbe
following

Main Theorem. Let X be an arithmetic variety over an arithmetic ring (A, E, Foo ).

Then there is a natural "'-ring structure on KAr(X) such that if we denote by [(~j(X)
the eigenspace of tbe 8B8Ociated Adams operator <pe with eigenvalues kP , then,

ia an isomorphism for aB p ~ o.

The haBic idea to prove this theorem is to use the five lemma. We know by Chapter 1
that there exists an exact sequence

I -
... - ep2:1CHP'P- (X)q - A(XR ) - CHAr(X)q - CH(X)q - O.

Tberefore it is natural for U8 to prove the foBowing

Theorem. For auy arithmetic variety X aver an arithmetic ring (AI E, Foo ), there is a
natural exact sequence

... - K1(X)q - Ä(XR) - KAr(X)q - K(X)q - 0,
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and a naturallocal Chern character

such that the following diagram is cemmutative:

- K 1(X)Q - Ä(XR ) - KAr(X)Q - K(X)Q - 0
ch ! Id ! eh Ar ! eh 1

... - EBp~1 CHP,p-1(X)Q - Ä(XR) - CHAr(X)Q -+ CH(X)Q -+ O...
In particular, we see that ChAr is an i80morphism.

We prove this in the following several subsections: It is a direct eonsequence of the
exact sequen~e of the higher K-theory aB80ciated with a fiber space.

II.3.6.b. The Construction of A Fiber Space

We consider an exact sequenee for the arithmetic K-group. Let P(X) be tbe category
of vector sheaves on X. Define a simplicial set G(X) aB fellows:

Let [n] be the standard ordered set with n + 1 elements,

[n] := {O < 1 < ... < n}.

We view [n] aB a eategory. Let Ar[n] be the category of maps in [n]. Denote by F(X)n the
set of functors

P : Ar[n] - P(X)

such that:

(1) For every i :5 j :5 k, the sequence

o-+ P(i,j) -+ P(i , k) -+ PU, k) - 0

is exactj

(2) Ir i > 0, P{ i , i) =O.

We may tbink of PE F(X)n as a sequence of inclusions

where Pi =P(i, 0) and P(i , j) = PdPj in '1'(X).

Now define"C(X)n as the set of pairs

(P, Q) == «Po, Qo) - (P1, 01) - ... - (Pn , Qn))
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in F(X)n, tagether with isomorphisms

which are corppatible with. the maps

P(i,j) - P(k,l), Q(i,j) - Q(k,l),

for i ::5 k aod 0 < j ::5 1. There are natural face maps ..

die : G(X)n - G(X)n_I,

and degeoerate rnaps
SI : G(X)n-l - G(X)n,
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for 0 :5 k :5 n, 1 ::5 1 :5 n - 1. The direct surn gives a cornposition law on G(X). Thus one
ean check that 1rm (G(X») gives aoother deseription of Km(X) in the Bense of Quillen [GG].

We now forrnulate an arithmetie analogue GAr(X) of G(X). Put an Fco invariant
hermitian rnetrie on every vector sheaf in P(X). Let GAr(X)n be the set of tripies (P, Q, '1)
with (P, Q) E G(X)n aod

such that, for aU i = 1, ... , n,

7]i-l - 7]; =ehBc(O -- (H-IIP.-I) -- (p.,P.) -- (Pi-l,i,Pi-l,i) -- 0)
- ehBc(O -+ (Qi-l, Ti-tl - (Q., TiJ -- (Q'-l," Ti-I,.) -- 0)

- ehBc«P.-l,i' P.-l,') - (Qi-l,., Ti-I,.».

The face map
di: : GAr(X)n -- GAr(X)n-l

sends (P, Q,11) to (d" (P, Q), di:( 11» with

{

(7]1, ,TIn), if k = 0;
di:("10, ... , '1n):= (7]0, , 7]1e + 7]1e+l,··· ,TIn), if 0 < k < n;

(7]0, , 71n-d, if k = n.

Similarly, the degenerate maps 81 : GAr(X)n-l -- GAr(X)n are defined by

It ia not diffieult to show that these rnaps are weU-rlefined. The simplicial set GAr(X) has
a comp08ition law defined by

(P, Q, 7]) + (P', Q' , '1') =(P ffi p', Q ffi Q' ," + Tl)·
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,

Furthermore, the natural forgetful map GA.(X) - G(X), defined by sending (P, Q, 7J) to
(P,Q), is a covering space with the group Ä(XR). Indeed, we may define a action of Ä(XR)
on GAr(X) by

er + (P, Q I (fJo , ... , 7Jn » := (P, Q, ('10 +er, ... ,Tln + er»,

which ia {ree on each GA.(X)n. Now the assertion follows from the fact that for a given
(P, Q) E G(X)n, an element (P, Q, 7J) is determined by the choice of TJo E Ä(X R) .

•

II.3.6.c. The Exact Sequence far Arithmetic K-Theory

With the same notation as above and by a general fact from algebraic K-theory, we
have the exact sequence

... -+ KI(X) -+ Ä(XR) -+ i'rO(GAr(.'Y'» -+ K(X) - 0.

To go further , we oeed the following

Lemma. In the exact sequence above, 7l"o(GAr(X» ~ KAr(X) aod the morphism
KAr(X) -+ K(X) is defined by sending [((t,p),7J)] to (tl·

Proof. The group 1f'o(GAr(X» ia generated by tripies (Po, Qo, 7]0) with Po, Qo in P(X)
and 110 in Ä(XR), and satisfies tbe following relations: For every

(Po, Qo, 1]0) is equivalent to (PI, Q 11 7Jd. Furthermore, in 1t'0(G Ar( X»,

(Po, Qo, fJo) + (PfJ, Q~, "b) = (PI EIl Po, Qo EIl~, 7]0 + Tl~).

Defioe a map

by sending (Po, Qo, Tlo) to [( Po, po)] - [(Qo , /0)] + '10. Conversely, we can define a map

by sending ((P, pi), 7]) to (P, 0, Tl + ChBe(P, p, pi». It ia easy to check that these two maps
are well~defined and that they are isomorphisms. The naturality follows easily from the
definitions above. In this way, we have a natural exact sequence for arithmetic K -groups.
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11.3.6.d. '\·Structure on K Ar(X)Q
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For regular arithmetic varieties, there also exists a natural '\-ring structure on the
arithmetic K -group. We give the definition and leave the simple proof to the reader.

We start with the fact that any ,\ ring structure on any group is uniquely determined
by its Adams operators, and for any graded algebra A = EBA i , there is a canonical '\-ring
structure defined by: The Adams operator 'PI: which acts on Ai as ki . In this sense, there
exist canonical '\-ring structures on Z(XR) and Z(XR) EllÄ(Xa), for aoy arithmetic variety
X Qver an arithmetic ring (A, E, Foo )' By the definition, we also know that in Z(Xa ), we
have

The first '\-ring structure comes from the wedge product. In fact, this is an easy consequence
_ of the splitting prineiple.

We CM now define a '\-ring structure on KAr by the following:

,\ I: ( ( [, p), 1]) = (,\ i: (E, p), [,\ I: ( ch(E, p), 1])]).

The only nontrivial part is to show that this is well-defined. For this, let

be a short exact sequence of vector sheaves on X with Fro-invariant hermitian metrics Pi
on Ei for i = 1,2,3. Then the reader has to eomplete the proof of the foUowing equality:

1I.3.B.e. The Proof of The Theorem.

[n this subsection, we show how to 'complete' the proof of the main theorem.

First, by above discuBBion, we may have the following diagram:

K 1(X)Q --+ Ä(Xa ) - KAr(X)Q - K(X)Q - 0
eh 1 Id 1 chAr 1 ch 1

$P:2: I CHP,p-1 (X)Q - Ä(Xa) - CHAr(X)Q - CH(X)Q -" 0,

exeept for the morphism eh on K I . But this is an algebraic morphism, which may be
naturally defined in algebraic K-theory. (See Chapter. Usually, we call it tbe loeal Chern
character.) By the naturality of th~ theory, we expect that all squares of this diagram are
comrnutative. Even through this may be done, it is rather eomplieated and tedious, so we
do not give tbe proof here. Instead, we shall assurne that there is this natural loeal Chern
character, wbich makes the ahove diagram commute. Henee hy tbe five lemma, we know
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that eh Ar is a group isomorphism of KAr(X)Q and CHAr(X)Q. This eompletes the proof of
the theorem.

We can also introduee a multiplieation on KAr(X):

«E, p), TJ) 0 « E' , ,I), TJ') := «E 0 E' , p 0 p'), [(eh(E, p), TJ) * (eh(E' ,p'), TJ')]).

Moreover,. on the real veetor spaee Z(XR) ffi Ä(XR), with Z denoting the closed forms, we
ean define a pairing by letting

(w, TJ) • (w', TJ') := (w /\ w' ,w /\ TJ' + TJ Atw' + dtfTJ /\ TJ').

It is not diffieult to show that the above definitions make K Ar(X) a eommutative, assoeiative
and unitary ring. (AB an illustration, if

E. : 0 - EI - E'1 - &3 - 0

is an exaet sequenee of vector sbeaves on X with Fco-invariant bermitian metrics Pi on Ei
for i = 1,2,3, then, we have

(E1 ,pI),O) l8l (E',p'),Tl' ) + (&3,173),0) l8l (E',p'),TJ')

- (&'1' P'1), -ehBc(E., p.)) l8l (E', p'), Tl')

=(&1 0 &', PI @ pi), eh(E1 , pd /\ TJ') + (E3 0 E', P3 @ p'), eh(&3, P3) /\ TJ')

- (&'1 @ E/,p'1 @ p'), eh(&'1,P'2) /\ Tl') +ehBc(E., p.) /\ eb(E', p') - dcJC(ehBc(E.,p.) /\ TJ')

=(E1 0 E', PI C3l p'), 0) + (&a @ E', Pa C3l /),0)
- (E2 @E',p'1 ® p'),-ehBc(E.,p.) /\ eh(E', p'»)

=(&1 (9 E' ,PI 0 p'), 0) + (E3 0 E', P3 0 p'), 0)
- (&'10 E' ,P2 0 p'), -ehBC(f. 0 f',p. 0 p'))

=0.

Therefore, the definition makes sense. The eheeking for others is very similar.)

We then bave tbe following

Theorem. Tbe arithmetic Chern characteristic cl8B8

ChAr: KAr(X)Q - CHAr(X)Q

is a ring isomorphism.

Proo{. It ia enough to prove that chAr preserves multiplication. In fact, by definition
and Theorem 5.f, we know that

chAr (((f,p),'7) @ (E',p'),TJ' ))

::::ChAr(&, TJ) 0 (f/, pi)) + ((ch(E,p),l1) * (ch(f/,pl),TJ' ))

::::ChAr(E, P)ChAr(E' , pi) + ch(E, p) /\ Tl' + '7/\ ch(f', p') + ddc'7/\ T/
=chAr(&, p)chAr(&', pi) +w (ChAr(f, p») /\ '7' +11/\ w (chAr(E', p'») + w('7) /\ T/
:::: (chAr(f, p) + 11) (CbAr(f', pi) + '7').
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§II.3.7. Cap Product: A Dual Version
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In this section, we give a dual version of the resultin section 2.7. More precisely1 we
have the following

..
Theorem. There is abiadditive pairing

K1r(X) ® CH~r(x) - CH~r(X)Q

0' ® z .- VtAr(O') n z

with the following properties:
(a). Ir f : X -+ Y ia a morphiam of arithmetic varieties, with Y regular, 0' E !(Ar(Y)

and z E CH~r(x), then

(b). Ir (0,,,) E KAr(X) and z E CH~r(x), then

(c). Ir 0 E KAr(X) and z E CH~r(x), then

W(ChAr(O) n x) =ch(o) n w(z).

(d). The pairing makes CH~r(X)Q into a K1r(X)-module.
(e). Ir f : X -+ Y ia proper, and emooth over YF, let 0 E KAr(Y) and x E CH~r(x),

then

(f). Ir f : Y -+ X is flat aod emooth over F, er a l.c.i. morphisffi, let 0' E KAr(X) and
x E CH~r(x). Then

(g). Let i : D<.....+ X be the indusien ef a principal effective Cartier divisor, f: Y -+ X
amorphism which meets DF preperly, iy : f-l(D) <.....+ Y the indusien induced by
i, and (E,p) a hermitian veetor sheaf on Y. Then for any x E CH~r(x), we have

Proof. We only make the definition, and do not give the proof of the properties, eince
aB of them ean be deduced in a standard way. Take a generator 0' =«E,T), 11) of !<.~)X).
Since we aBBume that aB the varieties are quaai-projeetive over A, there exists a veetor
sheaf U over an arithmetic variety G, with G smooth over A, a map u : X -+ G, and an
isomorphism 8 : E -+ u·U. Fix an arbitrary Foo~invarianthermitian metric p on U. Then we
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have an arithmetic Chern character chAr(U,T) E CHAr(G)Q. Given z E CHAr.(x), consider
the class

ChAr(U, p),uz + a(chBC(8, Pi)) n x + a(7]) n x.

We claim that this ia independent of tbe choice the tripie (u, (U, p), 8): In fact, if another
choice is (u', (U', p'),8'), let lso(U', U) be the variety, smooth over A, whicb parameterizes
i80morph~msU' - U. There are projectiona p : IBo(U',U) - G and p' : 180(U',U) - G',
and an isomorphism cp : p·U - p'·U'. Hy the definition of lso(U',U), there is unique map
fJ : X - Iso(U' ,U) sucb that po fJ = u, p' 0 6 = u' and 6·l cp) ja tbe isomorphism 8/ (8) -1. So
given x E CH~r(x), we get

Z'uCbAr(U, p) - Z'uIChAr(U', p')

=z'po6 chAr(U I p) - x.p/o6chAr(U' I p')

=Z·6 (p·cbAr(U, p) - p'. chAr(U, p»)

=z. 6 ( a (chBe (p. (U , p) I p'. (U' ,p') ,cp) ))

=z n 6- (a(chBc(p-(U, p), p'. (U', P/),If'») )

=x n (a(chBC(U·(U, p), u'-(U/, p'),8'(8)-I»)

=z n (a(cbBc((E, T),p'-(U', p'), 8» -a(chBc((C, T),P-(U, p),8'»)

as desired.

Since the cap product is biadditive, this pairing is additive in z. In order to show that
we get a map KAr(X) 0 CH~r(x) - CH~r(X)Q, it suffices to show that for aoy exact
sequence

E. : 0 - EI -- E2 -- Ca -- 0

of vector sheaves on X with Foo-invariant hermitian metrica Pi on Ei, we have

This can be deduced aB follows: Cho08e tripies (Ui, (Ui, Ti), 8i ) representing the correspond
ing terms (Ei, Pi) in tbe exact sequence. There is a variety P, smooth over A, which param
eterizes exact sequences

o-- U1 -- U2 -- Ua -- O.

Tbat is, there are projectioos qi : P -- Gi aod a universal exact sequence

with the obvious universal property. In particular, there are B map f : X - P such tbat
qi 0 f = tli and an isomorphism of eXBct sequence f-(q~U.) ::::: E.. Since P is smooth over
A, by 1.4, (the axiom for classical Bott-Chern secondary characteristic forms,) or better by
11.3.5.f, (the property of arithmetic characteristic classes ,) we know that

q; (ch Ar(U2 , T2» - q~ (CbAr(UI, Tl» - q;(chAr(Ua; Ta» =a(chBC ( q:U., q• .T.)).
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From the biadditivity of the eap produet CHAr(M) ® CH~r(x) - CH~r(X)Q, we see that

(ehAr (E2 ,h) - ehAr(il,pd - chAr(E3 ,J'J) nx
=chAr(U2, T2)'u~ X - chAr(UI , TI )'Ul X - chAr(U3, T3)'U3 X

+ a(chBC«&2, p), U;(U2, T2); 02») n X

- a(chBC«&I, pd, ui(UlJ Td; 0d) n X - a(ehBc «E3, Pa), u;(U3, T3); (3 ») n x

=cbAr (q;(U2, T2»'/ x - ehAr(qi(UI , Td)·/ x - chAr(q;(U3 , Ta»./ x

+a(chBc«E2 ,P2),U;(U2 ,1"2);B2») nz •
- a(CbBC«EI , PI), ui(UI , Td; 81)) n z - a(ehBc«l"3, P3), U;(U3, Ta); 93 ») n x

=r' (a(chBc(q- li., q- .r:))) n x

+ a (ebBc (&2, h), u;(U2,T2); 82) ) n z

- a (ebBc(EI , PI), ui(UI , TI); 91) ) n x - a (ebBC (G3, Pa), u;(U3 , T3); 8a) ) n z

=a(chBc(E.,p.)) n z.

So we have the assertion.

Remark: The same method may be used to define other arithmetic characteristic
classes, for example, the arithmetic Todd eharacteristic class tdAr(E,p)nz for any hermitian
veetor sheaves from the regular case. For more details,~ section 8.

§II.3.8. Arithmetic Todd Classes

1I.3.8.a. A Technical Lemma

Prom the Grothendieck-Riemann-Roch theorem in algebraic geometry, we know that
the Todd character and its inverse should be very useful io the theory of arithmetic Riemann
Roch theorem for l.c.i. morphisms. In this section, we list the properties without proof.
As a hint, we observe that the Todd character is a multiplicative character, aod hence, the
reader may UBe the teehniques developed above, such 88 the pi-deformation teehnique, to
prove the assertions made here.

First notice that for a given exact sequence

E. : 0 -+ EI -+ E2 -+ E3 -+ 0

of holomorphic vector sheaves on a eomplex manifold X, endowed with arbitrary hermitian
metrics, the following equality holds in CHAr(X):

tdäb(E., p.).= -tdec(E., p.) td-I(EI,PI) td- 1(E2,P2) td-I(ea, {J3).

To check this, note that hotb Bidea have the same image by dde , then depend functorially
on C., aod vanish when (C.,p.) is split. Therefore they coincide by 1.1.
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Lemma. (1). Let

0 0
1 1
S = S
! 1

0 - A - B - Q - 0
1 1 11

0 --I' C - D - Q --I' 0
1 !

'"0 0

be a commutative diagram of vedor sheaves on X, with exatt lines and columns. Call
these respeetively C11 C'21 C3 and L11 L'2, La (from the left to the right and from the
top to the bottom}. Choose arbitrary metrics on aB vettor sheaves. Then the following
identity holds in A(X):

tdBC(La, PL 3 ) td(A, PA) td- 1(C, pe) td-1(D, PD) + tdsc(C'21 PC:J) td-1(D, PD)

=tdBc(L'2, PL:J) td- 1(D, PD) + tdsc(C11 pet) td-1(C, pe).

Similarly, we have

tdBC(La, PL 3 ) td(B, PB) + tdBC(C2 , PC:J) td-1(D, PD)

=tdBc(L'2, PL:J) td- 1(c, PC) td- 1(Q, PO) + tdsC(C1, PC 1 ) td- 1(C, PC).

(2) Let

0 0
! 1
s S
1 1

0 - S' - A - B - 0

11 1 1
0 - S' - C - D 0

1 1
0 0

be a commutative diagram of vettor sheaves on X, with exact lines and columns. Call
these respectively Cl, C '2, Ca, LI, L2, La (from the left to the right and from the top
to the bottom). Choose arbitrary metries on aU vettor sheaves. Then the following
identity holds in Ä(X):

tdBC(La , PL3 ) td(A, PA) td- 1(C, PC )td-I (D, PD )td- 1(S/, ps') + tdsc(C2, PC:J)td- 1(C, pe)I
=tdBC( L'2' PL 4 )td-1(D, PD )td- t (S', ps') + tdBC(Ca, PC3 )td- I (D, PD)'
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(3) Let
0 0 0
! 1 1

0 SI - EI - Ql - 0
1 1 1. 0 - 52 - E'l Q2 - 0
1 1 1

0 - 53 - E3 - Q3 - 0
1 1 !
0 0 ·0

be a commutative diagram of vector sheaves on X I with exact lines and columns. Call
these respect ively eIl C2 I C3 and L 11 L 21 L3 (from the left to the right and from the
top to the bottoml' Choose arbitrary metrics on all vector sheaves. Then the following
identity holds in A(X):

tdBC(L31 PL3) td(Qll PQI) td- 1(Q31 P(3) td(E11 PE I)

+ td BC (L1 , PLI) td- 1
( Ql, PQI) td- 1(Q31 P(3) td(E3, PE;,)

+ (tdBC(L 1I PLt ) * tdBC(L3I PL;,»td- 1(Ql,PQt)td- 1(Q3IPQ;,)

- tdBC(L2I PL,) td- 1(Q:hPQ,)

=tdBC(C1 , PCt) - tdBC(C~ 1pe,) td- 1(Qll PQt) td- 1
( Q31 P(3)

+ tdsc(C'l' pc,) * tdii6(Cs1 pC;,» - tdii6(Cs, Pc3) td(E11 PEt) td(E31 PE;,)'

1I.3.8.b. The Arithmetic Tangent Elements For L.C.I. Morphisms

We now make the definition of ar'ithmetic tangent elements for certain I.c.i. morphisms
and their associated aritbmetic Todd characteristic c1asses. Thia definition ia motivated by
the Grothendieck·Riemann-Roch theorem in algebraic geometry.

Recall tbat, in defining arithmetic characteristic classes, we always assumed that the
arithmetic K -group is generated by hermitian vector sheaves among others. In algebraic
geometry, we know that ifthe variety is regular, then the algebraic K-group has two different
expressions: One is given by the vector sheaves, while the other is given by coherent sheaves.
So naturally, we can consider the parallel situation in arithmetic geometry. There is no
problem for algebraic cycles. Hut for Green 's currents, we do meet an essential problem:
How can one attach a metric to a coherent sheaf? So far nobody knows how'to deal with
this ambiguous object. One possible way ia to take a vector sheaf resolution of the coherent
sheaf in question and then put hermitian metrics on the vector aheaves, and finally to define
tbe arithmetic element associated witb this coherent sheaf as the alternating sum of the
hermitian vector sheaves but with a modification by a 'Bott-Chern secondary characteristic
current' associated with the above resolution. This sounds good, hut how to get a very
interesting Bott-Chern secondary characteristic current is far from being understood. Now
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we know onIy a few examples; the situation for closed immersions for instance. But this
idea suggests us the following approach: First, we should extend the arithmet1c K-group
to include certain kinds of currents, which properly includes the smooth (p,p) forrIlB, the
relative Bott-Chern secondary characteristic currents with respect to closed immersions;
secondly, one needs to re-examine the classical logarithmic short exact sequence in tbe sense
of bypercohomology. With this, now we can define Kt-r(X) aa the quotient group of the free
abelian group generated bt the elements «F, r), Tl) but under the same relations as berore.
Here F· is a coherent sheaf on X Buch that the puB back of F at infinity is a vector sheaf on
X(C), and P an Foo-invariant hermitian metric on this puB back, while TI E D(XR)' So in
this sense, it is natural to make tbe following restriction..on morpbismB between arithmetic
varieties: The corresponding infinite part of the morphiBm is smootb.

Next we use tbe resulte in the previous section about arithmetic Chow homology groupe
aod cup products to give the the arithmetic tangent elements for I.c.i. morphisms.

Let! : X - Y be an l.c.i. morphism of arithmetie varieties, whieh is smooth over the
generie fiber YF over an arithmetic ring A. Choose an Foo-invariant hermitian metrie on
tbe eomplex relative tangent vector sheaf Tio' In the following, we attach this data to an
aritbmetic Todd ebaracter tdAr(!, PI)'

Since X is quasi-projective, we ean imbed X in a projective space pZ and let i : X <.....+

X X A P~ = P be the produet of this imbedding witb tbe map !: We get a factorization of
! aB 90 i, where 9 : p - Y ia tbe first projection. Furthermore, i is regular by the fact that
! is an I.e.i. morphism. Denote, by N = Nx/ p tbe normal bundle of X in P aod by Tg the
relative tangent bundle of g. Choose Foo-invariant hermitian metrics on N and Tg • Then
there ia an exact sequence of vector aheaves on X(C):

TI,i : 0 -7je - i·Tge - Ne - O.

Henee there is an element tdBC(TI,i, PT/,i) E A(XR), the cl8BBieal Bott-Chern seeondary
characteristic forms associated with the above exact sequence. Now let

and we have

ddCtdBC(!/9,PI/,) = td(Tle ,PT/e ) - td(t~e' Pi·T,e) td(Nc,PNe)-l.

So, for any er E CHAr.(X), we ean make a natural definition of tdAr(!, PI) by the foBowing
formuls:

tdAr(!, PI) n er

:=tdAr(i·19,Pi.T.) n (tdÄ;(JV,PN)-l n a) + tdBC(!/g, PI/#) n er E CHAr.(X)q.

Ir Y =Spec(A), we also write tdAr(X) instead of tdAr(!, PI)' and tdBC(X/ P, Px/p) instead
of tdBc(!/g,Pl/g)' Furthermore, if ~y aod Y are regular, we have the following

tdAr(!, PI) := tdAr(i·'7g, pi·T,)tdÄ;(N, PA') + tdBC(!/9, PI/g) E CHAr,(X)Q'
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Proposition. (1) The class tdAr(f l Pf) depends only on the choice of the metric on
Tfc ,and not on the choice of i, 9 l nor on the choice of metrics on N aod Tg.
(2) Let f : X - Y aod 9 : Y - Z be two maps of regular arithmetic varieties X, Y.
Assume that fand 9 are smooth over Fand chaose Foo-invariant hermitian metrics on
Tfc l TgC aod 1(goJ)c reapectively. Then the fol1owing identity holds in CH Ar .(X):

where T. is the exact sequence
•

Proof. (1) For any two factorizations ! = 91 0 ;1 = 920 i 2 aB above, we may consider
the fiber product PI x y P2 and the diagonal imbedding. So we are led to consider a diagram

x~pLp'

!".. 19 /h
Y

where 9 and h are smooth. We need to show that, for arbitrary choice of metrics,

tdAr(i·~,Pi·T.) n (tdÄ; (J{x/P, PNx/p)-l n 0") + tdBC(!/9, Pf/g) nO"
=tdAr(U 0 itTh,P(joi).T.) n (tdÄ;(Jvx/P" PNx/p ' )-1 n 0") + tdsc(! jh,Pf/h) n Q.

Since there is an exact sequence on P:

therefore by subsection 5.f, we have

On X(C), we bave a commutative diagram with exact rows and colurnns

0 0

1 1
T/o = 7,0
1 1

0 -+ i·1io -+ (j 0 itThc -+ Np(c)/p,(C) -+ Ö
1 1 11

0 -+ Nx(c)/p(C) -+ J{X(C)/P'(C) -+ i-Np(c)/p,(C) -+ 0

1 1
0 0

Thus by Lemma a.(1), we have the assertion.
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(2) is a consequence of Lemma a.(3). In fact, since , aod gare I.c.i. morphisms, by a
standard argument, there exists a commutative diagram

X
i M' i M'-' '-'

f~ !p ! q
y k M"'-'

g~ 1T

Z,

in which p, q and T are smooth, i, j and Je are regutnr immersions, and the square is
Cartesian. Let us write Tp , ~, T", 7;.0" Ni, Ni, N k and Njoi for the relative tangent
bundles and normal bundles respectively of the maps p, q, T, ,r 0 q, i, j, k and j 0 i. Note
that Ni ~ p.Nk , while 7j, ~ j.7p. We choose arbitrary metrics on these bundles, except for
the condition that the two isomorphisms we have just mentioned are isometries. On X(C),
we get the following commutative diagram witb exact lines and exact columns:

0 0 0

! ! !
0 - T/ .- i-Tp - Ni - 0

! ! !
0 - TgJ - i·rT,., - N ji - 0

! ! !
0 - ,-Tg - ,-k·7;. - f·Nk - 0

! ! !
0 0 0

We have the assertion by Lemma a.(3).

There are similar results for tdBc(' / g, P!lg)' We leave them to the reader.

§II.3.9. Arithmeiic Segre's Classes

\Ve end this chapter by introducing the arithmetic Segre classes, which give an alter
native way to define tbe arithmetic charaeteristic classes in general.

Let X be an Britbmetic variety aod (&, p) a hermitian vector sheaf of rank r on X.
Denote by P := P(E) tbe projective bundle of [ in the sense of Grothendieck, Le. the
bundle wbich represents aH rank one quotients of [, and p : P -- X the projection. There
is a canonical universal exact sequence on P

UN : 0 - S - p.[- 0(1) -- 0,

where O( 1) is tbe tautological line sheaf. 'Ne equip p. [ with the metric p. p, aod S (resp.
O( 1)) with the ioduced (resp. quotient) metric. For every integer Je ~ 0, define

tAr,k(E, p) := p. (c~rr-l(O(1), PO(l))) E CHlrCX).
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Also, for each k > 0, define an element Rk E Äk-l,k-l(X) as folIows: Let UN Y
• be

the dual of UNo and UNV(l). := UN v
. <9 0(1). For the obvious choice of metries, let

cr,Bc(UNV(1)., PuNY( 1).) E Ar
- 1,r-l (P) be the classical Bott-Chern secondary charaeteris

tic dass of this exact sequence with reapect to the r-th Chern dass er. Then R k is the k-th
coefficient of the formal power series

LRkxk

k>O

=(2: p. (ct- 1(O( 1), PO(!)) cr,Bc(UNV(1)., PuNY(J..).))X
k

) (L: ci (E, p)(-x)j) -1,

k>O j~O

where we have UBed the module structure of Ä'(X) on the ring A·(X).

Now we define the arithmetic Segre's dass 8k Ar(E, p) E CH1r(X), k?= 0 by

(E) {I, if.k=O;
Si: Ar ,P = tkAr(E, p) + a(Rk), if k > O.

