Bott-Chern Secondary
Characteristic Objects and
Arithmetic Riemann-Roch Theorem
-1-

Lin Weng

Max-Planck-Institut fiir Mathematik
Gottfried-Claren-StraBle 26

53225 Bonn

Germany

MPI / 94-51






Bott-Chern Secondary Characteristic Objects

, and |
Arithmetic Riemann-Roch Theorem

(Last Preliminary Version)

Lin Weng

Part 1






Introduction

Contents ’ 1

Contents

Part 1. Bott-Chern Secondary Characteristic Objects

Chapter 1.1.
Chapter 1.2

Chapter 1.3.
Chapter 1.4.
Chapter 1.5.
Chapter L6.

Chapter L.7.
Chapter 1.8.

Chapter 1.9.

Chapter I1.1.
Chapter I1.2.
Chapter I11.3.

Classical Bott-Chern Secondary Characteristic Forms

Relative Bott-Chern Secondary Characteristic Forms for Smooth Morphisms I:
Axioms

Existence of Heat Kernels
Mellin Transform
Local Family Index Theorem

Relative Bott-Chern Secondary Characteristic Forms for Smooth Morphisms
II: Existence

Relative Bott-Chern Secondary Characteristic Currents for Closed Immersions
I: Axioms '

Relative Bott-Chern Secondary Characteristic Currents for Closed Immersions
II: Existence

Ternary Objects And Deformation To The Normal Cone

Part II. Arithmetic Riemann-Roch Theorem

Grothendieck Riemann-Roch Theorem
Arithmetic Intersection Theory

Arithmetic Characteristic Classes



2 Contents

Chapter I1.4. Arithmetic Riemann-Roch Theorem for Smooth Morphisms

Chapter I1.5. Arithmetic Riemann-Roch Theorem for Closed Immersions

Chapter 11.6. Arithmetic Riemann-Roch Theorem for L.C.I. Morphisms

Chapter I1.7. Gr_a.asmannian Grapix Construction In Arithmetic Geometry

Chapter I1.8. Arithmetic K-Theory I: A Definition Of Higher Arithmetic K-Groups

References



Introduction i

INTRODUCTION

The main purpose of this book is to give basic concepts, techniques, and results of
arithmetic geometry in the sense of Arakelov. In particular, we will give the arithmetic
Riemann-Roch theorem for local complete intersection morphisms, but with one technical
condition that the morphism at infinite place is smooth.

In this introduction, we will illustrate the theory with one simplest example: the situ-
ation in the category of complex projective manifolds.

We start with the following Riemann-Roch theorem in the sense of Gorthendieck:

Let f : X — Y be a smooth morphism of complex manifoild. Then for any vec-
tor sheaf £ on X, we may define the push-out morphism of £ in the sense of K-theory:
Tk(€) == Tj(~1Y R*f.(£). Then, at the cohomology class level, we have the following
Grothendieck-Riemann-Roch theorem with respect to smooth morphisms:

fen(ch(€)td(7y)) = <h(fk(£)),

where fcy is the natural push-out morphism of algebraic cycles, td is the Todd characteristic
class, and Ty is the relative tangent sheaf of f.

On the other hand, let { : X — Z be a closed immersion of complex manifolds. There
exists a natural exact sequence:

0= Txy =Tz = N; = 0.

For any vector sheaf £ on X, the direct image i,£ is a coherent sheaf on Z. By classical
sheaf theory, there exists a vector sheaf resolution of :.£ on Z:

E:0=& = ... & =& —1.£—0.

Then the Grothendieck-Riemann-Roch theorem with respect to closed immer-
sions says that we have the following equality at the level of cohomology classes, i.e. in

CH(Z)q,
ch(i,€) = i, (td(N)~! ch(£)).
Thus by the fact that iup = }_,(—1);, we have

ch(£.) = i.(td(N) ™! ch(E)).
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Put the above two situations together, we may have the Grothendieck-Riemann-
Roch theorem with respect to l.c.i. morphisms:

Let f: X — Y be al.c.i. morphism of complex manifold. Then the following diagram
i8 commutative:
Ko(X) 24 cH(X)q.
okl L fen
Ko(Y) = CH(Y)q.

With above, put the situation in a simplest way, we may say that that arithmetic
Riemann-Roch theorem shouid be a natural generalization of the above commutative dia-
gram so that the above diagram is still commutative after we put the arithmetic notation
at the suitable place correspondingly, that is, the arithmetic Riemann-Roch theorem should
become the following commutative diagram

Kgr(x) MO CHA(X)q.
ol | 75
KAT(Y) L= CHa((Y)q.

With this in mind, the first thing we need to do is to give the fundamental concepts and
results in the above picture, such as arithmetic intersection theory, arithemtic characteristic
classes, etc.. In three fundamental papers [GS 90], {GS 91b] and [GS 91¢], Giilet and Soulé
give the arithmetic intersection theory and arithmetic characteristic classes. Next let us
expose them in our situation here.

By a standard result, we know that under the natural Chern character, the algebraic
K-group is isomorphic to the Chow group for any regular variety. In particular, the algebraic
intersection can be introduced use the topological property of algebraic K-theory. Among
others, let us just mention that the divisors corresponds to the line sheaves, and all the
theory may be deduced from this very special situation, as we have the splitting principle
for vector sheaves. More precisely, let £ be a line sheaf on X, then its associated algebraic
cycle may be defined by div(s) for a non-trivial rational section s of £: This is a natural
correspondence at the level of (de Rham) cohomology classes. In order to go further, let us
consider the situation at the level of differential forms. One then knows that we may put
hermitian metrics on £. Choose one hermitian metric, say p. Then we have the first Chern
characteristic form ¢;(C, p). It is well-known that ¢,(L, p) is a closed differential form and
its de Rham class is just the corresponding algebraic cycle class, which is then of course
independent on the choice of the metric. On the other hand, the form itseif does depend on
the metric. Furthermore, we have the following Poincaré-Lelong equation:

ddc["°8|3|3] = [e1(£, p] = baiv(a),

where A is the Dirac symbol. With this, a natural idea is to choose (div(s), ~log|s|2) to
define ¢; ar(£,p). Thus, by the splitting principle, we may lead to define the arithmetic
cycle in general. In practice, following [GS 90], we define an arithmetic cycle as a pair
(Z,9z) such that Z is an algebraic cycle, and dd°gz + Az is a smooth form. Usually, we
call gz as a Green’s current for Z. Also we have the arithmetic Chow group CHa(X) by
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letting it be a quotient group generated by the above pairs modulo the relations given by
(div(f), —[log|f|?]), where f denotes the rational function of certain irreducible subvarieties.

With this definition about arithmetic cycles, we may introduce the arithmetic intersec-
tion. The story about the algebraic cycle is rather obvious: We may choose the algebraic
intersection among them. But the situation for the currents is rather complicated: In gen-
eral, Green’s currents may-have very bad singularities. To control this, from the Poincaré-
Lelong equation, we may introduce Green’s currents with logarithmic singularities around
Z. 1t may be shown that for each classes modulo the exact currents for & and &, there
is a representative of Green’s current with logarithmic singularities. With this control of
singularities, we may introduce the arithmetic intersection by a moving lemma at he level
of K)-groups. For more details, see 11.2.

Basically, we may also use the splitting principle to introduce the the arithmetic char-
acteristic classes. Since we also wnat that the arithmetic Chern character should offer a
natural isomorphism between the arithmetic Chow group and the arithmetic K-group. In
algebraic geometry, i.e. at the level of cohomology classes, we define the algebraic K-group
K(X) as the quotient of the group generated by vector sheaves on X modulo the relations
Ea—E —Es=0if

0— 51 — g — 83 — 0

is exact. Thus a natural choice for K#7(X) should be the quotient group generated by
triples (£, p;w), where (£, p) is a hermitian vector sheaf on X, and w is a sommth form.
What should be the relations among them?

To find the relations, let us go back to the definition about the arithmetic cycles. We
know that ¢,(L, p) as a differential form is dependent on the choice of the hermitian metric
p. So the relations for the arithmetic K-group should reflects this change, since we now
consider the problems at the level of differential forms. Note that if in the above algebraic
exact sequence, if we let £ = 0, and by the fact the ch is an isomorphism between K(X)
and CH(X)q, we see that the above problem about the relations for the arithmetic K-group
becomes the following: How to measure the difference ch(€, p) — ch(&, 7)?

To answer the latest problem, we come to a famous theorem given by Bott and Chern.
Around 1968, in the paper [BG 68}, Bott and Chern could solve the follwoing partical
differential equation

dd°chpc(€,p,7) = ch(€,p) — ch(€, 7).

Just from this, we introduce the definition for the arithmetic K-group: The relations are
(&1, pr;wi) + (&3, p3;wa) = (€2, p2;w1 + wa — chpe(£.,p.),
where as above, we have the exact sequence
0— & =& =& —0,
and p; are hermitian metric on & and the form chpc(€.,p.) is the solution of the following

equation »
dd®chpc(€.,p.) = ch(&2, p2) — ch(&1, p1) — ch(&s, pa).
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thus we can finish tha process for introducing arithmetic intersection theory and arithmetic
characteristic classes and hence give the notation in the two rows of the arithmetic Riemann-
Roch theorem diagram above.

Next, we introduce the push-out morphism f4T and f&5. For this, we need to give a
factorization for our morphism f. Say, f = goi withi: X — Z a regular closed immersion
and ¢ : Z — Y asmooth morphism. We first consider the push-out morphism for arithmetic
cycles: The algebraic cycles are settled by a standard algebraic process. For Green’s current,
we then rieed to be careful. For smooth morphisms, we just take the integration along the
fibres. For closed imnmersion, we may use the arithmetic intersection to do so, after choosing
certain arithmetic cycles for X, viewing as a subvariety in Z. Thus finally definition comes
from the moving lemma at K-level.

In the following, we only discuss the situation for smooth morphisms to give a definition
for fA&F. For this, we recall the following theory about the classical Bott-Chern secondary
characteristic forms above. ‘

Let £ be a vector sheaf of rank r on a compiex manifold X. Put a hermitian metric p on
£. Then there exists a unique cononical connection A associated with (£, p). Hence we have
its curvature A?. In this way, we may define the Chern characteristic form ch(€, p) by first
inentifing End(€) with the metrix algabra M, (C), then defining it locally as exp(—3z+1A2).
By a local disgussion, we know that this offers us a global differential form on X. And from
the Bianchi identity, it is closed. Also it is compatible with the pull-back by any morphism.
Furthermore, from the de Rham cohomology theory, the cohomology class of ch(£, p) does
not depend on the choice of p. So this class offer us a satisfactory answer in algebraic
geometry. On the other hand, the form ch(£, p) itself does depend on p. Such a kind of
dependence is given by the classical Bott-Chern secondary characteristic forms:

We first introduce axioms for the classical Bott-Chern secondary characteristic
form, ¢pc(€.,p.), with respect to any power series ¢, a short exact sequence of vector
sheaves

5.:0—‘51 —-Sz—-83—>0

and hermitian metrics pj on &; for 7 = 1,2,3: (it is worthy to mention that here it is not
necessary to assume that p, and p3 are induced from p;.)

Axiom 1. (Downstairs Rule) Let

g.:O—*gl-—‘Sz—*ga—*O

be a short exact sequence of vector sheaves over a complex manifold X with hermitian
metrics p; on &; for j = 1,2,3. Then

dxdx#Bc(E.,p.) = ¢(E2,p2) — G(E1 B €3, 01 ® p3)
holds in A(X) := ®AP?(X)/Imd + &.

Axiom 2. (Functorial Rule) For any morphism f : X’ — X of complex manifolds,
we have

["dBc(E.,p.) = dc(J7E.. fp.).
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Axiom 3. (Uniqueness Rule) If (£.,p.) is split, i.e. (E2,p2) = (€1 D E3,01 D p3),
then

¢BC(£'1 p) =0

Then we may state the Bott-Chern theorem as the following

Existence Theorem for Classical Bott-Chern Secondary Characteristic Forms.|j
Let

5.:0—v£1—>83—~83—~0

be a short exact sequence of vector sheaves on a complex manifold X with hermitian
metrics p; on &; for j = 1, 2, 3. Then for any symmetric power series ¢, there exists a
unique differential form ¢nc(€.,p.) € A(X) such that ¢pc(£.,p.) satisfies the axioms
1, 2, and 3 above.

There are several methods to prove this theorem. The basic idea is that we first form
a family of differential forms phi( D&, Dp,) so that, at ¢ = 0, it gives phi(£3, p2), while at
t = 00, it becomes ¢(&; @ &3, p1 & pa). then the integration of this form will offer a solution.
For more details, see Chapter 1.1.

What should be the relation of the classical Bott-Chern secondary characteristic forms
and f2™? First we discuss the situation when f is smooth. In algebraic geometry, we
know that fx(&) = E(—l)*R"f.E. But, in general, R*f,£ are coherent sheaves. So to
define f#°, we need to note the fact that K(X) is generated by f-acyclic vector sheaves.
So in the following, we will only consider the situation for such vector sheaf on X. As a
consequence, we know that fx(£) = f.£, which is a vector sheaf on Y. Thus we have
a natural element (f.£, f.p) in K{*(Y) for f-acyclic hermitian vector sheaf (£,p) on X.
On the other hand, fixed a hermitian metric on the relative tangent vector sheaf 7; of f,
we have, by Riemann-Roch theorem, another differential form f.{(ch(£,p)td(7;,p;). By
Grothendieck-Riemann-Roch theorem, as de Rham cohomology classes, ch(f.&, fup) i8 just
fo(ch(&, p) td(T;, ps). But as differential forms, they are not the same in general. Therefore,
a8 in the situation for the classical Bott-Chern secondary characteristic forms, we may think
the difference ch(f.£, fop) — f.(ch(&, p) td(7},py) as the change of £, p) with the action of
(f,py). This lead us to introduce the relative Bott-Chern secondary characteristic forms
with respect to smooth morphisms by the following axioms:

Axiom 1. (Downstairs Rule) Let f : X — Y be a smooth morphism of Kahier
manifolds with a hermitian metric p; on the relative tangent sheaf T;. Suppose (£, p)
is an f-acyclic hermitian vector sheaf on X, then on A(Y), we have

dydy chpc(€,p, f,ps) =
fo(ch(€,p) td(Ty, py)) — ch (€, fup).

Axiom 2. (Base Change Rule) For any flat base change g : Y' — Y, we have

g"chpc(€, p; £, p1) = chaclgr€,930: fo:p1, )-
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Here g; denotes the induced morphism of g with respect to f, and similarly for f,.
That is, we have the following commutative diagram:

1

XXyY' — X
fil L f
y! AN

Here py, is the natural metric induced by the flat base change g from p;.

Axiom 3. (Uniqueness With Respect To Vector Sheaves) For any short exact
sequence of f-acyclic vector sheaves

E: 0—=&—868—-6~0
with hermitian metrics p; on &; for j = 1,2,3, let
i 0= fo&— f&a— fE3—0

be the direct image of £ with associated hermitian metrics f.p; on f.&; for j = 1,2,3.
Then
chec(&2,p2; f,p1) — chec(&1,01; f,p1) — chac(Es, p3; 1 pp)

= ft (ChBC(S.rP.) td(']} ' PJ’)) - ChBC(f-g.a f-P,)-

Axiom 4. (Uniqueness With Respect To Morphisms) Let f : X — Y and
g : Y — W be two smooth morphisms of Kahler manifolds. Let (£,p) be an f-acyclic
hermitian vector sheaf on X such that f.£ is g-acyclic. Then

chac{€,p;9 0 f,pgor) — chc(f.E, fup; 9,pg) — g.(chnc(€, p; £, pp) td(T;, ;)
= (g o f).(ch(&, p) tdnc(f,9))-

Here tdpc(f, g) denotes the classical Bott-Chern secondary characteristic form associ-
ated with the following short exact sequence of the relative hermitian tangent sheaves:

0= Tj = Tyoy — f*T, —0.

With this, similarly as the situation for the classical Bott-Chern secondary characteristic
forms, we may also have the following

Existence Theorem Of Relative Bott-Chern Secondary Characteristic Forms
With Respect To Smooth Morphisms,

Let f: X — Y be a smooth morphism of Kahler manifolds with a hermitian metric p;
on the relative tangent sheaf 7;. Then for any f-acyclic hermitian vector sheaf (£, p),
there exists a unique element chgc(£, p, f, py) in A(N) which satisfies the axioms above.

For the proof of this theorem, we may imitate the one for the classical one. But now we
are working in a infinite dimensional situation, i.e. on C™(Y, f,£). Then we meet certain
problems. The most important one is that about the convergence. We know that the natural
L?-connection will not offer us a (good) trace class. Fortunately, by the work of Bismut
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about the local index theorem, we may choose the Bismut superconnection as an alternative
object.

Basically, the Biamut superconnection is the limit of the Dirac operator along the fibre
of f with a blowing up metric proces for the base, i.e. the change of the metric is given by
ps + s~ !py. Thus, we may have the associated heat kernel exp(—B?). Here the parameter
may be introduced by resceling the total metric with a factor ¢t. Then Bismut’s local index
theorem may be roughly stated as that when t — 0%, the supertrace of the restriction of
the above heat kernel to the diagonal gives us the differential form f,(ch(£, p) td(7}, pr)).
On the other hand, a result of Berline and Vergne asserts that when ¢ — oo, the same
date offer us the differential form ch(f.&, f.p). Therefore, it is possible to give the above
existence theorem for the relative Bott-Chern secondary characteristic forms with respect to
smooth morphisms. Surely, during this process, we need a kind of local double transgression
formula, for which we need to introduce the number operator form an intrinsic point of view.
Also in order to overcome the difficult about the convergence for the trace class in question,
we need to use a cone construction following Faltings [Fa 92].

The above process coming from the index theorem is rather complicated, which is
originally given by Bismut with certain technique from stochastic integration. Here we use
the heat kernel approach following Berline, Getzler and Vergne [BGS 92]. In this book, we
devote it with several chapters: From 1.2 to L.6.

With the above work about Bott-Chen secondary characteristic objects, for any power
series R(z) € R[[z]], we may define the associated push-out morphism for the arithmetic
K-group by f}?'“(é’ ,p) for f-acyclic hermitian vector (£, p) with

(f£, fop) + chvc(€,p; £, 1) + 100, ch(€,p) td(T7, p1) w(R(T)))),

where R(€) is a additive characteristic class defined by the power series R(z), andw(Z,9z) :=}}
dd®gz + §z. Then the arithmetic Riemann-Roch theorem may be stated as follows

Arithmetic Riemann-Roch theorem For Smooth Morphism:([Fa 92]) There
exists unique power series R(z) such that for any smooth morphism of regular arithmetic
varieties f : X — Y, the following diagram

Kar(x) O8I R, (x0q.
& . ! f&k
K&(Y) = CHadlY)q

commutes, where fAT := fﬁ"".

The proof of this theorem may be divided into two ateps. First, we consider the situation
for smooth morphisms. We follow [Fa 92]. With the same notation as above, for any power
series P, for any smooth morphism f : X — Y of regular arithmetic varieties over an
arithmetic ring (A4, L, Fo ), any f-acyclic hermitian vector sheaf (£, p) on X, let

Err(£, F28 8 p:f; P):= Ch;\r(fi{ (81 P)) - fCH(ChAr(£1 P)Tdir(f) pf))'

To prove the theorem, it is sufficient to show that there exists a unique power series R(z)
8o that :
Ere(E,p; f,p1; R) =0,



viii Introduction

for any f-acyclic hermitian vector sheaf (£, p). For this we need some intermediary results.

Proposition 1. Let f: X — Y be a smooth morphism of regular arithmetic varieties
with an Fo-invariant hermitian metric gy on the relative tangent vector sheaf of f.
Then for any short exact sequence of f-acyclic hermitian vector sheaves

. : . 5.:0—’81-—*52—>53—*0,
with Fu-invariant hermitian metrics p; on & for i = 1,2, 3, we have
Err(€1,p15 f,p45 P) + Brr(&a, p3i £, ps3 P) = Ere(€3, 25 f, 04 P).

In particular, Ere(€, p; f, py; P) does not depend on the metric p. Moreover, Err(€, p; f, py; P)}
lies in the a-image of harmonic forms.

Proposition 2. Let f: X = Y and g : ¥ — Z be two smooth morphisms of regular
arithmetic varieties which have F,-invariant hermitian metrics p;, py and pgoy on the
relative tangent vector sheaves of f, ¢ and go f respectively. Let (£, p) be an f-acyclic
hermitian vector sheaf on X such that f.£ is g-acyclic. Then

Err(€,p;9 © f, pgos; P) = Err(£.£, fop; 9, pgi P) + gu(Err(€, p; £, pys P)Tdire(g,24))-
In particular, Err(E, p; £, py; P) does not depend on the metric py.

Remark. Because of these two propositions, we denote Err(£, p; f, py; P) simply as
Err(E; f; P).

Proposition 3. There is a natural morphism
Err: K{(Xp) — H(Xr)/p(CH}O(Y))q,
such that Err(€; P) = Err(E; f; P).
Proposition 4. Let f: X — Y be a smooth morphism of regular arithmetic varieties
with an F,-invariant hermitian metric p; on the relative tangent vector sheaf of f.
Then for any flat base change ¢ : Z — Y, we have
g Ere(€; f; P) = Err(g3&; fo; P).

Here we use the following diagram

Zxy X % X
fol L f
z LY
Proposition 5. There is a unique power series R(z) such that for any P!-bundle
p:X:Py(}.)--*Y,

Err(€;p; R) = 0.
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Finally, we consider Err for closed immersions. In this case, we have to introduce a
new Err term. That is, let i : X — Z be a closed immersion with the smooth structure
morphisms f : X — Y and g: Z — Y of regular arithmetic varieties, then we define

Err(£;4; P) := Ere(€: f; P) — Eer(i.€; g; P).

By Proposition 3, this deflnition makes sense, even through i.£ is usually only a coherent
sheaf.

Proposition 6. Let i : X «— Z be a codimension-one regular closed imtersion of reg-
_ular arithmetic varieties over an arithmetic variety ¥ with smooth structure morphisms
f:X—=Yandg:Z — Y. Let (£, p) be an f-acyclic hermitian vector sheaf on X such
that i.€ is g-acyclic, then
Ert(€;i; P) = 0.

With this, note that by the deformation to the normal cone theory, at the level of
algabraic K-theory, any closed immersion may be deduced from codimension one closed
immersions and the zero section of projctive bundle, thus by Proposition 3 and the fact that
arithmetic Riemann-Roch theorem holds for identity morphisms, we see that it sufficient
for us to prove the theorem for projective bundles. Hence we may use the induction on the
relative dimension to deduce the result.

In particular, in proving Proposition 8, we need to use a result about the deformation
theory for the relative Bott-Chern secondary characteristic forms with respect to smooth
morphisms. This finally leads us to introduce an axiom for the so-called Bott-Chern ternary
characteristic objects. Roughly speaking, the ternary objects measure the change of sec-
ondary characteristic objects. We will not give more details for them, which will be found
in Chapter [.9.

In order to discuss the arithmetic Riemann-Roch theorem for l.c.i. morphisms of arith-
metic varieties, we need to have a similar discussion as above for closed immersions.

First, we consider the difference given by the Grothendieck-Riemann-Roch theorem at
the level of differential forms. Put metrics on the exact sequence of normal sheaves. Also,
even through i.£ is only a coherent sheaf, we may still put the metrics on £;. Just as for
smooth morphisms, a natural question is how we can measure the change of (n, g,), after
the action of the closed immersion i, at the level of differential forms. Similarly, it is for this
reason that we introduce the relative Bott-Chern secondary characteristic currents with
respect to closed immersions, chpc(£,p;t, g:), which is originally given by Bismut, Gillet
and Soule [BGS 91]. (Here we have to use the language of current, as at least formally, the
f.-image of a form may be written as the product of this form with the Dirac symbol éx of
X in Z.) So we have the downstairs rule as follows:

dd°chgc(€, p;i, gi) = td(N, gn) ™' ch{n, g) 6x — ch(€.,p.).

But the situation i1s not so simple. We know that the metrics on £. are not unique and,
in general, we cannot control them very well. In order to introduce the relative Bott-Chern
secondary characteristic currents with respect to closed immersions, we need a technical
assumption on the metrics, which is nothing but the so-called Bismut condition (A), which
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gives certain compatibility condition for the associated metrics. We may also give the
axioms for the relative Bott-Chern secondary characteristic currents with respect to closed
immersions. Similarly, we have the existence theorem for them. For more details, see
Chapter 1.7 and Chapter L.8.

On the other hand, for any closed immersion i, we may deform it to the zero section of
projective bundles. Therefore, one may also hope that there is a ternary theory for closed
immmersions. At the same time, the zero section is rather simple, it suggests us to use the
Koszul complex to make the calculation in a quite precise form. All of this will given in
Chapter 1.9, and was first given in [BGS 91].

Once we have the relative Bott-Chern secondary characteristic objects and a special
Bott-Chern ternary charactetistic objects, we may finally give the arithmetic Riemann-Roch
theorem for l.c.i. morphisms. But since at finite place, we cannot only use the deformation
to the normal cone, it i8 quite natural for us to use the MacPherson’s Grassmannian con-
struction to achieve the final resuit. For more details, see Chapter 1.5, Chapter I1.6 and
Chapter I1.7.

At the end of this book, we propose a definition for higher arithmetic K-groups by
Quillen’s construction. This will finally offer us a global triangle relation between arithmete
K-theory, algebraic K-theory and certain analytic homology theory, and hence give the
regulator morphisms with their more general meaning: The global morphisms which relate
the properties of the finite part and the properties of the infinite part for an arithmetic
object.
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Chapter L.1. 1

Chapter 1.1
Classical Bott-Chern Secondary Characteristic Forms

In this chapter, we recall basic concepta and results associated with the classical Bott-
Chern secondary characteristic forms, which were first given by Bott and Chern around

196&’[130 sg]'.

The classical Bott-Chern secondary characteristic form measures the change of various
characteristic forms with respect to different metrics. In this sense, we may think of the
classical Bott-Chern secondary characteristic form as a refined version of characteristic forms
in the theory of Chern-Weil, i.e. we discuss the Chern-Weil theory at the level of differential
forms.

§I.1.1. Characteristic Forms

[.1.1.a. Connections, Curvatures, and the Canonical Connection

We start with the situation over a real manifold.

Let M be an n-dimensional real C*® manifold and E a C® complex vector bundle of
rank r over M. As usual, we let :

AP(M):= the complex vector space of C™ complex p-forms over M;
AP(E):= the complex vector space of C* complex p-forms over M with values in E.
By definition, a connection V on E is a homomorphism
V: AYE) — Al(E)
over C such that, for f € A°(M), a € AYE),
V(fa)=cadf + fVa. (1)

The connection V above may be realized locally as follows:



2 Classical Bott-Chern

Let 3 = (81,...,8.) be a local frame field of £ over an open subset I/ C M, so that
() s; € A’(Ely)forj=1,...,r
(if) (s1(=),...,8-()) is a basia of the fiber E, of E at z for each z € U. Then for the
connection V,

V.‘Jj = Esk w;, (2)
k=1

with w;-‘ € AY(U). We call the matrix of 1-forms w := (u;‘) the connection form of
V with respect to the local frame field s. Obviously, if s’ is another local frame field
over U, and if w’ is the connection form of ¥V with respect to &', then there is a C™
matrix-valued function a: U — GL(r; C) such that

3 =s'a, (3)

and
w=a"'wa + a"!da. (4)

We may extend the connection V to a C-linear morphism
V: AM(E) — APTHE)

for p > 0 by setting _
V(ad) := V(@) Ad + add
for a € AYE), ¢ € AP(M).

We define the curvature of V to be
V?.:=VoV:AYE) — A*(E); (5)

and let R = -1, V2% Then R is A°(M)-linear. Hence, R is a 2-form on M with the value

2r
in End (F). Using the matrix notation, the curvature form 2 of V with respect to the

frame field s is defined by
30 = Vs,
Thus = dw + w Aw, and there follows easily the Bianchi identity:
dl = QAw —wAw.

Furthermore, if we let Q' be the curvature form of ¥V with respect to the local frame ', then

Q=a"'Qa. (6)

Globally, let {U,V,...} be an open covering of M with a local frame field sy on each
U.MfUNV #£8, thenon UNV, sy = sygvy, with gvy : UNV — GL(r; C) a C* map,
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called a transition function. Let wy be the connection form on U with respect to sy,
then on U NV, we have

wu = gypwevu + gy devu. (M

Conversely, given a system of gi(r; C)-valued 1-forms wy on U satisfying (7), we may obtain
a connection V on E having wy as ite connection form. Also, if Qy is the curvature form
of V with respect to sy, then we have

Qu = gvu Qv gvy (8)

onlUNYV.

From now on, we assume that M is a complex manifold and F is a C* complex vector
bundle of rank r over M. We let

API(M):= the vector space of C*™ complex (p, ¢)-forms over M;
AP E):= the vector space of C™ complex (p, ¢)-forms over M with values in £.

Thus
AM)= Y AP(M), AME)= ) APY(E),

pte=h pte=h

and there are natural operators

0: API(M) — AP*U(M), §: API(M) — APTHI(M).

SO -
d=08+ 0.

Usually, we also introduce d° as follows:

de = (3 - B).

47

Hence, . |

e 1P = —

dd® = 2’:66 = 21ri53

is a real operator. Let

A(M) = @A (M), A(M):= A(M)/(Imd + Imd).

Let V be a connection of E as above. We may write V = V10 4 V%! with
VIO APS(E) — APYHI(E), VO APY(E) — APITY(E).

Hence
v2 —_ vl,D ovl,O + (VI.O ovo,l + VO,I ovl.O) + Vﬂ,l o vD,l'
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where
(VI,U)Z c A2'°(Eud(E)), vl,ﬂovﬂ.l + vO,loVI,O € Al'l(End(E)), (v0,1)2 c Ao'z(End(E)).
In the language of differential forms, we have the corresponding decompositions

w=w® 4 SOl Q=Q20 4 Qlt 4 Qo2

The complex vector bundle which admits a holomorphic structure is characterised as
follows:

Proposition 1 (Newlander-Nirenberg) Let £ be a C® complex vector bundle over
a complex manifold M. Then E admits a holomorphic structure, i.e. the transition
functions are holomorphic, if and only if there exists a connection V = V! 4 1.9 guch
that

(VU'1)2 = vo,l o Vo,l = 0.
Furthermore, we have V%! = 4.

The proof of this standard result may be found in any textbook on differential geometry.

Let E be a C™ complex vector bundle over a (real or complex) manifold M. A hermi-
tian metric p on E is a C™ hermitian inner product on the fibers of E; usually, we write
this as a pair (£, p). Given a local frame field sy = (sy,...,s,) of £ on U, we let

hi; := (51,8)p, and Hy = (h;3).

Then Hy is a positive definite hermitian matrix at each point of /. We say that sy is
a unitary field or an orthonormal frame field if Hy is the identity matrix. Under a
change of local frame fields s;y = sv g, where g = gyv is the transition function, we have
Hy =g¢'Hv §.

A connection V of (E, p) is called a hermitian connection if V preserves p (or makes
p parallel) in the following sense:

d(€, '7)9 = (V¢, U)p + (£, Vn), (9)

for any £, € A(E).

Proposition 2. Let (E,p) be a holomorphic hermitian vector bundie on a complex
manifold M. Then there exists a unique hermitian connection which preserves the
holomeorphic structure on E with respect to p. We call this connection the canonical
connection of (E, p). The curvature of this canonical connection is of type (1,1).

From now on, we will assume that every vector bundle is a holomorphic vector bundle
and that the connection for a hermitian vector bundle is the canonical connection. We
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will also use the terminology of vector sheaves for locally free sheaves, and will make no
difference when we use vector bundles and vector sheaves in the sequel.

I.1.1.b. Characteristic Forms

We start with a fact from algebra: Let B C R be a subring, and let ¢ € B[[T},...,T}]]
be any symmetric power series. For every k > 0; let ¢p} be the degree & homogeneous
component of ¢. Then there exists a unique polynomial map

such that

(1) ®p is invariant under the conjugation of GL,(C).
(2) ®py(diag(ay,...,ar)) = dg(ar,. .., a.).

More generally, for any B-algebra A, we define
d = @gzo@[tl : M,.(A) — A
Furthermore, if I is a nilpotent subalgebra of A, then we may also define

® = @iodp : M (I) - A.

Thus, if (£, p) is a hermitian vector sheaf of rank r ona complex manifold M, and ¢ is
as above, we define

8(£,0) = ®(~Rz.,) € A(M)
as follows:

First, identify End(£) with M,(Cj locally and then apply the construction above to

I= @leAP'p(M)'

Note that by the results in the previous subsection, especiaily the edualit.y a.8, we
know that the above procedure for ¢(£, p) is well-defined, since ® is invariant under the
conjugation. Moreover, we have the following

Proposition 1. With the same notation as above,

(1) #(€,p) is a closed form on M, i.e. dé(£,p) = 0.

(2) For any morphism f: N — M, f*(#(€,p)) = &(f*E, [*p).

(3) The de Rham cohomology class of ¢(£, p) does not depend on the choice of p, but
the form ¢(E, p) itself does depend on p.

The proof of this proposition can be found in any standard textbook which contains the
theory of characteristic forms. (For example, assertion 1 comes from the Bianchi identity.)
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Here, instead of giving a proof, we would like to mention the following fact: Part 3 of this
proposition is the starting point to introduce the whole story in this book: We understand
everything at the level of differential forms rather than at the level of cohomology classes.
Roughly speaking, the refined version of the characteristic form ¢(€, p) for finite dimen-
sional vector sheaves and infinite dimensional vector sheaves, i.e. the classical Bott-Chern
secondary characteristic forms and the relative Bott-Chern secondary characteristic objects
for both smooth morphisms and closed immersions are the central parts of our theory.

§I.1.2. Classical Bott-Chern Secondary Characteristic Forms
[.1.2.a. Axioms for Classical Bott-Chern Secondary Characteristic Forms

From above, we know that for any hermitian vector sheaf (£, p) on a complex manifold
M, we can define the associated characteristic form for any symmetric power series ¢. We
also know that the de Rham cohomology class of this form does not depend on the choice of
the metric, but the form itself does depend on the metric. With this in mind, the first thing
we have to understand is how the characteristic forms change with respect to hermitian
metrics. Around 196*“80& and Chern first solved this problem by considering the second
order partial differential equation:

def\lq = ¢(£,P) - ¢(8spl)‘

They found that in fact one can solve this differential equa.t.ioa in A(M). Hence, they gave
the classical Bott-Chern secondary characteristic forms [BC Gﬂ.