The relation between the arithmetic Serge claBBeS and the arithmetic ehern classes is
expressed in terms of tbis definition by the foUowing

Theorem. With the same notation aB above,

I:CjAr(E, p)(-tr' =(I: SkAr(E, p)tk) -1.

j~O k~O

Proof. From tbe exaet sequence,

by the additivity of ebern classes and the behavior under tensoring by a line sheaf, note
that tbe rank of E ia r, we get

a(cr BC(UNY (l),PUNV(l))) =CrAr(Op EB SV (1), POp$sY(l)) - crAr(p·(E, p)V (1))

=- crAr(p·(E, p)V (1))

= - LP·(CjAr((E,p)V»)c~Ä!(O(l),PO(1))
j~O

= - I:p. ((-Ir'CjAr((E, p)))c~~~(O(l), PO)(l)'

j~O

On tbe other hand, if we apply tbe morphism a to tbe defining equation of Ri: above, then,



342 Arithmetic Characteristic Classes

•

by the projective formula, we have

La(RI:)xl:
1:>0

= - (L: P. (c~:;'~(0(1 ).' PO(I)) p. (( -1PcjAr((E, p)))c~~~(0(1), PO)(l)))X
k

)
11>0
j~O

(L Cj Ar(E, p)V (-x}i)-1
j~O

( '"' . ('"' k "+r 1 I: ')) ('"' ")-1=- L.. CjAr(E,p)(-x)1 L..P.(CIÄ~ - (O(I),pO(I));r -J L..CjAr(E,p)(-x)J .
j~O 1:>0 j~O

Tberefore, by the fact tbat J. (clAr(O(I), PO(l))) = 0 unless n ~ r - 1, we have

La(RI:)xl: =- LtI:Ar(E,p)zl: + (LCjAr(E,p)(-xy)-I.
_>0 J:~O i~O

This completes the proof.

Remark. It follows from tbis theorem that arithmetic Segre's classes provide an al
ternative way to define arithmetic Chern classes. Hence we may define alternatively all
arithmetic classes of hermitian vector sheave5, rather than using the splitting principle as
before.
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Chapter 11.4. Arithmetic Riemann-Roch Theorem
For Smooth Morpbisms

343

In this chapter, we prove an arithmetic Riemann- Roch theorem for smooth morphisms
of regular arithmetic varieties f : X - Y, which was first given in (Fa 92]. To do so, the first
problem we meet is how to define a push-out morphism for arithmetie K -groups. It is at
this stage tbat we have to use the relative Bott-Chern seeondary eharacteristic forms with
respect to smooth morphisms at infinity indueed by f developed in Part I. We are going to
give this definition in section 1. In section 2 we state the arithmetie Riemann-Roch theorem
for smootb morphisrns. Finally, in section 3, we use the axioms for the relative Bott-Chern
seeondary charaeteristie forms with respect to a smooth morphism to prove the arithmetic
Riemann-Roch theorem stated in section 2.

§II.4.1. The Push-Out Morpmsm of Arithmetie K -Groups.

We now make a natural definition of the push-out morphisffi of arithmetic K-groups
with respect to a smooth morphism f : X - Y of regular arithmetic varieties:

Sinee KAr(X) is generated by !-aeyclic hermitian veetor sheaves and elements in
Ä(XR), it is sufficient to give adefinition for botb of these elements and to check the
compatibility with the equivalence relations amon·g these objects.

IIA.1.a. For f-Acyclic Hermitian Vector Sheaves

Let / : X - Y be a smooth morphism of regular arithmetic varieties X, Y over
an arithmetic ring (A, E, Foo )' Let (E, p) be an I-acyclic hermitian vector sheaf on X.
There is a natural element (/.E, !.p) in K Ar(Y). On the other hand, by the Riemann
Roch theorem in the algebraic sense, it is quite natural to consider another element in
KAr(Y), whicb corresponds to the element fCH(cbAr(E,p)tdAr(/,P/)) via the isomorphism
cbAr between KAr(X) and CHAr(X)Q' In Part I, we introdueed the relative Bott-Chern
seeondary charaeteristic form with respect to the above data, which is supposed to be the
object measuring the differenee in KAr(Y) between (/.E, !.p) and the element corresponding



344 Arithmetic Riemann-Roch For Smootb Morp~isms

to fCH( cbAr(E, p)tdAr(f, PI)) (see 3.5,f). Therefore, by the definition of Green's currents,
we make the following definition:

I1.4.1.b. For Differential Forms

Since the arithmetic Riemann-Roch theorem ia aup~osed to be a generalization of the
c1assical alßebraic Riemann-Roch theorem, we make tbe following definition: For any ele
ment w E A(~R),

fK(W) := f.(a(w) tdAr(f, PI )).

I1.4.1.c. General Situation.

We are now ready to give the definition of fK for general elements. Hy linearity, it ia
enougb to give tbe definition of fK for a hermitian vector aheaf (F, T).

There exista an f-acyc1ic vector aheaf resolution for F: In fact since f is proper, there
existB a relative sufficient ample line sheaf l on X. Therefore for any free resolution of
F ® r,-1, we cau get an f-acyclic vettor sheaf resolution

E. : 0 -- En -- En - 1 - Eo -;: - 0,

where Ei are j-acyclic vettor sheaves. Now put hermitian metrics Pi on Ei, aod let

n

JK(F,T):= L)-l)iJK(Ei,pd - JK(chec(E"pi,T)).
i=O

We need the following

Proposition. Let f : X - Y be a smooth morphism of regular arithmetic varieties
over an arithmetic ring (A, E, Foo ). Then
( 1) f K is well-defined;
(2) fK ia a group morphism.

I1.4.1.d. Proof of The Proposition.

It is sufficient to show that for aoy short exact- sequence of J-acyc1ic vector sheaves

[. : 0 -- [1 - E2 -- E3 - 0
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on X and any Fco-invariant hermitian metrics Pi for i = 1,2,3, we have

[n fact, suppose we have this assertion, then IK is well-defined, since for any hermitian vector
sheaf (:F, T), any two /-acyclic vector aheaf resolutions are dominated by a common third
one, aod hence the propo!ition comes from a very simple relation between the associated
dassical Bott-Chern secondary charaeteristic forms, say, Theorem 1.1.2.c.

The praof of (*) ia also very simple. In fact, in KAr(Y), we have..
(/.E1, I. P1) + (/. [a, pa) = (/.[2, P2) - ehBc (/.E., I.p·)·

Here, we let
I.E. : 0 - I.E1 - 1.[2 - I.Ea - 0

be tbe image of tbe exact sequence [ .. Thus, we have to show that

chsc (E21 h; I, PI) - chBc(E1 , P1; I, PI) - chsc(E3, Pa; I, PI)

=1.(chec(E., p.)td(/, PI)) - chBC(/.E., I.p·),

which is nothing but Axiom 3 of relative Bott-Chern secondary characteristic forms with
reapect to smooth morpbisms in 1.2.

11.4.2. Arithmetic Riemann-Roch Theorem ror Smooth Morphisms

In this section, we state and explain tbe arithmetic Riemann-Roch theorem for smooth
morphiBms.

However, before stating the theorem, we need to introduce same more notation: Let
B be a subring of R, and let P(z) E B[{z]] be aoy power series. Tben for aoy hermitian
vector sheaf (E I p), by the splitting principie, there exists a unique additive characteristic
dass P(E) E Hev(x), wbere Hev(X) ia tbe even homology of X. We define the modified
arithmetic Todd characteristic class with respect to P by letting

Td~r(E,p) := tdAr(E,p)(l - a(P(E))).

With this, we bave the following

CHAr(X)Q
1 ICH

CHAr(Y)Q'

KAr(X)
fK 1

KAr(Y)

Arithmetic Riemano-Roch theorem For Smooth Morphism!. (Faltings [F 92])
Tbere exists a unique power series R(z) such that for any smooth morphism of regular
arithmetic varieties 1 : X - Y over an arithmetic ring (A, E, Fco ) with an Foo-invariant
herrnitian metric PIon the relative tangent sheaf of I, the following diagrarn is com
mutative:
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Here Td~r denotes tbe modified arithmetic Todd charatteristic dass with respect to R.

Next, we prove this theorem.

1I.4.2.a. Several Intl!rmediary Results.

With the same notation as above, for any power series P, for any smooth morphism
f : X - Y of regular arithmetic varieties over an arithrqetic ring (A, E, Foo ), any f-acydic
hermitian vector sheaf (E, p) on X, let

To prove the theorem, it ia sufficient to show that there exists a unique power series R(x)
so that

For this we need some intermediary results.

Proposition 1. Let f : X - Y be a smooth morphisffi of regular aritbmetic varieties
with an Foo-invariant hermitian metric p! on the relative tangent vector sheaf of f.
Then for any short exact sequence of f :-acydie hermitian vector sheaves

G. : 0 - EI - E'J - E3 - 0,

with Foo-invariant hermitian metries P, on E, for i = 1,2,3, we have

In particular, Err(E, p; f, p!; P) does not depend on the metric p. Furthermore, we have
that Err(E I P; f, PI j P) lies in the a-image of harmonie forms.

Proposition 2. Let / : X - Y aod 9 : Y - Z be two smooth morphisms of regular
arithmetic varieties whieh have Foo-invariant hermitian metrics PI, pg and Pgo! on the
relative tangent vettor sheaves of /, 9 and go/ respectively. Let (E, p) be an f-acydic
hermitian vector sheaf on X such that f.E is g-aeydic. Then

Err(E,pj9 0/, P,o/; P) = Err(f.E, I. Pi g, pg; P) + g.(Err(E, Pi f, PI; P)Td~r(g,pg»·

In partieular, Err(E, P; f, PI; P) does not depend on the metric PI'

Remark.. Because of these two proposi tions, we denote Err(E, p; f, PI; P) simply by

Err(E; f; P).

Proposition 3. There is a natural morphism

Err : K(XF) - H(YR)/p(CH(l,O)(Y»QI
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such that Err(l'; P} =Err(E; I; P).
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Proposition 4. Let I : X -+ Y be a smooth morphism of regular arithmetic varieties
with an Foo-invariant hermitian metric PIon the relative tangent vector sheaf of I.
Thcn, for any Oat base change 9 : Z - Y, we have

g·Err(l';I;P) = Err(gjE:;lg;P}.

Here we use the following diagram

,-
ZXyX ~

/, 1
Z

Jt

1 f
Y.

Proposition 5. There ia a unique power series R(z) such that for any pl-bundle

P : X = Py (.1") -+ Y,

Err(Ej Pi R) = O.

Finally, we consider Err for closed immersions. In this case, we have to introduce a
new Err term. That is, let i : X <.....t Z be a closed immersion with the amooth strueture
morphisms f : X -+ Y and 9 : Z -+ Y of regular arithmetie varieties, tben we define

Err(l'i i; P) := Err(l'; I; P) - Err( i.l'; g; P).

By Proposition 3, this definition makes sense, even through i.E ia usually only a eoherent
sheaf:

Proposition 6. Let i : X <.....t Z be a codimension-one regular eIosed immersion of reg
ular arithmetie varieties over an arithmetie variety Y with smooth strueture morphisms
/ : X -+ Y aod 9 : Z -+ Y. Let (E, p) be an l-aeyeIie hermitian veetor sheaf on X such
that i.E is g-aeyeIic, tben

Err(E; ij P) = O.

II.4.2.b. The Proof of The Propositions.

Proof of Proposition 1. Sinee the independence of Err with reepeet to the metrie is
a eonsequenee of tbe first assertion, it is sufficient to prove that Err is additive aod is in the
a-image of harmonie forms.

We go baek to the definition, and have

Err(EI , Pli I, PI; P) + Err(E3 , P3; I, PI; P)

=ehAr(IK(E1, pd) - ICH(chAr(E1 , pdTd:r(f, PI)}

+ChAr(IK(E3 , P3» - ICH(chAr(E3, pa)Td:r(/, PI»'
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On the other hand, by Proposition 4.1.2, we know that

IK(&l' pd + IK (&3 , P3) = IK(&2,P2) - IK(chec(&., p.)).

Hence by the fact that

ehet(&., p.)

=ehAr(&2, P2) - ehAr(E1, pd - ehAr(E3, P3),

and that tbe image of a is a square zero ideal, we have

Err(El , PI; I, PI; P) + Err(E3, 1>3 i I, PI; P)

=ehAr(IK(E2, P2)) - IK(ehec(E., p.))

- ICH(cbAr(EI , pdTd~r(/, PI)) - ICH(cbAr(E3,P3)Td~r(/, PI))

=ehAr(!K(E2, P2)) - !cH(ehAr(E2 , P2)Td~r(!' PI))

=Err(E2, P2; I, PI; P).

Now we prove tbe third assertion. Tbat ia, Err lies in the image of harmonie forms.
This assertion has two aspecta. First, for algebraic cycles, note that tbe aritbmetic definition
ia a natural generalization of the algebraie ODe, aod the arithmetie Riemann-Roch theorem
is a natural generalization of the classieal theorem. We know that tbe image of Err, via
the forgetting map on algebraie eycles, ia zero. Secondly, for eurrents, under the natural
morphism .

IM: CHAr(Y)q - Ä(YR ),

which sends «F, r), a) to ch(F, T) +ddca, we know that

w(Err(E,p;f,PI; P))

=eh(!.&, j.p) - 1.(ch(E,p)td(j, PI)) + dcfehBc(E, pj I,PI)'

Thus by Axiom 1 of relative Bott-Chern secondary characteristie forms with respect to
smooth morphismB in 1.2, we have

w(Err(E,pj/,Pli P)) = o.
So we may eomplete tbe proof by eonsidering tbe structure of the homology exact sequence
associated with the arithmetic Chow groups in 2.3.e .

Proof of Proposition 2. By putting 9 = Id y , we find that the seeond statement of
this proposition is a consequence of the first oue.

Now we prove tbe first statement. The result for Err is equivalent to

chAr«g 0 I).E, (g 0 !).p) + chec(E, p;g 0 f, Pgo/) - (g 0 !)cH(ehAr(E, p) Td~r(g, oj, Pgo/))

=gCH(chAr(j.E, !.p) Td:r(g, pg)) + gCH(cbec(E, P; I, PI) Td:r(g, pg))

- (g <> !)CH(chAr(&, p) Td~r(f; PI) f· (Td~r(g,pg)))

+ chAr«g 0 f). E, (g 0 I).p) + ehec(/. E,f. Pi g, pg)

- 9CH(chAr(!.E, !.p) Td~r(g, pg)).
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Hy definition, this equation is nothing but

ehBc(E, P; go !, Pgol ) - ehBc (!.E, f.Pi g, pg) - g. (ehsc(E, Pi f, PI ) td(g, pg))

=(g 0 !)CH(ehAr(E, p)(Td~r(g 0 !, Pgo/) - Td~r(f, PI) f· (Td~r(g,pg »))).

We see that the image of a is a square zero ideal, and

tdsc(!, g, gof) = tdAr(g 0 !, Pgo/) - tdAr(!, PI) f· (tdAr(g, Pg )) ...
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So the previuos assertion is a direet consequence ofAxiom 4 of relative Bott-Chern secondary
characteristic forms with respect to smooth morphismB in 1.2.

Prtx>f of Proposition 3. By Proposition 1, 2, it ie suflicient to prove that Err may
be descended to K(XF)' Consider the relation:

Ker(K(X) ~ K(X(F))) =Im(K(X)fln ~ K(X)),

wbere K(X)fln =EBpKX,,(X) is tbe Grothendieck group of X with support in finite fibres.
We also have tbe commutative diagram

K(X)fln 
chO 1

i
CH(X)ftn ~

K(X)
1chAr

CHAr(X),

where i (z) =(z, 0). So tbe assertion ia a consequence of the classical Grotbendieck- Riemann
Roch theorem with supports.

Proof of Proposition 4. Note that everything in tbe expression is eompatible witb
a fiat base change, 80 we have the asSertion.

Prtx>f of Proposition 5. This is a consequence of Proposition 3 and a direct ealcula
tion. As a K(Y)-module, K(X) ia generated by Ox, and Ox(-l), so by Proposition 3, it
is suffieient to show that Err is zero for both of these two elements: We pr()ve this by using
tbe functorial property of Err. Sinee Err does not depend on the metrics, we ean normalize
the metrics aB follows: Take an Fco-invariant hermitian metric pan :F and put the indueed
metrie on 0(1). (Since we have the universal exact sequenee

p.;F" ~ Ox(l) - 0.)

Tben we have an induced metrie on O(n) for any integer n. Hy the exact sequenee

0- Ox - p.,F ® Ox(l) ~ Tx/y - 0,

we have Tx/y :: (det 1') 0 Ox(2). In partieular, we ean take the metric on Tx/y such that
the algebraic isomorphism ia an i80metry.
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Let Yn := G'J,n denote tbe Grassmannian of rank 2 subgroups of zn+2, aod let

be tbe projective bundle associated with the universal subbundle Sn (which ia a pl-bundle).
By the universal property-of Grassmannians, tbe natural m8p a on H·(Yn ) ia an injectioß,
aod by a .standard argument, aay Prop. 23.2 [BT 82], we know th8t

So we may prove the proposition by the following argument. First, the arithmetic Riemann
Roch theorem for projective morphisms holds up to an error term in H·(Yn ). Secondly,
these error terms eorrespond to each other with respect to nunder the natural injection
Yn e.......t- Yn +1 (by tbe definition) and remain unchanged if we tensor Sn with a line sbeaf.
(See also 3.3.) Thus, we obtain universal classes in lirn-H(Yn ) 80 that for any rank two
vector bundle F, whieh is generated by its global seetions, these classes define tbe errors in
arithmetic Riemann-Roch theorem for Py(.r) - Y onee and for alI.

Now we determine these etrors. Note tbat the direct image of the structure sheaf is tbe
atr':lcture sheaf below. Let A = cl(O(1),pO(1)) + !Cl(.:F,p). Then

1
cl(Tx/y,PT) = 2A, A'J = -c'J(F,p) + '4Ct(.:F,p)'J

and
!.A'Jm = 0, J.A2m+1 = (A 2 )mJ.A = (A2 )m

for aH positive integer m. Ir we tensor Sn with a sufficient very ample line eheaf, we will see
that the error term for Ox is given by apower eeries in eHF, p) - 4c'J(F, p). Tbe same ia
true for 0 x ( -1) if we multiply the error term by exp( !Cl (.:F" , pV)).

Finally, in order to complete the proof of the proposition, we have to show that one
may adjust P uniquely such that both errors become zero. Obviously, if we change P by 6,
then tbe error of arithmetic Riemann-Roch theorem expression for 0 x ebanges by

2A
J. ( 1 _ e- 2A 6(2A))

and similarly for Ox(-1), (up to exp( tedF", pV),) the error changes by

2Ae- A

J.( 1 _ e- 2A 6(2A)).

[n the Becond expression, the faetor before 6 haa aseries in even powers. So, we may choose
the odd part, 6odd , such that the errQr vaniehes for "x(-1) uniquely. Heuce, we may assurne
that fJ ie eveo, and try to caneel the error for "x. But, for "x, ooly the add part in the
power series matters, that is, we have to consider

f.(A6(2A)).
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Again this ia unique. This completes the proof.

Proof of Proposition 6. We prove this proposition as folIows:
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(a) CODsider the special situation with codimension-one closed immersions as the zero
sections of a Pl-bundle;
(b) Reduce the general codimension-one closed immersion to the zero section of a pl_
bUDdle by the deformation to the normal cone technique.

(a) Suppose i 1 : X e.....;. Z is a zero section of a pl-bftndle. Then, we have the following
diagram

y

Id y '\. / PI
Y.

Hence, for any vector sheaf E on X,

P~(:F)

The arithmetic Riemann-Roch theorem is clearly valid for the identity morphisms. So we
,have

Err(E,Id) = O.

On the other hand, since PI is a natural projection from a Pl-bundle, by Proposition 5, we
know that

Therefore, we get
Err(E, it} = O.

Rence, if we can reduce aoy codimension-one closed immersion to the zero section of certain
pl-bundle, we have proved the proposition.

(b) Now we make the reduction required by the last statement in (a). Throughout this
part, we must know that now we are working with a special closed immersion, i.e. a closed
immersion of codimension one.

Recall the diagram from the deformation to the normal cone from 1.9.2.a. We have

x X x {oe}
i ....

P(N E:B Ox) +Bx Z =Woo {co}+- e.....;. -+

! 1 ioo 1 !
X

p X X pi 1
Bx xoo Z X pi =w .E. pi- e.....;.

1 1 jo 1 1
X X x {O}

i a
Z X {O} =Wo {O}.- e.....;. -+

Lemma. With the same notation aB above, we have

Err(E,io) =Err(E,ioo ).
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Obviously, the proposition ia a direct consequence of the lemma.

Proof of the lemma. First, by definition, the equation may be read as folIows:

Err(f,fo) - Err(io.f,go) = Err(E,foo) - Err(ioo.f,goo) ..
Now the difficult is that i .•E is usually only a coherent sheaf. One may get rid of this
difficult by tbe natural exact sequence

o-XE - f - i.E -8.

Since i is a codimension-one closed immersion, so in fact I Eisa vector sheaf. Formally we
may consider .in tbe arithmetic K -group that i.E as the summation of the hermitian vector
sheaves associated with I E, E, and tbe relative Bott·Chern secondary characteristic current
with respect to i. Thus, by the facts that the arithmetic Riemann-Roch theorem is valid for
fonns, or better currents Uust by the definition), aod that X x pI does not intersect W~
in W, we know that, to prove the above lemma, it is sufficient to show tbat

Indeed, we know that tbe Err has nothing to do with the associated metrics, aod could be
descent to the algebraic K group, so tbe above formal process makes sense. In particular,
we see that the latest assertion .is equivalent to the following

Lemma'. Let f. : 0 -+ IXxPIE(W~)-+ E(W~) be an exact sequence on W. Then

Proof of the lemma'. Hy definition, the equality in the lemma' may be written as

go. (cbAr(f ·10 Ip·lo) Td~r(gO' Pgo)) - g<XI. (chAr(f ·100 I p·loo) Td~r(goo Ipg_))

=chAr(go.(f·10, p·lo) + chec(E ·10, p·lo; gOI Pgo)

- ChAr(goo. (E ·100 Ip·loo)) - ChBC(E·100' p·loo; 900' PfClO))'

We first study tbe difference on the right hand aide by using the deformation theory for
the relative Bott-Chern secondary characteristic forms with respect to smooth morphisma
in 1.9.2: On one hand , from the proof of Proposition 3.5,f.2 (via the pI-deformation), by
the fact that

divAr(z) = ((0) - (00), -nogjzI2]),

where z ia the usual coordinate of pI, we know that

offers the classical Bott-Chern secondary characteristic fonns with respect to the change of
the metrics from 0 to 00 for :F., which is defined by the direct image of the exact sequence
of
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on Y. (Remember that X x pI does not intersect W~.) That is,

chAr(go.(l:·lo,p·lo)) - chAr(goo.(t:·loo,p.joo»

=(0, ( ch(:F.,p.1-.) [logjzI2J.jpl
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Hence, by the axiom for tbe Bott-Chern ternary charactertistic forms with respect to the
amooth morphisms in I.9.2.a, we see that the right hand side is

We claim that this ia just the element given by the difference of the left hand aide above.

To prove the latest claim, we need first note the fact that w(ehBe ( t:., p.; G, pa» gives
the differenee

G.(eh(t:., p) td(Ta( -logoo), pa» - eh(G.t:., G.p.).

Therefore, by tbe fact that Ooglzl2] has total mass zero on pI, we see that the right hand
of tbe Err relation above ooly offers tbe G-direct image of the element

(0, f ch(E.,p)td(Ta(-logoo),pa)logjzl:l).
}pl

Thus by the Axiom 1 for tbe relative Bott-Chern seconclary eharacteristie forms with respect
to the smooth forms in I.2, or better, the proof of Proposition 3.5.f.2, we aee that lemmal is
implied from the following

Sublemma. With tbe same notation as above, for all t E pI

wbere goo denotes tbe restriction of Go:> on W~'

In fact, auppoee tbe sublemma is proved, tben we have

go.(cbAr(E·lo, p·lo) Td~r(gO' Pgo)) - 900.(chAr(E ·10:>, p·loo) Td~r(900, pg.,J)

=G.(chAr(E., p.) Td~r(Ta( -Iogoo), pa))«O) - (00),0)

=(O,G.(. f OoglzI2]ch(E.,p.)TdR(TG (-logoo),pa))).
}pl

So we have the lemma', hence complete the proof of Proposition 6.

Proof of the sublemma. The proof is rat her formal but standard. The key point
ja tbat now X x pI does not ioterseet W~' So, in the discussion, essentially, we may pay
00 attention on tbat part. Also we may let tbe tangent bUDdle Two (resp. Tw.;.) is the
restriction of tbe logarithmic tangent bUDdle, and put ametrie on tbe logarithmic ralative
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tangent sbeaf, such tbat outside a neighborhood U of awoo , the restriction for tbe relative
tangent bundle offers an isometry over eaeh point t E pI. More preeisely, in practiee, we
may go as follows:

First, introduee a relative arithmetic Chow group CH~;W -0 (Z) as the quotient 9f
of group generated by ari thmetic eyeles eyc1es (Z, 9z) witb Z C X, Su pp(gz) C ~V - U,
modulo tbe aritbmetie divisors of rational functione on eycles in X, together witb the forma
Ba + aß, where a aod ß are eurrents with support in X. Then for any hermitian line sheaf
(.c, r) of Xwe ean introduee tbe action of C1,Ar(.c, T) on CHi;w-O(X) in a natural way.
Any two C1,Ar(.c, r)'s actions eorrunute. Furthermore, if.we have two embeddings X '- Z1
and X c....... Z2, such that there are Zariski open neighbourhoods VI respectively V2 of X
and an isomorphism VI ~ V2 , whieh fixes X so that if U1 C Vt,c and U2 C V2,c are the
corresponding open neighborhoods, tben naturally,

Moreover, this isomorphism ie eompatible with the action of CI,Ar(.C, r)'s, if there IS an
isomorphism .c1!vt ~ .c2 Iv) whieh is an isometry over W1 - 01 :::: W2 - O2 .

We now discuss the above action for any hermitian vector sheaf. Naturally, by the
splitting principle, we may have an action. That is, we may have tbe following situation:
Suppose that we have two hermitian veetor sheaves EI aod E2 which are isomorphie over a
Zariski open set V C X and isometrie over W - Ü C Vc. Let (A, gA) be an arithmetie eyele

in CH;;w-O(X). Denote by ZI (resp. Z2) the complete Hag varieties of EI (resp. &2)' by
1I'i : Zi - Z tbe natural projections and Vi = lI"i I (V), ete .. Tben we have tbe eorrespo"nding

arithf!letic cyc1es iTi(A, gA) in CH:r"Wi-Oi (Xd for i = 1,2. In partieular, 1r;([i) splits on Zi,
so there is a complete filtration by line sbeaves .c;,i for this splitting. Any polynomial in the
CI,Ar(.c;,d's operates on tbe arithmetie eyeles, and obviously the two actions for i = I, 2
eorrespond to eaeh other via the natural isomorphism on the relative arithmetic Chow
groups introduced above. So, in the later discussion, we may neglect the above differenee.
In partieular, we ean use the splitting prineiple to introduce a multiplication by ehAr-dass,
and hence bave sirnilar resulta. In fact, if P( Ci ,Ar([, p)) ia a polynomial in the arithmetie

Chern dasses of ([, p), we can find an operator Q( C1,Ar(.cj » +R on CH~;'Wi - 0
i (Zi), with Q

a polynomial in arithmetic Cbern dasses, aod R multiplieation by the classical Bott-Chern
secondary characteristie form, such that in CHAr(Z),

It follows that botb for [1 and E2 , the left hand sides ean be obtained from the same dass in

CH;r',W;-Oi(Zd, by first projecting them to CH~~w-a(~) and tben mapping to CHAr(Z).
ThuB the operations on eycles with support in (X, W - U) of P(Cj,Ar(~» eoineide.

As a eonsequenee of the above general diseussion, by the fact that chAr([., p.) is of the
form (M, gM ), where M is an algebraic eyele supported in X x P 1 and gM a Green 'a current
supported in W - Ü, we get the assertion in the sublemma.
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Now we use the propositioos stated aod proved in the last two sections to show the
arithmetic Riemann-Roch theorem for smooth morphisms.

For simplicity, we let 'Pn denote the projection from the pn-bundle, and let i 1 denote
the codimension-one closed immersion.

It is enough to prove Err's are zero for both c10sed immersions and projections from
pn-bundles. For this, we use the trick of Faltings to reduce the problems for Err to those
for just PI and i l . If it is BO, then the main theorem is a direct consequence of Proposition
2.5 and Proposition 2.6. In practice, we use the induction step for Pn to reduce the problem
to that for PI and il, while for any closed immersion, we use tbe deformation to the normal
cone technique to reduce the problem to Pn and i l , using Proposition 3 above.

IIA.3.a. Projection Cases

We start the induction on n. If n =1, by Proposition 2.5, we know that

Err(Ej PI) =O.

Suppose that for aoy m < n, we have

Err(E,Pm) =O.

We shall prove that
Err(E,Pn) =O.

In order 10 prove this, consider the generator of K (X) for X =Py (.1"), where .1" is a. rank
n + 1 vector aheaf on Y. Note that by Proposition 2.4, everything above ia compatible with
fiat base-change, 80 by the splitting principle, we may assurne tbat :F has a rank 1 sub-line
sheaf (, Buch that :FI{, is also a vector sheaf. Now, it is an easy observation that we may
have the following simple but very important

Fact. ~ a K(Y)·module, K(X) ia generated by Ox( -1) aod the direct image of
i.(K(Py(:FI (,))). Here

i: Py(:FI{,) '-+ Py(:F)

iB tbe natural codimension-one closed imbedding.

Inorder 10 prove tbe main theorem, we need ooly to show that, for 0 X ( -1) and tbe el
ements in i.(K(Py(.:F/{'))), Err ia zero. We deal first with tbe element in i.(K(Py(.:FI{,)))·

. For this purpose, we oeed to use Proposition 2.6. In fact, since
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is a codimension-one closed imbedding, we have Err( er, i d = 0 for 0: E [( (Py (:F/ L)). But
by definition,

Err( 0:, i) ,= Err(0:, Pn- d - Err( i. a, Pn).

Here Pn-1 (resp. Pn) denotes the natural projection from Py(:F) (resp. Py(F/C)) to Y.
Moreover, by the inductio~ step,

Err( 0:, Pn- d =0,

hence we have
Err«(O:,Pn) =0,

which exactly means that the arithmetic Riemann-Roch formula is valid for the elements in
the direct image of K(Py (F / L)).

Now let us consider tbe term Err(Ox(-I),Pn). For this special purpose, we need same
more notation.