Now we introduce axioms for the classical Bott-Chern secondary characteristic
form, ¢pc(€., p.), with respect to any power series ¢ as in section 1.a, a short exact sequence
of vector sheaves

8.20—"81 —-Sg—>£3—~0

and hermitian metrics p; on &; for § = 1,2,3: (it is worthy to mention that here it is not
necessary to assume that p, and p3 are induced from pj.)
Axiom 1. {Downstairs Rule) Let
E:0—E =& —=E3—0

be a short exact sequence of vector sheaves over a complex manifold M with hermitian
metrics p; on £ for j = 1,2,3. Then, there exists an element ¢pc(£.,p.) € A(M), such
that

decM¢BC(£vp) = ¢(£2; P?) - ¢(£l (55 633 ~1 57} Pa)

holds.

Axiom 2. (Functorial Rule) For any morphism f : N — M of complex manifolds,
we have

féBc(E..p.) = éBc(f7E., [ p.).
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Axiom 3. (Uniqueness Rule) If {(£.,p.) is split, 1.e. (£2,p2) = (& & 3,01 B p3),
then

¢Bc(€.,p) =0.

Among these axioms, axiom 1 i8 essential. Furthermore, ¢pc measures the change of
the characteristic forms with respect to metrics; Indeed, with the degenerate short exact
sequence obtained by letting £3 = 0, axiom 1 gives the Bott-Chern equation stated at the
beginning of this subsection. In that case, we denote chpc(£.,p.) by chpc(&1, 01, p2).

1.1.2.b. Existence of Classical Bott-Chern Secondary Characteristic Forms

Next we prove the following

Existence Theorem for Classical Bott-Chern Secondary Characteristic Forms.|j
Let
E.:O—bgl—*gg—bgs—>0

be a short exact sequence of vector sheaves on a complex manifold M with hermitian
metrics p; on & for j = 1, 2, 3. Then for any symmetric power series ¢, there exists a
unique differential form ¢pc(£.,p.) € A(M) such that ¢pc(£.,p.) satisfies the axioms
1, 2, and 3 above.

Proof: There are several different ways to prove this theorem. Here we use the P!-
deformation technique. (P! means a projective line.) Other methods will be explained in
the following chapters.

The basic idea of the P!-deformation technique is that in order to construct certain
differential forms, we introduce a new parameter in P! and then try to find differential forms
with parameter in P!. Finally, we show that our forms are nothing but the integration of
the forms with parameter in P! over P! with respect to the current flog|z|?].

For our purpose here, we first construct an exact sequence DE. on M x P!, called a
Pl-deformation of £. as follows:

Let s be a section of the sheaf Op:i(1), such that s vanishes at co and has the value 1
at 0. Let

D& = &(1) := & @Op:i(1), D& :=(L2®&E(1))/E, DEa:=E&
with the natural morphism Idg, ® 5 : £; ~— £1(1). Then we have the following exact sequence

on M x P!
DE. . 0 — D& ~ DEy — DE — 0.

For any point z € P!, let i, : M — M x P! be a morphism, defined by i,(z) = (=, 2).
Then we have
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(1) i DE =~ &, if z # oo.
(2) i;-o DEy ~ &1 @ Es.
(3) i;ngl =~ 51.

Using a partition of unity, we may choose a hermitian metric Dpz on DE; in such a
way that the isomorphisms (1) and (2) above become isometries. Hence, we introduce a
new parameter in P!.  °

Now let
bnc(€.p) = [ NoglsF'| (D2, D).
Since
dp1dpi [log|z|’] = 6o ~ b,
we know that
dmdiyéc(E., p.) = 13¢(DE2, Dp2) — i, ¢(DEs, Dp3).
Hence by the functorial properties of characteristic forms in Prop. 1.b.(2), we have axiom
1.

In order to check axiom 2, from the construction above, by Prop. 1.b.(2) again, it is
enough to prove that, in A(M), the above construction does not depend on the choice of
the metric Dps on D&;. Suppose there exists another choice Dp’,. Consider the product
M x P! x P! 'with points (y, z,u). We have the following natural maps:

l-l.ﬂ
MxP 'S MxP x P22 M x P!,
and "
MxP'S M x P x P23 M x P,
with
iy, 2) = (v,2,u), paly,z,u) = (y,2),
i;la(yv u) = (y| Z, U), Pla(!}v z, U) = (y’, u)'
Also let p; : M x P! — M be the projection to the first factor. Then on the bundle pi,DE,,
we may find a metric 7 such that
(l) (iCL)!)‘(pI:I‘DSQlT) = (Dgz, DP?):
(2) (t:ég)‘(pngS:, T) = (DE:, DP’E);
(3) (i52)* (P, DE2, ) = pi (€2, P2);
(4) ("ég)'(P;zDgh ) > pi(& @ &3, p1 © p3)-

Hence,

[ oslzF"16(D€x, D) ~ [ floglaF 606 D)
P! p!
= [ 108} (4(DE2, D) - 6(DEz Op)

= [ Nogls ') (@(()" (912 D2, ) = (35 (12 DEr, ).
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Thus by Stokes’ formula, we have
[, BotzF 16062, D) - [ Noglsl*| 6(DEx, D1
= [ logl:l") loglul’l(dud (852 D62, )).
p'lxpl

But if we let § = 8y + 8; + 0, and 8§ = Gps + J; + 8, be the differentials on M x P! x P!,
then by the fact that characteristic forms are d closed, we have

... Bosl=F] logluP' dud (6(752 DEx, )
= [ Boglal"]DogluPl(d. d(6(o1 D6z, 7).
Thus, using Stokes’ formula again, we have
/ flog|2|*] (DE2, Dp2) - f llogiz*] ¢(DE3, Dph)

pl Pl

= /P . (log|ul®) (#((i6%)" (P12 DE2, 7)) — B((i33)" (P33 DE2, 7))

= [ Doglul'} (7L (&(E2,p2) = (61 @ 0,01 @ p2)

= [ DosluP131(é(E2.02) ~ 661 © E8.01 @ p3)

=0.
Here, in the last step, we use the fact that

P1(8(E2,p2) — $(E1 © &3, 71 O p3))
is a constant form with respret to P!. So we have axiom 2.

The proof of axiom 3 is rather simple, since in the case that (£.,p.) i3 split, we may
choose a metric Dp; which does not depend on z.

Finally, we have to prove the uniqueness. For this, let us start from the exact sequence
DE.. By axiom 1, we know that

dymxprdysxpr¢8c(DE., Dp.) = ¢(DE, Dp2) — ¢(DE & DE3, Dpy & Dps).

Hence we have

. Do8lsP'| due e i ac(DE., Dp)

= | DoglzP’) (D€s, Do) ~ [ lloglz) 6DE: ® DE>, Dy @ D)
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But the last term does not change if we change z to z~!, hence it is zero. Therefore, we
have

-/Pl[loglzlzldeP1di{xp1¢'BC(D£.,Dp.)
='/P‘['°S|z|2]dsdi¢sc(D5-.DP-)

= ig¢pc(DE., Dp.) — igoénc(DE., Dp.)
= [ toglsl*6(D¢2, Dpa).

Here, in the last step, we use that fact that (DE., Dp.) is split at infinity. So finally, by
axioms 2, 3, we know that the classical Bott-Chern secondary characteristic form associated
with (£.,p.) is the one constructed above.

I.1.2.c. Properties of Classical Bott-Chern Secondary Characteristic Forms

In this subsection, we discuss the classical Bott-Chern secondary characteristic forms
in more detail.

Theorem. (1) Let ¢,,$; be two symmetric power series in C[[T},...,T,]] and let
8.:0—'51 —*52 —»83—»0

be a short exact sequence of vector sheaves on a complex manifold with hermitian
metrics p; on & for j = 1,2,3. Then

(¢1 + d2)Bc(£.,p.) =h1BC(E.,p.) + d2BC(E., p.);
(102)Bc(E.,p.) =b1Bc(E.,p.)02(E2, p2) + H1(€1 B E3,p1 D pa)d2Bc(E ., p)
=¢1Bc(€.,p.)2(E1 B E3,p1 B p3) + 61(E3, p2)b2BC(E.,P.).

(2) Let ¢ be a symmetric power series in n variables, and let ¢,(T},...,T,,) and
Pal(Tp,+1, -3 Tn) be the symmetric power series defined by

$(T1,. - T) =Y bal(Ti -, Tn)@a(Tnst, -, Tn).

Let
Eit0—=&i—&;—8,;—0

i

be a short exact sequence of vector sheaves on a complex manifold with hermitian
metrics p;; on & ; and tk(&y) = ny, for j = 1,2,3,i=1,2. Then

éBc(E1@E 2,p.1Dp.2)
= Z[% Bc(€.,1,0.1)Pal(€2,2,P22) + Ga(€1,1 ® €31, 01,1 ® p3,1)PaBC(E 2,0.2)]
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(3) Let
8_ 10—'51 —’82—’83-—'*0

be a short exact sequence of vector sheaves on a complex manifold with hermitian
metrics p; on &; for j = 1,2,3, and tk(£2) = ny. Let (F,7) be a hermitian vector
sheaf with rk(F} = n,, and ¢ a symmetric power series in nyn, variables. Define
the symmetric pdwer series ¢4, ©p in n;, no variables, respectively, by

¢(Tl + Uli"'rTﬂl + Ul!"'lT]. + Urlqy"'JTﬂl +Ung)
=) ¢p(Thy- .., Tn o (Un,- -, Uny).
)

Then
lﬁBc(g. RF,p.® T) = Z ¢3 BC(‘EH Pl)ﬁPﬂ(-'F- T)'
B

(4) (Nine Diagram) Let

0 0 0
i | 4

0 — &y — &y — &3 = 0
! ! 1

0 — & — &3 — €3 — 0
! | !

0 — 831 hd 532 —’_ 833 - 0
| ! |
0 0 0

be a commutative diagram of vector sheaves with lines £; and columns £; exact.
Let pj;i be hermitian metrics on £ for i, j = 1,2,3; and let ¢ be a symmetric power
series in n = rk(£33) variables. Then

¢nc(€2.,p2.) = dBc(&2. © €5, p1. @ pa.) = dBc(€.3,p.2) — dBc(E1 D £3,p.1 B p3).

Proof. (1) By the facts that, for any hermitian vector sheaf (&, p),

(61 + ¢2)(E,p) =61(E,p) + 82(E, p),
(¢1¢2)(€, P) =¢1(8) P)¢2(£’ P)s

we know that both sides of the equalities satisfy the axioms for classical Bott-Chern sec-
ondary characteristic forms. By uniqueness, we have the assertion.

(2) Define

é¢8c(1,2) == Z[‘i’a Bc(&.1,0.1)pal€22,P2,2) + b1, ® €31, 1,1 ® p3,1)PaBC(E.2,0.2))
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With the same notation as in the construction of the previous subsection, we know that
/Pl logl|z|*) ¢(DE,L ® DE3 & DEL3 D DE32, Dp11 © Dpay ® Dp12 @ Dpag) =0

in A(M). In fact, the above expression is invariant on replacing z by 1/z. Furthermore, by
the fact that b

#(E2,1 ® E2,2,02,1 @ p2,2) = Z dal(€2,1,p2,1)0a(€2,2,P2.2),

we know that
dd°¢nc(1,2)
= Z[qﬁa(gz.l,Pz,l)sﬂa(fz,z.ll'z.z) + ¢a(E1,1 @ E31,P1,1 B P3,1)pa(1,2® E32,p1,2 @ p3,2))
a

=¢(E21 D E2,2,021 D p2,2) — (11D E 3D LI D E2,011D p1,3D P12 D pa2).

Therefore, we have |
¢ac(E 1 DE 2,0 1B p.2)
= /;1 (log|z|?) ¢(DE2,1 ® DE2z, Dp2,1 @ Dpaa)

=/,,,l1°slzl’1 dd*énc(1,2)

—_—/ dd*(log|z{*) énc(D1, D2)
Pl
=igdpc(Dl, D2) — il dpc(D1, D2)
=¢BC(112) -0= 'ﬁBC(l:z)'
The results in 3 and 4 are direct consequences of the construction stated in the last

subsection. We leave the verification to the reader. In particular, we have the following

Corollary. With the same notation as above, we have
1. If (£,7) is a hermitian line sheaf,

dpc(€.QL,p.QT) = 2455 ac(€.,p)er(L, 7).

>0
Here ¢; is defined by the relation:

HTL+T,... . Ta+T)=: ¢i(Th,..., Ta)T"

2. chac(€,p1, pa) = chac(€, p1, p3) + chuc(&, p2, pa).
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§1.1.3. Superconnections

In the above discussion, the key point is that for a given hermitian (holomorphic) vector
bundle (£, p), there exists a unique canonical connection V¢ ,. From this, we obtain the
associated curvature form. By the local invariant property under conjugation, wé construct
the characteristic forms, which are global differential forms on M. In order to go further, it
is very important for us to find what is the main ingredient in the definition of connections.
It has only recently been discovered by Quillen that a key point in the definition of connec-
tions is that the connection is a special odd endomorphism of A(M,£) which satisfies the
Leibniz rule. Thus we may generalize definitions from connections to these for supercon-
nections. This process is not difficult to understand formally, but it is very powerful and
mathematicians have spent several decades to discover it.

Let £ = €Y @ £~ be a superbundle on a complex manifold M, i.e. it is a Z;-graded
vector sheaf. Let A(M,&) be the space of £-valued differential forms on M. This space has
a natural Z-grading given by the degree of differential forms. Usually, we will denote the
degree i component of a differential form a by af;). Also if let

)

AX(M,£) =3 A¥(M, %) @ Y AT (M, £F),

we have the total Z,-grading on A(M, £) as follows:

A(M,E) = A*(M,£) @ A~ (M, £).

By definition, a superconnection A on a supervector sheaf £ is an odd first-order
differential operator

A A%(M,E) - AF(M,E)
which satisfies the Leibniz rule in the Z,-graded sense: If a € A(M) and 6 € A(M,£), then
AlaAfB) =daAd+(=1)la A Ag.

Here |a| denotes the degree of a.

As usual, we also define the curvature of a superconnection A to be the operator A?
on A(M,E£).

It is not difficult to-prove the following

Proposition 1. Let £ be a supervector sheaf on a complex manifold M. Let A be a

superconnection on £. Then

(a) The operator Ayy) is & covariant derivative on £ which preserves the sub-sheaves
E* and £~. The operators Ay for i # 1 are given by the action of differential

forms wy;) € A(M,End(£)) on A(M,£), where wy) € A(M, End™(£)) if 1 is even,
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and wy) € A(M,End*(£)) if i is odd. We call A(y) the covariant derivative
component of A.

{b) The space of superconnections on £ is an affine space modelled on the vector space
A~ (M, End(£)).

(¢) If A, is a smooth one-parameter family of superconnections on &, dA,/ds lies in
A~ (M,End(£)). |

In order to use superconnections to define characteristic forms, we need the supertrace
mapping on the space A(M, End(£)). By definition, the supertrace map

Tr, : A(M,End(£)) — A(M)
is defined locally as follows:

On each fiber of End(£) on =z, Tr, ; : End(£): — C is defined by

Tr, (‘: f;) = Tr(a) — Tr(d).

Since the algebra A(M) is supercommutative, this map vanishes on the supercommutators
and preserves the Z,-gradings.

Now let ¢ be a power series as in section 1.a. For any superconnection A on a super-
vector sheaf £, we know that ¢(—A?) is in A*(M,End(£)), since A? is in A*(M, End(£)).
Thus Tr,[¢(—A?)] is an element in A*(M). We denote this element by Tr,[¢(£,A)), and
call this differential form the complex characteristic form of A with respect to the
power series ¢. Here, we need to make the following remark. Classically, as we consider
the problem in the integral cohomology theory, for a covariant derivative 57, we define the
characteristic form by ’I‘r,¢(—§1;;v’). But when we consider the superconnection formalism
in the sense of index theorem, it is not quite natural, since now we may meet certain scalar
factors for appropriated degrees. To deal with this difference, we may usually introduce the
following operator on forms (or on currents):

Let M be a compiex manifold. Define [2#i] as an operator on @APP(M) such that

2] 3 _wp) = Z('i,;—,-)’%l'

P
for any element 3~ wip) € ®p APP(M) with wi,) € APP(M).

We list the most important properties of such a differential form in the following

Proposition 2. Let A be a superconnection of a supervector sheaf £ on a complex
manifold M. Then
1. The characteristic form Tr,[¢#(£, A)] is a closed differential form of even degree.
2. (Transgression Formula) If A, is a differentiable one-parameter family of super-
connections on &,

dAq

dt ¢'(£' Al)]

d
ETTJ[‘#(E- Al= d'Tr, |
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3. If A; and A, are two superconnections on £, then the differential forms
,I}‘{¢(£v A‘)]l r]}‘ [¢(£: A)]

lie in the same de Rham cohomology class.