Let Flagy (F) be tbe Flag variety of :F on Y. That is, the variety which classifies
complete filtrations of :F:

o=Fa C F 1 C ... C Fn +1 =F,

where the succesive vector sheaf quotienta are of rank 1. There is a natural morphism
from Flagy(F) to X whieh is just the composition of tbe forgetting maps. Heuce the
morphism from Flagy (F) to X is a eomp05ition of prn-bundles with m < n. Therefore, by
Proposition 2.2 and the induction hypothesis, the arithmetic Riemann·Roch theorem holds
for the morphism Flagy(:F) - X. On the other hand, we can consider the pull-back of the
line sheaf 0 x( -1) over Flagy (F). It is well-known that the push-out to X of this puB-back
line sheaf on Flagy(F) ia juat Ox(-I) itself. Thus, if we ean prove that, for the natural
morphism Flagy(:F) - Y that Err of the puB-back of Ox( -1) is zero, then Err of 0 x( -1)
with respect to X - Y is also zero by Proposition 2.2.

In order to deal with the morphiam Flagy (F) - Y, we introduce another deeomposi
tion: Let Flag'yF be another Rag variety whieh classifies the following partial filtrationa of
F:

o= :Fa C :F2 C ... C F n+1 =:F,

where the rank of :Fk ia k. Then the natural morphism from FlagyF to Flag'y.1', followed
by the natural morphism from Flag'y.1' to Y, ia just Flagy(.1') - Y. But, the morphism
from FlagyF to Flag'y:F is a pl-bundle. Therefore, the arithmetic Riemann-Roch formula
ia valid for the pull-back of 0 X (-1) on Flagy:F, with respect to the morphism from Flagy:F
to Flag'xF, by our Proposition 2.5 for pl-bundles. On the other hand, note that both aides
of the arithmetic Riemann-Roeh formula for the pI-bundle eRBe, with respect to the pull
back of the line sheaf O( -1), consist only of forms over Flag'yF. So ~ by tbe fact that the
arithmetic Riemann-Roch formula for any smooth form with respeet to any morphism holds,
we know that Err for the pull-back of "x(-1) on Flagy F with respect to Flagy (.1') - Y
is zero. In this way, we know that Err(id =0 and Err(pt} =0 implies Err(Pn) = 0 for an
n.
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Next we deal with a regular closed immersion via the deformation to the normal cone
technique. Here the aim ia to reduce the general immersion case to the following situation:

(1) The zero section of a projectivised affine bundle;
(2) Codimension-one closed immersions.

Let us now suppose that we can reduce the problem with respect to a general closed
immersion to the case (1) aod (2) above, then by Proposition 2.6, we solve the Err problem
i.e. Err=O, for (2). Also by the above result about projections, we salve tbe Err problem
for (1), since the composi tion of the zero section immbedding and the projection ia the
identity map, and the arithmetic Riemann-Roch theorem ia of couse valid for the identity
map. (See part a of tbe proof of Proposition 1.6.) Hence we have a proof for tbe arithmetic
Riemann-Roch theorem with respect to smooth morphisms.

To reduce the case of an arbitrary closed immersion to (1) aod (2) above, we use
deformation to the normal cone theory as usual. For this, we recall the following basic fact
concerning the theory of deformation to the normal cone

Fact. With the same notation as in (*) of 1.9.2.a, the following two morphisms

aod

X~WaÄW

induce tbe same morphism for K·groups.

In thiB way, by Proposition 2.3, we see that

Err(E,ioo 0 ioo ) = Err(E,io 0 ia).

Hut by definition, we know that

and
Err(E,io 0 ia) = Err(E,io) + Err(io.E,io).

Thus to complete the proof, it is sufficient to prove that

Err(E, ioo ) == 0,
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Err(ia.&,ia) =O.

Note that each of the three closed immersions, ioo , ia and ioo, is either codimension-one
cl08ed immersion or the zero seetion of a pn-bundle, it follows that it is sufficient to deal
with the zero sections of prQjectivized affine bundles and codimension-one closed immersions.
These are just the situations in (1) and (2) above. It is in this way that we complete the
proof of the arithmetic Riemann~Roch theorem for smooth morphisms.

We end this chapter with tbe following remark. As~e stated in Chapter n.l, we hope
that the arithmetic Riemann-Roch theorem cau be obtained by replacing the concepts in the
Grothendieck-Riemann-Roch theorem by tbe eorresponding arithmetic coneepts. However,
it seems to be the ease that our final arithmetie Riemann-Roch theorem does not have this
form, since we have to ffiodify the arithmetic Todd eharacteristic c1888 with apower series
of R. But, this may be easily removed by changing the push-out morphism for arithmetic
K-theory: Instead of defining !K(E, p) by

for an ! -acyc1ic vector sheaf E, we define f: (E, p) by

ffl(E,p) :=(f.E, f.p) + ehBc(E, P; f,PI)

+!.(chAr(E, p) tdAr(TI , PI) a(R(TI ,PI ))).

Since chAr is an isomorphism which maps forms to forms, we see that the above definition
makes sense. Also, since R is unique, if there is no risk of confusion, we can also denote f{:
by !K. Thus we get aperfeet situation:

The Arithmetic Riemann-Roch theorem For Smooth Morphisms'.
Let ! : X -- Y be a smooth morphiaffi of regular arithmetic varieties X, Y over an
arithmetic ring (A, E, Foo ), with an Foo-invariant hermitian metric Pt on the relative
tangent sheaf of !. Then we have the following commutative diagram

eh A.O td Ar (J ,PI)
- CHAr(X)Q

1 fCH

~) eH (Y)Ar Q.

Naw one may aay that histarically, for Hirzehruch to find his famaus Riemann-Roch
theorem, he actually did show that the Todd genus is the ooly ane which makes the Riemann
Roch theorem hold, by cheeking certain concrete examples. But here, at the last minute, we
have changed our direction. Weil, we may argue that this last change makes the arithmetic
Riemann-Roch theorem totally si.milar to the Grothendieck-Riemann-Roch theorem. So,
even philosophically, this change makes sense.
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We now use the relative Bott-ehern secondary characteriatic eurrents witb respeet to
closed immersions to prove tbe arithmetic Riemann-Roch theorem for a special kind of closed
immersion, whieh was first given in [BGS 91].

§II.5.1 An Arithmetic Riemann-Roch Theorem For Closed Immersions

Let A = (A, E, Foo ) be an arithmetic ring aod let

x
f'\. /g

y

Z

cb(i.E) =i.(td- 1(N) eh(E».

be a closed immersion of regular arithmetie varieties over Y witb &mooth structure mor
pbisms fand g. Put Foo-invariant hermitian metrics on the relative tangent vector sheaves
aod on tbe normal vector sbeaf of i.

Let (E,p) be a hermitian vector sheaf on X and:F. - i.E - 0 a vector sheaf resolution
of i.E on Z. By tbe results in 1.7, we know that th~re exist Foo-invariant hermitian metrics
T. on :F. such that Bismut eondition (A) is satisfied with respeet to PN aod p. As hefore,
we let a : Ä(XR) - CHAr(X) and w : CHAr(X) - A(XR) be tbe morphisms defined by
a(cr) = (0,0') and W(A,gA) := dcEgA + 6,41 respectively.

In order to obtain tbe arithmetic Riemann-Roeh theorem for closed immersions, we
first recall tbe Grothendieek-Riemann-Roeh theorem in this situation. By Lemma 1.3.e, we
know that in CH(Z)Q,

As tbis is ooly valid at the level of eohomology classes, we need to be more carerul when
we deal with the arithmetie Riemann-Roch theorem for closed immersions, sinee this is
suppoeed to be a refined version of. the classical Grothendieck-Riemann-Roch theorem at
the level of differential forms (say, for eomplex manifolds). Generally speaking, to find
Buch an arithmetic Riemann-Roch theorem with respect to closed immersions, the first
diffieulty is that i.E ia usually ooly a eohereot sheaf on Z. Nevertheless, this diffieulty
ean be avoided by introducing the combination of a hermitian super-veetor sheaf (:F., T.)
and ehBc(E, P; i, Pi; :F., T.), tbe relative Bott-Chern seeondary characteristie current with
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respeet to the closed immersion i e . On the other hand, if we do things in thia way, we know
that thia element ia not in KAr(Z), whieh ia assumed to be generated by hermitian vector
sheaves and smooth forms. Indeed, we may in principle handle this by the introduction
of the relative theory of arithmetie Chow groups, arithmetic K-theory, ete. for closed
immersions. However, this ia tedious aod we will not do it here. We hope that we may
eome back to this point.• (In fact, basieally, we may do it as follows: First diseuss the
situation for eodimenaion one ease to get a good feeling, then use the deformation theory
via MaePherson's Grassmannian graph construetion to give the theory in general.) For our
present purpose, we ean go around, Le. to eonsider the produet of these elements with aoy
element in W E CHAr(Z), and push them out to the~ arithmetie variety Y. In this
sense, the left hand aide of the arithmetic Riemann-Roeh theorem for closed immersions
would become

So we may state tbe following

An Arithmetic Riemann-Roch Theorem For Closed Immersions. ([BGS 91])
For auy WE CHAr(Z), the following identity bolds in CHAr(Y)q

g. (ehAr(1"., 1.)'1') +g. (a(ehsc(E, Pi i, Pii 1".".)w('I'»))

=1. (tdÄ: (N, p}/) chAr(E, p)i·('P»).

We prove this theorem in the following sections.

§II.5.2 Several Intermediaie Resulis

The basic idea to prove the above arithmetic Riemann·Roeh theorem with respect to
closed immersions is as folIows: First we give an explanation for the element g. (ehBe(.:F., I. )'lf)1
via the deformation to tbe normal eone teehnique. Then note tbat at infinity, the new closed
immersion ia just the zero section of P(N ffi I), tberefore we may use tbe Koszul eomplex to
ealculate it precisely. Surely, during thiB process, we have to use the deformation theory for
the relative Bott-Chern secondary eharaeteristic eurrent with respect to closed immersions,
which was developed in Chapter 1.9.

II.5.2.a Deformation to the Normal Cone

We use tbe deformation to the normal eone tecbnique to give another expression for
the term g.(ehsc(.:F., T.)~). In order to do so, we recall the foUowing diagram for the
deformation to the normal cone with respect to i : X e...- Z:

X X x {co}
i oo

P(NEBOx)+Bx Z =Woo {co}- t.....+ -
1 1 ioo 1 1
X Px X X pI

I
BxxooZ X pI = W

,..~

pI- e...- -
f t ia f t
X X x {O}

i a
Z X {O} =Wo {O}.e...- -
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11" : W - Z, 11"2: W _ pI
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Px:X x pI_X, p:P=Px(NEB1)-X

be the natural projectiona.. Then Woo =11";1(00) has two components: W~, the projective
space P =Px(NEB1) over X, and W~, the blowing-up BxZ of Z ?-longX. Let DE:= Px(E)
and let D:F. - I.DE - 0 be a metrized vector sheaf resolution of I.DE such that, on
Wo = 11"2"1(0), D:F. coincides with :F.. By the results in I.9.l , we ean assume that the
metrics on D:F. are compatible with the metries on tht normal bundle of X x pI in W,
which ia nothing but N(-l) := N 00(-1). Furthermore, the restriction of D:F. to BxZ
ia split acyclic even BB a complex of hermitian vector sheaves.

We then have the element

chAr(D:F., Dr.) := E( -l)ichAr(D:Fil Dr;) E CHAr(W)q.
i~O

Moreover I we ean meBBure the difference of the restrietions of this element to the fibers of
11'"2 over {O} and {oo} by the c1assical Bott-Chern secondary charaeteristic fonns in the sense
of Theorem 3.5.e.2. More precisely, the difference

is measured by an associated c1assical Bott-Chern secondary charaeteristic form. The con
struction of the c1assical Bott-Chern secondary characteristic forms in 1.1.4 shows that it ia
defined as an integrate of Chern cbaracteriBtic forms with reapect to logjzl2 over pl. With
this in mind, we need the following

Proposition. For any element WE CHAr(Z), in CHAr(Y)q

g. (chAr(:F., r.)w) - f. (p. (chAr(:Foo ., Too.»i·W)

=a (g. (11".(ch(D:F., Dr.)LoglzI2)w(W»).

Proof. The proof below shows that

dfiCg. (1r. (ch(DF" Dr.)LoglzI2)w(lIr»)

ia smooth and hence the current

g. (",. (ch(D:F., DT.)LoglzI2)w(~»)

ia in Ä(YR ). SO the equality in tbe proposition makes sense.

Now let ChAr(D:F., DT.) be an arithmetic eyc1e (A, g,4,). Since D:F. is acyclic outside
X x pl, we may assurne that, A is supported on X X pI up to the rational equivalence,
and that A = Px(T) + S X {1}, where S, T are two cyc1ea on X.
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Since

we have
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o=divAr(z) =(div(z), -LoglzI1
),

g: (11". (chAr(DF., D•. ) divAr( z)) 'lJ) =O.

But by definition and the fact that S x {l} does not intersect div(z) = Wo - W\XI' we have

chAr(D:F., Dr.) divAr(z) ,.
=(T x {O} - T x {oe}, gA Iwo - gA Iw... - ch(D:F., Dr.)LoglzI2

).

The fact tbat tbe restriction of D:F. to Bx Z ia split acyclic (even as a hermitian complex)
shows tbat gA IBx Z =O. Hence

o=g. (11'. (chAr(DF., Dr.) divAr(z))w)

=g. (chAr(:F., i.)'Ii) - f. (P. (chAr(:F00" r00')) j. ('1'))

- g. (11". ((0, ch(D:F., Dr.)LoglzI 2)w('It)).

Tbis eompletes tbe praaf.

n.5.2.b A Calculation Via The K08zul Complex

Far the praaf of tbe arithmetie Riemann-Roch theorem for c10sed immersions, we need
to use the Koszul complex. Then, by 1.9.3, we need only know the arithmetie Euler c1aas
for a bermitian vector sheaf.

Let X be an arithmetic variety over an arithmetic ring A. Let (E, p) be a hermitian
vector bundle of rank r on X. Tben there exists a section 8 of E over X such that, at
infinity, s is chosen as in chapter I.9.3.e. Namely, if z E X(C) is such that sc(z) = 0,
and d(sc) is tbe differential of Sc at x, then Im[dsc(x)] = E. Denote by AF E zr(xF )

the zero set of s at a generie fiber X F of X. Hence by tbe result in I.9.3.e, we knaw
that gA := -sc(eBc(E, p)) is a Green's eurrent for AF. On the other hand, viewing s as
an imbedding of X in the total spaee X B , we see eRn(E) := s·([X)) E CHfin(X), Here
[X] E CHfln(XE ) is tbe part of the zero section supported only on the special fibres, i.e.
those fibers aver the non-Arehimedian places. Since CH~r(X) is a quotient of the group

by the resul t in Section 2.4, it follows that the tripie (eRn, AF, gA) defines a dass eAr( E, p; s)
in CH~r(X), We call it the arithmetic Euler dass of (&, p). (Note that in algebraic
geometry, the Euler dass may be realized as the top Chern dass.) We have

Proposition 1. With the same notation as above,
(a) eA['( E, p; s) does not depend on the choice of sand we denote it simply as eAr (E, p);
(b) In CHA)X), we have

cr,Ar(E, p) =eAr(E, p).
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Proof. One can show directly that if q : XE -- X is the natural projection aod So is
the zero seetion of q, then

On tbe other hand, as an element in CHAr(X E ),

So eAr( E, p; 8) does not depend on s.

Indeed, just as for cr,Ar(E, gEl, (by definition,) it is easily shown that eAr(E, gE; s) has
tbe following properties:

Functorial Rule. Let f : M -- X be a morpbisID of arithmetic varieties over A, then

Product Rule. eAr(E ~ E', p~ pi; (s, Si)) = eAr(E, p; s) eAr(E' , p'; Si).
Forgetful Rule For Morphism 8. Tbe a-image of eAr(E,p;s) in CHr(X) ia tbe
Euler d8B8 of E.
Forgetful Rule For Morphism w. w(eAr(E,p;s)) = e(E,p).
Uniqueness Rule. Let (L, T) be a hermitian line bundle, then

wbere y ia the tautological section of p. L on XL and 80 is the zero section.

By a similar process to tbat in the proof of tbe arithmetic Riemann-Roch theorem for
smootb morphiams, i.e. using the pl-defor~ation teehnique, ete., we ean show that the
difference

Err{E, p; 8) := eAr{E, Pi s) - cr,Ar{E, p)

is in the image of a. It may be first deereased iota the ordinary K-theory, einee there are
similar properties; the downstairs rule, tbe functorial rule, the uniqueness rule, for example.

In order to prove that Err ia zero, we use an induction on r. When r =1, it follows by
the uniqueness rule tbat Err ia zero. In general, we eonsider the problem on P( E). By tbe
functorial rule, we know that it is sufficient to show that Err(p· Eip· 8) = O. But this ia a
con.sequence of tbe fact that on P(E), there is a eanonieal exact sequenee of ve~tor abeaves

0-- s -- p. E -- 0(1) -+ O.

Hence (b) follows easily aod so does (a).

We next discUBS tbe K08zul complex. For tbe notation and tbe resulta, we ask the
reader to consult I.9.4.

Let
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8880ciated with j-F., tben we have two short exact sequences of vector sheaves:

o - Zj - j-Fj - Bj - Oj
o - 8j+1 - Zj - 1ij(j-F) - O.

Let H be the associated v~tor bundle of 1i on P. Then by the natural associated indusion
1i -- p. (NxIzeN;,I pi), there is an induced metric PHon H. On Kj := Aj H, we put the
metric induced from PH. A standard argument from the definition varifies

Proposition 2. With tbe same notation as above,.

where r is tbe rank of H.

(In fact, tbe equality is a direct generalization of the fact that at tbe cohomology level,

With this, let u be the canonical section of H- and let u· (eBe(H., gH· )) be the pull-back
of the corresp.onding Euler-Green current on P by I.9.3.e. For each j ~ 0, we have tbe exact
sequence of complexes of vector sheaves:

where
. . 1

[,j = (8j+1 t&l N~/P1) e (8j t&l N~/pl)'

and k is tbe natural indusion of P in W. Let L. be the associated vector bundle of L ..
Tben we may put the orthogonal direct surn of the induced metrics, so that the eomplex L
attached to L. becomes split a.cydic as a complex of hermitian holomorphic vector bundles.
In this way, we ean metrize the complex Ar We get a classical Bott-Chern secondary
charscteristic form ehBC (A j , PA j) on P. In particular, we see that

chAr(Foo ., Tee.) =ehAr(K. t&l p.&, PK. t&l p. p) +L(-1)j a(ChBC(Aj, PA;))'
j~O

Here, we use the fact that chAr for L contributes nothing. Hence, by the projection formuls,
we have the following

Proposition 3. With the same notation as above,

p_ (ehAr(.ree., Too .))

=p.(ehAr(K.®p·e,PK. ®p.p)) + L)-l~a(p.(chBC(Aj,PAj)))
j~O

=p.(chAr(K.,PK.)) ehAr(&,P) + L(-IYa(p.(chBC(A j ,PAJ)).
j~O
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§II.5.3. The Proof Of The Theorem.
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We ean now complete the proof of the arithmetie Riemann-Roeh theorem for c10sed
immersions. We have to show that

But by Proposition 2.3, we know that

So by the expression for ehAr(.1"00 ., T00 .) in terms of the Koszul eomplex (K, PK) at the end
of the last seetioß, it remains to prove that

/_ (tdÄ: (N, PN) chAr(E, p)i-('IJ»)

=/_ (p_ (chAr(K',PK.)) chAr(E,p)i-(W»)

+ I)-l)ia(p_(chsc(Aj,PA)) )i-(~)
j~O

+ (0_ (0, 1l"_(ch(DF., Dr.)LoglzI 2»w(lIt»))
+ g_ (a(ChBC(E, Pi i, pi; F., T.)w(\If» ).

On the other hand, by Theorem 1.9.4,

o=chsc(E, Pi i, gi i F., T.) + 1t"_ (LoglzI2ch(DF., DT.»)
m

- (p_ (td-1(H- ,gH- )O'-(esc(H- ,gH·»))ch(E,p) + p_ (I)-l)ichsc(Aj , PAj)) )c5x ,
j=O

Hence, it is enough to prove that

tdÄ:(N,PN) chAr(E,p) - p_ (ChAr(K:, PK.)) chAr(E,P)

=0 (p_ (td- 1(H-, pu-) u-(eBc(H-, PH-») ch(E, p)}.

From Proposition "2.b.2, we know that

so it is sufficient to show that

td;; (N, PN) chAr(E, p) - p_ (er,Ar(H-, pu-) tdÄ: (H-, PH·» chAr(E, p)

=a (p_ (td-I(H· I PH-) u·(esc(H-, PH-») ch(E, p») :

By Theorem 3.5,f.2, thialast assertion ia a direct consequence of the facts that eAr(H-, PH·)
iB the dass

(X x {oo },-O'- (esc(H\ PH-»

in CHAr(P), aod that the restriction of H- to X x {oo} coincides with N.
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Chapter 11.6._
Arithmetic Riemann-Roch Theorem

For L.C.I. Morphisms

In this chapter, we will give the main result for this part; that is, the arithmetic
Riemann-Roch theorem for l.c.i. morphisms of regular arithmetic varieties. By chapters
4 and 5 of thia part, it seems to be the CMe that we already have had such a theorem,
aB we bave given tbe aritbmetic Riemann-Rocb theorems for both smooth morphisms and
closed immersions. However, the situation here is much more complicated: E.g., for c10sed
immersions, we have assumed that the structure morphisms are smooth even at tbe finite
part, which ia in general not true. The eifort to remove the assumption of the smoothness
has so far only reached its first stage: We only have the result for a l.c.i. morphism of
arithmetic varieties, which is smooth at infinity. As we stated aB earlier B8 in 3.B.b, tbe
main difficult ia that we do not know what a hermitian K -theory for coberent aheaves should
be. In algebraic geometry, which usually deals with everytbing at tbe level of cohomology
classes, tbe coherent sheave8 are esaeotially tbe vector sheaves (both of them correspond
to algebraic cycles). This latest statement is no longer true in arithmetic geometry, which
treats everytbing at the level of differential forms, or better, at the level of currents. To
avoid this difficulty up to certain degree, we now assume that our object in the finite part
concerns coherent sbeaves, while at infinity, tbe object ia ooly concerned with vector sheaves.
So we may introduce a concept for hermitian coherent sheaves: These are coherent sheaves
in the finite part, while their pull backs at the infinity are hermitian vector sheaves. Hence
we may attacb them with arithmetic cycles. In the aame spirit, in the sequel, we ahatl ooly
deal with l.c.i. morphisms of arithmetic varieties which are smooth at infinity.

This chapter consista of two seetions. In section one, we give a natural definition for the
push-out morphieffiS of arithmetic K-groups with respect to l.c.i. morphisms, and also the
arithmetic Riemann-Roch theorem for l.c.i. morphisms. In seetion two, we reduce the proof
of the arithmetic Riemann-Roch theorem for l.c.i. morphisrns to an arithmetic Riemann
Roch theorem for closed irruneI'8iona, which is similar to the one proved in the last chapter,
but without the 8B8umptioo that the structure morphism are smooth. We leave the complete
proof of this theorem to the next chapter, after making certain natural generallzations of
tbe theory.
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We give adefinition of the push-out morphism of arithmetic K-groups for l.c.i. mor
phisms of regular arithmetic varieties, which are smooth at infinity. As was stated in the
introduction, tbe definition of a push-out morphism of arithmetic [(-groups for l.c.i. mor
phisms of regular arithmet1c varieties will include the classical Bott-Chern secondary charac
teristic fonns, the relative Bott-Chern secondary characteristic forms for smooth morphisms
and the relative Bott.Chern secondary characteristic currents for closed immersions.

..
Let f : X -+ Y be an l.c.i. morphism of regular arithmetic varieties. We then have a

decomp08ition: A closed immersion i : X ~ P followed by a projection 9 : P - Y. That
ie, we have the following commutative diagram:

Ta define amorphism

x i
~

f........ /g
Y

P

we need introduce the push-out morphism of arithmetic K-groups for the closed immersion
i, eince we have already had a good definition for the sffiooth morphism g in chapter 3.
Even through this can be done in principle: We need a theory for a relative arithmetic
intersection theory and a relative arithmetic K-theory f9r closed immersions. Since we do
not want to develop the relative theory here, we give a direct definition.

Note that eince the arithmetic K-group KAr(X) ia generated by f-acyclic hermitian
vector sheaves and smooth fonns, we need only to make the definition of !K for each of
them, and then prove the compatibility.

For the decomposition of f, since fe is smooth, we have the following short exact
sequence:

N : 0 -+ Tlo - i-7JO -+ Ni,c - O.

With this, in Bubsection 3.7.b and for aoy T E CHAr(X)Q, we define

tdAr(!, PI)T :=

=tdAr(i-~, i" p,) (tdÄ: (IV:, Pli; )T) + tdBC(f/g, PII,)T E CH .Ar(X)Q.

Here tdBc(!/g,PI/,) denotes the intersection of the classical Bott-Chern secondary char
acteristic forms 8880ciated with the short exact sequence'N above and td- 1(Ni ,Pi). (See
Section 3.7.)

Ir 0' E Ä(XR), it is natural to let
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Next we give the definition of fK for f-aeyelie hermitian vector sheaves. Let (E, p) be
an f~acyelic hermitian vector sheaf on X. From 1.7, we know that there is a resolution of
vector sheaves on P for i.E :

o- :Fn - ... - :F1 - :Fo - i.E - O..
Let :Fj be equipped with Foo-invariant hermitian metrics Tj, which satisfy Bismut condition
(A), then we make the foUowing definition:

fK(E, p) =:gK(:F., T.)

+ g. (a( ehBc(E, P; i, Pi; :F., T.)) tdAr(7g, pg))

+ f. (ch~r(E,p) a(tclBc(fIg,pl/l)))'

AB in Chapter 11.3, for any g-acyclic hermitian vector sheaf (:F, .), we have

gK(:F, T) =(g.:F, g.T) + ehBc(:F, T; g, Pg)

+ g. (chAr(:F, p) tdAr('l~'PI)a(R(~»)),

where R is tbe unique power series defined in the arithmetic Riemann-Rocb theorem for
smooth morphiams. We also use the isomorphism chAr between KAr and CHArQ and think
of tbe element

in CHArQ as heing in K ArQ : Since they are in the image of a, the meaning of this element
in KAr is elear.

As usual, onee we make adefinition, we need to show that it ia well-defined. So we
need tbe following

Proposition. With the above definition for smooth forms and f -acyelic hermitian
sheaves, we have a well·defined group morphism

Here ODe may ask how fK depends on the with various data. This may he deduced (hy
3.7.b) from the following

Arithmetic Riemann-Roch Theorem Für I.c.i. Morpmsms. With the notation
above, for any element T E KAr(X)QI we have



Chapter II.6. 369

Remark: Actually, in this definition, we need the cup product for the arithmetie
interseetion in the sense of arithmetie Chow homology. Hut sinee it is rather formal, aod
one ean understand the above formula without it, so we will not give more attention to this
formalism, but leave consideration of it to the next ehapter. The seriouB reader may first
wish to look at that ehap~er, aod then go on with this ehapter. We treat matters in this
way so that the reader may get a feeling for why a certain formalism ia neeessary for "the"
general theory.

Now we return to the dependence of JK on variOJ.lS data. Hy Proposition 3.7.b, we
know that tdAr(J, PI) depends only on the ehoices of metrie on Tlc, and not on tbe choice
of i, 9, nor on the metries on Ni and Tg. Therefore, we know that JK also depends only on
the choiee of the metric on Tlc' aod not 00 tbe rest.

§II.6.2. The Proof Of The Results

In thia section, we give the proofs of the result8 stated in tbe last section using a direct
generalization of the arithmetic Riemann-Roch theorem for closed immersions in Cbapter
5. The proof of this generalization is not to be given until the next chapter.

The Arithmetic Riemann-Roch Theorem For Closed ImmersioDs.
Let A =(A, E, Foo ) be an arithmetic ring and let

x i
c.....

J....... /9
Y

z

be closed immersions of regular arithmetic varieties over Y with J proper, Je smooth,
and 9 smooth. Put Foo-invariant hermitian metrics on the relative tangent sheaves and
the normal sheaf of i. Let (E,p) be a hermitian vector sheaf on X and :F. - i.E - 0
a vector sheaf resolution of i.E on Z. Put Foo-invariant hermitian metrics T. on :F.
auch that Bismut condition (A) ja satisfied with respect to PN aod p. ~ben, for aoy
WE CHAr(Z), the following identity holda on CHAr(Y)q

f. (td~ (N, PN) ChAr(E, P)j- ('Ir))

=g•. (cbAr(:F., T.)\If) + g. ( a (ebBe(E, P; i, pi; :F., T. )w('Ir)) ) .

Now we give the proof of tbe proposition stated in Bedion 1.

Proof of the pro~sition: By the proof of Proposition 4.l.d, it is sufficient to prove
that for any ahort exaet Bequence of J-acyclie hermitian vector sheaves
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witb Foo-invariant hermitian metrics Pi: on Ei;,

This equality can be proved by using Axiom 3of relative Bott-Chern secondary characteristic
current for the closed immersion case and the arithmetic Riemann-Roch theorem for closed
immersions. First take a vector sheaf resolution of i.(E.)

so that we have a ahort exact sequence

Equip the corresponding terms with Foo-invariant hermitian metrics such that Bismut con
dition (A) is satisfied. Then, by definition, we know that

fK(l'2,fJ<1) - fK(E1 , pt} - fK(E3, (13)

=gK(.r2., T.) +g. (a(ChBC(E2, P2; i, Pi; .r2., 1"2.)) tdAr(7§, pg))

+f. (ChAr(E2 , P2) a(tdBc{f/9,P/IJ)))

- 9K(.rl·' Tl') - g. (a(chBc(EI , Pt; i, Pi; .rl·, Tl')) tdAr(~,pg))

- f. (chAr(E1, pd a(tdsc(f /9, Pli,)))

- 9K(.r3·, TJ.) - g. (a(ChBC(E3 , P3i i, Pi; .r3., T3.)) tdAr(~, pg))

- f. (chAr(E3 , P3) a( tdac(f /9, PIIg)) ).

By the arithmetic Riemann-Roch theorem for closed immersions stated above, and Axiom
3 for relative Bott-Chern secondary characteristic currents for closed immersions, we know
that

fK(E2,P'l) - fK(E I , pd - fK(E3, P3)

=fCH (2:( -l)/rchAr(Ei:, Pi:) tdÄ; (N, PN) i·tdAr(Tg , pg))
i:

+ f. (2:( -l)kchAr(Ei;, Pk) a(tdBc(f/9,PIIg)))
Ir

=fCH (a(chsc(E., p.)) tdÄ;(N, PN) i·tdAr('I~, p,))

+ f. (a(chBc(E., p.)) a(tdBc(f/g, P/lg)))

=f.(a(chBc(E.,p.)) tdAr(f,p/))

=fK (ChBC(E" p.))
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We end the chapter by proving the arithmetic Riemann-Roch theorem for l.c.i. mor
phisms.

Proof of the arith!petie Riemann-Roeh theorem for l.e.i. morphisms. The
proof comes from the arithmetic Riemann-Roch theorems for botb smooth morphisms and
closed immersions. It ia clearly sufficient to prove the formula for J-acyclic hermitian vettor
sheaves. Let (E,p) be such an element. We have

ChAr(IK(E,p») - fCH(chAr(E,p) tdAr(f,p/»)
n

=I) -lYchAr (9K(.1'j, Tj» + 9. (a(chsc(E, p, i,Pi») tdAr('l~, p,»)
j=O

+ I. (chAr(E, p)tdsc(f/9, P//g» - fCH (chAr(E, p) tdAr(/, P/»·

By the arithmetic Riemann-Roch theorem for the smooth morphism 9, the above combina
tion of terms is equal to

m

2::)-lY 9CH(chAr(Fj , Tj )tdAr(T" P,» + 9. (chsc(E, p; i, Pi; F., T.)tdAr(9, P,»)
j=O

+ I. (ch Ar(E,p) tdsc(I/9,PJ/'») - fCH(chAr(E,p) tdAr(f,p/»)·

On tbe ether hand, by tbe arithmetic Riemann-Roch theorem for the closed immersion i,
tbe last quantity is equal to

f. (chAr(E,p)tdsc(f /9,p/I,) + chAr(E, p)tdAr-l(Ni , P,N;) i·tdAr(9, p,)

- chAr(E, p)tdAr(!,p/»,

aod this is 0 by definition. So we have proved the assertion.

We end of this chapter with the following remark: Since we assume that f at infin
ity ia smooth, it makes sense to talk about the associated relative Bott-Chern secondary
cbaracteristic fonna with respect to 100' Aa a corollary, we may give a direct definition fot
the push-out morphism of arithmetic K -groups, without using aoy decomposition of f as
above. More precisely, if f : X - Y is an I.c.i. morphism of regular arithmetic varieties
aver an arithmetic ring (A, (7, Foo ), which is smooth at infinity. Directly define the push-out
morphiam f~r : Kt-r(X) .... Ktr(y) by letting

f~r(E,P)=(!.E,f.p) + chsc(E,p;f,p/)

+ f. (chAr(E, p) tdAr(T/, P/) a(R{T/»)

for aoy I-acyclic bermitian vector aheaf (E, p) aa in Chapter 11.4, where R is the unique power
series defined in tbe arithmetic Riemann-Roch theorem for smooth morphisms. Then, we
have the fallowing
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Arithmetic Riemann-Roch Theorem For l.c.i. Morphisms'. With the same
Dotation above, for auy element l' E KAr(X)Qt we have

We leave the proof of this theorem in Chapter 11.7 too. As a consequence of this theo
rem, we can give the relation between various Bott-Chern secondary characteristic objectB.
Indeed, from the equalities in the above two arithmetic Riemann-Roch theorems for l.c.i.
morphisms, we find that the right hand sides are just~he same. Thus} by the fact that
ChAr is an isomorphism between J(ArQ aod CHArQ , we see that the two definitions about
fK sbould be the same. So, with the same notation aa above} we find that for I-acyclic
hermitian vector sheaf (E, plI

(/.E, I.p) + ChBC(E, P; I, PI) .

+ f. (chAr(E, p) td Ar(7j} PI) a(R(7j)) )

=gK(F., T.)

+ g. (a(chBc(E, Pi i,Pij:F., T.») tdAr('Ig,PI»)

+ I. (chAr(E, p) a(tdBc(1/g, PI/,))).

In particular, we now have the uniqueness of the relative Bott-Chern secondary characteristic
currents with respect to closed immersions} eince in the latest relation, aU others are unique
for a fixed decompositioo of f =goi.
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Chapter 11.7 •
Grassmannian Gr~ph Construction In Arithmetic Geometry

We now prove the arithmetic Riemann- Roch theorem for closed immersions stated in
6.1. During this procesB, (in fact, even at tbe very beginning, in order to understand
the theorem), we need to introduce the arithmetic Chern character with supports in the
language of arithmetic Chow homology groups. As one may imagine, the Grassmannian
graph construction of MacPherson is very useful. Here we will follow [GS 92] to expose the
whole theory.

This chapter consists of tbe following four sections. In section ODe, we introduce the
Grassmannian graph construction. In section two, we introduce the arithmetic Chern char
acteristic class with supports. In section three, we complete the praof of the arithmetic
Riemann-Roch theorem for l.c.i. morphisms, and give a more direct definition for the push
out morphism for arithmetic K-groups. Finally, in section four, we give a more general
discussion.

§II.7.1. The Grassmannian Graph Construction

In this section, we will give MacPherson's Grassmannian graph construction. This is a
generalization of the deformation to the normal cone theory for a regular closed immersion
and haa its root in homotopy theory: How to fin~ an eaaily handled object in a homotopy
class?

II.7.1.a. Deformation To The Normal Cone

We recall tbe deformation to the normal cone theory for a regular closed immersion
aod consider what are tbe most important facts concerning it. Let i : X <.....+ Z be a closed
immersion of regular varieties. Tben we have the foUowing commutative diagr.am:

X X x {oo}
i_

P(N GH'x) + Bx Z = Woo {oo}+- <.....+ -
1 1 ioo 1 1
x· px X X pI

I
Bx'Xoo Z X pI =W ~ pI- <.....+

1 1 ja 1 1
X X x {O}

10
Z X {O} =Wo {O}- <.....+ -
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with the following properties:

Grassmannian Graph Construction

(1) The fiber of lover 0 ia i.
(2) The fiber of lover 00 ia the union of Bx Z and Px(N $1) and they interaect transver

sally along the exeeptional divisor of Bx Z; the imbedding of X x {oo} in Wco is juat
the zero aeetion of P(N Ef) 1).

(3) The I image of X x p1 does not meet BxZ in W.
(4) Tbe projection W - p 1 is fiat.

Sinee we have the above properties, if F. ia a vector aheaf resolution of the i direet
image of a veetor sheaf E on Z, then with this deformation, we ean use the natural associated
Koszul eomplex to make a eertain precise calculation. For more details, see 1.9, II.i and
11.5. Next, we generalize the above basic properties to 8 more general context by using the
Grassmannian graph construction, which comes from the following vivid observation for the
deformation to tbe normal cone:

Assume Eisa vector bundle on Z, and s is a section of E whose zero-scheme is X.
Then for each scalar ..\, tbe graph of ..\" ia a line in E e 1. So we get an imbedding

by the natural map (z,..\) ...... (graph of ..\ 8(Z), [1 : ..\l). In this way, we may find that the
deformation space W is in fact the closure of Z x A 1 in this imbedding.

II.7.1.b. The Grassmannian Graph ConstructioD

Let X be an integral scheme. Let E. be achain complex of vector sheaves on X. Denote
by C. := C(E.) the split acydic complex with Ci =~ $Ei- 1 and differential ~ : Ci - Ci-I
being di(;z;, y) = (y,O). Obvioualy, C(E.) is an additive functor of graded vector sheaves &..
Furthermore, there ja a natural morphism of complexes

,: &. C(E.)
;z; ...... (;z;,d(;z;)),

which is the indusion of a subvector sheaf in each degree. This construction is also com
patible with the morphisms betweeo complexes: Ir tP : E. - :F. is a morphism of complexes,
then C(f/J) 01&. = 1:F. 0 f/J. If 4J is quasi-isomorphie to zero, or equivalently, null-homotopic,
i .e. ie there existe h such that 4> = d h+ h d, then C( tP) is also null-homotopic. In fact, there
is a map

C(h): Ei e Ei-1 - :Fi $ :Fi-1
(;z;, y) ...... (h(;z;), -h(y) + q,(;z;».

So, on C(E.) I C( 4» = d 0 C(h) +C(h) 0 d aod this homotopy is compatible wi th the natural
transformation " Le. C(h) 01&. = 1:F. 0 h.

We suppose now that E. = 0 for i < O. Let pi be the projective line over Z, and
OPI (ioo) the lin"e aheaf of meromorphic functions on pI which have poles of at most order i
along the divisor 00 aod are regular on the affine line Al =pI - {oo}. Naturally, Opl(ioo)
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is contained in OPI ((i + 1)00). Hy a puB-back along the projection X x pI - X, we
may view &. as a eomplex of vector sheaves on X x pI. Let DC. := DC(&.) be the C
construction applied to the graded vector aheaf EBj&i( i), where &( i) := &® OPI (ioo) ia the
twisted vector aheaf. We know that the aheaf Ci ia a subsheaf of fiCi) and that they are
equal on X x Al. Hence, via the map 'Yt., fdxXAI is a subvector sheaf of DC(&'.)lxXAl.,
Let 1T : G - X X pI be the product of Grassmannian bundle G(nil DCi) parameterizing
the rank ni =rank(Ci) subvector sheaves of DCi over X x pI for aU i. Over X x Al, the
map "'{c. deflnea a sectien 8 of 11'. Thus, following Baum, Fulton aod MacPherson [BFM 75],
we define the Grassmannian graph ef &. as the Zariaki el08ure W := W(&.) of seX x A l )

in G. Next we look at properties of this construetion. •

First, since 1r ia proper 80 ia its restriction to W, whicb we ahall also denote by 11'. Since
X x A l ia integral, so is W. Hy tbe construetion, 11' is an isomorpbism on X x Al, However,
the effective Cartier divisor Woo := 1r- 1(X x {oo}), cut out by W at infinity, may not be
isomorphic to X. There is also a subvector sheaf Df; C 1r·(DCi) which eoineides with &.
over X x Al. Indeed, this later property eharacterizes D&i 88 a subvector sbeaf of,..· (DCi),
since W is integral.

Second, ifthe restrietion of E. to a nonempty open subset U C X is acyclic. Then there
ia a canonical splitting of 1T over U x pI. Denote by X tbe elosure in W00 of the image of
U x {co} by tbe section 8. Then the eyele Z = IWoo ] - [X] ia supported in tbe inverse image
by ,.. of ~ - U, and the restrictioD of DE. to X is apli t acyclic.

FinallYl we look at bow thia cODatruction generalizes the above deformation to tbe
normal cone theory for cloeed irnmersioDB. Let i : X t....+.p be a regular closed immersion.
Let T be a vector aheaf on X, and let f. - i.T - 0 be a finite vector abeaf resolution.
Then, by a direct calculation, we see tbat W(f,) is isomorphic to the total space W of the
deformation to tbe normal cone construction stated in subseetion 7.1.a. Hence,

(1) Woo ::: P(NxIP e 1) U P. Here, P is the blow-up of P along X.
(2) Tbe immersion X x pI t....+ P X pI induces a closed immersion I : X x pI t....+ W,
sucb tbat D&. is a resolution of I_T.
(3) IZ/ is tbe projective completion P(NxIP $ 1) of tbe normal bundle of X in P.
(4) Tbere ia an exact sequence on IZI .

0-+ (j. - D&.lp(.N"x/p$l) -+ K,(1l) 01T-(T) - 0,

where (j. is acyclic and K,(1i) ia the tautological Koszul eomplex on P(NxIP EB 1),
which is a resolution of Ox when X is imbedded in P(NxIP $1) by the zero seetion.

II.7.1.c. Additional Properties

We consider how W(E.) dependa upon E.. For this, we need the following

Lemma 1. Df. ia a subcomplex of 1I'-(DC.).

Proof. Since De. is a complex, it is aufficient to show that dDC.(D&.) C DEi-I.
By definition, we know that tbis ia true on the dense open aubset X X A l e W. Hut
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W ia integral and, by the definition of the Grassmaonian, D&;-1 ia a aubvector sheaf in
1I"4'(DCi_d. So we deduce the assertion from tbe following easy

Sublemma. Let V be an integral scheme, and suppose that ACE aod B C :F are
vector aubsheaves of vector sbeaves. Then we have
(1) Ir 4J : A - B ia a homomorphism whieh vanishes on a Zariski open dense subset of
V, then 4J vanishes on the whole of V;
(2) If B c :F is a subveetor sheaf, and <P : E - :F is a morphism such that, over a
Zariski dense open subset of V, f,6(A) c B, then 4J(A) C B aver the wbole of V.

Pr<X>f of the sublemma. We have the first assert:"oD sinee 8 is a torsion free module.
Applying (1) to the induced map A - :F18, we have (2).

Before we go to the most general C&se, we look at a very special Grassmannian graph
construction.

Proposition 1. Ir E. is a complex as above, but witb tbe homology sheaves being
vector aheaves, then W(E.) ~ X x pI.

Proof. We koow that the complex E. breaks up ioto two ahort exact sequences:

o - Zi
o - 8i

d
- Ei - 8i-l
- Zi - Hi(E.)

where Z and 8 denote tbe subsheaves of E consisting of cydes aod bouodaries respectively.
Since we assume that the Hi'a are vettor sheaves, it follows by induction on i that aH the
sheaves in tbe above exact sequences are also Vettor sheaves. From this, we iotroduce a
natural morphism

.. co.(·) in. E. (' _ 1) _ Bi-l(i) EB [i-l(i - 1)
TJi . "i I W I - 1 I Bi_1 (i _ 1)

as follows: TJi mapa (u, v) to the dass of (du, v). Here 8i-l (i - 1) ia mapped diagonally into
Bi-l(i)EBEi - 1(i -1) by the indusions Bi-l(i -1) C Bi-l(i) aod Bi-l(i -1) C 2'-1(i -1) C
&;-1 (i - 1). So by tbe fact that the sheaves in the above exact sequences are aIl vector
aheaves, we know that tbe image of TJi is also a vector sheaf, and hence so ia ita kernel. On
tbe other hand, over X x AI, the homomorphism 1]i is equivalent to the map

which sends (u, v) to v - du. So the restriction of Ker (1]i) to X x A I ia isomorphie to the
indusion of E; into E; EI) ['-I via z 1-+ (z, dz). Thus the aubvector sbeaf Ker(1]i) C Dei
defines an extension of the section s : X x A I - G(ni, Ci) over X x pI. Therefore,
W(E.) = X x pI.

We now eonsider the functorial property of the Grassmannian graph conatruction.

Proposition 2. Let E. be a complex of vector sheaves on X, and let f : Y - X be a
flat map. Then W(f4'[.) = Y Xx W(E.).



Chapter 11.7. 377

Proof. By definition, obviously, we have D(f· f.) = (f x IdpI r (De( f.)). Hence
.W (f· f.) is the Zariski closure of Y x A l in Y x G, whieh is equal to the Zariski closure of
1-1 (s(X X A l )). On the other hand, by the fact tbat fis flat, we know that f ia open and /-1

preserves the operation of taking Zariski closure. So W(f· f.) =1-1(W(f.)) = Y Xx W(E.).

For the dependenee of W(E.) on 5. in general, we have the following

Proposition 3. Let tP : e. - F. be a morphism of eomplexes of veetor sheaves on X,
such that tP is a monomorphism and Coker (tP) is an aeyclie eomplex of veetor sheaves.
Then W(f.) = W(F.) and q,. extends, from X x Al, to a uniuqe morphiam of eomplexes
Dq,. : DE. - DF.. Furthermore, Coker(D,p) is aeyeile, aod split aeyclic over {oo}.

Proof. By definition, we know that X x Al is dense in W, 80 we ean get at most one
isomorphism W(E.) ~ W(.1'.) such that its restriction to X x Al is the identity. Now, we
define ODe. Sinee we may work loeally on X, we assurne that X is affine aod thercfore that
the eomplex .1'. is the direct surn of f. with an aeyelie eomplex Q.. (This ean be shown by
induction on the degree.) Therefore DC(F.) ~ DC(E.) Ei) DC(Q.). Let mi, ni and Pi be
the ranks of l:i, .1'i and Qi, respectively. Then we have a closed embedding

which is compatible with the section on X x Al. Hy Proposition 1, W(Q.) = X X pI, henee
uncler the embedding above, W(E.) ~ W(F.).

Other assertions eome from the following facts: On W(E.) ~ W(.1'.), there is an exact
sequenee

0- DC(E.) - DC(F.) - DC(Q.) - O.

Henee the induced sequenee

O-DE.-D:F.-D(i.-O

is exact, sinee thiB is true locally.

.Aß an immediate eonsequence of this proposition, we have

CoroUary 1. Let tP : E. -- F. be a quasi-isomorphism between bounded eomplexes
of vector sheaves on X. Then W(E.) = W(F.), aod the eomplexes DE. and DF. are
quasi-isomorphie as complexes on W(E.).

Ir we apply tbe result to a regular closed immersion, we get

Corollary 2. Let P be an integral regular scheme, and i : X '- Pa closed subscherne.
Let W(X/P) denote the Grassmannian graph construetion for any vector sheaf resolu·
tion of i.Ox on P. Then, given a veetor aheaf F on X, any resolution E. -- i.F -- 0
by vector sheaves on P may extend to a eomplex of veetor sheaves on W(XjP) whieh
is a complex of subvector sheaves of DC(E.).

Proof. By Corollary 1, we know that W does not depend on the ehoice oftbe resolution.
On the other hand, loeally on X, E. is quasi-isomorphie to a direet surn of eopies of such a
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resolution :F.. Hy Proposition 3, :F. and aoy finite direct sum :F.lflN extends to a subcomplex
of DC(:F.en ) :::::= (DC(:F.)lfln) on W. Now W = UW(X nU jU) as U runs through auy open
cover of P. Ir we choose the open cover so that, on each U, E. is quasi-isomorphie to a
sum of copies of :F., then E. extends as a subcomplex of DC(E.) on each W(X n UjU), aod
hence, by the uniqueness of such extensions, it extends as a subcomplex on the whole of W ..

AB a matter of fact, we also have the following

Proposition 4. Ir E. and :F. are chain complexes of vettor sheaves on X, the identity
map on X x Al extends to a unique map from the Liariski cl08ure W(E. ,:F.) of X x AI
in W(E.) XXXPl W(:F.) to W(E. e .1'.).

Proof. On the variety W(E.) XX Xpl W(:F.) by a pull-back from the two fattore, we
obtain subvector sheaves DE. of DC(E.) aod D:F of DC(:F.) extending E. aod .1'. from
X x AI respectively. The direct surn DE.eD:F. is 8subvector sheafof DC(E.)eDC(:F.):::::=
DC(E.e:F) and heuce is classified by a map from the fiber product W(E.) XXXPI W(:F.) 10

the Grassmannian of subvector sheaves of DC(E. e .1'). This map agrees with the standard
section S over X x AI, and hente maps W(E.,:F.) to W(E.e:F.).

So, together with sublernrna 1, we have the following

Corollary 3. (a) Auy map 4> : E. -+ :F. of chain complexes of vector sheavee on X
extends to a map Dt/J : DE., -+ D:F. on ·W(E.,:F.). The operation 4> 1-+ Dt/J is additive.
(b) If 4> : E. -+ :F. sud '1' : :F. -+ g. Me maps of chain complexes of vector sheaves
on X, then on W(E.,.r.,Q.) ( which is defined analogously to W(E.,:F.», we have
D( '1' 0 4» = Dep 0 Dt/J.

Next, we simplify temporarily our notation, and write W for W(E.,.:F.). Let Weo be the
inverse image of X x {oo} under the projection 1r : W -+ X X pi. It follows from Proposition
1 that [Weol = Z + [X]. The map 1l"l x : ;'( -+ X is birationaJ, aod the support !Zl of Z
is contaioed in the inverse image of the proper closed Bubset of X, where the homology
sheavea H(E. e :F.) are not vettor sheaves. Hy definition, ie U is the complement of this
dosed subset in X, X is the closure in W00 of the image of U x {oo} by the sec tion of 1r

over U x pl obtained in Proposition 1.

Proposition 5. Let ,p : E. -+ :F. be amorphism of complexea of vector sheaves on X
and let h be a null homotopy of,p. Then tP extends uniquely from X x Al to a null
homotopy Dh of D4> on W. Furthermore, the reatriction of Dh to Woo depends only
on 4> and not on the choice of h; it is additive in </J; And the restrietion of Dh to IZI
depends only on the restriction of 4> to 1r(IZD and is additive.

Proof. We can define a map on X x pi

by (x, y) 1-+ (h(x), -h(y) + </J(x», where we use the embedding of Opt(ioo) naturally into
Vpl((i + 1)00). Hy the sublemma, we see the existence and the uniquenesa of Dh, since
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DC(h) restricted to the dense open subset X x Ale W is a null-homotopy of C(tjJ). On
the other hand, on W, we have the commutative diagram

-. &i(i)$&i-l(i-1)
1 hc

-. F i+1{i + 1) $ .ri(i),

where

hc := (hS1) 0)
'P -h(l)

and h(1) : &i(i) -. :Fi+l(i + 1) is the eomposition of h with the natural inclusion F i +1(i) ~
:Fi +1(i+1). Since the restrietion of this indlision to X x {oo} vanishes, so does the restrietion
of h(1). Henee the restriction of Dh to infinity does not depend on the ehoice of h, it depends
on the restriction to &. or the map

from DC(&.) to DC(:F.). Therefore, at a point w E W, it depends linearlyon the map <p
at the image of w in X. This eompletes the proor.

II.7.1.d. A Technical Result

We finish this sectiOD by eODsidering the relations that hold between various eomplexes
associated with the Grassmannian graph construetion, and will be used later.

Let X be an integra1scheme, quasi-projective over a regular noetherian integral domain
A. Suppose that j : X '-+ M and i : X C-+ P are two inunersions of X ioto regular varieties
M and P, and that there ia a smooth map p : P -. M, such that po i =j. Then we have
the following diagrarn:

x
Id ~

P
!p

i
C-+ M.

Here f == (Id, i) is the indueed map by the Cartesian produet. So J ia a regular immersion.
In partieular, the direct image by J. of any vector sheaves on X has a finite global resolution
by vector sheaves on X XM P. (This is a standard fact: Being regular, J is perfeet aod
sinee X XM P is quasi-projective, we ean apply II. Prop. 2.2.9.b [SGA 6].)

Let V. -. f.Ox -.0 be a vector aheaf resolution on X XM P. If :F is a eoherent sheaf
on X, f.Ox and pi:F are Tor-independent (Pi ia smooth), and so V. ~ pi:F ia a resolution
of J.:F by eoherent sheaves. Now let &. - j • .F - 0 be a veetor eheaf resolution of j.F on
M, and let W := W(&.) be tbe eorresponding Grassmannian graph eonstruction.

Choose a resolution of jp. (V. 0 pj:F) on P by a double complex t;; .. of vector sheaves
SO tbat, for each i, Qi. -+ jp.(Vi ~ pj:F) - 0 ie a resolution: We proeeed by induction on
i, using the fact that this is true when V. has length one. Hy Corollary e.2, since each 9i.
is a resolution of a vector sbeaf on X, itextends as a complex Dei. to W ((x X M P) / P).
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Now observe that the horizontal component cl' of the differential on 9 .. can be" viewed aa
determining for each i a map of complexes d' : 9i. - 9'-1" where the differential on 9i. is
(-l)'d. Henee by Proposition 1.c.4, we get a map Dd' : D9i. - D9i-l., such that Dd,2 =O.
So we have a double eomplex DQ .. on W(XjM) XM P.

Therefore, by tbe c011;ltruction, we see that the double eomplex vg .. has the following
properties: If 1r : W X M P - pI X P is the projection, then for each I, DQ,. ia acyclie on
11'-1 (pI X{P-p-l(X))). Over {O} E pI, DQ .. ::::: Q ... Over {oe} E pI, ifwe define Mc Woo

a.s before, W00 x M P ::::: (Z UM) x M P with 11'( Z) C X X M PcP. So the restrietion of the
double eomplex Dg.. to M XM P has split acyclic columns DQ,. and TotD9IMxMP' the
associated total eomplex, ia therefore acyclic.

Let IZ! be the support in W of the algebraic eycle Z = [Wo:I] - [M), denote by v :

IZ! x M P - X X M P and Pco : IZ] x M P - Z the projections indueed by 11' and p
respeetively, and by E.Z the restriction'to IZ! ofthe eanonical extension of E. to W, we bave
lI'(lZl) =X and the following

Proposition. There is an isomorphism in tbe derived category of bounded eomplexes
of vector sheaves on jZI x M P:

Proof. The proof of this proposition follows from two lemmas in homological algebra.

Lemma 1. Let E. and F. be bounded complexes of sheaves of abelian groups on a
topological space X. Suppose that there is a finite open cover {Uo} of X and quasi
isomorphisms

such that on each intersection Uo n Up, <Po and lf'p are homotopie, i.e. there exists a
map

<PfJo : E·lu",nu~ - F·lu",nu~

Buch that,

<P{J - <Po =d 0 <P{3o + <PfJo 0 d,

and such that, on eaeh tripie intersect ion U0 n U{J n U.."

<P{Jo - Ifl..,o +'P..,/J =O.

Then E. and F. are isomorphie in the derived category of bounded complexes of sheaves.

Proof. Consider the complex C· ({Ua } , F.) of sheaves on X with seetions over eaeh
open subset U which eonsist of the total complex of the Cech bi-complex &( {Ua ) n U, F.).
Then the natural augmentation 1] : :F. - C- ({Ua }, .1".) ia a quasi-isomorphism. Thus it
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suffices to show that there exists a quasi-isomorphism [. - C· ({ u()},.1".). We define such
a map <P' as follows: <po :== ffi<p.l: , where <p.l: : [i - ffil-.l:=iC,I; ({ U()},.:Fr) is given by

{

ffi()<Po, if k = 0;
<pJ: == ffiofJl{JQß, if k == 1;

0, if k > 1..
It is straightforward to check that <P' ia a map of complexes. To see that <P' ia a quasi
isomorphism, we may work locally and &Ssume that X = Ua for sorne 0'. Then 1]<pQ and <P'
are homotopic. So by the fact that <pQ and 1] are quasi-isornorphismB, it follows that <po is
too. ..

Lemma 2. Suppose that [ .. and F .. are double complexes in an abelian category with
cf and d" the first and second differentials, respectively. Assurne that l{J .. ia a rnap of
bigraded objects such that
(a) For eaeh k, 'PJ:. : [J:. - .Tt . ia a quasi-isornorphism of complexes.
(b) For each k, I, there exista a map X,I;I : [1:1 - FI:-1 1+1 such that

,{ 0 'PI:. - 'P1:-1. 0 tf == (_l)k- 1d" 0 XI:. + (-l)kXI:. 0 cf'.

(c) d' 0 X + X 0 d' vanishes.
Then the rnap <p + (_1)1: X on EI:. induces a quaai.isornorphisrn between the total corn-

o plexes of .E.. and F ...

Proof. We check that f/J := <p + (-l)I: X on Elt • induces a chain map on the total
complex Tot([..). Let D == d' + d" be the total differential. Then, D 0 tP == f/J 0 D: In fact,
by definition, we see that

Df/J - q,D == (d'rp -lfJd') + (cf''P - rpd") + (-l)I:(d'X + xd') + (-l)l:(d"X - Xd").

But tbe second aod tbe third terms on tbe right hand side of this equation vanish by (a)
and (e), while the other two terms have surn zero by (b).

On the other hand, for any given 'double eomplex X .. , we ean introduce its associated
filtration by letting FiX.. := EBI:<iXI: .. Thus <p preserves this filtration on E.. and :F... Tbus
the indueed roap on the 8B8Oeiated graded objects i.s the SUß) of the quasi-isomorphisms 'PI:.

and henee tP itself is a quasi-isomorphism.

With the8e two lemmas in mind, we ean prove the proposition by, first, eonstructing
the morphisms as in the lemmas above and then checking the conditions there.

For every integer k, since each VI: is a vettor sheaf on X x M P, there ia a smaH open
set where VI: is trivial of rank TI: and we get that

jp. (VI: 0 pj:F) == jp. (pj :F)'"" == p. (i.Tr"

has a resolution by p.E.r". It also has a global resolution by 91: .. Hence there exists a locaHy
finite affine covering {UQ } of P, and for each UQ , an isomorphism 9Q : VI: - Orx><'MP on
Uo n(X XM P), and a chain equivalence 4JQ : E.r

" - 91:., on UQ , resolving the isomorphism

jp.(OQ 0 1) : jp.(Vl: 0 pj:F) - jp •(pj:F)r" .
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In particular, on Ua nUß n (X XM P), there is a transition matrix Ößa := 9ßÖ;;1 for VA:,
which we may Hft as an rA: x rA: matrix of functions 8fJa on Ua n U/J.

Now consider the two maps ,pa and ,pp(8IJa 01) from f. r .. to gJ:.: The decompositions
of these maps with the quasi-isomorphism from 9A:. to jp • (VA: ~ pj;1=') are the same, and
heuce, since Er... is a complex of vector sheaves, these maps are homotopic over the affine
open subset Ua nUß. So we may choose homotopy morphistnB 4>ßo such that

...
Hy Proposition cA, the map ,pa, 4>/3, 8/3a and tPßa extend to the inverse images of the open
subsets Ua, Uß, and Ua nUß in W XM P, respectively. We denote these extensions by
D,pa, D,pß, D9fJa and DtPßa. Notice that D9pa is the inverse image by 11" of 0ßo, we see
that its restriction to IZI XM P coincides with v·(Ößo) =v·(Öp) v·(Ö;;1). On the covering
{IZI XM Ua}, we consider tbe triviali2:ation DOo =v·(8a) of v·(VA:) aod tbe map8

On the intersection 1ZI x M (Ua n UfJ) the map

is a homotopy between 'PP and If'a t since

dlf'IJa =d(DtP/3a)hzlxup(D8a 0 1) =(DtPpDOßa - DrPa)hzlx.wp(DOa 0 1)

=DtPßhzl x.wp«v·(Öpa )v·(Oa» 0 1) - DtPahzlx,wP(V·(Oa) ~ 1)

=Dt/JfJ(D9ß @ 1) - DtPo(D9a 0 1) = 'P/3. - 'PrJ'

Furthermore, by Proposition c.5, D,p,8ahzlx u P depends only on tbe restriction of tPß9ßo -tPa
to X XM P. Therefore, 00 IZI XM (Ua n Up n U,),

Indeed, (<Pßa - <P..,a + <P..,ß)(D8Q @ 1) -1 is the restrictioo to IZ I of the extension to W of a
null homotopy of

whose restriction to X X M P is zero since

Hence, by Lemma 1 above, the family {'Pa ,If'/Ja} defines a quasi-isomorphism of complexes
of sheaves on IZI XM P:
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On the other hand, the differentials di: : Vi: - Vi:-l ean also be lifted loeally to maps ef
complexes di:,a : &;" - &;:11

, over each Uo. After composition with the augmentation from

9i:-l' to jp. (VJ:-l @ pj :F), the two maps ~ 0 <Pa and <Po 0 di:-l coincide. Hence these mapa
are homotopic.