For the proof of all these properties, we only need to know that Tr, vanishes on the
supercommutators and for any o € A(M,End(£)),d(Tr,a) = Tr,([A, ¢]). Later, we will see
that superconnections are very powerful.
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Chapter 1.2
Relative Bott-Chern Secondary Characteristic Forms
For Smooth Morphisms I: Axioms

From the previous chapter, we see that the classical Bott-Chern secondary characteristic
form measures the change of characteristic forms with respect to the change of metrics. What
should be the corresponding objects in the relative case? To explain this in more detail, we
recall the classical Grothendieck-Riemann-Roch theorem in algebraic geometry.

Let f: X — Y be a smooth morphism of regular algebraic varieties. Then for any
vector sheaf £ on X, we may define the push-out morphism of £ in the sense of K-theory:
fk(€) == 3 ;(~1Y R f.(€). Then, at the cohomology class level, we have the following
Grothendieck-Riemann-Roch theorem:

feu(ch(€)td(T})) = ch(fx (£)),

where fcp is the natural push-out morphism of algebraic cycles, td is the Todd characteristic
class, and 7; is the relative tangent sheaf of f.

The first observation towards the relative Bott-Chern secondary characteristic forms
with respect to smooth morphisms comes from the following fact: At the level of differential
forms, the similar equality

feu(ch(€) td(7})) = ch(fx (£))

no longer holds in general. More precisely, now we may assume that £ is f-acyclic, that is,
the higher direct images of £ with respect to f vanish, i.e. R*f.£ =0 for i > 0. Then f.£
is a vector sheaf on Y. Furthermore, with respect to a hermitian metric gy on the relative
tangent sheaf of f, if p 18 a hermitian metric on £, we may naturally define the push-out
matric f.p on f.£. In this way, we may get two differential forms on Y:

ch(f.€, fop)
and
fo(ch(&, p) td(T}, pr))-

As an easily corollary of the Grothendieck-Riemann-Roch theorem, at the level of de Rham
cohomology classes, i.e. modulo the d-exact forms, we know that they are just the same.
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However, if we consider the problem at the level of differential forms, we see that the dif-
ference of these two differential forms is usually not zero. So, as in the classical (absolute)
situation, we may ask how one can measure the difference of these two differential forms
on Y. As one may imagine, the supposed concept about relative Bott-Chern secondary
characteristic forms are distributed to measure this difference. In this sense, a key ax-
iom of the relative Bott-Chern secondary characteristic form for (£, p; f, py), denoted as
chpe(€, p; f,p1), should be the following equation:

dydy chpc(E,pi f,op) =
fo(ch(&, p)td(Ty,p;)) — ch(f.E, fup).

Another way to think of the above problem is that in the hermitian K-theory, the direct
image (f.£, f.p) is not a good definition for fx (£, p), when £ is f-acyclic, since by checking
certain concrete examples such as Riemann surfaces or projective spaces, the metric f.p is
not the right one. So we need to introduce a new metric py pg on f,€, the Riemann-Roch
metric associated to (£, p; f,py), so that it is compatible with the refined Riemann-Roch
theorem at the level of differential forms, and it should also induce the Quillen metric on the
corresponding determinant line sheaf. Suppose such a metric does exist, we now may think
of the reletive Bott-Chern secondary characteristic forms with respect to smooth forms as
a measure for the change of Chern forms from the Riemann-Roch metric to the push-out
matric on f.£.

This chapter consists of two sections. In the first one, we introduce the axioms for the
relative Bott-Chern secondary characteristic forms with respect to smooth morphisms. In
the second, we give the existence theorem for them.

§1.2.1. Axioms Of Bott-Chern Secondary Characteristic Forms
With Respect To Smooth Morphisms

[.2.1.a. Downstairs Rule

Let f : M — N be a smooth morphism of Kahler manifolds with a hermitian metric
py on the relative tangent sheaf T;. Let (£, p) be an f-acyclic vector sheaf on M. Then by
the Grothendieck-Riemann-Roch theorem, we have the formula:

£.(ch(€)td(T})) = ch (f.£).

This formula only holds at the level of cohomology classes. Usually, if we consider the
situation at the level of differential forms, the difference of the two differential forms

A (Ch(£$ P) t‘d(T: Pt )) —chf. (E, P)

is not 0. It is natural to ask how we can measure such a difference. In general, motivated by
the Quillen metric on the determinant line sheaf, we also want to introduce a good metric
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on f.£, when £ is f-acyclic. In this sense, the relative Bott-Chern secondary characteristic
form measures the change of the Chern characteristic forms with respect to the new metric
and the natural L3- metric on f.£.

From the remark above, we are led to coinsider the following axiom for the relative
Bott-Chern secondary characteristic form chac(&,p, f,py) on N: "

Axiom 1. (Downstairs Rule) Let f : M — N be a smooth morphism of Kahler man-
ifolds with a hermitian metric py on the relative tangent sheaf 7;. Suppose (£, p) is an
f-acyclic hermitian vector sheaf on M, then there exists an element chpc(E,p, f,pr) €

-

A(N), such that

dnydychac(€,p, f, pr) =
fo(ch(€,p)td(Ty, pp)) — ch (£.E, fup).

1.2.1.b. Functorial Property

For the classical Bott-Chern secondary characteristic form, we have an axiom in the
sense of functors. Now we should have a similar axiom. Since the relative Bott-Chern sec-
ondary characteristic form is defined over N, it is enough for us to consider its behavior
under the base change. But for a most general base change, we know that even the cohomol-
ogy groups do not behave very well. Thus we assume that our base change is a special one,
say, a flat morphism. We know that in this case, everything works well. (See Proposition
I11.9.3 of [H 77}).

Axiom 2. (Base Change Rule) For any flat base change g : M/ — N, we have
g chac(€, 05 f,p7) = chnc(9; €, 970 fg. 0y, )

Here g; denotes the induced morphism of g with respect to f, and similarly for f,.
That is, we have the following commutative diagram:

Mxy M 2L
fol L f
M! . N,

Also here py, is the natural metric induced by the flat base change g from p;.

1.2.1.c. Uniqueness

The next axiom for the classical Bott-Chern secondary characteristic form is the unique-
ness rule. This rule represents the initial condition in the present context. In fact, the



Chapter 1.2. 19

classical Bott-Chern secondary characteristic form invelves the triangle relation in the cat-
egory of hermitian sheaves. What is the situation when the original triangle degenerates?
Usually this kind of initiative condition will determine the sclution uniquely among general
solutions.

Classically, there is only one triangle relation, i.e., the one for hermitian vector sheaves.
But now, there are two trangle relations: one is for hermitian vector sheaves, while the
other i3 for smooth morphisms. Now we give the triangle relations in a gerenal situation;
later we will show that they are equivalent to some other degenerate triangle relations.

Axiom 3. (Uniqueness With Respect To Vector Sheaves) For any short exact
sequence of f-acyclic vector sheaves

£.: 00— & —=E—E—0
with hermitian metrics p; on & for j = 1,2,3, let
f-g-: Oqftgl—*fogz_*ft“’h_.o

be the direct image of £ with associated hermitian metrics f.p; on f,&; for j =1,2,3.
Then
chpc(€a, p2; f,py) = chec(€1,1; f1ps) — chac(€a, p3; £ py)

= fo{chc (€., p.) td(Ty, ps)) — chpc(fo€., fup ).

Axiom 4. (Uniqueness With Respect To Morphisms) Let f : M — N and
g : N — Q be two smooth morphisms of Kdhler manifolds. Let (£, p) be an f-acyclic
hermitian vector sheaf on M such that f.£ is g-acyclic. Then

ChBC(S, p:ge fv Plof) - ChBC(f-E, f‘P; g, pﬂ) - g.(Cth(£, P f’ Pj‘) td('r,,P,))
= (g o f).(ch(£, p) tdpc(f, 9))-

Here tdpc(f, g) denotes the classical Bott-Chern secondary characteristic form associ-
ated with the following short exact sequence of the relative hermitian tangent sheaves:

0~ Tj = Tyog = T, = 0.

From above, we know that the axioms here for the relative Bott-Chern secondary char-
acteristic form have a similar pattern as those for the classical Bott-Chern secondary charac-
teristic form. They are composed by the following aspects: Downstairs Rule, Base Change
Rule, and Uniqueness Rule. Now taking Proposition 1.3 into the consideration, we know
that one can also define ternary objects and o on. In this way, we get a special kind of
hierarchy for characteristic forms.
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§I.2.2 Existence Theorem '
For Relative Bott-Chern Secondary Characteristic Forms
With Respect To Smooth Morphisms

Note that we have set up the axioms for the relative Bott-Chern secondary characteristic
forms with respect to smooth morphisms, it i8 a natural question to ask whether they exist
or not. If they exist, are they unique? For answering these questions, we have the following

Existence Theorem Of Relative Bott-Chern Secondary Characteristic Forms
With Respect To Smooth Morphisms,

Let f: M — N be a smooth morphism of Kahler manifolds with a hermitian metric p;
on the relative tangent sheaf 7;. Then for any f-acyclic hermitian vector sheaf (£, p),
there exists a unique element chpc{€,p, f,p;) in fi(N), which satiafies the axioms in
the last section.

The proof of this existence theorem has the same style as the one for the classical Bott-
Chern secondary characteristic form. That is, we first introduce a new one-dimensional
parameter for the connections. But in the case now, we do not have the canonical connection
and its natural generalization of the Cheen characteristic form. Instead, we have to introduce
the so-called Bismut superconnection and the heat kernels associated with the generalized
Laplacian. As a consequence, technically, instead of integrating over P!, we will use the
Mellin transform to integrate our family over Ry, All of this will be done in the following
chapters.
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Chapter 1.3
Existence Of Heat Kernels

The heat kernels were used in the proof of the Riemann-Roch theorem is slightly strange
but very powerful. Soon after Hirzebruch found his remarkable Riemann-Roch formula,
Grothendieck and Atiyah-Singer generalized the formula to more general contexts. For
Grothendieck, in algebraic geometry, the Riemann-Roch theorem means the following com-
mutative diagram:

Ko(M) X2 CB(M)q.
Ikl | fou

Ko(N) =  CH(N)q
For Atiyah-Singer, they noted that, by Hodge theory, the cohomology groups for a vector
sheaf are nothing but the kernels of certain elliptic operators. Hence they can study the index
of an elliptic operator over more general manifolds, say spin-manifolds. Technically, the first
proof-of the Hirzebruch-Riemann-Roch formuia or the Atiyah-Singer index theorem is in the
style of the cobordism theory. Later, Grothendieck and Atiyah-Singer gave the proofs of
their theorems using algebraic K-theory. It was only after Patodi that mathematicians
realized that the use of heat kernels, following Seeley and others, has greater flexibility. It
is in this way that the local family index theorem can be proved at the level of differential
forms. (The ordinary family index theorem may be thought of as an integration form of
this local version.)

In this chapter, following some classical methods, we will prove that for a generalized
Laplacian, there exist heat kernels.

Partially because the heat kernel technique is hard to understand for most of algebraic
geometers and i8 the core of our method here, we will devote it this chapter with details.
The references here are [BGV 92], [Gi 84].

§1.3.1. Sobolev Spaces

In this section, we introduce a basic tool for the study of heat kernels. We first do
everything locally, i.e. we study the situation over Euclidean spaces and then note that
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since our manifold is compact, we may choose a finite open covering and extend the local
discussion globally by using a partition of unity.

1.3.1.a. The Situation For Euclidean Spaces

For any Euclidean space R™, there is a natural scalar product and hence a metric: For
any two vectors z := (Z1,...,2m) and y := (y1,---,¥m) in R™,

m
<z, y>= ery,-, and |z|:=<z,z>2.

i=1
Let a = (ay, ..., am) € ZT, be a multi-index, we let
B m m m
|a|:=2a,-, al:= Haj Loz% = Hz;".
j=1 i=1 j=1
Define o gam . "
dg = TR e Df :=(-1)'"d3.

We also fix a volume form dz on R™, which comes from the usual Lebesgue measure on
R™, but with an additional normalizing factor (27)~™/2. Then we have

L"'(R’“) := the space of ail complex valued functions f on R™ such that, under the
natural L? inner product (h,g) = [ h(z)§(z)dz,(f, f) is finite;

C*={R™) := the space of all smooth complex valued functions on R™;

C&(R™) := the space of all functions in C*°(R™) with compact supports. This space
is a dense subset of L*(R™).

C*(R™) := the space of continuous functions on R™ with continuous partial derivatives
up to the order k.

We consider a special class of smooth complex valued functions on R™, the Schwartz
class S. By definition,

S := the space of the functions in C*°(R™) such that for each pair of multi-index a, 3,
there is a constant Cy g such that

130 Df f1 £ Cap.
It is a basic fact that C°(R™) C S C L¥R™). Thus, S is dense in L?(R™).

The next key concept is that of the Fourier transform on S. By definition, for any f in
S, the Fourier transform f is defined by

i€ = / e f(z)da.
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The fundamental dual properties for the Fourier transform are stated as follows:
Dgf(e) = (-1)lz=F, ¢f(e)= DgJ.
In particular, the Fourier transform defines a map from & to itself. Also there is a fixed point

of the Fourier transform, namely, the Gaussian distribution exp(—%|z|3). Moreover, the
Fourier transform is a bijection of §, since we have

f() = f(~2).

There are two natural ring structures on §: one is defined by the ordinary pointwise
product, while the other is defined by the following convolution: for any f,g € S,

(Fo)e) = [ fz=v)swdv
The Fourier transform gives a homomorphism of these two rings. That is, we have
fi=Fg fi=Fg

Finally, since S is dense in L?(R™) and (f,g) = (f,g) for any f,g € S, we know that the
Fourier transform may be extended to a unitary map

L¥R™) — LI(R™). -
This last result is usually called the Plancherel theorem.

With the above construction, there is the Sobolev apace H,(R™) which is a measure of
the L? derivatives. For any s € R and f € S, we let

= [ (I IFOPE

Then the Sobolev space H,(R™) is the completion of § with respect to the norm ||,. In
a certain sense, the subscript 5 counts the number of L? derivatives: If s = n is a positive
integer, we define the norm |.|," by

Ifla= 3 fn_ e flPde = /R_ |D2 f|*dz.

laln lal<n

Obviously, this is an equivalent norm for H,(R™). With this interpretation in our mind, it
is not surprising that |a|*® L2-derivatives are lost, when we extend D2 to H,. That is, DZ
defines a continuous map

 DZ:H(R™) = H, jo(R™).
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(In fact, this comes from the following very simple estimation:
€711+ g7y el < o+ ey

for certain constant C which depends on the parameter (s, @) but not on f.) It also follows
from the Plancherel theorem that H,(R™) is isomorphic to the L? space with the measure

(1 + [gI7)*/2de. .

In the following, we display a few relations among the various kinds of norms. First we
introduce a new norm on S: For any k € Z»p, and f € S,

|flook :=sup.er~ 9 IDZSI.

lo| <&
Obviously, the completion of S with respect to this norm is a subset of C*(R™).

Sobolev Lemma. Let k > 0 be a positive integer and s a real number with s > k+ T
If f € H,, then f € C*(R™) and

|flook < CIfls

for some constant C.

Proof. First for £ = 0, since fn.m(l + [€|3)~*d£ is bounded for s > 2 and f € S, we

have .
@) = 1f(z)P
=1 [ (RO + YT+ Py
<Clfl2.
Therefore,

|fleo0 £ ClSfls-

Since elements of H, are the limits of elements in § with respect to the |'|,-norm, and since
the uniform limit of continuous function is continuous, so the elements of H, ate continuous
and the same norm estimate extends to H,. In general, if £ > 0, we may use the following
statement to obtain similar assertions: If |a| < k and s —k > 7, we have ‘

|DZ floot < CIDZ flajaj £ Clfls-
This completes the proof.
Next, we consider the relation between | |, and ||, for different s and ¢. Since for s > t,
(T+1617) 2 (L+ 1€,

we know that the identity map on S is actually an injection of H, — H; which is norm
non-increasing. Furthermore, if we restrict the supports of our elements, this injection is
compact. That is, we have the following
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Rellich Lemma. Let {f,} C & be a sequence of functions with supports in a compact
subset /. If there is a constant C such that |f,|, < C for all n, then for any s > t,
there exists a subsequence {f,,} which converges in H,.

Proof. Let ¢ € C§°(R™) be a function such that ¢ = 1 in a neighborhood of K. Then
9fn = fn and

n=1 [ @itz - el
Rm™
< [ 15(©ltatz - ©)lde
Rn .
Ul _litz - )P+ )~ de)?
R™
< Ch(z),
where h is a continuous function of z. Similar estimates hold for all derivatives of f,(z). So

there i8 a subsequence f,, of f,, such that fa, converges uniformly on each compact subset
of R*. Thus for any r > 0,

Ifn,* - f'ln I? =
= [ Vo= FuPO e+ [ 1o, = a1+ Y g
lel<r 1€12r
< Crmaxjgigrlfn; = faul? +2C(1 4772,
Others are trivial.

Another very useful estimation is the following

Lemma 1. If s > t > u, and € > 0, there is a constant C{¢) such that

|Ifle < elfls + ClE))flu-

Proof. This inequality is a direct consequence of the following

(1+ 1™ < (1 + 1) + Ce)(1 + le1)™.