Finally let t/>~ be the h·omotopy and let X a be the restrietion to IZ Ix M P of the canonieal
extension of 4>~ to W X M P. Restricting to IZ I x M P, there is over each U0 a diagram

VJ:®DE. ~

<1'1
Vi:-I @ De. ~

De;;..
1d'

D9J:-I.

Here the first d' is just d~ @ 1 and cf 'Pa - 'Pod' = (-1 )J:-I dUXo + (_I)J: Xa(1 @ dDe). From
the equality

on X XM P, we get, by Proposition c.5 , that d'Xa + Xod' =O. Hence , by Lemma 2 above,
'PQ + (-I)J: Xa defines a quasi-isomorphism

Tot(v·(V @ p~(DE.)) - Tot(D9 .. )

on UQ • Thua we are led to consider

Obviously, the proposition is equivalent to saying that ~ is a quasi-isomorphism, which ean
be proved by using Lemma 2 onee more: For this the only identity left to be shown ia
rfV'ßCI - V'fJarf = (_I)A:(X~ - Xa). Thia fellows from Proposi tion e.5 by an argument as
above, where we compose both sides of this equality with (DOa @ 1)-1 and notice that d'
commutes with 8fJQ ® 1 on X XM P. .

§II.7.2. The Arithmetic: ehern Characier With Supports

In this section, we UBe the results in the previous section to define tbe arithmetic Chern
charaeter with supports, which will be used in the next section to prove an arithmetic
Riem811n-Roch theorem for general closed immersions stated in 6.2.

Let P be a regular arithmetic variety (over an arithmetic ring A), aod let i : X '-+ P
be a closed arithmetic proper subvariety, with a ehoice of Fco-invariant bermitian metric
on the normal bundle to X(C) in P(C). Suppose that E. is a bounded complex of vector
sheaves on P, acyclic off X over tbe generic fiber PF, which ia a resolution of a hermitian
vector sheaf (:F, T) on XF. Then we ean define an arithmetic ehern character with supports ,
ehAI': (&.) E CH~I'(X)Ql aB folIows:

Let 'lf : W '-+ P X pi be tbe Grassmannian graph construction associated with the
eomplex &.. AB in sedion I, we consider the cycle Z = {WcoJ - {P] and write IZI for
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its support. Let DE. be the extension of f. to W, and f. z its restriction to IZI. Since
E. Z is a resolution over IZIF of the direct image of F, we can equip the bundles fl with
Foo-invariant hermitian metrics which satisfy Bismut condition (A). By 1.8, there is the
relative Bott-ehern secondary characteristic current ChBC(E. Z, Pt.z) of thia complex with
respect to the correspond'ng closed immersion. Now we change the notation a little bit.
We write 7TZ : IZI - X for the projection induced by the map 7T : W - P. Hence
d({C(7T?(chBc(E.z,Pt.~» is smooth on X and hence a(1l'?(chBc(E,z,Pe ..z»)) ia an element
in CH~r(x). Furthermore, by the dimension reason, we know that the cycle Z can be
viewed aa giving a class in CH~i~(Z)(IZI)=CHdim(Z)(IZ'J).

With this, we may define the arithmetic Chern character of (f., p.) with supports
in X by

We shall80metimes write ch~r(f.,p.) rather tban.chAr:(E.,p.). As ususl, we now need to
check that the definition makes sense: We claim that the class depends 00 the choice of
metrics on F aod on the normal bundles to X(C) in P(C), but it is independent of the
choice of metrics on E. z. In fact, thia ia a special csse of the following proposition with
El·=E~.=E..

Proposition 1. If k : E1 . - &2' ia a quasi.isomorphism which, induces a morphism of
resolutions of F over F, then

Proof. Replacing the quaai·isomorphisrn by its mapping cone, if necessary, we rnay
assurne that J.: is injective in each degree. Hy Proposition c.3, we know that W(E1 .) =W(E2 .)

aod that tbe map J.: induces a map kZ : ff. - Ef. which ia a monomorphism with cokernel
a split acyclic complex of vector sheaves. We now choose arbitrary Feet-invariant hermitian
metrics on the complexes Ef., Ei., which satisfy Bismut condition (A), and make a choice
of Foo-invariant hermitian metrics on the quotient complex compatible with the splitting.
Hy Theorem 3.7,

(ChAr(Ef"Pl:.) - ChAr(Ef·,PtllJ - ChAr(t:! IEf·,pt:./Ef» n z
=a(L(-l)mchBc(O -. Efm - Efm - Efmlffm - O,p.~»).

m

However, by axioms of the Bott-Chern secondary characteristic objects, the last expression
is nothing bu t

a(ChBC(f;', PE.:.) - chac(Ef, Pt.f.) - ChBC(E; IEf, PE.:./E.f.»)·

With this, the assertion comes from the fact that E.t./f. f. is split acytlic.
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CoroUary 1. Let (F, T) be a hermitian vector sheaf on X and suppose that P is
regular. For any vector sheaf resolution E. of F by a complex of vector sheaves on P,
the dass chir([" p.) E CH~r(x) is independent of the choice of the resolution. We
shall denote this dass by ch~r(F, T).

Next, we give a few down-to earth properties of chAr: (E., p.).

Proposition 2. With the same notation as above,
(a). w(ch~r(E.,p.))=eh(F, T) td-l(N, hN').
(b). Ir two metrics h 1 and h2 are given on the nonnal bundle of X(C) in P(C), then

the difference of the 88Bociated arithmetic Chern characters with supports ia given
by the formula

(c). Let

A: 0 -- EI' -- [2' -- E3 · -- 0

be a ahort exact sequence of complexes of vector aheaves, which on the generic
fiber is a resolution of a exa.ct sequence of hermitian vector aheaves:

Then

Applying this conatruction to KAr(X), we imrnediately get the following

CoroUary 2. Assurne P ia regular, then tbe map

«F, r),1) ....... chlj.(F, T) +a(1)

defines a homomorphiam of abelian groups

Here K~r(x) ia generated by hermitian coherent vector sheaves, i.e. the coberent aheaf
on X, but with a vettor sheaf puB back at infinite places, aud so on. '

We end this section with sorne more properties, which are quite natural.

Property 1. (Module Property) Ir 9 is a vector sheaf with an Foo-invariant hermi
tian metric on P, then
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Proof. Hy the fact that W(&. C9 Q) = W(&.), and that on this scheme, we have
D(E. @ 9) ::: DE. @ Q. So by the restriction to IZ1, we have

(E.@Q)z =EZ .@1rz -i-Q.

Now observe that

chsc(EZ . C9 1fz- i-gI Pez .01rZ.i.Q) = chsc(Ez ' l PEz J1f
Z-i-ch(9, T).

The assertion follows by the projective formula for curre·"nts.

Property 2. Let i : X c....... P be a c10sed immersion of arithmetic varieties which is
proper over an arithmetic variety Y and with the structure morphisms fand 9 that
are srnooth at infinity. Suppose tbat (E., p.) is a complex of hermitian vector sheaves
on P, acyclic off X, which on the generic fiber PF is a resolution of hermitian coherent
vector sheaf (.r, r) on X F satisfying Bismut condition (A). Then in CH~r(Y)Q

f- (ChAr: (t:"P')'i a) = g_ (chAr(E., p.) n a) + a(g_(chsc(E., p.» w(a»),

where a = chAr(z) for BOrne z E K Ar( P)Q, or P is regular and Q E CH Ar(P).

Proof. We fix an Foo-invariant hermitian metric on the normal bundle of X x pi in
the Grassmannian graph construction W =W(E.) via the natural isomorphism

NXXPl/W :::: p-Nx/p(-co),

where p IS the projection from Y X pi to Y.

Note that at infinitYI the rnap i = go 1r from W to Y X pi induces a proper map of
complex manifolds. Cboose Foo-invariant hermitian metrics on DE. such that the restriction
to 0 coincides with the one on E., the restrietion to P is spiit acyclic, and the restriction to
IZI satiafies Bismut condition (A).

Then, we consider the dass

i. (chAr(Dt:., PDE. ).,a) + a(i_chBC( DE' I PDE.) q-w(a»

in CH~r(y x pi)Q I where q : W - P is the projection. The restriction of this dass to {oo}
ia the left hand aide of the equation of thia property, while the restriction to {O} is the right
hand side. Thus by Axiom 1 for the classical Bott-Chern secondary characteristic forms, or
better l by Theorem 3.5.f, the difference of these two elements is

where z is the parameter on pl. However, by Axiom 1 for the relative Bott-Chern secondary
characteristic currents with respect to c10sed immersions,
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ia equal to j. (ch(F, T) td-I(NxxPl/w », where j : X x pI 4-.+ W is the natural indusion.
Applying the projection formula for the integration over the fiber, the assertion comes from
the fact that

Property 3 (Uniquenes8 Rule.) (a). Suppose that i : X '- P is a regular dosed
immersion aod (F, T) is a hermitian vettor sheaf on·X. For aoy vettor sheaf resolution
E. - i.F - 000 P, we have

(b). Suppose that both X and P are regular. Then for aoy bermitiao coherent veetor
sbeaf (F, T) on X,

Prex>f. We onIy need to prove (a), since then (b) is.a direet eonsequenee.

The indusion i : X 4-.+ P is a regular immersion, the eyde Z at infinity is irredueible
and is equal to P(N $ 1), with N = }lx/p. Let S be the tautologieal codimension-one
sub-vector sheaf of N ff) 1 on P(N ff) 1). Then the Koszul complex K.(S) is a resolution of
s.ox 1 where 8 is the zero section. Henee K.(S)@1r·(F) ia a resolution of s.:F. Furthermore,
we know from tbe consturction and Theorem 1.9.1.c, that there ia a quasi-isomorphism

for which t/J ia an epimorphism with a split acyclic kernel. We equip K.(S) with the F(XJ
invariant hermitian metrie induced by thinking of S aB a sub-vector sheaf of N $ I, then
with the induced metrics, K.(S) @ 1I".(:F) satisfies Bismut cODdition (A) aa a vector sheaf
resolution of s.:F. Hence, as in Property 1,

a(ChBC(E.z, Pe,lI) - ChBC(K.(S) ff) 7f.(:F), PK,(S)lBll'.(.1'»))

=(chAr(E.z ,Pe ,21) - ehAr(K.(S) EB ",. (.1'), PK.(S)$r.(.1'))) n [Z].

So we have the assertioDS by the proof of Theorem 5.1.
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§II.7.3. Completion oe The Prooe oe Theorems In Section 6.2

In this section, we are going to prove two theorelTlB in Section 6,2.

11.7.3.8. The Proof Of Tbe Arithmetic Riemann~RochTheorem For Closed
Immersions. •

In this subsectioo, we will give a proof of the following

Arithmetic Riemann-Roch Theorem For Cloled Immersions.
Let A = (A, E, Foo ) be an arithmetic ring and let

x i
c.......

f"".. /g
y

Z

be closed immersions of regular arithmetic varieties over Y with f proper, fc smooth,
and 9 smooth. Put Foo-invariant hermitian metrics on the relative tangent sheaves and
the normal sheaf of i. Let (&,p) be a hermitian vector sheaf on X snd :F. - i.E - 0
a vector sheaf resolution of i.E on Z, Put Foo~invariant hermitian metrics p. on :F.
such that Bismut condition (A) is satisfied with respect to PN aod p. Then, for aoy
WE CHAr(Z), the following identity holds on CHAr(Y)Q

f. (tdA;(N, PN) cbAr(E, p)i·("»)

=g. (chAr(.1"., p.)W) +g. (a(ChBC(E, p; i, pi; :F., p.)w(W)) ).

First, from the fact that the closed immersion i : X <.....+ P is regular, the Grassmannian
graph W =W(.1".) is isomorphie to the deformation to the normal cone, and IZI =P x( N $
1) (see l.b). Let D:F. be the extension of :F. to W, and :F.z its restriction to IZI. Cho08e
Foo~invariant hermitian metrica on D:F. whose restriction to ?(C) is split aeyclie, aod which
satisfy Bismut condition (A). Define

ß:= { Doglz 12]ch(DF., PDF,)
)W(C)/P(C)

in Ä"(PR). By tbe same proof as ln Proposition 5.2.a, we have

g.(eh Ar(.:F. , p.) n '1') =f. 0 P.(ehAr(F. Z, PF..r:) n p. 0 i· (w» + a(g.(ß w('I'»),

where p : P x(N EB 1) - X ia the smooth projeetion. Moreover, the right hand side of the
equality may be computed as in the proof of Theorem 5.1, i,e. by comparing F.z with the
K08zul complex K.(1i) @ p. E eonsidered in 5.2.

More preeisely, we need to have

p. (ehAr( K.(1i) @ p. [, PK.(?i)@p.€) n p. 0 i· ('Ir»)

=p.(cbAr(K.(1i), PK.('H)) n p. 0 i·('1f» n ehAr(E, p),
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which follows from Theorem 3.7.e, the projeetion formula. With this, next we .use the the
eap produet formalism to make the eorresponding changes.

In fact, as in the proof of Theorem 3.8, we ean ehoose a map h : X - M, whert'
M is regular, and a vector bundle N' on M such that there exists a metric on N' with
(N J p) =h· (N' ,PN' ). Note that for the praof of the ari thmetic Riemann- Roch theorem far
c10sed immersions above, it is enough to have a proof for just one metric on N. Henee, we

asaume that there exists an Fee-invariant hermitian metric sueh that

We eonsider the eanonical hyperplane bundle Hf C p'·(N') ffi 1 on PM(N' ffi 1), wbere
p : P(N' ffi 1) - M is the projection, and the Koszul eomplex K.(H') has the metric
indueed by P}/I. Using the projection formula in Proposition 2.8, we may get

With above, we then complete the praof by replacing the eorresponding relations in the
proof of Theorem 5.1.

II.7.3.b. The Proof Of The Arithmetic Riemann-Roch Theorem For Loe.I.
Morphisms'

First, we recall the arithmetic Riemann-Roch theorem for I.c.i. morphisms'.

Let 1 : X - Y be a I.c.i. morphism of regular arithmetic varieties aver an arithmetic
ring (A, 0", Fee), which is smaoth at infinity. Define the push-out morphisffi I~r : Ktr(X) -
Ktr(y) by letting

f~r(E, p) =(/.E, g.p) + ebBc(E, p; I, Pl)

+ I. (chAr(t', p) tdAr(T/, p/) a(R(1j»)

far any I-acyclic hermitian vecter sheaf (E, p) as in Chapter II.4, where R is the unique
power series defined in the arithmetic Riemann-Roch theorem for smooth morphisms. In
particular, we have the following

Arithmetic Riemann-Roch Theorem For loe.i. Morphisms'o With the same
notation above, for any element T E KAr(X)qJ we have

This theorem is very similar to the one in Chapter 4. The difference is that now we do'
not assume that 1 is smooth: We only have the condition that 1 is proper and f at infinity"
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is smooth. So, we may imitate the proof of the main theorem in Chapter 4 to offer a. proof
here.

More precisely, we coneider the difference of two eides of the relation in the theorem.
As before, we call it as Err. Then, by the fact that the part for algebraic cyeles ia just the
Grothendieck-Riemann-Roch theorem for I.c.i. morphism, so we onIy need to consider the
part for the associated Green currente. Then, we mayaiso know that Err is compatible with
the composition of morphisrns, ia compatible with Hat base change, and has nothing to do
with the associated metrics, etc .. All in all, we see that the only diffieulty is associated with
the deformation to the normal cone tbeory, aB now f a~the finite place ia not smooth: We
use it to show that for aoy codimension one closed immersioD, all could be deformed from 0
to these on just oue component at 00. (One might also worry about the arithmetic tangent
elements. But thie eould not ereate any more problems, sinee we have already taken eare of
them in the corresponding results of 3.B.b.)

For the deformation to the normal cone, essentially, there ehould have 00 problem
neither, eince now only the infinite part mattere: By our assumption, fe ie smooth as before.
That ia, if we replace the deformation to the normal cone theory by the generalized theory
about the Grassmannian graph eonstruction associated with the vector sheaf resolution of
i.E, then, by the eorresponding result from algebraie geometry (see [BFM 75]), the algebraic
cyele part could be deformed from the original (codimension one) closed imme~ion to the
corresponding part over a eection of a projeetive vector bundle. But then, once we shirt to the
infinity part of our arithmetie varieties, by' l.b, we see that at infinity, the Grassmannian
graph eonstruction ia isomorphie to the deformation to the normal cone construction at
infinity. Furthermore, we see that at infinite, the arithmetie tangent element defined by
using the decomp08ition of f aB goi in 3.8.b is just the same aB the relative tangent vector
bundle for the smooth morphism fe. ThuB, if we replace the proof of Sublemma 4.2.b by
the discussion in Section 2, we know that, in the proof of Theorem 4.1, everything wodcs
weil here. This completes the proof.

We end thia subsection by the followiog remark: Actually, one may still go Blightly
further. Instead of assuming that f at infinity ia smooth, we may ooly assurne that the
10g81ithmie relative tangent vector aheaf at infinity exists, e.g. [De 70]. But then we need
to use Melrose'a b-calculus to build up the foundation for Part I.

§II.7.4. The Construciion oe rAr

So far, we have already proved the arithmetie Riemann-Roeh theorem for I.c.i. mor
phisrtlB of arithmetie varieties uoder the additional assumption that the induced morphisms
are smooth at infinity. In order to remove thia assumption, as one may imagine, we need to
give a hermitian theory for coherent aheaves, together with an arithmetic analogue of the
Riemann-Roeh transform used by Baum, Fulton and MacPherson in proving the singular
Riemann- Roch theorem in algebraic geometry. Though we do not know how to obtain a her
mitian theory for coberent sheave5, we ean provide the arithmetic Riemann-Roch transform.
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More precisely, if Ktr(X) denotes the arithmetic K group generated by hermitian coher
ent vector sheaves , (Le. coherent sheaves such that the puH-backs at infinity are hermitian
vector sheaves, and so on,) then we have a map

which depends only on the·choice of an F!Xl-invariant hermitian metric on the tangent bundle
to X(C).

Motivated by the situation in algebraic geometry, we are led to the following...
Theorem. Let X be an arithmetic variety over an arithmetic ring A. Put an F00- .

invariant hermitiao metric on the tangent coherent vector sheaf of X at infinity. Then
there is a unique natural ffiorphisffi, tbe arithmeticRiemann-Roch transfonn ,

which satisfies tbe following properties:
(1) For aoy herrnitian coberent vector sheaf (F, T) 00 X,

W(TP,Ar(F, T)) =ch(.1', T) td(X(C), PX(C»).

(2) TAr ooly depeods on the F!Xl-invariant hermitian metric on the tangent coherent
vector sheaf of X 8t infinity.

(3) TAr induces 8 canonical isomorphism of Q-vector spaces

TAr : K~r(X)Q _ CH~r(X)Q,

which maps the dass of «.1', T), 17) to TAr(F, T) + a(17 td(X, px)).
(4) For aoy % E Ktr(X) aod y E KAr(X),

TAr(X n y) = TAr(X) n chAr(y).

(5) Ir x is regular, for aoy x E KAr(X) ~ Ktr(X),

in CHAr(X)q = CH~r(X)q.

Tbe rest of tbis section is devoted to a proof of this theorem. First, we give adefinition
for TAro It ie sufficient to give the definition for a hermitian coherent vector sheaf (.1', T) on X.
Let i : X ~ P be a closed immersion of X into a regular irreducible aritbmetic variety P. Fix
F!Xl-invariant hermitian metrics on the normal bundle of X (C)jP(C) and related tangent
bundles. Then by Corollary 2.1, we get from these data a dass ChArP (.r l T) E CH~r (X)Q .
In addition , we fix Foo-invariant hermitian metrics on the tangent bundles of X(C) aod
P(C ). We define

Tp,Ar(:F, T) := cbAr-: (:F, T)'itdAr(P, pp) + a(cb(F, T) tdBC(X/P, px/p»).
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We clearly have (1) above.

Next, we check (2): For a given (:F, T), the arithmetic dass defined above only de
pends on the choice of the metric on the tangent bundle to X. Hence we must show the
independence of aU other choices we made. To prove this, we proceed as fellows:

From the definition, ?le easily see that

Lemma 1. The dass TP,Ar(:F, T) does not depend on the choice of the metrics on Tp
and }/xIP'

It now only remains to show tbe following

Proposition. Tbe dass TP,Ar(:F, T) does not depend on the choice of the embedding
of X into the regular integral variety P and we denote it simply TAr(:F, T).

Proof of the proposition. We divide the proof ioto several steps.

Step 1. We start with a special situation.

Lemma 2. Let j : X e-.. M and k : X C-+ P be two closed immersions of X into regular
integral varieties M and P, and suppose that there is a smooth map q : P - M such
that q 0 k = j. Then

Step 2. From Lemma 2, we see that TAr(:F, T) is independent of the embedding k
X C-+ P for P smooth and integral. Indeed, given k : X e-.. P and j : X - M two dosed
embedding of X into amooth varieties, we can consider the product embedding i : X e-..

P X M and apply Lemma 2 to the two proje<:tions from the product. This leads to

Step 3. The study for the situation in general. Given a closed immersion j : X c.....;. M
with M regular and integral, we choose a closed immersion f : M e-.. P with P smooth aod
integral. Let N = NMIP be the normal bundle of M in P and let s : M e-.. P(N $ 1) be
the zero section. Note that P(N $1) is regular, and that tbe projection q : P(N $ 1) - J\1
is smooth. Then by Lemma 2

where we embed X inta P"(N $1) via so i. So to complete the proof of the Proposition and
verify (2) in the theorem, it suffices to prove the following

Lemma 3. With the same notation as above,

TP,Ar(:F, T) =Tp(Nlill),Ar(:F, T).

Obviously, onee we have these lemmas, we have the Proposition. The other assertions
in the theorem may be dedueed similarly from the eonstruetion in a quite standard way.
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Proof of Lemma 2. We are in the situation of Proposition 7.l.d. So, there is a complex
Dg. =Tot(Q.. ) over W XM P and the restriction Q.z to IZI XM P is quasi-isomorphie to
v·(V.) l8l p~(&.Z) by that proposition.

Choose hermitian metrics on vector bundles in question. The normal veetor sheaf of X
in X XM P coincides with-k-Tp/ M , and

IZj(C) =P(Nx{Cl/P(Cl EB 1).

Tbe normal vector sheaf of X(C) in IZI(C) XM P(C) is·isomorphic to

We endow it with the original direct surn of the two corresponding metrics and write
tdB~(X, P, M) for tbe classical Bott-ehern secondary charaeteristic fonns associated with
tbe characteristic dass td- 1 with respect to the exact sequence of vector sheaves on X(C):

0- k·Tp(Cl/M(C) - Nx(c)/p(C) - NX(Cl/M(C) - O.

We now have

Sublemma 1. If Y c IZI XM Pis the support of the homology of Q.z, and h : Y - X
is the projection, then, for the above choice of metrics on normal vector sheaves, we
have

cbAr~ (.:F, T) =l: nph~ (ChAr~~xMP(Q·Zlz6IPc.zIZI')- a(tdB~(X, P, M)ch(.:F, T»).
~

Here the Z~ are the irreducible components of IZI, Z =Lß nfJZfJ, yfJ := ZfJ x M P C Y,

and hP : yfJ - X is the induced projection.

We leave the proof of this sublemma later. With it, noting that for each irreducible
component Zp of Z, ZfJ XM P = Zp Xx (X xM P), aod we have a Cartesian diagram:

PlI'-
P-

Choose Foo-invariant hermitian metrics on Q.z, V. and &.Z, which satisfy Bismut condition
(A) witb respect to the choice of metrics on :F aod on the normal bundles involved. Let
f := (Id, k) : X '-+ X XM P be the natural indusion induced by Id and k. Then, for aB
ß, the inverse image by v~ of f(X(C» is transverse in the complex points of Zp XM P to
the inverse image by PI of tbe zero sedion j Z : X (C) - P(NC EB 1). Therefore the complex
vß V. 0 pjfJE. z, with its natural induced metrics, is a resolution of (j Z x f) _.:F, and satisfies
Bismut condition (A) for the one component ZI' of Z with multiplieity 1 which is noo-empty.
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Since both the complexes g.ZIZ~XMP aod vJ, V.@PjßE.z are resolutions ofthe hermitian
vector sheaf :F, if Zß(C) #; 0, we have that _

h~ (chArk;xup(gZ ·Iz~, P~z.IJfIJ)) =h~ (chArk;xMP(vp V. ~ pjpE.zlzlJ' Pv;v.@piIJE.Jf IZIJ ))).

Moreover, if Zß(C) = 0, by the fact that the complexes are quasi-isomorphie, the same
formula is true BB an identity in CH~r(bß(Zß)) =CH.(bß(Zß))'

The projection map 11" = po v = b 0 f from IZI XM P to X is smooth at infinity, and
maps Y(C) isomorphically onto X(C) via h. Hence, applying Property 2.2, to the maps
1I"ß : Zp XM p.- X aod hß : yß = Y n (Zß XM P) -- X and noting that Zp(F) is empty
for aH but one ß, we find that

L nßh~ (ChAr~:XMP(VßV. ~ Pj,BE.zlzlJ ,Pv;v.0PiIJE.Jf1zlJ))
ß

=~nß~ (chAr(vßV. ~ pipE.zlzlJ ,Pv;v.0pi~E.zlzlJ) n [2ß XM pD
ß

+ a(11"_ (ChBC(Vp V. ~ pißE.z 'Pv;V.0Pi~E.Z))).

We now compute the first term in the above expression, treating each term in the surn
separately. N"oting that rrß =btJ 0PltJ, we start with the direct image by PIß. In CH~r(ZtJ),
we have, by Theorem 3.7 (d) and (e), that

PIß- (chAr(v'; V. 0 pjtJE.Zlz~ IPv;v.0piIJE.zlzlJ) n [ZtJ XM pD
=PI,B- (chAr(pi,oE.zlzlJ , PpjIJE.~lzlJ) n (chAr(v,ß V,

'
Pv;v.) n [ZtJ XM PD)

=chAr(E.zIZIJI PE.zlzlJ ) n PIß- (chAr(v';V., Pv;v.) n [Zß XM pD·

Now vp(v.) ia a resolution of s_(OZIJ)' where ß : ZfJ .- Zß XM Pis the section of the smooth
morphiam PJß : Zß xM P -- Zp induced by tbe section f : X .- X XM P. Over the complex
manifold (Zß XM P)(C), tbe associated metrics on v,8(V.) satisfy Bismut condition (A),
since it is the pull·back by a submersion between complex manifolds of a complex which
satisfies Bismut condition (A). Applying Property 2.2 with er =1 to the diagram

Zß ..:.. Zß XM P
1PJß
Zp,

we find that

which, by Property 2.3, is equal to
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ChAr~ (:F, i) =L nßb~chAr(E.z Iz~, Pf. zlz,6) + a(b.chsc(E.z ,Pf. Z »),
ß

so by Sublemma 1 we find that

ChAr~(:F,T) = (chAr:'(:F,T) - a(b.chsc(E. Z ,Pf-. z »)) tdÄ:(Nx/xxwp, P}/X/XXM P )

- a(b.(ch(E.Z,Pf.Z)P/co.chsc(v·V.,Pt/*V.»))

+ a(1r.chBC (v·V. 0 pjcoE.z ,Pv*V'@P;_4Z ))

- a(tdlib(X, P, M) ch(F, i))

=(ChAr~(.r, T)) tdÄ; (Nx/xxwp, P}/x/xx w p )

- a(b.chBC(E.
z

I Pf. Z ) td-
1
(Nx (c)/ X(C)x M(C)P(C), PIJ'X(C)/X(C)XM(C)P(C»))

- a(b.ch(E. Z ,Pt.lJ) P/co.ChBC( v* V., Pt/*v.»)

+ a(1r.chBC(V·V. 0 pjco E.z ,Pv*V'@P;oof. Z »)

- a(tdlib(X, P, M) ch(.:F, I)).

On the other hand, by Axiom 4 of relative Bott-Chern secondary characteristic currents
with respect to closed immersions, together with the projeetion formula for direct image
currents,

11". (chBC (v· V. ® piooE.z, Pv*V ,@pi_f.~»)

=b.ch(E. Z, Pf.~)p.chBC(V., W.)

+ td-
1
(Nx (c)/X(C)XM{C)P(C)' PIJ'X(C)/X(C)XM(O)P(C» b*chBC(E.

z ,Pf. Z ),

so

ChAr~ (:F, i) = (chAr~(:F, T» tdi..;(Nx/XXMP, P}/X/XXM P ) - a(tdB~(X, P, M) ch(F, T»).

Flom this equality and the definition of rAr, we deduce that

TP,Ar(F, T) =chAr: (F, T)'l:tdAr(P, pp) +a(tdBc(X/P, PX/ p) ch(.r, T))

=(ChAr~(.r,i) n tdÄ:(Nx/XXMP, PIJ'X/XI",p))'l:tdAr(P, pp)

- a (ch(.r, r)tdiib(X, P, M)k* (td(Tp(c), PTP(C»))

+ ch(:F, T) tdBC(X/P, PX/ p»).

But, the normal bundle of X in X XM P coincides with k*Tp / M = k·Tp. Therefore, by
applying Proposition 3.8.b.(2) to the map p aod the structure map of Y, and Theorem
2.7.(c) far j = p 0 k, we get, from the equation above, that

TP,Ar(:F, i) = ChAr~(.:F, T)'jtdAr(M, PM) + a(ch(.:F, T) z),
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x =tdBC(X/P, PX/ p) - tdäb(X, P, M) n etd(Tp(c), PTp(cj)

- tdBC(O -- J;Tp(C)/M(C) -- /c-Tp(c) -- j-TM(C) -- 0, p.)

td-
l
(/C-Tp(C)/M(C), P,t-Tp(O)/M(O,)td-I(NX(C)/M(C), PX(C)/M(C»'

which ia nothing but tdBC(X/M,PX/M), and therefore

TP,Ar(F, T) =TM,Ar(F!-o.

Proof of Lemma 3. Choose metrics on the normal bundles of X(C) in P(C) and
M(C), and Oll N = NM / P ' The normal bundle of X(C) in P(N $l)(C) is the direct sum
of P'(Nc) and NX(C)/M(C)' We endo~ it with the orthogonal surn of the corresponding
metrics. Given the formula for TP,Ar in terms of the arithmetic ehern character with sup
ports, it 'then suffices to compare ch Ar: (:F, T) witb chAr:(N$I)(:F, T). If we can show that
the arithmetic Chern character with supports ja compatible with restrietion to principal
divisors, (see Sublemma 2 below,) then by pI-deformation theory in I.9, we have that the
difference of these two dasses is the integral over pI of

where W is the deformation to the normal cone for the indusion of M ioto P, and the map
X x pI ~ W is the natural indusion. Hut the vector sheaf N(X)(pl)(C)/W(C) is an extension
of N(M)(pl)(C)/W(C) bY}/X(C)/M(C) which coincides with Nx(c)/p(C) over X(C) x {O}, and
the normal bundle of X(C) in P(N $l)(C) Qver X(C) x {oe}. Hence, we get

chAr: (:F, T) - ChAr~(N$I)(.:F, T)

= - a(ch(.:F, T) tdi3b(O -- N'X(C)/M(C) -- .N'X(C)/P(C) -- r(N'c) -- D,p.».

Sirnilarly, since Tp(N$I)(C) as a hermitia.n vector shea.fis the orthogonal direct Burn ofTM(c)
and Nc , we get, on M,

p- (tdAr(P, pp))

=8- (tdAr(Tp (N/Dl), PTp(NlBlj) - a(tdsc(O - TM(c) -- p-Tp(c) -- Nc -- 0, p.)).

From these two equatioDB and the definition with i =po j, we have

Tp,Ar(.:F, T) =Tp(N6H),Ar(.r, T) + a(ch(.:F, T) y),

where

y =tdBc(X/P,px/p)

- tdiib(O -- NX(C)/M(C) -- JVX(C)/P(C) -+ r(JVc ) -- OIP.) k-td(Tp(c),p)

- tdBC(X/P(N e 1), PX/P(NffJl)

- j- (tdBc(O -- TM(c) -- p-Tp(c) - JYc -+ 0, p.) td-1(N'x(C)/P(N/DI)(C),P»).
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So the assertion comes from the fact that y =0, which follows from the fact that
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and Proposition 3.B.b. Thi::l completes the proof of Lemma 3, provided we have the following

Sublemma 2. Let E. be a complex of vector sheaves on an arithmetic variety P aod
let X C P be the support of the homology of f .. Suppose that XF, viewed 8S a
reduced subscheme of PF , is smooth over F, and !.hat on PF , f. ia a resolution of a
hermitian vector sheaf on X F . Let i : D 0:...... P be an arithmetic subvariety which is
a principal effective Cartier divisor that meets X transversally over F. Write {Do }

for the irreducible components of D, n o for the multiplicity of Do in the Weil divisor
[D] = I:o na[Dal associated with D, and let ,.,0 : X n Do 4-+ X nD be the natural
indusion. Then

ixchAr~(E.,p.)=L: no7]~ChAr~~D"(f.ID.' PE.ID.J E CH~r(X n D),
a

where ix : X n D c......... X is the indusion. Moreover, the above relation is also true more
generally. For example, if D is a divisor on P, aod is eontained in a Zariski open subset
U C P, as a principal divisor on U.

Proof of Sublemma 1. Let T be the support of W x M P of the homology of Dg ..
There is a natural projection from T to X X pI, which ia an isomorphism over X x Aland
such that the inverse image of X x {co} is Y. Given any' t E pI, we write Tt for the inverse
image in T of X x {tl. Notiee that the generic fiber of T is isomorphie to that of X x pI.
Let io : P 4-+ W xM P and ioo : Woo xM po:...... W XM P be the indusions corresponding to
{O} aod {oo} in pI.

The normal vector sheaf of X(C) x pl(C) in W(C) is naturally isomorphie to the pull
back of the normal sheaf of X(C) in M(C), i.e. t h· (JlX(C)/M(C)( -I)), where h : X X pI -+

X ia the projection. We metrize it by cho08ing ametrie on h· (JlX(C)/M(C») aod tensoring
with the standard metric on the tautological line sheaf over pI (C). Hy Sublemma 2 above,
since T n (Wco XM P) = Y, Y n (M XM P) =0, we know that

and that

j~ (ChAr~xMP(D9.,PDa.)) =L: nßh~ (ChAr~:XMP(gZ ·lz~ I Pa z.lz~))'
ß

By the method in I.~ for the deformation to the normal cone, we see that

ChAr~(.T, T) - L: n~h~ (ChAr~: xloIp(gZ ·Iz~, Paz.Iz~»
ß
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is equal to tbe integral over pI of eh(:F, r)td-I(NT(c)/w(C)' PNT(Cl/W(C) )~oglzI2], aod henee

ehAI"~ (:F, r) - E nßhe (chAl"k:XMP(gZ .lz~,p"z.lz;)) = -a(tdii6(X, P, M)ch(:F, r)).
fJ

This eompletes tbe proof öf tbe sublemma.

Fina'l1Yl we complete tbe proof by the following

Proof of Sublemma 2. We fix certain notation. Write G p for the produet of Grass
mannian bundle nm G("m, Dem(E.)) Qver P X P 1, GD for the restriction of Gp to D x p I

(whieh may be identified witb the eorresponding produet of Grassmannians for the restrie
tion of E. to D). Let ja : GD '- G p be the indusion of the divisor GD in Gp. Let Gpoo be
tbe fiber of G p over P x {co}, which is a divisor in Gp; and let i oo : GD_ '- Gp_ be the in
dusion for tbe eorresponding divisor in GD. Write j : Gpoo '- Gp for tbe indusion, and for
eaeh 0', let jD.,. be the corresponding indusion over Da X pI. Obviously, Gpoo nGD = GD_
and GD_ is a principal divisor in the pull·back COv of GD over D x AI - {O}. (We can see
00p in a similar way). Write t = 0 for the equation of this divisor and we have pull-back
maps jö : Zl(GD ) -- Z.II-l(GDoo ) on eycles aB weil aB on CH~I", together with similar
pull-back maps j" 1 i~ and ja D •

Let W C Gp be tbe Grassmannian graph of E. aod Z = j·([W]) - [P] on Gpoo' On tbe
complement of tbe divisor GPoo' the variety W is the image of the sec tion of G p over P x Al
corresponding to tbe graphs of tbe differentials in E.. On the open subset G p - GP_, we
have an equality of cycles

a

Also

However, we know tbat tbe maps r 0 j" and j. 0 j. agree modulo rational equivalenee. Thus
tbere is a K l-ehain 4J on GD oo such that

We daim that this K l-ehain ean be chosen so that its support does not intersect the generie
fiber. Sinee the varieties GD, Wand Gp_ a11 meet transversally over F 1 henee the cycle
j. 0 j-[W] - j. 0 r[W] is supported Qver the special fibers. Thus, using K-theory and the
Gersten complex, one may show that the K l-chain 4> can be construeted by blowing up the

,eomponents-of the interseetion whieh have the excess intersection which in this ease are all
supported over special fibers: Let I be an equation for D, tben the symbol {/, t} defines
an e,lement in K 2 (W n (Gp - U?IDI U GP",..))), and hence in K2 of the function Aeld of
W. The differential of this element in the Gersten complex is compatible with the natural
product. We know that, on the components of div(f) where t dOe! not vanish, 'P is equal to
'Pt = div(t).{f}· Now observe that div(<pt) =iiJ oiä[W], while div(<pt) = iä o or[W]. Since
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the composi tion of two differentials in the Gersten complex ia zero, we have div( !p) =0, and
hence

or

where 4J = !P - !Pt + !PI ia a K1-chain supported on div(f) n div(t) n W. Since D and X
are smooth and meet transversally over F, with the identitication of the generic tiber of the
Grassmannian graph construction for the deformation to the normal cone of that over F,
the two cycles ZD,. + [iJF] aod i* (ZF + [PF ]) coincide. Hence the cyeIe 4J conatructed above
lS supported only over the special tibers.) Furthermore, since away from X, W aod WD cr ,
W and WDcr are isomorphie to P x pi and D Q x pi respectively, we see that the support
of 4J lies over X n IDI.

Now choose metrics on DE. aB in the proof of Property 2.2, and consider the dass

Sioce X(C) and D(C) are smooth and intersect transversely in P(C),

i· (a(lI":chBCx (E. z ,Pf,Z»)) = a(-n·:DchBC
x (E.zo, Pf,ZD »).

Therefore, it suffices to show that, in CH~r(x n IDI),

rll". (chAr(E.z ,Pe,z) n Z) =L nQ7J~ (lI";Dcr (chAr
X (E.ZDcr ,Pe.ZOcr») n ZDcr») ,

a

where 7J" : X n Da t.....+ X n tDI is the natural indusion. But ."er 0 1fZD", factors through the
indusion of ZD cr iota IZI n lXI := (1rZ )-I(lDI) foUowed by the project.ion from IZ! n IDI to
X n IDI, we know, using Theorem 3.8.e for this indusion, that the right hand aide of thia
formula ia equal to

1rizlnlDj (chAr(E.z !lzlnIDI, Pe.zIIJlInIDI) n (L naZDJ).
a

Also, by Theorem 3.B.b, applied to i, the left hand aide ia equal to

IZlnlDj (h (E ZI ) ··Z)'X". C Ar . IZlnIDI, Pe,zli.z:lnlol nl .

On the other hand,

i- Z =L naZD", - div(~) + T

er

in CH~r(IZIn ID!), where T := L:a[DQ ] - i· (PJ. Thua by the fact that the support of r ia

contained in Pn IZI, we have E.zhrl is metrically aplit. So ChAr(&.zhrl,Pe.zllrl) nT =0 in
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CH~r(lTI). Moreover, the fact that the Bupport of the [(l·chain eP does not meet X F implies
divAr(eP) = (div(eP), 0), and therefore

ChAr(&.zh~IIPl.zh.l}n divAr(eP} = 0

in CHAr .(14)1). So we have

a

which completes the proof of the theorem.

Witb above, we mayaiso obtain aversion of arithmetic Riemann-Roch theorem for
morphisffiS f : X - Y of arithmetic varieties only with the condition that, at infinity,
fe : X(C) - Y(C) is a smooth morphism of Kähler manifolds. We leave this formulation
to the reader.
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Chapter 11.8.•
Arithmetic K -Theory

I: ADefinition Of Higher Arithmetic K-Groups

401

The 8B8Ociated Dedekind zeta function for a number field has a simple pole at s = 1.
Moreover, the analytic dass number formula in dassical algebraic number theory gives the
corresponding residue in terms of tbe dass number aod tbe Dirichlet units regulator of the
field. This result may be thought of 88 a higher, non~trivial, local~global principle. On one
hand, for Re(s) > 1, tbe Dedekind zeta function is defined as a convergent Euler product,
given completely in terms of the local aritbmetic of the field, which bas a meromorphic
continuation to tbe whole complex plane. On the other hand, tbe ideal dass group and tbe
group of units are global arithmetic invariants of the field. Nevertheless, it appears that
the existence of such a local~global principle is not an isolated phenomenon. The special
values, or better, the leading coefficients at integer points of the L-functions of aritbmetic
varieties, seem to be c10sely related to the global arithmetic properties of these varieties.
In tbis direction, tbe conjecture of Birch and Swinnerton-Dyer shows an extraordinary
exam'ple, which deals with the arithmetic of abelian varieties. In general, Beilinson has
developed a completely general conjectural formalism which connects the tranacendental
parts of tbe leading coefficients to the BO-called regulators [Be 85]. Many mathematicians
have tried hard to verify these conjectures. Motivated by these examples, we introduce
another mathematical object, an arithmetic K -theory, to give regulators in a more general
sense. That ist regulator8 ehould give relations between the algebraic properties aod the
analytic properties of arithmetic varieties.

More precisely, we first give adefinition of higher arithmetic K~groups, following
Quillen'e definition of higher algebraic K ~groups. Then we use this arithmetic K~theory

to connect the algebraic K~theory, which is a purely algebraic objectt with a homotopy
theory, which ie a purely analytic object. We then have a global triangle diagram, with the
boundary morphiem8 from algebraic objects to analytic objects being geDeralized regulators.
(See below.) Comparing this picture with the clasaical ODe, we have ODe advantage: we now
look at an aritbmetic object globally, while the classieal picture onIy gives two aspeets of
the objeet. (Ir we look at the triangle mentioned above formally, the classical picture gives
two vertexes aDd one side, but the picture given in tbis paper haa three sides and three
vertexes, even through we only add one more point.)

The strategy for giving adefinition of higher arithmetic K~groups is to imitate what
Quillen did for bigher algebraic K~groups. I asked A. J. Berrick about this possibility, he
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told me that one should start with the exact category theory used by Quitlen. This has
proved to be a very important suggestion.

It is weB-known that when QuilIen introduced his definition for higher algebraic K
groups, with the fact that the K -group defined by Grothendieck is the same aB the ODe
introcluced by himself usiIfg the classifying space, he starts with a special kind of category:
exaet cat~gories. Beginning with any exaet category, Quillen could apply his Q·construction
to define higher algebraic K-groups [Qu 73). Unfortunately, this does not work for the
arithmetic situation, simply because we cannot constru~t an exaet category for which the
Grothendieck group is exactly the arithmetic K -group Ktr(X) of an arithmetic variety X,
which was introduced by GiUet and Soule [GS 9ib]. Indeed, among all axioms for an exact
category, the most difficult one to deal witb is the one that coneerns the composition of
morphisms. As a consequenee, we eannot find any bi-product construction for arithmetic
objects in tbe claB8ical sense. (For more details, see section 3 and section 4 of this chapter.)

Yet, in category language for our purpose, tbe bi-produet only has its meaning for the
cODstruction of a special kind of puB-backs. So in this account, we decided not to start with
an exact eategory, but rather to cODBider the essential properties of exact eategories, which
are used in the definition ofQuillen's algebraic K-theory. From this point of view, by noting
that many properties of exact categories are just eonsequenees of the fact that every abelian
eategory ean be realized 88 a full subcategory of the R-module eategory over a ring R, we
finally get a category, which is called a taips category, to which Quillen's construction eaD be
applied, and hence make the definition of higher arithmetic K-groups. Roughly speaking,
the taips eategory is a right category to apply Quillen's construction.

Now we introduce the main results of this chapter. For notation, see the later part of
this paper.

Main Theorem 1. Let X be a regular arithmetic variety over an arithmetie ring A.
Then there is a taips eategory TAr(X) so that the Quillen eonstruction ean be applied.
In particular,

1ft (BQTAr(X), (0,0; 0)) :::: Kt-r(X).

Thus we may define an arithmetie K -theory by letting

for all i ~ O.

Main Theorem 2. (B) Let QF : QTAr(X) - Q'P(X) be the natural funetor induced
by the forgetful funetor

F : TAr(.X) - P(X)
. ([,P;1]) f-+ [.

(Here, as usual, we denote P(X) as the category of vector bundles on X.) Then for
any objeet [ of P(X), and objeet ([,p; 1]) of TAr(X), we bave a natural induced long
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exact sequence of abelian groups

Ki+l(X)
lR

1ri+l (E\QF, ((E.. P; 7]), Idt:)) !!. KiAr(X) .!:. Ki(X)
Rl

- 1rj(E\QF, ((E, P; 7]), Idl )) .

..
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(b) At its lower level, after tensoring witb Q, tbe above Iong exact sequence becomes
the natural exact sequence

Tbis chapter is organized as folIows: In section 1, we recall tbe classicl definition of
algebraic K-groups Ko(R), K 1(R) and K](R) for a ring R, in order to get a good feeling;
in section 2, we recall the Quillen construction for an exact category and give Quillen's
definition for higher algebraic K -groups; in section 3, we describe the essential properties of
exact categories tbat are used in Quillen 's construction; in section 4, we give tbe definition
of a taips category associated with an arithmetic veriety aod hence make the definition of
an arithmetic K-theory; finally, in section 5, we formulate the global triangle relation.

11.8.1. The Classieal K-Theory

There are plenty of references for classical K-tbeory. By classical here we mean the K
theory before Quillen 's historical paper" Bigher Agebraic K·Theory In. Tbe reader should
consult the books of B888 or Milnor when necessary.

Let R be a ring aod denote by P(R) the category of finitely generated projective R
modules. Tbe Grothendieck group Ko(R) is the quotient group

Ko(R) =TIn,

where :F is tbe free abelian group on the isomorpbism classes of projective modules in peR)
and 'R is tbe subgroup genersted by the elements

(P EB Q] - (P] - [Ql,

for all P, Q E peR). For P, Q E P(R), [P] = [Q] in Ko(R) is equivalent to if PeP! :::: QEB P'
for seme P' e peR) (if snd only if P EB ~ :::: Q EB Jlfl for same n ~ 0).

We now give tbe definition of K 1(R) in the classical sense. Let Gln(R) be the group
of invertible matrices of size n over R. Denote by En(R) the subgroup of elementary

matrices, defined to be the group generated by the matrices e~;\.\), with 1 :5 i #: j :5
n, ..\ e R, where e~i)(..\) ia the unipotent matrix whose diagonal entries are all 1 snd whose
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A_(~ n
and let Gl(R) := liIlL.Gln(R). Similarly, we let E(R) := lirn-En(R). Since e~j)('\) t-+

e~j+l)(,.\)·under En(R) t-. En+1(R), we obtain elements eij(A) E E(R) as the common

image of all e~j) (,.\) for 1 :5 i, j :5 n. Hence E( R) is t~ subgroup of Gl(R) generated by
the eij ("\). An easy calculation shows that En (R) is perfect for n ;::: 3 and so is E( R). In
greater detail,

only noo-zero off·diagonal entry ia A in the (i, j )th_p05ition. Let Gin (R) t-. GIn+1(R) be
the natural map given by

[En(R), En(R)] =En(R) and [E(R), E(R)] =E(R).

In particular, by the fact that for any.A E Gln(R),

we see that
[E(R), E(R)] = [Gl(R), Gl(R)].

We define
K 1(R) :=Gl(R)/E(R) =GI(R)/[GI(R), GI(R)]

=Gl(R)Bb :: H 1(GI(R), Z).

Finally, we give the classical definition of K'2 (R).

Tbe nth Steinberg group Stn(R) is defined to be tbe quotient group of the free

abelian group on symbols z~j)('\) for 1 :5 i I- j :5 n aod ,\ E R, modulo tbe normal
subgroup corresponding to the relations

There ia a natural surjection

given by 4Jn(z~7)(JJ)) =e17\Jl). We also have a natural homomorphism

The infinite Steinberg group ie

St(R) := liITl-Stn(R)
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aod there is the Burjection
4J : SteR) - E(R).

Then we define

The most important propl(rties of K 2(R) are the following

Fact. (1). Stn(R) n ~ 3 and SteR) are perfeet.
(2). K 2 (R) = H2 (E(R), Z).
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So far, we have given the classical definitions fot Ki(R) with i = 0,1,2, aod this
suggests that we ean use the homotopy groups of certain spaces to define a general algebraic
K-theory; this is just what Quillen did.

11.8.2. The Q-Construction Flom Exact Categories

In this section, we review the Q-construction of Quillen for an exact category. In order
to da this, it is also necessary to describe the construetion of the classifying space for a small
category. The reference here is [Q 73] aod [Sr 91].

1I.8.2.a. The Classifying Space Of A Small Category

We start with sorne topologieal preparation. Let Ll be the following category: for eaeh
non-riegative integer n I let!! := {O < 1 < ... < n} be the ordered set consisting of 0, 1, ... , n;
the objects of Ll are the ordered sets !!, and the morphisms are the monotonie maps.

For eaeh positive integer n, there are n + 1 maps in Ll

which are iojective aod are given by

8!1(.)._{i, ifj<i,
t J.- i+l, ifi~i.

These are the face map8. Dually, there are n maps

s,:-l:n-n-It - __I

which are surjective aod are given by

1
{

}. if}' _< i,
s?- (j):= J.'- 1, if j > i.
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These are the degeneracy maps. The compositions of face maps and degeneracy maps
give aH morphisffiB in Ll. Then we make the following definition:

A simplieial object of a category eisa contravariant functor ß - C. A morphism of
simplicial objects in C is a natural transformation. A simplicial set is a functor ßOP - Stl,
where~ denotes the cat~gory of sets. Similarly, a simplicial space ja a functor ßOP 

Top, where Top denotes the category of topological spaces.

Suppose F : ßOP - ~ is a simplicial set. Then for each non-negative integer n, F(n)
is a set, called the set of n..simpliees of F. The ID'ipS ar give rise to n + 1 maps of
sets F(n) - F(n - I), called the face maps, which associate with each n-simplex in F(n.)
a collection of n + 1 (n - l)-simplices in F(n - 1), called its faces. Dually, the n maps
si- 1 give maps F(n -1) - F(n), which 8.88Ociate with each (n - l)-simplex a collection
of n degenerate n-simplices. These maps F(n - 1) - F(n) are called degeneracies. For
6 e F(n), we call F(tJr)(6) the i th face of 6, and F(si)(6) E F(!!..±l) the i th degenerate
simplex of 6.

A natural example of the above conceptB is constructed as follows (it ja also tbe moti
vation for the notion). Let X be a topological space. Let S(X) denote the total singular
eomplex of X, so that 5n(X), the set of all n-simplices of S(X), is just the set of singular
n-simplices in X, i.e. 5n (X) is tbe set of all centinueus m~ps ß n - X, where an is the
standard n-simplex

ß n := {(to, ... , t n ) E R n +1
: ti ;::: 0, L: ti = I}.

i

Ir f : !1l - n ja a morphism in ß, tben we introduce the natural map

1: ß m - .6on

such that n. I-+- Lln , j I-+- 1 is a functer Ll - Top as follows:

1((80,' .. I sm)) = (ta, ... , t n )

where t, = L/(j)=i Si, with t, = 0 if {j : jU) = i} = 0. It ia eaaily checked that, S(X) :=
{Sn(X)}n~O becomes a simplicial set.

With each simplicial set F : ßOP - ~, we can associate a topological space IFL called
the geometrie realization of F; IFI is defined aa the quotient space

(U F(n.) x ß n )/ -,

n~O

where for each n 2: 0, F(rr) is regarded as a discrete topologi~al space. The equivalence
relation - is defined as follows: given j : m -- I! in ß, let j : ß m - ß n be the map
described above. Then for any 6 E F(n.) , we set

(6,I(Y)) - (F(j)(6),y)
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for all y E ,6,m. Clearly, the eonstruetion of the geometrie realization is functorial.
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For any simplicial set F l a simplex 6 E F(!!) is non-degenerate if it is not the
degenerate simplex BBSigned to any (n - 1)-simplex by one of the degeneraeies. The very
important property of IFI is that IFI is homeomorphie to a CW-eomplex, whieh has one
n-eell eorresponding to e~h non-degenerate n-simplex of F. We have the following general
facts about this eonstruetion.

Facts. (1) If F, Gare simplieial sets, such that IFI and IGI are locally compact, then
IF x GI is homeomorphic to IFI x IGI· ...
(2) Let ,6,(n):= Homl1(-,!!), then 18(n)1 ~ 8 n .

(3) The homotopy of IFl may be eomputed as folIows: Let Cn(F) be tbe free abelian
group on F(!!), and let Bi : Cn(F) - Cn- 1(F) be the map indueed by F(&i). Then

is a chain eomplex such that for any abelian group A,

H.(IFI, A) ~ H.(C(F) ®z A).

(4) Let X be a topological space, and let S(X) denote the total singular complex.
There is a continuous surjective map f : 15(X)1 - X. Für any base point rEX,
denote by S(x) tbe subcomplex of S(X) such that IS(x)1 is a point whose image under
f is x. Then f : (IS(X)I,15(x)1) - (X, x) induces isomorphisms on the homotopy
groups. Hence if X is a CW-complex, f is also a hOI?otopy equivalence.

Now we have tbe idea of tbe classifying space of a small category.

A category C is a small category if its objects form a set. The nerve of C, denoted
by NC, is defined in tbe following way: An n·simplex of NC ia a diagram

A ltA h A h I_ A0- 1- ]- ... - n,

wbere Ai E ObC, fi E MorC. Given a map f : m - n in ,6" the corresponding map
NC(mJ - NC(!!) maps the above n-simplex to the rn-simplex

wbere Bj := AlU), and gj : BJ- 1 - Bj ia the composite map AJ(j-l) - AI(j)' (Here if
f(j - 1) = l(j), we let AI (i- 1) - AI(i) be tbe identity map.) In particular, the i th face of
tbe above n-simplex ia tbe (n - tl-simplex .

A lt A A Ji+10Ji A A
0- 1 - ... - i-I - i+l - ... - n,

wbile tbe i th degenerate simplex of the above n-simplex is tbe (n + 1)-simplex

A lt A A Id A I i+1 A A
0- 1 - ... - i- i - i+l - ... - n·
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The classifying space of C is the geometrie realization of NC, and is denoted by BC; in
other words,

BC:= INCI.
As an example, let C be the eategory {O < I}, consisting of two objects 0, 1 and a unique
(non·identity) morphism °- 1. Then B( {o < I}) = I := [0,1), tbe unit interval.

The above eonstruction is functorial, the verification is left to the reader .

•

II.8.2.b. Exact Categories

In this subsection, we review certain axioms in category theory.

A category C is a pair (ObC,MorC), where ObC consists of the objecta of C, the
collection MorC consists of morphisms between pairs of objects of C. That is, for aoy pair
of objects X, Y of C, there is a collection Hornc(X, V); An element f E Hornc(X, Y) ia
denoted as f : X - Y. Ir f E Hornc(X, Y) and 9 E Hornc(Y, Z), then there is a unique
element gof E Hornc(X, Z) and tbe following properties hold.

(1) For any fE Homc(X, V), 9 E Hornc(Y, Z), h E Homc(Z, W), tben

(h 0 g) 0 f =ho (g 0 f).

(2) ~or any X E abC, there is a (unique) element Idx E Hornc(X, X) such that, for any
fE Homc(X, V), 9 E Hornc(V, X), we have

fold x = f, Idx 09 =g.

(3) If (X, V), (X', V') are not the same, then Homc(X, Y) and Hornc(X', V') are disjoint.

We call V a subcategory of a category C, if a1l objects of V are objects of C,
Homv(X, Y) C Hornc(X, V), and the composition of morpbisms in V is the same aB the
one in C. A subcategory ia called a full subcategory if for any pair of objects X, Y of V,
we have

Homv(X, Y) = Hornc(X, V).

An object e is called a final object, if for any X E Ob C, Hornc(X, e) consists of
only one element. Dually, an object e' is called an initial object if for aoy X E Ob C,
Hornc(e, X) consista of only one element.

If for aoy pair of objects X, Y in C, Hornc(X, Y) ia an abelian group so that the
following conditions are aatisfied, we call C an Ab-category:

(1) ho (/ + g) = ho/ + ho 9 whenever they make sense.
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(2) (J + g) 0 h = f 0 h + 9 0 h whenever they make sense.
(3) There is a unique zero object 0, i.e. 0 is an initial object and is also a final object.
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If, furthermore, for aoy two objects X, Y in an Ab-category, there is a unique bi
product X x Y 1 then we eall C an Additive category. Here the bi-product means that.
for any two objects X, Y, there is an object Wand four morphisms p E Hornc(W,X), q E
Hornc(W, Y), i E Homc(.\', W), j E Hornc(Y, W), such that

po i = Idx, i 0 p + j 0 q = Idw , q 0 j = Idy .

•If for any object X in C, there is a unique object F(X) in C' and, for any f E
Homc(X, Y), there is a unique morphism F(/) E Hornc,(F(X), F(Y» so that

F(g 0 /) =F(g) 0 F(J), F([dx ) =IdF(x),

then we call F a covariant functor.

For a certain additive category C, we ean also introduce tbe kernei, cokernel, image and
coimage of a morphism f : X - Y. Moreover, an additive category is called an abeliall
category if every morphism bas its kernel aod cokernel aod, for aoy morphism f I th~

natural induced morphism Coker(/) - Im(J) is an isomorphism. Surely in this case, wt'
may introduce the concept about exact. Henee we also have tbe exact fUßetor , etc .. A very
important fact about abelian categories is the following

Theorem. Every abelian category can be imbedded in an R-module category by a,l
exact covariant fundar .

This theorem has many corollarieB. For instance, if gof is a monomorphism of an abelia,J
category, then f ia a mODomorpbism. Dually, there ia a similar statement for epimorphisms:

Next we introduce the concepts and definitions for exact categories, following [Qu 73}.·

Let C be an additive category which is embedded as a full subcategory of an abeliaii
category A. Suppose that C is c10sed under the extension in A in the sense that if an objeet.·
A of A has a subobject A' such that A' and A/A' are isomorphie to objects of C, then A
it.self is isomorphie to an object in C. Let f. be the dass of sequences

(.) 0 - x'.!..xLx" - 0

in C which are exact in A. A map in C is an admissible monomorphism (resp. admissibIt'
epimorprusm) if it occurs as the map i (resp. j) of some member of t;.. We will also use ..:r

(resp. -) to denote a monomorphism (resp. an epimorphism).

Obviously, we have the following facts:

(1) Any sequence in C which is isomorphie to a sequence in {;. is in {;..
.C, the sequence '.

o--+ X,(I~O)X' €B X"~XII -+ 0

For any X', X" iril
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is in C. For any sequence in f..l i is a kernel for j and j is a cokernel for i in C.
(2) The classes of admissible epimorphisms is closed under comp05ition and under the base

change by arbitary maps in C. Tbe dual version still holds.
(3) Let X - X" be a map with a kernel in C. Ir there exists a map Y - X in C such

that Y - X - X" is an admissible epimorphism, then X-x." ia an admissible
epimorphism. A simi1,:lr statement holds for admissible monomorphisms.

An exact category is an additive category C equipped with a family of sequences of
the form (.), ealled the short exact sequenc,es of C, such that the properties 1, 2 and
3 hold. An exact functor F : C - C' between exar.L categories ia an additive fundor
earrying exact sequences in C into exact sequenees in C'.