We end the discussion of Sobolev spaces with the following

Lemma 2. The L? pairing on S extends to a perfect pairing of H, x H_, — C. Thus
we may identify H_, with H;.

Proof. By the Cauchy-Schwartz inequality, we know that for any f,g € S,

I(£; )1 < 1flslgl-s-
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Thus, for any f € S, let gy € S be the function defined by

g = fOL+ 1)
Then (f,g7) = |flslgsl-+. Moreover, for any f € §,

: (£, 9)

Ifls = supges g0 :
|g1-s

So we have the lemma.

1.3.1.b. Pseudo-Differential Operators On R™

By definition, a linear partial differential operator of order d is a polynomial
expression P = p(z,D) = 3 ,1<4%a(%)DZ, where the components of aq(z) are smooth.
The symbol of P, 0P = p, is defined by

-

oP =p(z,6) = Z aq(z)€”,
lalgd

which is a polynomial of degree d in the dual variable £. It may be helpful to regard (z,£)
as defining a point of the cotangent space T"(R™). The leading symbol o1 P of P is the
part of p(z,&) of the highest degree.

Now we go slight further. Note that, for any f € S,

Pre)= [ &= pz o)k

80, we may use this formalism to define the action of pseudo-differential operators for a
wider class of symbols p(z,£) than polynomials. That is, we say that p(z,£) is a symbol
of order d and write p € S¢ if p(z,£) is smooth in (z,£) € R™ x R™ with a compact z
support and for all (e, 8), there are constants C, 5 such that

|D2 D p(z,)] < Cap(l + [[2)4-101.

For such a symbol, we define the associated operator P(z, D) as the linear operator map
§ — S given by

Pre)= [ etnz 0.

Note that since for any d € R and f € CP(R™), f(z)(1 + [€]2)%/2 € §9, we see that
the order of a symbol needs not be an integer. Usually we refer to such an operator as a
pseudo-differential operator, or shortly a ¥DO. If for all d, f € S4, we denote this by
p € S~ and say that p is infinitely smoothing.
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We have the following

Lemma 1. For a p € §9, there is a constant C such that for f € § |Pf|,—q4 < C|fl,.
It follows that P may be extended to a continuous map P: H, — H,_4 for all s.

Proof. For our purpose, let

(¢, &) = f me"’“"’p(z,e)d:

and define
K(C,€) :=q(¢ = &)1+ €D (1 + ¢y 2.

Then, by the Cauchy-Schwartz inequality, we have
(PRl =t [ KM+ EDFE+ Il dcas
<{[IKE@OIEP( +leh™ dede

x ([ IKQOIGOR + 10D dcde) 2

Now the lemma is a consequence of the following two easy estimations

j K(@Ok<C [ KOs
R~ ne=

Next we discuss the smoothing approximation for a ¥DO. We first introduce an equiv-
alence relation on the symbols by defining p ~ ¢ if p—¢q € S~°°. Also for any given symbols
p and p; € S%, we say that p is approximated by E;”:l pj, and denote it as

[
pNijv

i=1
if dj — —co and for any d, there is an integei' k(d) such that & > k(d) implies that
p- E;:l pj € Sd’

For the application to Riemannian manifolds, in the following discussion, we will need
to restrict the domain and the range of our operators. Let U be an open subset of R™ with
a compact closure. Let ¥4(U) be the space of those operators P for which the associated
symbol p(z,£) € S¢ has support in U; thus P may be thought of as P : C§*(U) — C(U).

We also let
¥(U) = ¥a(V), ¥oo V) := [ | ¥a(V).
d d

More generally, we may consider the matrix valued symbol, which lead to little addi-
tional difficulty.
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Lemma 2. Let r(z,£, y) be a matrix valued symbol which is smooth in (z,£, y) and has
compact = support inside U. Suppose that for each multi-index (a, 3, ¥) there exists a
constant Cy g such that

|D2 D D] 7| < Cap (L + [P,

We have
(a) If f is vector valued with compact support in U, R is defined by

Rf(z) == / e <T V2 r(z, £, y) fly)dy dE.
R™xR™
Then the operator R is in ¥4(U) and
oR(z,€) ~ {>_ dZDg r/al}|e=y.
o
(b) fd< —m—k and

K= [ &0z i,

then K is C* in z,y and Rf(z) = [q~ K(z,v)f(v)dy.
(c¢) If the z-support of r is disjoint from the y-support of r. Then R is infinitely
smoothing and is represented by a smooth kernel function K(z,y).

Proof. (a) First we may assume that the support of » in y is also compact. This may
be done by multiplying r by a cut-off function in y with a compact support and with value
1 on U. Now let ¢(z,£,{) be the Fourier transform of r in y, then by an easy estimation,
we know that

RI@) = [ &6 - OO .
Thus, if we let
pa )= [ e - e,
then :
Ri@)= [ <@ 0f(0k
is a ¥DO.

But by the Taylor expression of ¢ on the middle variable, we have

q(z,§+¢,€) =

da‘ <, a
> M + (2,6, 6).

fal<k
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Note that since ¢; decays to arbitrarily high order in (£,() and gives a symbol in $9-* after
integration, we have

pe0)= [ eOaa+ 00k
=‘] el <E 6> 2 cq(z < E)fad€+remamder

lax|<E

d¢ Dyr(z,(,
( :4v) —————|:=y + remainder.
ja| <k
Hence we have (a).

(b) By our condition, we know that K is well-defined. Now the result is a consequence
of Fubini’s theorem.

(c) In this case, we can not define K as in (b), since the integration here does not
converge. But there is another definition for K. In fact, from our assumption, we know that
on the support of r, |z — y| > € > 0. Define the Laplacian A¢ :=73 ", D?.‘ Thus formally

Rf(z) = _/ <=V (2 — |~ Afr(z,€, y) f(y) dy dé.
R™xR™
So we may define
Kle,)i= [ <8y ale(a, 6 0) &

for sufficiently large k. Now the assertion is a consequence of the fact that Agr decays to
arbitrarily high order in £. This completes the proof.

From the proof above, and because of the presence of the terms |z — y|~2*, we know
that, in general, K(z,y) becomes singular when z = y. But if K(z,y) is a smooth matrix-
valued function with a compact z-support, we may define an operator P(K)} € ¥_, as
foliows: For any f with a compact support in U,

PUNNE) = | K(e i)y

Thus P(K) defines a continuous operator P(K) : H, — H, for any s,t. Let |P|, ; denote
the operator norm, then, for any f € S,

[P fle < 1Plsslfls

and if k € z?o,
Kook < CE)Pl-k.k-
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Finally, we give a result on the smoothing approximation for a ¥DO.

Lemma 3. Let p; € S%(U) with d; > dj;,,d; — —co. Then there exists a symbol
p € S% such that p ~ Z,’ p;j. Moreover, p is unique modulo §=%.

Proof. We only need to prove the existence. For this, we introduce a cut-off function
¢ 0< ¢ <1, and ¢(§) = 0 (resp. 1) for [£] < 1 (resp. > 2.) Thus we may cut away the
support near §{ = 0. Let

p(z,€) = Zj«b(t;e)p,-(m).

Now note that since p; — ¢(t;€)p; € S~°°, by using a diagonalization argument, we have
the assertion.

1.3.1.c. Situation For Manifolds

In this subsection, we extend the above discussion globally by using a partition of unity.

Let M be a smooth compact m-dimensional Riemannian manifold without boundary.
Let du denote the Riemannian measure on M. Let C™ (M) be the space of smooth functions
on M.

A linear operator P : C®° (M)} — C*®(M) is called a ¥DO of order d if for every open
chart U on M and every ¢,p € C°(U), $Pyp € ¥4(U), denoted by P € ¥4(M). Let

(M) = Wa(M), ¥_oo(M):=()Wa(M).
d d

In any coordinate system, we define o(P) as one for $P¢ with ¢ = 1 near the point in
question; this is unique modulo S=°. In the same way, we may define the leading term. It
is obvious that the leading symbol is invariantly defined on the cotangent bundle T*(M).

We define L?(M) using the natural L? inner product, that is, L?(M) is the completion
of C*®(M) with respect to the L? norm. For P : C®(M) — C*®(M), we let P* be defined
by (Pf,g9) = (f, P*g), if such a P* exists.

Now we use a partition of unity to define the Sobolev space H,(M): Take a cover of M
by a finite number of coordinate charts U;; for each i there is a diffeomorphism h; : O; — U;,
where O; is an open subset of R™ with compact closure. For f € C§°(U), define

£ = Ihi -
Let {¢;} be a partition of unity associated to this covering. Then define

Il =3 16 fIE0.

Obviously, ||, is a well-defined norm. In this way, we have the Sobolev space for M. Since
M is a compact manifold, it is not difficult to generalize all the results in the previous
subsection to the similar resulta for M.
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§1.3.2. Elliptic Operators And Fredholm Operators
1.3.2.a. Elliptic Operators

Let M be a compact m-dimensional Riemannian manifold. Take a finite covering of
M by coordinate charts {U/;}. For simplicity, we may think of U = U; as an open subset of
R™.

Let p € S%(U) be a square matrix and U, an open subset with ; C U. We say that pis
elliptic on U, if there exists an open subset U with U, C Uz C Uz C U and if there exists
g € S™9 such that pg—I € S~ and gp— I € S~ over U;. (Recall that if r € S~ then for
every ¢ € C°, ré¢ € S~°°.) For example, for any ¢(z) € C°, the symbol ¢(z)(1 + |£]*)%/21
is an elliptic symbol of order d whenever ¢(z) # 0. Globally on M, we say that P is elliptic
if for any ¢,y € C§°(U), ¢ Py is elliptic whenever ¢(z) # 0.

The basic properties of elliptic operators are contained in the following

Lemma. Let P € ¥4 be elliptic. Then
(1) There exists Q@ € ¥_g4 such that

PQ"IE‘p_om QP-IG‘I’-m-

(2) P is hyperelliptic. That is, f € H, and Pf is smooth implies f is smooth.
(3) (Garding’s Inequality) There exists a constant C such that for any f € C§°(M),

[£la < C(1flo + 1P flo)-

Proof. By using a partition of unity associated with a finite covering of M by co-
ordinate charts, we know that it is enough to prove the statements locally. Let U be
an open subset of R™. First note that if P € ¥y, Q € ¥,, then PQ € ¥4y, and
o(PQ) ~ 3., dgpDZg/al. Thus by the recursion, we may let

Qe =—q Z d¢pDgg;/a!
fal+i=kj<k

and go = ¢. From this, we know that if Q has the symbol g + q1 + ..., then we have the
conclusion in (1). .

(2) is trivial.
Finally for (3) we choose a cut-off function ¢ € C§° with value 1 on U;. Then if f € C§°,
|fla = |8fla < 16(I — QP)fla + |6QF fla-

Since ¢(I — QP) is an infinite smoothing operator, |¢(f — QP)f| < C|flo. Now (3) comes
from the fact that ¢Q is a bounded map from L? to Hj.

Remark. From this lemma, we know that for d > 0, one may define Hy by using the
norm |flo + |Pf|o and define H_4 by the dual of Hj.
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[.3.2.b. Fredholm Operators

From above, we know that an elliptic ¥DO is invertible modulo compact operators.
Takeing this fact out, we introduce the concept for Fredholm operators.

Let H be a Hilbert space and End(H) the space of all bounded linear maps X — .

11 I : sup: H-{0 | |
* € { } I:I !

End(#) is a Banach space. Let GL(*) be the subset of End(*) consisting of maps T which
are bijections. By the inverse boundedness theorem, we know that GL() is an open subset
of End(M) and is a topological group.

By definition, T € End(H) is compact if {z,} is a bounded sequence, i.e. |z,| < C for
any n, there is a subsequence {z,,} so that Tz,, — y for some y € H. Let Cpt(H) denote
the set of all compact maps. An easy statement is that Cpt(%) is a closed 2-sided ideal of
End(H).

Let H; and M3 be two Hilbert spaces, then ﬂom(ﬁl,ﬂz) is the Banach space of all
bounded linear map from #; to X3 with the operator norm. For any T’ € Hom(H,, H2), let

'N(T):={e €H,: T(e) =0} and R(E):={f €Ha: f =T(e) for some e € H;}.

If L denotes the operation of taking orthogonal complement, then R(T)* = N(T*). For
any T, N(T) is closed.

Let Fred(M,,M2) be defined by the element T € Hom(H,, H3)} so that there is § €
Hom(H,,M,) such that ST — I € Cpt(H,), TS — I € Cpt(H;). An element in this space is
called a Fredholm operator.

Lemma 1. The element T € Hom(H;,H3) is a Fredholm operator if and only if T is
such that R(T), R(T") are closed, and

dim N(T) < oo, dimN(T") < 0.
Thus, if T is Fredholm, so is T™; if T\, T3 are Fredholm, so is T3 o 7.
Proof. Let T € Hom(H,,H3) and let z, € N(T) be such that |z,] = 1. Then
o= -5z, = Czn

with C being compact. So we have a convergent subsequence. Hence the unit sphere in
N(T) is compact. As a consequence, N(T) is finite dimensional. Next, we prove that R(T)
is closed. For this, let yo» = Tz, and y, — y. Without loss of generality, we may also
assume that z, € N(T)*. There are two possibilities. ’

(1) {zn} is a bounded sequence. Then by the fact that

In = Slyn +(I _SlT)sz Slyn - S1y,



Chapter [.3. 33

we may further assume that z, — z. Hence,
Y= liﬂln_.myn = li“]n—-ooTzn = Tzv

which is in the range of T

(2) |zn] — oo. For this case, let z}, := z,,/|z,,|. Then

Tz:g — Yn/lzal = 0.

Using the same argument as above, we may assume that z}, — 2 with 7z = 0,|z|{ = 1 and
z € N(T)*. This is impossible.

Thus, R(T) is closed. By duality, we easily have the same assertion for 7.

Conversely, suppose N(T') and N(T"} are finite dimensional and R(T) is closed. We
have the decomposition

Hy = N(T)® N(T)*, Ha=N(T")® R(T).

Now the assertion is a consequence of the fact that

T: N(T): = R(T)

is a bijection.

For any Fredholm operator T, we define the index of T by
Ind (T) := dim N(T) - dim N(T™).

Obviously, Ind (T) = —Ind (7") and Ind (73 o T}) = Ind(T3) + Ind (T}). In particular, for
elliptic ¥DQes, we have the following

Lemma 2. Let P: C®(M) — C*(M) be an elliptic ¥DO of order d over a compact

manifold without boundary. Then

(a) The dimension of N(P) is finite.

(b) P: H,(M) — H,_4(M) is a Fredholm operator and Ind (P) does not depend on
3. -

(c) Ind(P) only depends on the homotopy type of ar P.

Proof. Only (b) needs to be proved. Note that since there exists an elliptic ¥DO Q of
order —d such that QP — I and P@ — I are infinitely smoothing operators, P : H, — Hg4_,
and Q : Hy_, — H, are continuous. Thus QP — I and PQ — I are continuous, hence they
are compact.
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[.3.2.c. Examples

Let £ be a graded vector bundle {;};ez such that & # 0 for only finite number
of j's. Let P = {P;} be a collection of operators such that P; is d'" order ¥DO with
P; : C®(&;) = C*=(&j41). We say that (£, P) is a complex if

Piy10P; =0 and oy Pj 00, P =0.
A complex (£, P) is called an elliptic complex if
N(opP;)(z,€) = R(oL P )(z,€)
for € # 0. As usual, we define the cohomology by
Hi(E, P) := N(P)/R(Pj)
If these cohomology groups are all finite dimensional, we define

Ind(P) := Z(-l)fdimﬂf(v, P)

}

as the Euler characteristic of the complex (£, P).

Choose a fixed hermitian inner product on the fibers of £. We may define L%(£). Let P*
be the adjoint of P with respect to this structure. If (£, P) is elliptic, we have a self-adjoint
Laplacian

A= (P'P); = PI Py + Py Py,

For p; := o P;, we have a(Aj) = pjp; + pj—1pj_,. By definition, we know that (£, P) is
an elliptic d*M order partial differential complex if and only if A; is an elliptic operator of
order 2d for all ;. The most important result in this direction is the following

Hodge Decomposition Theorem. Let (£, P) be an elliptic d** order ¥DO complex.

Then

(1) L*(&;) = N(A;) @ R(P;_1) ® R(P;}) as an orthogonal direct sum.

(2) N(4;) is a finite dimensional vector space and there is a natural isomorphism of
HI(E,P) =~ N(A;). The elements in N(A;) are smooth sections of £;.

Proof. Think of A; as an operator A; : Hy4(E;) — L*(&;). Since this is elliptic, we
know that
(1) N(Aj) consists of smooth sections of £;;
(2) N(Aj) is finite dimensional;
(3) R(A;) is closed;
(4) L3(E) = N(&,) & R(8).

Since P; Pj-1 =0, R(P;~1) and R(P}) are orthogonal. But for f € N(A;),

0= (A1, )= (B[, B f) + (F{_.f, Fj_. [),
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so N(A;) = N(P;)NN(P;_,). Thus R(A;) contains the span of R(P;-1) and R(F}). Hence
we have (1).