II.8.2.c. The Quillen Constroction

Let C be a small exact category. Recall that if M, N E Ob C, an arrow i : M - N is
ealled to be an admissible monomorphism if there is an exact sequence in C '

i
O-M-N-P-O

for same object P in C. Similarly, q : M -+ N is an admissible epimorphism if there is
an exact sequence

0- P - M!"N-O

for same object P in C.

Following Quillen, we ean form a new eategory QC having the same objeets as C, but
witb morpbisms defined in tbe following way. Let M aod M' be objeets io C aod consider
all diagrams

MJ-N..!..M'

where j is an addmissible epimorphism and i ia an admissible monomorphiam. Amorphism
M - N in QC is an equivalenee class of diagram M - M' - N above, where

M -lvI" - N

is an equivalent diagram if aod only if there is an isomorphism u : M' - M" making tbe
folowing diagram eommute:

M .- M' - N
[d 1 u 1 1 Id
M - lw 11 - N.

The eomposition of morphiams ia defined aB fellows. Given diagrams M - M' - N,
N - N' - P, the composite morphism 1.\1 - P in QC ia represented by the diagram
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M - M' XN N' - P. That is, the diagram, with the square being a special pull l'ack
over an admissible monomorphism, aa follows

MI xNN'
pr I !
MI

j 1
M

i-
N' ~p

Li'
N

In particular, if i : M - N ia an admissible monomorphiam, we have an assor.:iated arrow

i! : M - N in QC, given by M~M~N. Similarly, if q : M - N ia an admis.<.lble

epimorphism, we have an associated arrow q! : M - N in QC, given by N..i-.\4 !!M. Thus
in general, if f : M - N is an arbitrary arrow in QC, given by the diagram

then f = i, 0 q!, which comes imrnediately from the definition of the composilion of tHor
phisms in Qe. We can also form the pushout square in C

M'
9 1
M

i-
i '-

N
! q'

N',

where the horizontal arrows are admiBsible monomorphisms and vertical arrows are admis
sible epimorphisms. Such a square ia called 10 be bi-cartesian. In particular, / = ql! 0 i; in
QC, from the following diagram

M' i N }1N-
q ! ! ql

M i ' N'-
Id 1
M

Thus, the asaignments i l--+ i!, q l--+ q! have the foUowing properties:

(1). Ir i, i' are comp088ble admiaaible monomorphisms, then (i 0 i')! = i! 0 i~; Similarly for

comp08able admissible epimorpbisms 9, ql, we have (q 0 q'r =q! 0 q'!.
(2). Ir

M'
q 1
M

i-
i '-

N
1ql

N'

ia a bi-cartesian square, then i, 0 q' =ql! 0 i:.
In fact, (1) and (2) characterize QC in the following sense.
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Lemma. Let C be an exact category, V a category. Assume that

(1) For each object M in C, there is an object F(M) in V.
(2) For each admissible monomorphism i : M' - M, there ia an arrow Ft(i) : F(M') 

F( M) such that Ft(i 0 i') = Ft (i) 0 Ft (i'), if i, i' are composable; Dually, for each
admissible epimorphism q : M - N, there ia an arrow F'l(q) : F(N) - F(M) such
that F'l(q 0 q') =F'l(q') 0 F'l(q), if q, q' are composable;

(3) If

;'-
is bi-cart~esian, then

M' ~
q !
M

N
! ql •

N'

Ft(i) 0 F'l(q) =F'l(q') 0 Fdi').

Then there is a well-defined functor F : QC - V given by

Proof. If M..L- MI.!..N and M J.;.... M"!4N are two equivalent diagrams giving a
morphism M - N in QC, we bave an i80morphiam u : MI - M" such that q =qt 0 u, i =
i t 0 u. Regarding U aB an admissible monomorphism, we get Ft(i) = Ft(it) 0 F1(u), while
regarding u as admissible epimorphism, we get F'l(q) =F2{U) 0 F1(qd.

On tbe other hand, from the bi-cartesian square

M' ~ M IJ

U ! ! Id

M" ~ l\1"

Thus Ft (i) 0 F'J( q) depends onIy on the arrows in QC, and not on the particular diagram
which represents it.

Next, ifM~M,!4N and NJ:- N'ÄP are given and M ...!- M' XN N'.!.. P repre
sents the composite arrow in QC, we have a diagram with a bi-cartesian square,

l\1' XN N'
i' N' !2.p-

q' 1 l q1
M' i l N-

ql 1
M
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and q =ql 0 q' , i = i2 0 i'. Then

FI(i) 0 F2(q) =Fl (i2) 0 Fl(i') 0 F2 (q') 0 F2(q.)

=Fl(i2) 0 F2(q2) 0 Ft{id 0 F2(qr).

413

This proves that (M - M' - N) ~ Fl(i) 0 F2 (q) ia compatible with composition in QC
and so yield a weil defined functor QC - 'D.

Suppose now that C is a small exact category, 80 that the classifying space BQC is de
fined. Let 0 be the zero object of C. Then the fundamental group 1rt{BQC, O) is canonicaHy
isomorphie to the Grothendieck group Ko(C). (For the proof, see the next chapter.) Moti
vated by this fact, Quillen was able to give the following remarkable definition of algebraic
K-theory: the i th K-groups for a emaIl exact category C, denoted as Ki(C), is defined as
the (i + 1)It homotopy group of the classifying space QC I Le.

J(i(C) := 1I"i+l (BQC, 0).

In particular, if we let C be the category of finitely generated projective R-modules, tben
the above definition for K,(X) witb i = 0, 1,2 is the same aB those in tbe previous chapter.

11.8.3. The Essential Properties For The Q-Construction

In this section, we point out the essential properties of exact categories whicb make
the Quillen construction work. Later, we will use similar properties to characterize taips
categories of arithmetic varieties. For this purp08e, we reean tbe following theorem and its
proof.

Theorem. (QuilIen [73]) There ia a natural isomorphiam Ko(C) ~ 1fl(BQC, {O})
for any email cxact eategory C aod the null objeet 0 E C, where K o denotes the
Grothendieck group.

Lemma. The category of covering spaces of the classifying space BC of a small category
C ia naturally equivalent to tbe eategory of functore F : C - .5.rl. such that F( u) is a
bijection for each morphism u of C.

Proof. Let p : E - BC be a covering space. For any objeet X of C, let E(X) be the
fiber over X E Ob Be, where X is regarded as a O-simplex in NC, aod hence determines a
O-ceB in BC. Given a morphism tJ : Xl - X 2 , we may regard tJ aB a I-simplex in NC, which
determines a path Bu in BC joining Xl to X 2 • Since p is a eovering, it has the unique path
lifting property, which gives a bijection (Bu). : E(Xt} - E(X2 ), by associating to a point
Y E E(Xt} the second end-point of the unique path in E which lifta Bu and begine at y.

Hence X H E(X), u ~ (Bu). determines a functor C - ~ carrying aB anows of C into
bijectioDB of Srl.,
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Conversely, if F : C -10~ is amorphism inverting functor, i.e. F(u) ia a bijeetion for
each morphism u. Let F\C be the category of pairs (X, x) with X E Ob C, x E F(X), where
a morphiam (X!x) -10 (X',X') is amorphism u : X -10 X' such that F(u)(x) = x'. The
forgetful funetor F\C -10 C gives a map on classifying spaces PF : B(F\C) - BC with fibers
ppl(X) =F(X) for any object X E ObC..

Claim. Pr is a covering space.

Suppose the claim is true, tben for any morphism u : X - X' in C and any x E F(XL
ifx' = F(u)(x), u determines a morphism (X,x) -10 (X';":!:') in F\C, which gives the unique
path in B(F\C) lifting Eu and beginning at z E p;;l(X). Thus the above construetions are
inverse to each other, and give the desired equivalence of categories.

The proof of the claim. Hy a standard result from topolosy, we know that it ia
enougb to show that tbe map of simplicial sets N(F\C) -+ NC ia a aimplicial covering, i.e.
if den) is the simplicial set a(n)(p) = Hom6(p,n.), so that la(n)1 = Lln, the standard
n-simplex, then for aoy given diagräm of map9 of simplicial sets

- N(F\C)
!

NC,

6(0)
!

den) -+

we must show that there is a unique map ·.6.(n) -+ N(F\C) of simpliciaJ sets making the
diagram commute. Of course, a map rr : .ä.(n) -+ NC determines an n-simplex (j E NnC, so
we must show that if (j E NnC ia an n-simplex of NC, (ja E Na(F\C) a D-aimplex lying over
tbe jth-vertex of (j, then tbere exiBts a unique n-simplex T E Nn(F\C) whicb map9 to (j and
ia such that (ja ia tbe jth-vertex of T. Assume that rr ia given by tbe diagram in C

where the jth-vertex of rr is given by tbe object Mi, so that rra is given by an object
(Mi, xt) E F\C for Xi E F(Mt}. Hence we bave bijectiona

wbich for each j give a comp08ite bijection h : F(J\fj ) -+ F(Mi) for each j. ]n particular,
for j =i, /j is the identity. We have

Let Xj E F(Mj) be tbe unique element satisfying f;(Xj) = Xi. Then,

and Xj+l =F(uj+d(Xj). Thua we have a diagram in F\C, giving an element TE Nn(F\C),
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where Üj is the morphism induced by Uj. One sees at once that T is the unique n-simplex
lifting u whose ith-vertex is (Mi, Xi). This proves the claim, aod finishes the proof of the
lemma.

The proof of the theorem. Let C be a small exact category, 0 E Ob C a null
object. The category of cd'vering spaces of BQC is equivalent to the category L of fuoctors
F : QC - ~ Buch that F(u) ia a bijection for every arrow U of QC.

Let E! CL be the full subcategory consisting of fu~ctors F : QC - ~ with

F(M) = F(O), F(i!) =IdF(o),

for any admissible monomorphism i : M' - M in C.

We claim that rand E.. are equivalent categories. In fact, if F E Ob l: ia an arbitary

funetor, let F E ObE' be the functor given by F(M) = F(O). lf M ..!- M' i. N represents
an arrow u : M - N in QC, let

where for any M E ObC, we have iM : 0 - M, qM : M - O. Since F(iM !) is an
iso"morphism in the category~ it is dear that M 1-+ F(iM!) gives a natural transformation
F - F which is an isomorphism of functors. Thus every object of l:. is isomorphie to an
object of E', and 1:. is equivalen t to E'.

Now, to prove tbe theorem, it suffices to show that L' is equivalent to the c8tegory of
Ko(C.)-sets. (Hy definition, a Ko(C)-set is a set on whieh Ko(C) aets through permutations.)

Step 1. Hy the lemma above, we know that the category BKo(C) of covering spaces
of the classifying spaee of the group Ko(C) is equivalent to the category of Ko(C)-sets.

On tbe other hand, tbe universal cover BKo(C) is an initia~bjeet in the category

of eovering spaces of BKo(C), aod tbe automorphism group of BKo(C) in the category of
covering spaces ia just Ko(C), tbe fundamental group of BKo(C). Hence the category of
covering spaces of BQC also has an initial object whose automorphism group ia I<o(C).

Step 2. Define a rUDeter Ko(C) - Sets -l:'.

Let S be a Ko(C)-set with ,p : Ko(C) - Aut(S) tbe permutation representation. Then
we can define a funetor Fs : QC - Sd by means of Lemma 11.3 with the following assign
menta: Fs(M) =S for any M e ObC, (Fsh(i!) = Ids ; (Fsh(q!) = 4J([Kerq]) e Aut(S).
We must show that

4J([Ker (q' 0 q)]) =,p([Ker q]) tP([Ker q']).

But it is rather obvious. Finally, if

e-
M' 2.
q !
M

N
! q'

N'
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is a bi-cartesian square, then Ker q ::::: Ker q', so that q,([Ker qD = q,([Ker q'D, and the
conditions of Lemma II.3 hold. Therefore we do have a functor

Ko(C) - Set - E:
s 1-+ Fs .

Step 3. Define a functor P - Ko(C) - Set.

For F E Ob sE', let tPF : Ko(C) - Aut(F(O)) be gl..ven by q,F([MJ) = F(q~). We cao
check that this gives a well-defined homomorphism on Ko(C): for a given exact sequence in
C

there is the bicartesian square
i- M

1q

M"

far which q! 0 iMH! = i! 0 q~. Hence F(q~,) =F(q} Further, q;'" =q! 0 q:w." implies

So, by cODsidering the split exact sequences

0- M'-M' E9 M"-M" --+ 0

0--+ M"-M' E9 M"-lv!' - 0

we see tbat F(q:W,), F(qk,,) E Aut(F(O)) commute. Hence rPF ia weil defined.

Clearly, (S, rP) 1-+ Fs and F 1-+ (F(O), tPF) give the desired equivalence of categories.
This proves the Theorem.

11.8.4. A Definition oe Higher Arithmetic K -Groups

In this sectiOfi , we make adefinition of arithmetic K-theory, aod obtain some of its
elementary but most important properties. The discussion is based on that of the last
section.

II.8.4.s. Arithmetic K-Groups

We begin by recalling the defiriition of the arithmetic K-group, KÖ'r(x), for an arith
metic variety X over an arithmetic ring A, following [GS 91]. Later, we use the QuilIen
construction to construct this group in another way.
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1 '-
€Bp~ICHP'P- (X)q -+ A(XR ) - CHAr(X)q -+ CH(X)q -+ O.

Let X be an arithmetic variety over an arithmetic ring A =(A, E, Foo ). An hermitian
vector bundle on X ia a pair (E,P), where E a vector bundle on X, and p is an Foo-invariant
hermitian metric on the puB-back vector bund le of E over X(C). The arithmetic K-group
Ktr(X) ia defined to be tbe quotient group of the abelian group generated by ((E, p); 1JL
where (E, p) ia a hermitian.vector bundle on X ,and 1J E Ä(XR ) an Foo-invariant Coo form on
X(C), with the subgroup generated by the following relations: For any short exact sequence
of vector bundles on X I

E.: 0 -+ EI - E2 -+ E3 -+ 0,

if Pi is Fco-invariant hermitian metrie on the puB-back ;f Ei over X(C) for each i , then

Here ChBC(E.,p.) denotes tbe c18B5ical Bott-Chern secondary characteristic form associated
with the hermitian vector bundle complex on X (C) correspooding to the exact seque nce E.
00 X, with respect to the Chern characteristic form eh.

There are several properties for Ktr(X): From Chapter 2 aod Chapter 3, we have the
following

Theorem. Let X be an arithmetic variety over an arithmetic ring (A, E, Foo ). Then
there is a natural ..\.riog structure on Ktr(X) such that if K:r,(p)(X) is the eigen-apace
of the associated Adams operator /{Je with eigen-values kP, tben for each p;::: 0,

iB an isomorphism.

The basic idea to prove thiB theorem ia to UBe the five lemma. There exists an exact
sequeoce

Therefore, it ia natural to have the following

Theorem. For auy aritbmetic variety X over an arithmetic ring (A, EI FOO), there is a
natural exact sequence

and a naturallocal qhern character

such that the following diagram commutes:

Kt{X)Q
ch !

€Bp~1 CHP,p-1 (X)q

-+ Ä(XR) -+

Id !
-+ Ä(XR ) -+

KAr(X)q
chAr !

CHAr(X)Q

-+ K(X)Q -+ 0
eh!

-+ CH(X)q - O.
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In particular, we see that chAr is an isomorphism.

Putting these theorems together, we see that

(1). The arithmetic K-group works like the algebraic K-group.
(2). At the lowest level, tqere is a triangle relation as folIows:

N-
/F

K.(X)

Here H!'n(*) denotes certain analytic homology groups, N is the natural induced map,
F denotes the forgetful map, and R means certain regulators, which are generalizations
of the claasical regulator maps.

II.8.4.b. The Taips Category Of An Arithmetic Variety

Let X be an arithmetic variety over an arithmetic ring (A, Foo , E). There are two
possible ways to define the objects of the taips category to be constructed. Tbe first is that
the objects co·nsist of prime elements, Le. hermitian vector bundles (E,p) on X, together
with the classes of Foo-invariant differential forms, modulo tbe exact forms about B, 8. If
so, it is difficult to study the classical Bott-ehern secondary characteristic fonns. Hence, it
is natural to make the other choice: we let the objects be tripies (E,p; '7), where (E, p) is
a hermitian veetor bundle over X, and '7 is a differen tial form in A(X R). One may think
naively that we ean define a "sequence"

to be exact if

(1). The induced maps 00 the vector bundles give the short exaet sequenee

(2). T12 - ehac(E" p.) ='71 + '73'

Theo, one may try to go furt her aod say that this definition gives UB an exact category
and make tbe Quillen coostruction possible and heoee we could reeonstruet the arithmetic
K-group as the Grotbendieck group of this exact category. Unfortunately, this does not
work weB because there ia no exact category at this level. (The reason will be seen later.)

From now on, we assurne that the objeets of the taips category as80ciated with an
arithmetic variety X are tripies (E, p,; 1]) as above. \Ve next define morphisms between
objects aod, for this purpose, we find out that the terminology 'essential' is quite usefuf.
(Here 'essential' means that, basically aod theoretically, the whole story works just because
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we have them, hut they da not work in praetice.) Following the suggestion of A. J. Berrick,
we call the sequence

0- (&l,Pl;7]d --+ (E2,P2;112) --+ (&3, P3; 7]a) - 0

an essential ahort exact sequence if

( 1). The induced map on vector hundles gives a short exact sequence

&. : 0 --+ EI --+ E2 --+ E3 --+ 0;

..

o
i

(Coker(er), r;w3(0))
1

(F, T;W)
i

(Im(o), TI;w 1(0))
i
o

As a special case,
(f,p;7]) --+ (.1',r;w)

is aaid to be an essential isomorphism if

(1). The induced map on vector bundles is an isomorprnsm f::::.1'.
(2). w - chBc(E, F; p, r) =1].

It is elear that
(E,p;7]) - (.1',T;W)

is an essential isomorphism if and only if there is an essential abort exact sequence

0--+ (0,0; 0) --+ (E, p; 1]) --+ (.1', T;W) --+ O.

We now make a detailed analysis of the possible morphisms among objects. To explain
this, we consider tbe situation for abelian groups: Buppose er : E --+ F ia a morphism of
abelian groups E, F. Then we have the foliowing diagram

o 0
! i

Ker(er) Coker(a)
! 1
E ~ F

1 i
E/Ker(a) :::: 'Im(a)

1 i
o 0,

where the columns are exact aod the row at the hottom ia an isomorphism. For any two
objects (E, P; 1]), (F, Tj w), we shall eall the diagram

o
1

(Ker(er), pi; '1J(er))

1
(E,p;1])

1
(E/Ker(er),,ä; 171(0))

1
o
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a general morphism, where tbe two columns are essential short exact sequences, the row
at the bottom is an essential isomorphism, I means the restrietion, and -:- means the quotient.

In particular, for general morphisms, we have the following very important relation
between 173(0) and w3 (a):.

where chBc(a : E -+ F; 7J, r) denotes the classical Bott-Ghern secondary characteristic form
associated with the natural exact sequence

0- (Ker(a), pI) - (E, p) ~ (F, r) - (Coker(a), T) - O.

Remark 1. We will see later that morphisms, in the taips category of an arithmetic
variety X, are not the general morphisms: Roughly speaking, a morphism in the associated
taips category is a special general morphism.

Remark 2. For any general morpbism as above, from the definition of an essential exact
sequence, we can eaBily determine 7Jl(O')' w 1(0), and w3(0) in terms of the corresponding
classical Bott·Cbern secondary characteristic forms and 7J3(a-). In particular, if the objects
aod the morphism for vector bundles are given, then 7Jl(O')' wI(a), and w3 (a) are uniquely
determined by '13(0').

We define the kerne! of a general morphism (0, 7J3(O'» aB (Ker(a), pi; 7J3(a». Similarly,
we define the cokernel of a general morphism (0', 173(a» aB (Coker(a), Tiw3(a». For coo
venience, we call (E/Ker(O'), 13; 7Jl(a» tbe quotient of (0', '13(0'», and (Im(O'), TliwI(a» the
image of (0', '13 (0' ) ). Also, a general morphism (a, 7J3 (a» is a general monomorphism
if its kernel is (0,0; 0). Dually, a general morphism (a, 713(0'» is a general epimorphism
if itB cokernel is (0,0; 0). With these definitions, we see that an essential isomorpbism is a
general morphism which is both a general monomorphism and a general epimorphism. Fur
ther, there is an essential ahort exact sequence, which comes from a general monomorphisffi
a followed by a general epimorphism ß, for whieh the kernel of ß is essentially isomorphie
to the quotient of Q.

Before we make the definition for morphisms, we give the properties of the eategory to
be eonstructed, whieh are needed to apply Quillen 's eonstruction. For brevity, we denote
this category by TAr(X), and eaU it the taips category determined by the arithmetie
variety X, even though, at this moment, we do not have the definition of morphiams in
TAr(X).

A summary of the laat aeetion shows that in order to UBe tbe Quillen eonstruction for
TAr(X), among others, we need t~e following items:

(i). A zero element 0 for the category. That is, an object 0 such that for any objeet (E, p; 7J),
there ia a unique morphism from 0 to ([,P;7J), and a unique morphism from (E,p;7J)
to O.
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(ii). For any two objects (E,p;7]), (:F,r;w), tbe set Homr",«E,p; 7]), (..r,r;w» must be an
abelian group.

(iii). There is a composition for morphisms

HomY,,-,(E, P; 7]), (:F, r;w» x Homy".«.1', r;w), (g, v; X»

- Homy".«E, P; 7]), (g, v; X»,

denoted by

(/,9) ...... 9 0 /,

such t_hat the composition is bi-Hnear with respect to the (group) addition of Horn.
That is, whenever it makes sense,

go (I + I') =gof + go !" (g + g') 0 f =gof + g' 0 f.

(iv). Whenever it makes seuse,

Id 0 f =/, 90 Id =g.

(v). There are definitions of monomorphismB and epimorphisms SO that

Mono 0 Mono E Mono, Epi 0 Epi E Epi.

That is, the composition of two monomorphismB ia a monomorphiem, aod the compo
sition of two epimorphisß18 ie an epimorphism.

(vi). There are certain special puB-back coustructiona in TAr(X). More precisely, we need
tbe puH-back of monomorphisms with respect to epimorphisms.

Remark 3. In (vi), we drop out the condition that the bi-product should exist, which
ia apparently needed for QuiBen's cOßatruetion. In order to explain (vi), we look at tbe
situation in set theory: there the puB-back ia defined by the diagram

MxqN
1

M

-
9-

N
Ip
Q.

Furthermore, the set M XN Q is constructed as the set Hz, y) E M x N : p(x) =q(y)}.
Therefore the essential point for the bi-product in the QuiHen construction is that the bi
product has its very important consequence to create the puH-back. In this sense, we may
ornit the axiom for the bi-product. Also by eonsidering the Quillen construction, we know
that we do not need to have a general puH-back construction. What we need is the special
puH-back of monomorphisms with respect to epimorphisms.

Gnce we make· all these items elear I we ean discuss how to introduce morphisms for
TAr(X).
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First, for any object (E, P; Tl), quite naturally, we ean introduee the general identity
morphism for (E, P; 17) by letting it be (Id, 0). That is, we have the following diagram

o 0
1 1

(0,0;0) (0,0;0)
1 1

(Id ,0)(E,P;17) ~ (E,p;,,)
11·

(
(I~O) ( )E,p;,,) E,p;"

1 1° O.
There ia an obvioua eboice for tbe zero object of TAr(X) viz. the object (0,0; 0), wbere the
first 0 is the zero bundle, the Becond 0 ia the zero metric, while the tbird 0 ia the zero form.
We need to show that (0,0; 0) ia an initial object and is also a finial object. Since we have
not yet made adefinition for morphisms, we cannot consider thia now. However, we sball
still think of (0, Oi 0) as tbe zero object, aod eall (0,0; 0) tbe general zero element. Henee
we also call (0;,,) the general zero morphism for aoy two objects (E,p;7J), (.:F,T;"").
That is, we have the following diagram

0 0
1 1

([,Pi") (.:F, T; w)
1 1

([,p;,,) ~ (.:F, T; w)
1 1

(0,0;0) :::: (0,0;0)
1 t
0 o.

Now note that ooly four typee of morphisms are needed in the iterns above, i.e. the
zero morphiam, the identity morpbism, mooomorphisrns, and epimorphisrns, so we ean begin
with a detailed discU88ion for them in the sense of general morphisms. In partieular, we pay
special attention to the structure of '13(0): So it ia convenient to recall the following:

For a general morphism

o
!

(Ker((), pj; '7J(a»
!

(E, p;,,) (CI~))

1
(E/Ker(o), Pi "1(0»

1
o

°1
(Coker(a), t;w3(a»

1 .
(.:F., T;W)

1
(Im(a), Tj;w 1(a»

t
0,
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we have
7]3(0') - w 3(0') =1) - w + chBC(O' : [-:F; 1), T).

In the following, we denote chBc(O' : [ - F; 1), T) by chBC(O')'

We discUSB the above situations C88e by case..
R. Tbe general zero morphism is given by

0 0
1 i.

(f,P;17) (:F, T; w)
1 i

(f,p;1]) 0
(F,T;W)-

1 i
(0,0;0) ~ (0,0;0)

1 i
0 0.

So 1]3(0) =17·

b. Tbe general identity morprnsm is given by

423

°1
(0,0;0)

1
(f,p; 1])

1
(E,p; 1])

1
o

So TJ3(Id) = O.

c. A general monomorpbism ie given by

(Id,O)-

°i
(0,0;0)

r
(E,Pi1J)

i
(f,p;1])

i
0.

So '13(0) =O.

o
1

(0,0;0)
1

(f,p;TJ)
1

(E,p;f1)
1
o

(a,'J3(a»)-

o
i

(Coker(a), f; w3(0))
1

(T, T;W)
T

(Im(O'), TI;w1(0))
1
0.
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d. A general epimorphism is given by

°1
(Ker(O'), pi; 11- w + chBc(O'»

1
(E,P;11)

1
(E/Ker(O'), ß; 111(0))

1

°
..

°1
(0,0;0)

1
(:F,r;w)

1
(:F,r;w)

1
0.

So '13(crl = 11- w + ebBe(O).

Therefore, we find tbat 113(0') in these four cases has the form a11+b(11-W)+cchBc(a)
with a, 6, c E {O, l}. More precisely, we have the following observation.

a. The general zero morphism gives

b. Tbe general identity morpbism gives

(a,blc) = (0,1,1).

c. A general monomorphiam gives

(a, b, c) =(0,0,0).

d. A general epimorphism gives
(a, b, c) = (0,1,1).

In these terms, we can describe the morphism as (0; a, b, cl, where a deootes tbe mor
phism for vector bundles in tbe usual sense, a, b E {O, I} aod c E Z. In this way, we may
use an addition and a multiplication for a, Z1 and Z to define addition and composition for
morphisms of the form (a; G, b, cl. Hut this does not work weH. For example, (a, b, c) for the
zero morphiam is not (0,0 1 0), while (a, bl c) for the identity morphiam ia not (1, 1, 1). So
we still cannot get tbe eorresponding items (i), ... , (vi) listed above. In order to overcome
this problem, we introduce two maps from the field Z2 = {O,e} to tbe set {O, 1} C Z:

J:{O,e} {Oll},
0 f-+ 0',
e 1-+ l',

aod
J':{O,e} - {OI1},

° 1-+ l',
e 1-+ O.
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Main Definition A. (1). For any two objects (E,pj7]), (.1',T;W) ofTAr(X), neither of
which is (O, 0; 0), we let

HomTA.(X)((E,p;7]), (.1',T;W))

• = ((o;a,b,c): 0 E Hom(E,.1'), a, bE Z2, cE Z}.

Jf either one of (E , p; 7]), (.1', T;W) is (0,0; 0), then

HomTA.(X)((E,p;ry), (.1',T;W))C: {(O;O,O,O)},

where the first °means tbe zero morphism of vector bundles.
(2). Suppose

then
(oja,b,c):= (a'ja',b',c')

if and only if
o = 0', a = a/, b = b', c = c'.

(3). Suppose
(oja,b,c), (a/;a',b/,c/) € HOffiTAr(X)((E,pj7]), (.1',TjW)),

then
(o;a,b,c) + (a';a',b',c') := (a + O/;<:J + a',b+ b', c+ c'),

where for the right band side, the first addition means tbe usual addition of ffiorphisms
of vector bundles, the second and the third additions mean the addition in the group
Z2, wbile tbe last addition means tbe addition in Z.

(4). Suppose
(er;a,b,c), (er'ja',b',c') E HOffiTA,(X)((E, P; 71), (.1',T;W»,

tben
(a; a, b, c) 0 (er'; a/, b', c') := (00 a'; a 0 a',b 0 b' ,c 0 c'),

where for tbe right band side, the first 0 means the usual composition.of morphismB of
vector bundles, the Becond and the tbird mean the multiplication in the field Z2, wbile
tbe last 0 means the multiplication in tbe integer ring Z.

(5). Suppose
(O'j a, b, c) E HOmTAr(X)((E, p; '1), (.1', Tj w)) # {Ol,

then tbe kerne! of tbe morphism (a; a, b, c) is defined to be

(Ker(a),pl; J'(a)7] + J(b)('1- w) + cchsc(a».

Tbat is, tbe kernel of the general morphism

(a, J'(a)fJ + J(b)('1- w) + cchsc(a»,
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which ie ueually called the aBeociated general morpmsm of (O';a,b,c). The coker
nel of the morphism (0'; a, b, c) is defined to be the cokernel of the 8880ciated general
morphism

(0, J'(a)1] + J(b)(11- w) + c chec(a».

Similarly, we define tbe image of the morphism (a; a, b, c) to be the image of the
associated general mo~phiem

(er, J'(a)1] + J(b)(f] - w) +cchec(er»,
..

and the quotient of the morphism (er; a, b, c) aB tbe quotient of the associated general
morphism

(er, J'(a)1J + J(b)(TJ - w) +cchec(er».

For the morphism connected with: (0,0; 0), we define its kernei, image aad quotient to
be tbat associated with (0; 0, 0,0).

(6). For any object (E, Pi 1]), whicb is not (0,0; 0), we define tbe identity morpmsm of
(E,p;1]) to be (lde ;e,l,l).

(7). In HomT"r(x)«E, p; 71), (r, Ti w», we define the zero morpmsm to be (0; 0,0,0).
(8). Suppose

(o;a,b,c) E HomT".(X)«E,p;1]), (.1',T;W» #; {O}.