The natural inclusion of N(A,) into N(P;) defines a map N(A;) — H(E,P). If
fe€C™(&) and P f = 0, there is a fo € N(Aj) such that f = fo+ Afy with fy € C™(&;).
Note that since P;A; fi = 0, we have :

0= (P f1, P PiPifr + i B Pi_1 f1) = (P Pi )i, P} P; f1)-

Thus P/ Pifi = 0,80 Ajfy = Pj—1P.,fi € R(P;_;). Therefore the mapping N(A;) —
Hi (£, P) is surjective. This completes the proof.

Remark. As a more concrete example, consider the de Rham complex: Here £; :=
C®(N (T M)), P; := d the total derivative. Obviously, if for any £ € T*M, let ext(§) :
N(T*M) — ANTHT*M) be the exteriour multiplication, so that ext(§)w := £ A w, then
or(d)(z,£) = iext(€). Now we know that the de Rham complex is an elliptic complex.
Thus if we denote the adjoint of d as §, A = §d + d6 = (d + 6)* with oy A = |¢|2. Hence, by
Hodge decomposition theorem, we know that

HP(M,C) = N(dp)/R(dp-1) = N(Ap)

is the space of harmonic p-forms. As a consequence, we know that Ind (d) = x(M), the
Eular-Poincaré characteristic of M. Actually, if we let » : AP(T*M) — A™~P(T*M) be the
Hodge star operator, defined by w A #w := (w,w) dy, then by Stokes’ theorem,

o= (=1)PM=P)  § = (—1)PEMEL gy

Therefore, we further have the Poincaré duality: * : N (Ap) > N(Am-p).

§1.3.3. Existence Of Heat Kernels: 1

In this section, we will prove the existence of heat kernels associated with a self-adjoint
elliptic ¥DO.

We begin with the spectral theory. Let T € Cpt(H) be a self-adjoint compact operator
on the Hilbert space H. Let

Spec(T):= {A€C:T - AI ¢ GL(H)).

It is an easy exercise to show that Spec(T') is a closed subset of C which is contained in
the closed interval [~|T|, |T|]. For any A € [—|T|,|T]), let E(A) := {z € H : Tz = Az} be
the eigen-space. If A #£ 0, Tz = Az implies that the unit disk in F()) is compact. Hence
E()) is finite dimensional. On the other hand, dim {E(—|T|) ® E(|T|)} is not 0. Indeed,
suppose T # 0, we choose z,, 8o that |z,| = 1 and |Tz,| — |T|. We may assume {z,} is the
subsequence for which Tz, — y. Then '

|T? 2, — [TP2nl? = [T220? + [IT|*2al? — 2T (T2, 22) < 2T} = 2|T)?|T2a)* — 0.
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Therefore, zn, — z := Ty/|T|? # 0. Hence |T3z — |T|?z| =0, i.e. '
(T - [TI)(T + Tz = 0.

From this relation, we easily have the assertion.

In this way, we have'a non-trivial decomposition H = E(—|T|) & E(|T|) & H,. Let
Ty := Ty, , so that |Ty| < |T'|. Then we may decompose H; in the same manner. Continuing
this process inductively, we may find T, so that |T| < |Th—y|.

Claim. |T,| — 0.

In fact, for any n, choose z, so that Tz, = £|T,|2, and |z,| = 1. Thus |¢; —z;| = V2.
On the other.hand, since T is compact, we may choose a convergent subsequence |T, |z, — y.
From here, we know |T,,| — 0. That is, we have the following

Lemma 1. Let T € Cpt(H) be self-adjoint. Then

H=EDEO) @ E0).
k

Hence we can find a complete orthonormal system for M consisting of eigenvectors of
T.

As an application, we have the following

Lemma 2. Let P: C®(£) — C*(£) be an elliptic self-adjoint ¥DO of order d > 0.

Then

(a) There exists a complete orthonormal basis {¢,} for L?(£) so that Pg, = An¢n.

(b) én i3 smooth and limy—e0|An| = co.

(c) If we let the A, be such that |A,| < ]Agl < ..., then there exists constants C,§ > 0
such that |A,| > Cn® for sufficiently large n.

Proof. Note that since P : H4(£) — L*£) is a Fredholm operator, by Garding’s
inequality, we know that P : N{P)* N Ha(E) — N(P)* N L*(£) is a bijection. Define the
Green operator G = G(P) as the inverse of this map and extend G to be the zero on
N(P). Since H4(E) — L*(£) is compact, G is a compact self-adjoint operator. Let {¢,}
be a complete orthonormal basis of eigenvectors of G with G¢,, = p,¢,. Note that, since
N(G) = N(P), if pn # 0, then P, = p;'¢. Thus JA,| — oco. Also if k is an integer so
that dk > 1, then P* — A" I is elliptic. Thus by hyperelliptic, (P* — AX I)¢, = 0 implies
én € C(£).

For (c), without loss of generality, we may assume that £ = M x C and d > 3. Let
F(a) be the space spanned by the ¢; with |};| < a. Denote n(a) as dim F(a). Then on
F(a), we have

sup.¢pf(2)| < Cifla < CIPSflo + | flo) = C(1 +a)lflo-
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Therefore
n(a)

3" 4i(2)én(z) < C}(1 +a)?.

ji=1

Integrating this estimate over M, we have
n(a) < C*(1 + a)®vol(M).

That is
IAngayl = @ 2 Ci(n(a) - C2)'%,
which completes the proof.

Now let P : C®(€) — C*®(£) be a self-adjoint elliptic ¥DO of order d > 0. We say
that P has positive definite leading symbol if there exista p(z,£) : 7*(M) — End(£)
such that p(z,£) is a positive definite hermitian matrix for £ # 0 and ¢P — p € S9! in
any coordinate system. We claim that there is a constant C such that for every such P,

Spec(P) C [-C,00). In fact, we may construct a Qp with the leading symbol ,/F and if we
let Q := Q5Qo, then P— Q€ S§4-1, Therefore

(PHEA=@QLEHD+((P=-Q. ) 2(Qof, Qo f) = (P - Q). )l
2(Qof,Qof) = Clflasal(P = Q) flayz
2 (Qof,Quf) = Clflasal flasa-1
> (Qof, Qof) ~ Clflasa(elP flasa = C(e)iflo)
2 (Qof, Qof) — 2CelQo 15 - C(e)If15
2 =C(e)If13,

with 2Ce < L.

With above, we may introduce the heat kernels. Fix a P as above, so that P is a
self-adjoint elliptic ¥DO of order d > 0. Then the associated heat equation is defined by
the system: ‘

{(5;+P)f(z,t) =0, fort>0
f(z70) = f(z)

Formally, it has a solution f(z,t) = e~**f(z): Let f(z) = Y cnéa be the generalized
Fourier series and

K(z,ty) =Y e *60(2) @ dulv) : £ — &,

which is usual called the heat kernel of P. Then

| f(z:t) = Zeu'cﬂﬁﬁn
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and

e P f(z) = / K(z,t,y) f(y)du(y)
M
—_ —tAn T .
= (s /M £ (0)én()dn(y)

Hence we have

ZC_‘A'=T1'L’C-‘P=/ Tre, K(z,t,z)dp(z).
M

Now we justify the above formal process. In fact, if jd > k¥ + Z,

l¢n|oo,l _<. C”'ﬁn‘O + |Pj¢n|0) = C(l + |'\n|J)

Thus, by the fact that Spec P C [—¢, 00), without loss of generality, we may assume that all
A > 0. Note that since e!*X < t=7C(j)e~**/3, we have

[K(2,t,9)loot < t7IWC(k) Y =212,

On the other hand, by Lemma 2 above, we know that for n big enough, A > Cn? with § > 0,
so K(z,t,y) is an infinitely smooth function of (¢,z,y) for ¢ > 0.

Thus if (£, P) is an elliptic complex, e=*35 is in ¥o, with a smooth kernel function.
Let
Ei()) = {6 € L*(&) : Aip = A}

Then P; : Ei(A) — Eiy1()) defines an acyclic complex if A # 0, so that y_(—1)'dim E;{A) =
0 for A # 0. Therefore, we have the following

Lemma 3. With the notation as above,

Ind(P) = Z(—1)"Tr(e-‘m).

§1.3.4. The Existence Of Heat Kernels: II

In the previous section, we used the following facts to prove the existence of the heat
kernels for an elliptic self-adjoint ¥DO P of degree d > 0 with a positive leading symbol:
The spectrum {A,} is a bounded below subset of R; there exist positive numbers é and C
such that for sufficient large n, A, > Cn’. Since P is also a Fredholm operator, we know
that the index of P is well-defined. As a consequence of this theory, if (£,@Q) is an elliptic
complex, then

Ind(Q) = 3 (~1)'Tr(e™*%),
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where A is the Laplacian associated with Q.

In this section, we consider another aspect of the heat kernels, that is, the local asymp-
totic expansion of heat kernels, by using the geometry of the vector bundle E and the
manifold M if{self. Hence we find a deep relation between the index of certain elliptic
operators and the geometry of objects in question.

From now on, we only consider the objects which come from geometry. Let M be
a manifold, and £ be a vector bundle over M. The algebra of differential operators
on &, denoted by D(M, ), is the subalgebra of End{C™ (M, £)), generated by elements of
C*(M,End(£)) and the covariant derivatives Vx, where V is any connection on £ and
X ranges over all vector fields on M. If V' is another connection on £, Vy — Vx is in
C*(M,End(£)), D(M, £) is independent of the choice of V.

There is a natural filtration on D(M,£) defined by
Di(M,£) := C*(M,End £)Span{Vx, ... Vx, 1 j < i}.

We call an element of D; an i-th order differential operator. Thus the symbol morphism
is the natural morphism

D—grD:= ZD,,/DH.
k=0

By Leibniz’s rule, we know that, as an associated graded algebra, gr D is isomorphic to the
space of sections of the bundle S(7M) ® End(£), where S denotes the symmetric product.
Moreover, the isomorphism -

or : gr,D — C°(M, s*(TM) ® End(£))
may be given by the following formula: if D € Dy, then forz € M and £ € . M,
op(D)(2,€) = limy_ ot~ 5 (e~ De'*)(z) € End(E;),

where f € C®(M) such that df(z) = £. (We may check this with D = —id. to get a good
illustration.) Also, locally, any differential operator D may be written uniquely as

Z Z 8a(z)D7

J=0]al|=j

over any trivialized open subset with coordinates (2,,...,2,,). With this, we know that
a differential operator D of order k is elliptic if the section o3(D) € C®(T* M, x*End(£))
over the cotangent bundle space is invertible over the open subset {(c,§) : £ # 0}. Here =
denotes the natural projection.

Now we fix a Riemannian metric ¢ on M. By definition, a diﬂ'ereutial operator H on £
is a generalized Laplacian if locally H has the form _Ei,j ¢'78;8;, up to a differential
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operator of order < 1. Here §; denotes 5— and ¢'7 stands for g(dzi,dz;)Idg. Thus that H
is a generalized Laplaclan means that H is a second-order differential operator such that
o2(H)(z,£€) = |€]*. Or equivalently, for any f € C®(M),

[[H,f],f] = «2|df|2'

Example: Let £ be a vector bundle on a Riemannian manifold, with a connection V¢.
Let V be the Levi-Civita connection on M. Then the usual Laplacian A¢ on C®(M,£) is
defined by
Afs = —Tr(VT Mefgéy),

Here we denote by Tr S € C®(M,£) the contraction of an element S € C°(M,T"M @
T*M ® £) with the metric ¢ € C°(M,TM ® TM). Thus, for any two vector fields X,Y,
we have

(VI"MOEGES)(X,Y) = (V4VE - VG v)s.

Therefore, if e; is a local orthonormal frame of TM,
Z(V‘ VE - V%, ).

On the other hand, with respect to the frame 8/0z;, defined by a coordinate system around
a point in M, we have

A== g9 (€N 00, Voroz, = Xt: T8 V%/02,)-

i

Here the Christoflel symbols I"" are defined by Vy4,,8/0z; := 3, ¥ ;0/0z%. So the Lapla-
cian Af is a generalized Laplaclan (Usually, this formula is called the Weitzenbdck for-
mula. Later we will give its generalization, the Lichnerowicz formula.) It is not difficult to
show that any generalized Laplacian is of the form A? 4 F, with F a section of the bundle
End (). Similarly, for superconnections, we may also introduce the associated Laplacians.

The next aim is to prove that for any generalized Laplacian over a compact manifold
M, there exists a unique heat kernel. For this purpose, we make the following

Definition. A heat kernel for a generalized Laplacian H is a family of sections

p(z,t,y) of & @ £, depending on t € Ryg, such that the following conditions hold:

(1) The action is C*™ at (z,t,y) € M x Ryo x M.

(2) For every y, (0: + Hz)p(z,t,y) = 0.

(3) For any continuous section s of £ with compact support, with respect to the supre-
mum norm,

lime—o /M p(z. £,v)s(y) du(y) = 5(z).

Here we may choose any metric on £.
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Remark. If p(z,¢,y) exists, we may define an operator
P :CP(M,E)— C®(ME)
by Pys(z) := f,, p(z,1,y)s(y) dus(y). Thus (2) may be rewritten as
. - (G +HYP =0,

which is the heat equation associated with H. Also (3) i8 just an initial condition for the
first order differential equation
lil'nt._.o P; = Id.

Thus, formally, we may think of P, as e=*¥,

Theorem. For any generalized Laplacian over a compact manifold M, there exists a
unique heat kernel.

The existence of heat kernels for a generalized Laplacian A foltows from the results in
the last section. But in that approach, we need to know about the spectrum of H and the
eigenvectors. Now we use an approximation to construct the heat kernels. Nevertheless, the
agreement of the heat kernels obtained by these different methods is a direct consequence
of the following

Uniqueness Lemma. Suppose there exist heat kernels for all generalized Laplacians,
then the heat kernel for a fixed generalized Laplacian H is unique.

Proof. Let <,>: &, x £, — C be a natural pairing defined by
< 8,u>= j < 8(z),u(z) > dp(z).
M

Then for any given H, H* is such that < Hs,u >=:< 8, H*u > . By an easy computation,
we know that H* is a generalized Laplacian on £* too. Suppose H (resp. H"*) has the
associated operator P; (resp. P;') as above. Obviously, if < Ps,u >=< 5, P/ u >, by the
duality, we have our assertion.

To prove the last relation, consider
f(8) :==< Pys, Pr_yu >

for 0 < 8 < t. Differentiating with respect to 6, we see that f is a constant. Hence
limg_.o f(8) = limg— f(8), which completes the proof.

We next prove the existence of heat kernels by an approximation process from the
following four steps:

(1) The existence for H = — Y, 8? on R™.
(2) The existence of a formal solution.
(3) The existence of an approximate solution.
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(4) Construction of an exact solution from an approximate one by a perturbation process.

Proof of the theorem. (1) Over R™, let £ be the trivial line bundle R™ x C. Then
— 3, 8% is the standard Laplacian. In this case, we may precisely let

plz,t,y) i= (dmt) =™ 3= l=-vl*/4¢
By an easy calculation, it follows that p(z,t,y) is the heat kernel of — 3", 87.

(2) The aim in this step is to construct a formal solution for H on a compact manifold
M by using (1) and the so-called normal coordinate system.

Over a Riemannian manifold M, we say that a smooth path z : [0, ] — M is a geodesic
if it minimizes the function L(z) := fol |£(t)|dt. This leads to an Euler-Lagrange equation,
which is of order 2. From this, for any y € M and £ € Ty M, there exists locally a unique
geodesic z with initial conditions £(0) = y, £(0) = £, which enable us to define exp £ := z(1).
Hence for a sufficient small ¢, we have a diffeomorphism

exp: {£ €Ty M : [£] < €} — an open neighbothood of y € M.

Identifying T, M with R™, we get coordinates near y. Such coodinates are called normal
coordmates In the followmg, for any z € M near y, under the above identification, we
will also denote the point in R™ as z.

Now, imitating the situation over Euclidean space, we let
q(z,t,y) = (4#‘!)""/23""”2"“.
Then by a local calculation, we know that for any C*-family of sectiona 8, in C*=(M, £),

(8t + Hr)(?(:c!try)st(x))
=((6 + t'lVZ'f.-a‘ + |de't.g,-,-ll"'2 oHo |detg,-j|‘1/2)s,(z))q(z,t, y).

From this, by a formal solution of the heat equation (9; + H;)p(z,t,y) = 0, we mean
an element ¢(z,t,y) ®(z, ¢, y) such that near y, the section ®(z,t,y) of £; @ £; satisfies the
equation

(8 + 7 V5~ i, + Idetgi;| /2 o H o |detgis |/ ")@(z,t,4) = 0.

Existence of Formal Solutions. There exist unique sections ®:(z,y, H) of £ ® £}
for all i > 0 such that

(a) Go(y,y, H) = 1d.
(b) (8 +t~ VZ‘ i, T |detgu|l/20 H o |detgi;|~ ‘/2)2,>0¢ 8= 0.

Proof. Suppose we have the assertion. Let fi(s) := s*®;(exp(sz),y, H). Then the
conditions become
ifi=0;
—f,(s) vs"lldetg 1120 H, o |detg;;|~ "/ &y, ifi>0.
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But this is a system of differential equations of order one, which we may solve easily. Thus
by the recurrence on i, we have the existence of formal solutions.