Tben (0'; a, b, c) is an isomorphiBm if
(a). (a,b,c)=(e,l,l). "
(b). a i.s an isomorphism of vector buodles.
(c). Tbe kernel of (0'; a, b, c) is (0,0; 0).

In particular, an identity morphism ia an isoffiorphism.
(9). Suppose

Then (a;a,b,c) ia a monomorphism ifit is the identity morpbism, or it ia an isomor
phism, or it aatisfies tbe following condition
(a). E is a aubvector aheaf of .1' aod a is the natural indusion.
(b). (a, b, c) =(e, 0, 0).

For convenience, aB morphisms starting from (0, Oj 0) are also caBed monomor
phiams of TAr(X).

(10). Suppose

Then (ai a, b, c) is an epimorphism if
(a). a is"8 Burjective morphism of vector bundles.
(b). (a, b, c) = (e, 1, 1).

For convienence, aB morphisms which end with (0,0; 0) are also caBed epimor-
__" phisms of TAr(X). In particular, an isomorphism is an epimorphism.

(11). The sequence from TAr(X) "

(0 O· 0) (C' ". - )(0"1;0 1,bi ,cd ( C' . )(O"~j~,c~)(E .) _ (0 O' 0)
" - vl,Pl,1]l - v2,P'2,Tl2 3,P3,1JJ, ,
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ia a abort exact sequence, if
(a). (0'1;al1bl,cd is a monomorphism.
(b). (0'2; a2, b:l, C2) ia an epimorphism.
(c). The associated sequence for general morphisrns is an essen tial short exaet sequence.

(12). With the above definition, we caB TAr(X) the taipa category associated with the
arithmetic variety X.-

Proposition. (1). The category TAr(X), satiafies the iteITlB (i), (ii), (iii), (iv), and
(v), which are need for the Quillen construction.
(2). Ir (0'; a, b, c) is a monomorphism, then its associe.ted general morphism ia a general

monomorphism; In particular, the kernel is (0,0; 0).
(3). Ir (0'; a, b, c) ia an epimorphism, then its associated general morphism is a general

epimorphism; in particular, the cokernel is (0,0; 0).
(4). If (0'; a, b, c) ia tbe identity morphism, then its 88SOciated general morphism is the

general identity morphism.
(5). Ir (0'; a, 6, c) ia an isomorphism, then its associated general isomorphism is an es

sential isomorphism.

This proposition ie easily proved from tbe definition. We leave it to tbe reader. The
proposition teils us that tbe definitions above give the essential properties which are needed
for an arithmetic K -theory. In particular, the definition does include tbe action of the
classical Bott-Chern secondary characteristic forens for exact sequences.

Tbus, to apply tbe Quillen construction, wbat we need now is the construction of a
special pull-back for monomorphisITlB with respect to epimorphisms. Before we give this
pull-back construction, we have to find tbe neceasary conditions for it. Start witb the
picture

(fi ,Pi;11d
(O'i;ai,l bi,cd

(&:1,1'2; 112) ,

where (0'1; ab bi , cd is an epimorpbiBm and (O'a; aa, ba,ca) ia a monomorphism, we need to
find an object (f4 , P4; '14), an epimorphism (0':1; a:l, b:l 1 c,), and a monornorphism (0'4; a4, b4 , C4).
so that we can complete tbe diagram aB follows:

(&4, P4; 114)
(0',; a2, 1 b2, C2)

(&3,1'3;113)

(&i, Pi; 11d
(O'l;ai'! bi,cd

(&2, P2; 112)'

Furthermore, we need the foUowing additional very strong condition: there is a natural
essential isomorpbism

Ker(0'2; a2, b21 C2) == Ker( O'i; ai, bt , cd,

which will be needed in tbe praof of the main theorem. There are basically three different
situations. The first is that in whicb
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In this situation, by the additional condition above, we let (E4 ,P4; '14) be the kernel of the
epimorpbism (0' 1; 01, b1 , cd. Tbe 88SOciated morphisßlS are easily determined and we have
the following picture.

(Ker(O'd, Pll;Jh - '72 + chBC(O'I))
(0']; 02,1 b], C2)

(0,0;0)

.
where 0'4 is tbe natural indusion. Note that once we know the objects and the morphisms for
corresponding vector bundles, then the associated epimorphism or the associated monomor
pbism is easi!y deterrnined by definition.

Now we come to tbe second situation, in which

and tbe corresponding monomorphism is not an isomorphism. In this case, for vector bun
dies, the answer is natural: we take E4 as the pull-back of E3 by the map 0'1. Then &4
is a subvector bundle of EI. The associated morphisms for vector bundles are also easily
determined: 0'" is just the natural indusion, while 0'] is the surjective induced by 0'1. Next,
we have to choose a metric on E", but this" is also quite obvious, since we may choase the
restrietion metrie from EI. Thus, for (E4 , P4; '7'1), the only term we need to determine is
the differential form '74. But this is also not very difficult. In fact, from the additional
condition about the kernei, which now has adefinite meaning, the isomorphism of vector
sheaves between the kernel of 0'] and the kernel of 0'1 ia determined. So, by the definition
of tbe essential sbort exact sequence, we have a unique choice for tbe form 7]4'

Finally, we discuBS tbe third case, in which the corresponding monomorphism ia an
i80morphism. So we have E" =EI XE~ E3 with the corresponding hermitian metric Pi X P:3 flJ.
Note that now 03 is an isomorphism, we see that aH these make sense. Let 0'4 be tbe first
projection, which ie an isomorphism, and Cl2 be the second projection. Put (a:z, b:z, c:z) =
(04, b4 , C4) = (e, I, 1). Thus for the definitlon, the final problem is to find out 7]4' For doing
so, we only need to put tbe condition that (Cl2; l1.I, b4 ,C4) is an isomorphism in TAr(X). With
this definition, we also need to show that tbe relation for the kernels holds: Recall that the
c1assical Bott-ehern secondary characteristic forms associated to a short exact sequence of
hermitian vector bundles may be constructed by using the pl-deformation, so twisting by
an ieometry does not change this secondary form.

We now have

Proposition-Definition. For any picture

(E1 ,Pl;l1d
(0"1; a1, 1b1 , cd

(E2 ,P2;7l:z) ,
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where (0 I ; al , bl , CI) is an epimorphism and (0'3; a3, b3 , C3) is a monomorphism, there is
a unique pull-back construction in TAr(X):

U:'4, P4; 7]4)
(~2;aJ'! ~,CJ)

([3, P3; 7]3)

([I,Pl;7Jd
(Ol;al'! bl,cd

([2 , P2; 7J2),

where (02; a2, b'l' C2) is an epimorphism, and (0'4; a4 , b4 , C4) is a monomorphism. We
call this square a bi-cartesian square in TAr(X), änd denote ([4, P4 ; 7]4) by

Furthermore, we have

Now we corne to first main result.

Main T~eorem I. For any regular arithmetic variety X, there ie a natural isomorphism

The prcof of the main theorem ja similar to that of Quillen's theorem in Chapter 3, but
since 'the category TAr(X) has its own special properties, we give a detailed proof below.

Proof. We begin with two lemmas.

Lemma 1. The category of co:vering spaces of the classifying space BQTAr(X) ie
naturally equivalent to the category of functors F : QTAr(X) - Set such that F(u) is
a bijection for any morphiem u of QTAr(X).

Lemma 2. Let V be aoy category. Assume that

(1). For each object M in TAr(X), we are given only one object F(M) in V.
(2). For each monomorphism i : M' - MI we are given an arrow FI(i) : F(M') - F(M)

such that if i, i' are composable F1(i 0 i' ) = FI (i) 0 FI (i').
Dually, for each epimorphism q : M - N, we are given an arrow F2 (q) : F(N) - F(M)
such tbat F2 (q 0 q').= F2(q') 0 F2 (q) if q, q' are composable;

(3). Ir

i'-
is bi-cartesian, tben

M' ~
q !
M

N
! q'

N'
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Then there ie a well-defined functor F : QTAr(X) - 'D given by

The proof of Lemma 1. Let p : E - BQTAr(X) be a covering spa.ce. For any
object M of TAr(X), let E(M) be the fiber aver M E Ob BQTAr(X) , where M ie regarded
88 a o-simplex in NQTArU(), which determines a o-cell in BQTAr(X). Given a morphiem
u : MI - M2 , we regard u as a I-simplex in NQTArU(), which determines a path Eu in
BQTAr(X) joining MI to M2. Since p is a covering, it h.is tbe unique patb lifting property,
which gives a bijection (Eu). : E(Mt} - E(M2 ), by associating to a point y E E(Md
the second end-point of tbe unique path in E which lifts Bu and begins at y. Hence
M 1-+ E(M), u 1-+ (Eu). determines a funetor QTAr(X) - ~ carrying all arrows of QTAr
to bijections of~.

Conversely, if F : QTAr(X) - Srl is a morphism inverting funetor, i.e. f(u) is a
bijection for each morphism u. Let F\QTAr(X) be the category of pairs (M, m) with
M E ObQTAr(X),m E F(M), where amorphism (M,m) - (M',m/) ie a morpbism
u : M - M' such that F(u)(m) =m'. The forgetful funetor F\QTAr(X) - QTAr(X) gives
a map on classifying spaces pp : B(F\QTAr(X» - BQTAr(X) witb fibers ppl(M) =F(M)
for any object M E ObTAr(X).

Claim. PF is a covering spa.ce.

Suppose the claim ie true. Let u : M - M' be a morpbism in QTAr(X) and let
m E F(M). Ir m' = F(u)(m}, then u determines a rnorpbism (M, m) - (M', m') in
F\QTAr(X}, wbich gives the unique path in B( F\QTAr(X» lifting ßu aod beginning at
mE ppl(M).

Thus the above construetions are inverse to each other, and give the desired equivalence
of categories.

The proof of the claim. Hy a standard result from topology, we know tbat it is
enougb to show that the roap of simplicial sets N(F\QTAr(X» - NQTAr(X) ie a simplicial
covering, i.e. if ß(n) is tbe simplicial set ß(n)(p) =Homa.(p, !Ü, tben given aoy diagram
of maps of simplicial sets --

ß(O) - N(F\QTAr(X»
1 1

ß(n) - NQTAr(X),

we must show that there is a unique map n(n) - N(F\QTAr(X» of simplicial sets which
makes the diagram commute. Of course, a map (T : Ll(n) - NQTAr(X) is just an n-simplex
(T E NnQTAr(X), so we must show that if u E NnQTAr(X) is an n-simplex of NQTAr(X),
and (TO E No(F\QTAr(X» is a o-simplex Iying over the jth-vertex of u, tben there exists a
unique n-simplex T E Nn(F\QTAr(X)) which maps to (T, such that 0'0 is the ith-vertex of
T. Assume that (T ia given by the diagram in QTAr(X)
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and the jth vertex of U is given by the objeet Mi, so that Uo is given by an object (Mi. Xi)
of F\Q7Ar(X), where xi E F(Mi). Then we have bijections

w hieh gives a composite bijection h : F( Mj) - F( Mi) for each j (with fi being the identi ty)
such that

( ) ( )
F(Uj) ( )/j+t )

fj = h+l 0 F Uj+l : F Mj - F Mj+l - F(Mi .

Let mj E F(Mj ) be the unique element satisfying Ji(mfJ =Tnj. Then,

sud mj+l = F( uj+d(mj). Thus there is a diagram in F\Q7Ar(X),

(Mo, mo)~(MI,ml)~'" ~(Mn, mn ),

where Üj is the morphism indueed by Uj. This determines an element T E Nn (F\Q7A.(X)).
One sees at onte that T ie the unique n-eimplex lifting u, whose 1-th-vertex ie (Mil m;). This
proves that PF : B(F\Q7Ar(X)) -+ BQ7A.(X) is a eovering, and completes the proof of
Lemma 1.

The proof of Lemma 2. Ir

([l,PI; 111)

([1, PI; 111)

(01 ;e,I,I)..--
(o~ ;e,I,l)-

([0, Po; 1]0)

([ö, PO; 1]0)

are equivalent diagrarns which give a morphism ([I, PI; 1]1) - (&2, P2; TJ2) in QTA.(X), then,
(by definition,) there is an isomorphiern u : [0 - [ö such that

(0'1; e, I, 1) -= (O'~; e, 1, 1) 0 (u; e, 1,1), (0'2; e, 0,0) = (O'~; e, 0, 0) 0 (u; e, 1,1).

So for admissible monomorphisms, we get

and far admissible epimarphisms, we get

On the ather band, fr.om the bi-cartesian square

([0 I Po; '10)
(u; e,! 1,1)

([b I Po; 11b)

(u;e ,1,1)-
(ld;e, 1,1)-

([0 ,PO; 110)
(Id;e,! 1,1)

([0, Po; f'Jh),
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we have

since

and
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(Id; e, 1, 1) 0 (ß; e, 0, 0) =(ß; e, 0, OL

(Id; e, 1, 1) 0 (ß; e, 1,1) =(ß; e, 1, 1).

F1(02; e, 0,0) 0 F2(01 je, 1,1)

=F1(0;; e, 0,0) 0 F t (u; e, 1, 1) 0 F2(Uj e, 1, 1) 0 F2(0~; e, 1,1)

=F1(0;j e, 0, 0) 0 F2(0~; e, 1, 1).

Thus F 1(02j e, 0, 0) 0 F2(OI; e, 1, 1) depeods onIy on the arrows in QTAr(X), and does not
depend on the particular diagram which represents it.

Next, if MJ2-M/~N and N.!!!-N'!z.P are given, aod M..!- M' xNN' 2. p
represents tbe comp08ite arrow in QTAr(X), we have a diagram

i'
M' XN N' -

qJ !
M'

ql !
M,

where the square is bi·cartesian, q =ql 0 q and i = i 2 0 i'. Then

Ft(i) 0 F2(q) =Fdi2) 0 F1(i') 0 F2(q') 0 F2(qt}

=Ft (i2) 0 F2(q2) 0 F1(it} 0 F2(qt}.

This proves that (M..L M/~N) ..-. Ft (i)oF2(q) is compatible with composition in QTAr(X)
and so yields a well-defined functor F : QTAr(.X) - V.

FineJ]y, we come to the proof of the main theorem.

The proof of the main theorem. Sy Lemma 1, the category of covering spaces of
BQTAr(X) ie equivalent to the category l:. of fi.mctors F : QTAr(X) -.sn. such that F(u)
is a bijectioo for every arrow u of QTAr(X).

Let E C L be the full subcategory consisting of functom F : QTAr(X) - ~ with
F(M) = F(O), F(i!) = IdF(o) for each admissible monomorphism i : M' - M in TAr(X).
We claim that :F' aod :F are equivalent categories.

In fact, if F E Ob l:. is an arbitary runetor , let F E Ob E be the functor given by

F(M) = F(O); and if M ~ M' ~ N represents an arrow u ~ M - N in QTAr(X), let

F(u) =F(iM,d- 1 0 F(q!) 0 F(iM!) : F(O) F<!!:;d F(M) F~) F(M') F(i~)-l F(O),
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where for any M E TAr(X), we have that

iM : 0 - M, qM : M - 0,

433

w hile for any monomorphism (Cl'; e, 0,0) and any epimorphism (ß; e, 1, 1) from (f, P; 17) to
(F, r;w), we denote by (Cl'~ e, 0, O)! and ({3; e, 1, 1)! the following pictures:

(f,p;1]) (a~O) (:F, r;w)
(Id;e,! 1,1) •

(f, P; 1]).

and
(E,p;1])

(Id;e ,1,1)
(E,p;1])-(ß;e,! 1,1)

(F,r;w).

One ean also prove that for any two eomposable arrows u, v in QTAr(X) , we have

F(v 0 u) =F(v) 0 (u).

Clearly M 1-+ F(iMI ) determines a natural transformation F - F whieh is an i80morphism
of funetors, sinee F(iM!) is an i80morphism in the category S!:.1 by the pieture

F(M) F~l) F(M)

11
F(O).

Thus every object of E is isomorphie to an object of E', and L is equivalent to E.
Claim. To prove the theorem, it suffiees to show that E' is equivalent to the eategory

of Kt-r(X)-sets.

We divide the proof of this theorem into the following 3 steps.

Step 1. The proof of the last claim.

Hy Lemma 1, we know that the eategory of eovering spates of the cia.ssifying spaee of
t~e group Ktr(X), BKtr(X), is equivalent to the eategory of KC"r(x)-sets.

On tbe other hand, the universal eovering BKMX) of BKtr(X) is an initial object in

the category of covering spaces of BK~r(x), and the automorphism greup of BKt-r(X). in
the eategory cf covering spaces is just Ktr(X), the fundamental group of BKtr(X). Henee
the category cf eovering spaces of.BQTAr(X) also has an initial object whose automorphism
group is Ktr(X).-Therefore, if E' ia equivalent to the category of Ktr(X)-sets, we have
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Step 2. Define a functor Kt-r(X) - Set - F'.

Let S be a KC'r(X)-set and let fjJ : Kt-r(X) - Aut(S) be the permutation representa·
tion. We define a functor Fs : QTAr(X) - ~ by means of Lemma 2 with the following
asaignments: Fs(M) =S for any M E ObTAr(X), and

.
(Fsh(i!) =Ids , (Fsh(q!) =fjJ([Kerq]) E Aut(S).

First, we need to s~ow that if

M' ..!.
q !
M

N
! q'

N'

is a bi-cartesian square, then Ker q ~ Ker q'. Hut this relation follows from the definition of
the bi·cartesian square in TAr(X). Therefore,

q,([Ker q]) =fjJ([Ker q']).

Theo we need to show that, for auy two composable epimorphisms q aod q',

fjJ([Ker (q' 0 q)]) = 4J([Ker q]) fjJ([Ker q']).

Hut this ia a direct consequence of the definitions of epimorphisms and their comp05ition,
the bi-cartesin square, the kernei, tbe exact sequence, and tbe property of the classical Bott
ehern secondary characteriatic form associated with the following special 3 X 3 picture [2]
or [5],

0 0
1 !

0 - Ker(q) - Ker(q' 0 q) - Ker(q') - 0
11 1 !

0 Ker(q) EI
q

&2 0- - - -q' 0 q 1 ! q
&3 = E3

1 1
0 0

All the conditions of Lemma 2 are now satisfied. Hence, we have a functor

Kti(X) - Set - :F'
S f-+ Fs .

Step 3. Define a functor F' - I<t-i(X) - Set.
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Now for F E Ob .1"', let ~F : Kg-r(x) - Aut(F(O)) be given by

~F([M]) =F(q~).

435

We need to check that thi90 is a well-defined homomorphism on K~r(x): if we have an exact
sequence in TAr(X)

by definition, we ean get a bi-eartesian square
...

i- M
1 q

M"

Therefore, if we prove that

theo tPF ie well-deflned. For this, we only need to consider two 'split' exact sequenees

O ( I:' )(il;e,O,O)(1:' "C" )(p:l;e,l,l)("C") 0
- c"P;f] - "EBr,pEB Ti7J+ W - r,TiW - ,

aod

O ( )(j:l;Il,O,O)(1:' 'C' )(Plill,l,l)(t:')
-+ :F, TjW - "EB r,pEB Ti "1+ W - (;.,P;fJ - O.

So F(qte,p;q), F(q(F,r;w)) E Aut(F(O» eommute.

It follows that (S, t/J) 1-+ Fs , F 1-+ (F(O), t/JF) give the desired equivalence of categories.
This proves Main Theorem I.

Motivated by the above theorem, we make

Main Definition B. Let X be a regular arithemetic variety over an arithmetie ring
A. The (i + l)·t.homotopy group of tbe classifying space of tbe Quillen cODatruction of
the taips category TAr(X) ia called the ith·arithmetic K-group, denoted by KjAr(x).
That is, for all i 2: '0, we have
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11.8.5. The Global Triangle

From tbe previous sectioo , we have arithmetic K-groups I<fr(x) for i ;::: 0 aod aoy
regular arithmetic variety X. In this chapter, we give the following "global triangle" , which
gives the relation between the analytic properties , tbe arithmetic properties and the algebraic
properties of arithmetic varieties:

N-
K.(X)

We first recall some results from category theory.

Let F : ~ - (;.' be a funetor . Then for auy object N of ~', we let N\F denote tbe
category consisting of pairs (M, V), where v : N - F(M), and amorphism from (M, v) to
(M' , Vi) is a map w : M - M' such that F(w) 0 v =v'. In particular, when F is an identi ty
funetor of c: I we obtain tbe category N\c..' of objects under N.

Main Theorem 11. (1). Let QF: QTAr(X) - QP(X) be tbe natural runctor induced
by the forgetful functor

F : TAr(X) - P(X)
(E,P;rJ) ~ E.

Here, P(X) is the category of vector bundles on X. For any object E of P(X), and
object (E, P; TJ) of TAr(X), we have a natural induced long exact sequence of abelian
groups

Ki+l(X) +-

lR
1t'i+l (E\QF, ((E, P; TJ), Ide)) ~ KiAr(X) !:. Ki(X)

Rl
+- 1fi(E\QF, (([,p; TJ),lde )).

(2). At its lowest level I after tensoring with Q, the long exact sequence above becomes
tbe natural exact sequence

- stated in Chapter IV.

The first part of the main th~rem is a direct consequence of Quillen's Theorem A and
Theorem B. For convenience, we recall them below.

Th~rem A. Let F : C. - c.' be a fundor. Ir the category N\F is contractible for
every object N of C:, then the functor F is a homotopy equivalence.
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Theorem B. Let F : (;.. - (;..' be a funetor such that for every arrow N - N' in k, the
induced funetor N'\F - N\F is a homotopy equivalence , then for any F-1(N), there
ia a natural induced exaet sequence

... - 7ri+l((;..',N) - 1ri(N\F,(M,ldM») - 7riCk,M) - 7ri(c..',N) - .....
[n order to UBe these two theorems, we need the following result from [Qu 73].

Proposition. A category having either an initial", a final objeet ia contractible.

Proof of the Theorem. We only need to show that for any object & in Q1'(X),

&\QF ={«(F, T;W), v) : (:F, T;W) E ObQTAr(X), V : & - F};

aod for aoy arrow u : & - & in QP(X),

u\QF : &'\QF - &\QF
((F,T;w),v) ...... ((F,T;w),vou).

Then for any ((F ,TjW), v : E - :F), u : E - E', we have

((:F, T;W), v)\(u\QF)

={«((g, ViX), w),ß) : W : E' - g, 8 : ((g, v; X), wo u) - ((.1', T;W), v)}.

In particular, we see tbat (((0, Oj 0), 0),0) ia an object of the category ((:F ,Tj W), v)\(u\QF).
Tberefore, by Quillen 'a resulta above, we have tbe long exact sequence

11'i+l (BQ'P(X), E) -
!R

N
7ri(E\QF, ((E, P; 1]), Idt)) -

F
1fi(BQTAr(X), (E, Pi 1])) - 7ri(BQ1'(X), E)

R!
- '1ri(E\QF, ((E, pj 1]) ,Ide)).

Tbus, by the main definition B, we have Part 1.

For Part 2, tbe only diflicult part is to show that

7rl(E\QF,((E,Pi1]),Ide)):::: Ä(Xa).

But this can be deduced directly from the definition, or by the five-Iemma.



438 Referenees

REFERENCES •

(ABP 73] ATIYAB, M., BOll, R., PATODI, V.K.: On tbe heat equation and the index
theorem, Invent. Math. 19 (1973), pp. 279-330

(Ar 74] ARAKELaV, SJ.: Intersection theory of divisors on an arithmetie surface,
Math. USSR Izvestija 8, 1974, pp. 1167-1180

(Ar 75] ARAKELaV, S.J.: Theory of intersedions on an arithmetie surface, Proc.
Intrnl. Cong. of Mathematicians, Vaneouver, 1975, Val. I, pp. 405-408

(BC 6~BOrr, R., CHERN, 5.5.: Hermitian vector bundlea and the equidistribution
of the zeroes of their holomorphie erosa-sedion, Acta Math., 114 (19~ 71-112

. . S
(BFM 75] BAUM, P., FULTON, W., MACPHERSON, R.: Riemann-Roch rar singular

varieties, Publ. Maih. IBES 45 (1975), 101-145

(BGS 88] BISMUT, J.M., GILLET, H., SaULE, CH.: Analytic torsion and holomorphic
determinant bundles, I, 11,111, Comm. in Math. Physiea 115, (1988)

(BGS 90] BISMUT, J.M., GILLET, B., SaULE, CH.: Bott-Chern eurrents and eomplex
immersions, Duke Math. Journal, Val. 60, No.1, 1990

[BGS 91] BISMUT, J.M., GILLET, H., SaULE, CH.: Closed Immersions And Arakelov
Geometry, Grothendieck Festschrift I, (1991)

(BGV 92] BERLINE, N., GETZLER, E., VERGNE, M.: Beat kemels and the Dirac
operator, Grund. der Math. 298, Springer-Verlag, (1992)

(Bi 86] BISMUT, J .M.: The Atiyah·Singer index theorem for rarnilies or Duac opera
tors: two heat equation proofs, Invent. Matb. 83, 1986

[Bi 90] BISMUT, J.M.: Supereonnection eurrents and eomplex immersions, Ivent.
matb. 99, 59-113 (1990)

[Bi 9Ob] BISMUT, J .M.: Koszul eomplexes, harmonie oseillators, and the Todd d8B8,
J. AMS., Vol.3, No.1, 1990

(BS 58] BaREL, A., SERRE, J .P.: Le theoreme de Riemann·Roc.h (d'apres Grothendieck),1
Bull. Soe. Math. de France 86 (1958), pp. 97-136



Referenees 439

[De 70) DELIGNE, P.: Equations differentielles a points aingulie18 reguliers, Springer
LNM, no. 163, 1970

[De 87] DELIGNE, P.: Le determinant de 1& eohomologie, in Cunent tranda in Arith
metie Algebraie Geometry, Contemporary Math., 67 (1987), 9~178

[Fa 84J FALTINGS, G.: Caleulus on arithmetie surfaces, Ann. Math. 119 (1984), pp.
387-424

•
[Fa 91a] FALTINGS, G.: Diophantine approximation on abelian varieties, Ann. Math.,

133 (1991), 549-576

[Fa 91b] FALTINGS, G.: The general esse of Lang's eonjeeture, preprint, Princeton,
1991

[Fa 92] FALTINGS, G.: Lectures on the arithmetie Riemann-Roeh theorem, noted by
S. W. Zhang, Ann. of Math. Study 127 (1992)

[Fu 84] FULTON, W. Intersection theory, Ergebnisse der Mathematik und ihrer Gren
zgebiete 3. Folge, Band 2, Springer-Verlag (1984)

[Ge 86] GETZLER, E.: A ahort prooeofthe Atiyah-Singer theorem, TopololY 25 (1986)
pp. 111-117

[Gi 84] GILKEY, P.B.: Invariant Theory, the heat equation, and the Atiyah-Singer
index. theorem, Math. Leeture Series 11, Publish or Perish, Ine., 1964

[GiI81] GILLET, H.: Riemann-Roch theorems Cor higher algebraie K-theory, Advaneed
in M&th., 40 (1981) 20~289

[GS 90] GILLET, H., SaULE, CH.: Arithmetie Intersection Theory, Publ. Math.
IHES 72 (1990)

[GS 91a] GILLET, H., SaULE, CH.: Analytie torsion '&nd the arithmetic Todd senus,
Topolol)" 30, (1991)

[GS 9Ib] GILLET, H., sauLE, CH.: Characteristie classe8 Cor algebraic vector bundles
with hermitian metrie, Annals of Math., 131, 163-203, 205-238 (1990)

[GS 92] GILLET, B., SOULE, CH.: An arithmetic Riemann-Roch theorem, Inv~nt.
M&th. 1992

[Ha 77] HARTSHORNE, R.: Algebraic geometry, GTM., Springer-Verlag,1977

[Bi 64] HIRONAKA. H.: Resolution of singularities of an algebraic variety over a field
of characteristic zero, Ann. Math. 13 (1971) pp. 109-326

[Hir 56] HIRZEBRUCH, F.: Neue topologisehe Methoden in der algebraischen Geome
trie, Eigebniaae der Math. und ihrer Grenzgebiete, Springer-Verl81, 1956



440 References

[Bö 83] HÖ&'dANDER, L.: The analysis of linear partial differential operators I,
Grundl. der Math. \Visa.! Band 256, Springer, 1983

[Ki 74] KING, r: Global residuea and interseetions on a comple.x manifold, TraDI.
Am. Math. Soe., 1.92 (1974) pp. 163--199

[Me 92] MELROSE, R.ß.: The Atiyah-Patodi-Singer index theorem, MIT manuscript,
1992

[MQ 86] MATHAI, V., QUILLEN, D.: Superconnections, Thom classes and equivariant
differential forma, Topology 25 (1986), 85-110

[Qu 73] QUILLEN, D.: Higher algebraie K.. theory I. Lecture Notes in Math. 341.
Springer 1973

[Qu 85a] QUILLEN, D.: Superconnections and the ehern character, Topology 24, 1985,
89-95

[Qu 85b] QUILLEN, D.: Determinanta of Cauchy..Riemann operators aver & Riernann
surface, Funet. Anal. Appl., 1985, 31-34

(Ra 72] ROBERrS, J.: Chaw's moving lemma, in Algebraic Germotry, 0810 1970, F.
Oon (ed.) Woltet&-NoordhofF Publ., Groningen (1972), 89-96

[RS 73] RAY, D.B·. SINGER, I.M.: Analytic torsion for complex manifolda, Ann. Math.
98, 1973, 154-177

[SGA ,6] BERTHELOT, P., GROTHENDIECK, A., ILLUSIE, L" et a1.: Theorie des
interseetiolll ei theonne de Riemann-Roch, Springer Lecture Notes 225, 1971

[So 90] C. SOULE: Arakelov Geometry, Harvard ledure notes

[Sr 91] SRINIVAS: Algebraic K-Theory, PM 90, Birkhäuser, 1991

[Vo 91] VOJTA, P. Siegel'. theorem in the compad caBe, Ann. Math., 133 (1991)

{We 91] L. WENG: Arithm.etie Riemann-Roch Theorem for smooth morphiam.: An~
proac.h with relative Bott-Chern secondary chal&Cleriatic forma, preprint 1991

{WG 89] WANG, Z.x., GUO, D.R.: Special Functions, Warld Scientifie, 1989