(3) In this step, we use a cut-off function and the formali solution above to obtain the
following approximations:

Existence Of Approximate Solutions. For every positive integer N, there exists a
smooth family of smooth sections K™ (z,t,y) of £, ® £, such that for any integer d,
we have
(a) YT > 0, K¥(z,t,y) is uniformly bounded for | |4 in the range 0 < t < T
(b) For any section s of £,

limy_oKNs=s

with respect to | |4.
(c) Ast —0,
(8 + Ho)EN |4 < OV -3 4).

Proof. Note that since M is compact, we may find a € such that the normal coordinates
map exp is well-defined for all point ¥y € M in a small ball |§| < €. (In fact, we may assume
that € is smaller than the injectivity radius, i.e. the radius of the largest ball in T, M
such that the exponential map is a diffeomorphism from this ball around zero in T3, M to
the neighborhood of zg in M: Geometrically, the injectivity radius is simply the largest
ball in the normal coordinates for which geodesics do not intersect.) Now define a cut-off
function ¢ : Ryo — {0, 1] by

_ 1, ifs<e?/4
wls) = {o, if 5 > €2,
Using this cut-off function, we may smooth our formal solution by defining

N
EY(z,t,y) = o(d(z,u))a(z, t, 1)) t'®i(z, v, H)).

i=0

Here d(z,y) denotes the distance of z and y in M. Now by a local estimation, we have the
assertion. -

(4) The last step is to construct the exact solution from the approximate solutions. For
this, we need to use the Volterra series: a perturbation process.

We illustrate the situation by an analogue for a finite dimensional space V, i.e. when
M becomes a point. Suppose that there exists a function Ky : Ryo — End (V) such that
dK
R := d—t‘ + HK, = 0(1*),
for some a > 0 and Ky = 1. Here H is a linear endomorphism. We introduce the following
perturbation process: Let Q¥ : Ryo — End (V) be defined by

@t =

/ R’t_g.R-“_“_l ---ng—hR‘hdtl---dtk'
At:={('h~--|'l):os‘lstl5'“S‘hS‘}
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Then QY = K; and the sum of the convergent series 3", ,(—~1)*Q¥ is equal to P, = e~*4.
Thus the fact that the volume of -

{(tl,...,tk):OStl SthStbSl}

is 5;_;, which decays rapidly, we have P, = K + O(t'*).

The situation in general is very similar. We fix an N > 2 and omit the NV in our
notation. Define r(z,t,y) := (& + Hz)k(z,t,y). Let

q"(z,t,y)::] / k(z,t —ty,ze) r(ze,tr — tho1, 2h=1) ... 7(21, 81, ¥) dty ... dty
ar M

and

r"“(:,t,y)::/ / r{z,t — e, zx). .. r(21, b, y)dty .. dty.
ar Sy

Suppose that N > T4, By the existence of approximate solutions, we know that ¢, r* are
C*? with respect to z and y. Moreover,

tk
=)

lqkld < Aktk(N-m/Z)—d'/?

and
¢E

k| < gryk(N-m/2)-d/3
Irfla < B7t k=D

for certain constants A, B > 0.
Thus, put all above together, we have the following

Existence Of Heat Kernels. Let p(z,t,y) := ¥_,5,(—1)*¢*(z,t,y). Then
(1) The series converges absolutely. -
(2) pt is C? with respect to z,y and satisfies

(8¢ + H)p(z,t,y) = 0.

(3) With respect to the sup-norm,

lim_ogPis = s.

(4)
Ip(z,t,y) — k(z,t,y)la < O@N -39/,
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§1.3.5. Clifford Algebras And Dirac Operators

In the previous sections, we have seen two methods to construct the heat kernels. The
first is rather neat and is very convenient for us to study axiomatically. On the other hand,
the approximation method is rather complicated, and does yield certain geometric properties
directly. In order to discugs this later aspect, we recall in this section certain concepts and
results concerning Clifford algebras and Dirac operators.

Once we have obtained a generalized Laplacian, a natural question is to ask what are
the first order operators D which have the generalized Laplacians as their squares. Suppose
D may be expressed locally as

D= aa(e)8a + b(2),
o
with ao, b the sections of End(£). By an easy calculation, we see that as a section of
Hom(T™ M, End(£)),
O'(D)(:I:,Z a,dz?) = izaa(z)fa
o a
Thus the square of D is

== Z(a (z)a (2) + o/ (z)a’(z))Bi8; + first order operator.

ij
Thus D? is a generalized Laplacian if and mﬂy if for any £,n € T* M, we have
a(z),§ ><'a(z),n > + < a(z),7 >< a(z),§ >= —2(§, 0)s,

where (", } is the metric on T M.

Thus locally, we may proceed as follows. Let V be a real vector space with a quadratic
from Q. The Clifford algebra of (V,Q), denoted by C(V,Q), is the algebra over R
generated by V with the relation

vw+wv = —2@Q(v,w)

for all v,w € V. If Q is fixed, we may write C(V) for C(V,Q) and (v,w) for Q(v,w).
Since C(Q, V) is a quotient of the tensor algebra T(V) := &; ®" V, and is a superalgebra
with the generators contained in the evenly graded subaigebra of T(V), we know that C(V)
18 a superalgebra too. We say that a superspace E is a Clifford module, if there is a
super-action of C(V) on E. We will denote by c(a) the action of an element a of C(V') on
E. Let a — a® be the anti-automorphism of T(V') such that v € V' is sent to ~v. Since *
leaves the quotient relations unchanged, we obtain an anti-automorphism a — a* on C(V).
We say a Clifford module E of C(V) with an inner-product is self-adjoint if Q is positive
definite and c(a®) = c(a)*. We also denote Endg(v)(E) the algebra of endomorphism of £
supercommuting with the action of C(V).
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C(V) has a natural increasing filtration
Ci(V) := the span of elements of the form v,...v, with v; € V and k¥ < i.

Obviously the associated graded algebra gr C(V') is naturally isomorphic to the exterior
algebra AV. Thus we may define a Clifford module action of C(V) on AV as follows:

For any v € V, let £(v), i(v) be the exterior product, the contraction via @, respectively, of
v. Then the Clifford action is defined by

c(v) 1= e(v) — ¢(v).

Moreover if Q is positive-definite, ¢ is the adjoint of ¢, so that AV is self-adjoint. Usually,
we call the isomorphism ¢ : C(V) — AV defined by ¢(a) := c(a)l the symbol map. Its
inverse c is called the quantization map. Since C(0, V) is just AV, we may also think of
AV as a deformation of Clifford algebras.

The most important result in the local situation is the following

Lemma. Let V be a 2m-dimensional oriented Euclidean vector space. Then there is a
unique Zs-graded Clifford module S = S+ @ S5~, called the Spinor module, such that

C(V)® C ~ End(S).

Proof. Let {¢;} be an oriented orthonormal basis of V and let P be the span of elements
egj—1 — iez; with 1 < 7 £ m. Then we know that V® C = P & P. Now let § = AP,
and define a Clifford action as follows: If w € P, c(w)s := V2e(w)s; if # € P ~ P*,
()8 := —V2(10)s. Since the algebra of matrices is simple, it has a unique irreducible
module. Hence by comparing the dimensions, we have

C(V)® C ~ End(S).

Now we consider the global situation. Let M be a Riemannian manifold. The Clifford
bundle C(M) is the bundle of the Clifford algebra over M whose fiber at z € M is the
Clifford algebra C(T2 M) of the Euclidean space T, M. There is a natural symbol map
o : C(M) — AT*M defined by the local symbol maps o, : C(T; M) — AT M. A Clifford
module € on an even-dimensional Riemannian manifold M is a Z,-graded bundle £ on M
with a graded action of C(M) on it. If £ is a Clifford module with metric p, for which £% and
£~ are orthogonal, we say that the Clifford module is self-adjoint if the Clifford action
is self-adjoint at each point. For any vector bundle £’, the twisted Clifford module
obtained from £ by twisting with £ is the bundle & @ £, with Cliflord action 1 @ ¢. If
a € A(M,C(M)) is a Clifford algebra-valued differential form on M, we may define an
operator ¢(a) as follows: If a, 4 are differential forms on M, a i3 a Clifford algebra section,
and s is a section of £, all homogeneous with respect to the Z3-grading, then

(cla® a))(B ® 5) = (=1)"1Pl(a A B) ® (c(a)s).
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Define a Dirac operator D on a super-vector bundle £ as a first-order differential odd
operator on £,

D:C®(M,E%) — C®(M,EF),

such that D? is a generalized Laplacian. By a local caiculation, we know that if D is a
Dirac operator, then the action of 7" M on £ defined by [D, f] := ¢(df) is a Clifford action.
Conversely, any differential operator D which satisfies [D, f] = ¢(df) for all f € C®(M) is
actually a Dirac operator. Thus the collection of all Dirac operators on a Clifford module
is an affine space modelled on C°(M,End™(£)). In order to sharpen this identification, we
consider a special kind of connection:

A connection V¢ on a Clifford module £ is called a Clifford connection if for any

a € C°(M,C(M)) and X € C®(M,TM),
[Vi,c(a)] =¢(Vxa),

with ¥ the Levi-Civita connection extended to C(M). A superconnection A on a Clifford
bundle £ is called a Clifford superconnection if for any a € C*(M,C(M)),

(A, ¢(a)] = ¢(Va),

with ¥, the Levi-Civita connection at a, which is an element of A1(M, C(M)). Since locally
we may decompose £ as Endg(M)(S,£) ® S for a certain Clifford module S, we know that
there exists a Clifford superconnection on any Clifford module by using a partition of unity.

Now let A be a Clifford superconnection on a Clifford module £. We may define a first-
order differential operator on C*°(M, £), denoted as D, by composing the superconnection
with the Clifford multiplication:

C®(M,E) A AM,E) S C®(M,C(M)® £) S C=(M,£).

There is an orthonormal frame {e;} of the tangent bundle such that with respect to this
local coordinate system we have

A=Ydroa+ 3 )4

with A; being sections of End(£). Hence

Da=) clde)ai+ Y. cle)Ar

i Ic{1,...,.2m}

In particular, if V¢ is a Clifford connection, then the associated first-order differential op-
erator D is a Dirac operator. Locally, we have

D=7 c(dz')V5,
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Moreover we know that the map sending A to Dp is a one-to-one correspondence between

Clifford superconnections and Dirac operators compatible with the given Clifford action on
£, ie.
DA(fs) =c(df)s + fDas.

Indeed, this is a consequence of the fact that the difference of two Dirac operators is a
section of End™(£). .

Proposition 1. If A is a Clifford superconnection on £, then the curvature of A
decomposes under the isomorphism

End(£) ~ C(M) ® Endcar)(€)

as follov_vs:

A? = R 4 FEIS,
Here R® € A*(M,C(M)) C A*(M,End(£)) is the action of the Riemannian curvature
of M on the bundle £ given by the formula

1 .

R (eive;) = i Z(R(e,-,ej)ek,e;) c(e*) c(e')
]

and FE/S ¢ A(M,Endc(p)(€)) is an invariant of A, called the twisting curvature
of the Clifford moduie £.

Proof. Let F¢/5 be the difference A? — R®. We have to show that ¢( F£/) commutes
with the operator c(a) for any a € C°(M,T*M) C C™®(M,C(M)). But this is a direct
consequence of the condition that A is a Clifford superconnection. In fact, we have

(A%, c(a)] = [A,[A,c(@)]] = [A,e(V(a))] = (V?a) = ¢(Ra) = [R, c(a)].

Now, by applying the existence of the heat kernels for a generalized Laplacian, we have
the following

Proposition 2. Let D be a Dirac operator on a compact manifold, then D has a finite
dimensional kernel, and D?, acting on C*(M,£), has smooth heat kernels

<zlem P’y > C®(M x M, p}E® p3E°).

We define the index space of a self-adjoint Dirac operator
_{ 0 D
b= (D+ 0 )

Ker(D) := Ker(D*) @ Ker(D™).

to be its kernel
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Then the index of D is the dimension of the superspace Ker(D),
Ind(D) := dim{Ker(D?*)) — dim(Ker(D™)).

Since for a self-adjoint operator, we have D~ = (D*)*, hence

Ind(D) = dim(Ker(D*)) — dim(Coker(D1)),
which is the classical definition.

McKean-Singer Theoregn. Let D be a self-adjoint Dirac operator on a compact
manifold M. Let < z|e~*?”|y > be the heat kernels of the generalized Laplacian D?.
Then for any ¢t > 0,

Ind(D) = Tr,(e=*P%) = / Tr (< z|e~*P |z >)dz.
M

It follows that the index is an invariant of M and £.

Proof. This result has already been proved by using the spectral theorem for D?, and
this is closely related to our first method for the existence of heat kernels. Here we give
another proof by using the approximation process.

Let a(t) := Tr,(c"D’) and let Py := 1 — Py be the projection onto the orthogonal
complement of Ker(D). Then, using the approximate solutions for heat kernels, we know
that for ¢ big enough, '

ITr,[e=*2"] = Po| = ]/ Tr,[< z|Pie™*P" Py |z >]dz| < C vol(M)e~**1/2,
M
with A; the smallest non-zero eigenvalue of D?. Thus, by the exponential decay,

a(oo) := limt_,wTr,[e"‘D’] = Ind(D).

Now the assertion is a consequence of the fact that a(t) = a(oo) for all ¢£. In fact, by
differentiation with respect to ¢, we have

Za(t) = =T, [D%*") = 2T, 1D, D=’} =0,

From this result, we see that it is possible to express the index in geometric terms which
only involve M and £: This is what the usual index theorem means.
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$1.3.6. Local Index Theorem

In this section, we give a proof of a local version of the index theorem. By the McKean-
Singer theorem above, we know that the usual index theorem is an integration of this local
result: The local index theorem is at the level of differential forms.

Let M be a compact oriented Riemannian manifold of dimension 2m. Let D be a
Dirac operator on a Clifford module £ on M associated with a Clifford connection V¢.
Let k(z,t,y) =< zlc“‘Dzly > be the heat kernel associated with the generalized Laplacian
D?. From the McKean-Singer formula, it is enough for us to know the behavior of the
restriction of the heat kernel to the diagonal, that is k(z,¢,z). But for a general ¢, there is
no satisfactory expression for k(z,t,z). However, if t is small enough, our system is in the
situation at the very beginning. So, the change of the heat flow is rather regular. Hence we
can control it. More precigely, in our situation, we may go as follows:

Think of the heat kernel k(z,,z) as a section of the bundle of filtered algebra
End(S) o~ C(M) ® Endc(M)(f:),

where the filtration is induced by the filtration of C(M) := C(T" M) and the elements
of Endc(agy(£) are given degree 0. Denote by Ci(M) the subbundle of C(M) of Clifford
elements of degree less than or equal to i. The associated graded algebra is the bundie
AT*M® Endc(M)(g).

Local Index Theorem. Let M be a compact oriented Riemannian manifold of di-
mension 2m. Let D be a Dirac operator of a Clifford module £ on M associated with a
Clifford connection V€. Also let k(z,t,y) =< z|e™*?’|y > be the heat kernel associated
with the generalized Laplacian D?. Then for ¢ — 0%, the restriction of k(z,¢,y) to the
diagonal has the asymptotic expansion

Het) = 4m) ™ () = G G G

i=0

+....

Further we have
(1) The coefficients k; € C®(M,Cy(M) ® Endgar)(€)).
(2) I o(k) =3 iep02:(ki), then

o(k) = det”?(%)exp(—ﬂ”s),

where R is the Riemannian curvature of M and F&/5 = (V¢)? - Rf is the twisting
curvature. Usually, we call det'/? e 2 77) the A-genus form of the manifold
M with respect to the Riemannian curvature R.

Proof. The basic idea for proving this theorem is that first by using the normal
coordinates, one may reduce the problem to a local one; then by Lichnerowicz’s formula,



Chapter [.3. 51

the problem becomes the one about heat kernels for the harmonic oscillator on Euclidean
spaces. In this process, naturally, we may use the rescaling technique to make everything
go through clearly.

Basically, the proof may be divided into the following four steps.

(a) To reduce the situatien to the local one by using the normal coordinates.
(b) Lichnerowicz’s formula.

(c) Heat kernels for harmonic osciilators over Euclidean spaces.

(d) The expansion of the heat equation.

(a) Fix o € M and trivialize the vector bundle £ in a neighborhoed of zo by a parallel
transport along geodesics. More precisely, let V := T, M, E := &, and U := {€ € V||¢] <
€}, where ¢ is smaller than the injectivity radius of M at z;. By the exponential map
£ +— exp, £, we identify U with a neighborhood of zp in M. For z = exp. £, the fiber £
and E are identified by the parallel transport map 7(zg,z) : & — E" along the geodesic
z, = exp.,s£. Thus the space C®(U,£) of sections of £ over U is identified with the
space of E-valued C*°-functions on V, defined in the neighborhood UU. We also identify
C*(U,End(£)) with C*(U,End(E)). Hence D = 3, aa(£)5¢, with as(£) € End(E). On
the other hand, by the isomorphism o, we have

Endgam)(E) = C(V") ® Endg(v+)(E) = AV® @ Endg(v+)(E).

In this way, for simplicity, if we introduce a rescaling on the space of functions on Ryo x U
with values in AV* @ Endc(v+)(E) by the formula

(6ua)(tn£) = Z uwilza(utl “1/25)[i]~

i=0

Then the local index theorem is equivalent to saying that, with

k(1,€) := o(< exp, le=2" |20 >),

limy—o(u™6u k)l 6=(1,0)

=) el ).

The reason we choose the rescaling operator as above is that for ¢, the heat eﬁuat.ion only
contains first order derivatives, but for z, it contains the second order derivatives. Histori-
cally, this technique was introduced by Getzler [Ge 86].

The rescaling operator 4, introduces a filtration on the algebra of differential operators
action on C® (R0 X U,AV* ® End¢(v+)(E)): An operator D has the filtration degree d



52 Existence Of Heat Kernels
if limy.qu/36, D8] exists. Especially, since

5.8(6)65" = #(u'/’€), Vo € C¥(U);
6,0:6;1 = u~18,;
5,0:67 = w124,
“Sue(a)st = u3¢(a), Ya € VT,
Sut(@)d;t = uH2y(a),
we know that a polynomial P(€) has degree —deg(P), that a polynomial P(t) has degree
—2deg(P), that a derivative §/0¢* has degree one, that a derivative 9/0t has degree two,
that an ext:erior multiplication operator ¢ has degree one, and that an interior muitiplication
operator ¢ has degree —1. In particular, in (b), we wiil show that D? has degree two, i.e.

up to an operator of lower order, D2 may be identified with a harmonic oscillator w1th
differential form coeflicients.

(b) Here we want to understand the generalized Laplacian D? associated with the Clif-
ford connection VZ. Since now we do everything locally, we may find a spin decomposition
E=S®W with W := Homg(v+)(S, E) so that

End(E) ~ End(S) ® End(W) =~ C(V*) ® End(W).

Let O; be the orthonormal basia of V with'its dual basis d¢* of V*. Denote ¢' as c(d€') €
End(E). Let ¢; be the local orthonormal frame obtained by parallel transport along geodesics
from the orthonormal basis §; of T, M, and let e' be the dual frame of T M. Thus by the
fact that for the radical vector field R := Y, z;8;,

V4, c(e')] = c(Vre') =0
we know that the End(E)-valued function ¢(e)¢ is the constant endomorphism c*.

Theorem. (i) (Lichnerowicz’s formula) Let A be a Clifford superconnection of a
Clifford module £. Denote the Laplacian with respect to A by A” and let rys be the
scalar curvature of M. Then

1
Di = &% + grar + o(FE/9).
Here e(FE/5) =%, Fe’s(eueJ)C(f ) e(e?).

ii Let L be the dlﬂ'erent.lal operator on I/ C V, with coefficients in C(V*)}® End{W),
defined by

L= A% +o(FE/5) + %m.

Denote L(u) := ub, Lé;" as the rescaling operator of L. Then for u — 0%,

1
L(u)~ K := - Z(a‘. -3 ; Rij&;)! + F
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Here Rij := (Rzo0i,0j) = Y pci(Rzo)jitie®e’, and F is the element of A2V* ®
End(W) obtained by evaluating the twisting curvature F£/5 at the point zo.

Proof. (i) Locally, we have D = 3" c(dz*)A; with A; the covariant differentiation in
the direction 8/8;. Thus

D: = % Ztc(dz‘)Ai, c(dz?) A;]
i
=5 Dle(de), c(de A, + 3 c(ds)[Ar, e(dz A
i 4
+ % Z c(dz*)e(dz')[A, Aj]

J
=3 9 (AA; + Y TEAL + 3 o(de')e(dz)[As, Aj]
i k i<y

=A% + 3 c(e)c(¢) A% ei ;).
i<y

On the other hand, by Proposition 5.1, we know that

3 ele (e A% ei ) = I PSS (eiy ) cle)eled) = £ 3 Rt efel)e(e el e)ele).

i< i<j ijkl
Since the antisymmetrization of R;ji over ijk vanishes, we have

3" Rijrre(e)e(el)e(et)ele) = = Y clef)ele!) Rjnj + Y cl’)e(e’) Ranij
ijE! ijl il

=2 c(e?)e(e') D Rirje
ij k
=2E Z c(ej)c(e‘) Rixjk
Eij
= - 22 Rih'k = —21‘M.
ik

So we have (i).

(i) First consider the local expression of the operator V.. By definition, if F* is the
curvature of V¢, then

5 30 (R, 0y)en, en)etelde’ A dg? + FEI5(0,,0;)dg’ A de.

i<jk<!

F¢ =

So by a local calculation,

Vs =0+ % }: Ryjeicte + me(f)ckcl + 9i(§),
jik<t k<l
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where the error terms are

Fiur(§) = O(KEI*) € C=(U), gi(€) = O(l€]) € C(U, Ende(v-)(E)) = C=(U,End(W)).

Hence
Vo =ul/?6, V5.6
1 .
=6; + 3 Z Ruiij€ (e —w®)(e' - ud)
Jik<l
+u™ 1Y fin(utPE) (R — wit)(e - wi) + ugi(u'l%).
k<l
Therefore |
llmu...ovg:“ = 8'- + Z Z (Rz'o)klij&ffkst.
: jik<l
That is,
£, 1 ;
Vo = 8i - 1 Y (R)E .
J
Now

L(u) = - Z(Vf"")z + E FEI5 (e, ;) (ut26)(e" — ud)(e? ~ udd)

i i<j
t y
+ e (u/2) +ut/? ;va’.,.e.»

Take the limits for these four terms: we know that the first term has the limit
£, 1 ;
- Z‘:(Va.vo)2 == (8- i JZ(R);,—{’)’;

that the second term becomes F', while others are zero.

We end this step by the following observation: L(0) = K is a generalized harmonic
oscillator over the Euclidean space V. Therefore, we may prove the local index theorem by
considering the situation on Euclidean spaces.

(¢) Mehler formula.

Now we consider the situation for the harmonic oscillator on Euclidean space V. Let R
be an 2m x 2m antisymmetric matrix and let F be an N x /N matrix, both with coefficients in
a commutative algebra A. By definition, a differential operator H acting on A ® End(C")-
valued functions on V is called a generalized harmonic oscillator if

H:—(ZV?)%—F:—Z(3¢+%E&j:cj)’+F.
i i

i
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Obviously, H is the Laplacian on V associated with the non-trivial connection V = d +
%Ei.f Rijzjdzi. Thus if let R := ", z;8; be the radical vector field on V, and s, a A ®
End{C")-valued smooth function on V, then

(O + H)qes: = q(0: + t 'R + H)sy.

In this case, as in the proof for the existence of heat kernels, for a formal power series ®;(z)
in ¢, whose coefficients are smooth A® End(C®)-valued functions defined in a neighborhood
of 0 in V, we say ¢;®; is a formal solution of the heat equation

(at + H)Pt =0
if
(8: +t"'R + H)®, = 0.

Before we introduce the most important result concerning with the generalized harmonic
oscillator, we need the following notation:

Let
R/2 _ ,~R/2

R/2
-1/2

Since jy(0) = 1, ji ' “(tR) is well-defined for ¢ small. Similarly, we know that the A-valued
quadratic form

jv(R) = det(Z

tR tR
< z|-§- coth(?)iz >

is well-defined for small {. With this, we may state our result as

Theorem (i)(Mehler’s formula) The kernel p¢(z, R, F), taking values in A ® End(C¥)
and defined for small ¢ by the formula

(470)" 55/ (1 R) exp(~ - < 212 coth(“)le >) exp(~tF)
is a solution of the heat equation
(O + H;) pg(z) =0.

(ii) For any ap € A® End(C"), there exists a unique formal solution p,(z, R, F, aq) of
the heat equation
O+ H:)pu(z) =0

with o
pi(e) = ai(2) ) t* @i (2)
k=0

such that ®,(0) = ap. Furthermore, the function p¢(z, R, F,ao) is given by the
formula

t
(47!)“"‘1';1"2(1}2) exp(-—:—t < x|%2-coth(—;—2)|x >)exp(—tF)ag.
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Proof. (i) may be checked by a direct calculation. Classically, we only consider the

harmonic oscillator —a‘i—; + z2 on the real line. In that very simple situation, Mehler first
oftered his famous solution.

For (i1), we have to solve

(Be+t7'R+ Hz) Y t* () = 0.
k=0

Therefore we should have

Ry =0
(R+k)s = —H, @4, if k > 0.

From here, by recurrence, we have the proof of the theorem.

(d) The Expansion of the Heat Equation.

Form (b), we know that L{u) has a limit K when u goes to 0. On the other hand, if
p(z,t,z0) is the heat kernels of the operator D?, we may let

k(t, &) == r(z0, 2) p(2, ¢, 20).
Obviously, the AV* @ End(W)-valued function k(t,£) satisfies the differential equation
(6 + L) k(t,6) = 0.
Also if we let

r(u,t,§) = u™ (6. k)(2,8),

then the local index theorem is equivalent to saying that

R/2

sinh(R/?))exP(—FE/S)'

lima—or(u,1,€)l,6)=(1,0) = (47) "™ det!/*(

Thus by the fact that r(u,t,¢) satisfies the differential equation
(8 + ubu L8 )r(u,t,€) = 0,

if we can prove certain results which make us expanse the heat equation, we may only
need to consider the formal solutions for the harmonic oscillator on an Euclidean space to
complete the proof of the local index theotem. For this, we have the following

Lemma. There exist AV* @ End(W)-valued polynomials v;(t,£) on Ry x V, such that
for every integer N, the function r (u,t,&) 1= (€) z?ﬁ’_,m u'/2;(t,€) approximates
r(u,t,§) in the following sense:
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To N > j + |a|/2, there is a constant C(N, j,«) such that
16198 (r(x,£,€) = r¥ (u,t, )| < C(N, 3, @)u™,

for0 < u < 1and (t,£) € (0,1)xU. Furthermore +;(0,0) = 0if i # 0, while v,(0,0) = 1.

Suppose that this lemima holds, then expanding the equation
(0; + L(u))r(u,t,€) =0

and r(u,t,£) in u!/?, we have

r(u,t,6) ~ qu(€) Y wi(,€)

i=—-2m

and the leading term satisfies the heat equation

(B + K¢) (q:(€)v-1(8,€)) = 0.

Since the formal solution of the heat equation for the harmonic oscillator is uniquely de-
termined by vy_;(0,0), and y_1(0,0) = 0 for | > 0, we see that y_; = O unless I = 0. In
particular, we see that there is no pole in the Laurent expansion of r in u!/2. Also we know
that the leading term of the expansion of r(u,t,£), i.e. #(0,t,£) = q:(€) vo(t,£) satisfies the
heat equation for the operator L(0) = K with the initial condition v(0, 0} = 1. Thus finally
by the expression of K and the situation for the generalized harmonic oscillator, we have
the following : :

Theorem. The limit limy_or(u,t,£) exists, and is given by

tR/2 1

-m 1/2, Mf&4 _t
()™ det (i Ry2) P 3

< El%coth(%)lf >)exp(—tF).

In particular, we have the local index theorem by letting (¢,£) = (1,0).

Thus, we only need to give the following

Proof of the lemma. By the proof of the existence of the heat kernel, we know that
there exist functions ¢; € C=(U, End(E)), with ¢¢(0) = 1, such that for any £ € U,

N
I[E(t,€) — q:(6) 3 F8i(E)] < CNN ™.

=0

Note that since: ,
Izke—: /4t| < thkfﬂ‘
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we may replace ¢;(£) by its Taylor expansion ;(§) of order 2(N — i):

N

l(t,€) — 9:(6) Y t@i(€)l] < C'(N)EN-™,

=0

Thus, we have

N
[1£(u,£,€) = @(6) Y (ut)pi(u'2E)|| < C'(N)u™

i=0

for (¢,€)in (0,1)x U and 0 < u < 1. We may also make a similar estimate for the derivatives
of k(u,t,£). Therefore, the function k(u,t,£) has an asymptotic expansion in u'/?, 4 smail,
of the form :

E(u,,6) ~ (€)Y Wilw,1,6),

i=0

where ¥;(£) is an End(E)-valued polynomial so that ¥;(£) on V and ¥o(0) = 1. Moreover
this expansion is uniform for (£,£) lying in compact subsets of (0, 1) x U, and the asymptotic
expansions for the derivatives 3{‘3?’(&(14, t,£)) may be obtained by differentiation the above
estimation. Thus considering at the p-th term, we have

N
k(. t, &)y — P 2q(€) D_(ut) Wi(u'2€) )| < C(NyuN—PI2N =™,

=0
If 4; (¢, €)}p) is the coefficient of w//? in the sum

(i+p)/2

w3 (ut) e (u )y,

i=0

then v;(t,£)(p) is a polynomial on Ry x V with values in APV* @ End(W). It is clear that

the sum 3;(4,€) := Y10 % (8, €)}p) satisfies 6,7; = uw//y;. And 7;(t,€)fp) = 0 for j < —p.
Hence 7v;(t,£) = 0 for j < —2m. In particular,

10(0,0) = > u'/2%(0,0) = (8,¥)(0,0) = 1.

i==m

Similarly, we have the statement for the derivates. This completes the whole proof.
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§1.3.7. Applications Of Local Index Theorem

In this section, we give an application of the local index theorem itself and an application
of the proof of the local index theorem.

1.3.7.a An Application Of The Local Index Theorem

By the McKean-Singer formula, for every ¢ > 0, we have
Ind(D) = / Tr,b(z, ¢, z)dp.
M

The local index theorem implies that if D is associated with a Clifford connection, then the
integrand itself has a limit when ¢ tends to zero. Now as the supertrace vanishes on all
elements of the Clifford filtration strictly less than 2m = dim(M), the first part of the local
index theorem implies that

Tr, k(z,t,2) ~ (47t)™™ D _ t'Tr, ki(z).

i2m

Hence there are no poles in the asymptotic expansion of Tt, k(z,¢t, z). Furthermore, as the
left hand side Ind(D) of the Mckean-Singer formula is independent of ¢, we necessarily have

Ind(D) = (411')'"‘/ Tr, km(z) dis,
M

while the integrals of all other terms [, Tr, k;(z)dp vanishes for j # m.

To identify the term Tr, k. (z) as a characteristic form on M, we need certain more
notation. Let T € C*(M,C(M)) be the chirality operator, i.e. locally, if V is a Euclidean
space with {e;} an oriented, orthonormal basis, then

F:=ife;...e,,

where p = n/2 if n is even, and p = (n + 1)/2 if n is odd. We know that as an element
in C(V)® C, T does not depend on the basis of V used above, and, further, I' satisfies
I'v = —ul if n is even, while I'v = vT if n is odd. Also I'* = 1. Locally, if V is an even
dimensional real Euclidean space, then every finite dimensional super-Clifford module E of
C(V) is isomorphic to W @ S with S the spinor space and W = Homg(v(S, E). In this
case, by a direct calculation, we have Tr, s(I') = 27/2? and the supertrace over W of an
element
Fe End(W) o Endc(v)(E)

is given by the formula
Te, w(F) = 27"/*Tr, g(T'F).
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Motivated by this, we may define the relative supertrace of ¢ € C(M, End¢(ar)(€)) by
T, ¢/5(a) = 2™ It, £(I(a).
Then we extend the relative supertrace to a linear map
Tr, 605« A(M, Endcan(€)) — A(M).
Thus if b € C*(M,C(M)), the point-wise supertrace of the section
b®a e CP(M,C(M)®Endca)(€)) =~ C(M,End(£))
is equal to the Berezin integral: This may be described as follows:
Tr, £ (6(2) @ a(2)) = (~20)"02m (b(=)) Tr, £/ (a(2))-

Hence :
T, £ km(z) = (=20)"Tr, £/5]00 (km(2))]-

Thus we have the following

Theorem. (Patodi, Gilkey) Let M be a compact oriented Riemannian manifold of
even dimension 2m, with Clifford module £ and Clifford connection V¢, let D be
the associated Dirac operator. If k(z,¢,z) is the restriction of the heat kernel of the
generalized Laplacian D? to the diagonal, then lim¢_oTr,(k(z,¢,z))|du| exists and is
the volume form on M obtained by taking the 2m-form piece of

(2 et e, g s exp(~ FEI9)L

[.3.7.b An Application Of The Proof Of The Local Index Theorem

In this subsection, we will give another construction for the classical Bott-Chern sec-
ondary characteristic form via superconnections by using the perturbation method in the
proof of the local index theorem, especially the Duhamel’s formula. (Even through this
formula is very important, we will not give a precise formulation, as there are too many
variations for it. But still, the reader may get a good feeling from section 3, the use of the
Volterra series.) Later we will use a similar method when we discuss the relative Bott-Chern
secondary characteristic objects associated with Chern forms.

Let
E: 0=6, ... S B —0

be an exact sequence of vector sheaves on a complex manifold . Put hermitian metrics
pj on & for j =0,...,n. Thus we construct a supervector sheaf £ on M as follows: Set

£t = ®plrp, € = Bp&aps1-
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The metrics p; give us canonical connections V% on £%. Also v acts as an odd end-
morphism of £. With respect to the metrics p;, there is an adjoint v* for v. Hence we have
the superconnection A :=V+ + V- +v+v*on£.

Next we introduce a new parameter in P!. First, we extend (£.,p.) naturally to a
complex on M x C. Let

A, =Vti4v- +dz£+d2£_+zv+iv‘
Oz Oz

be a superconnection on £ over M x Pl.

Theorem. With the same notation as above, we have

chac(£.,p.) = [27i] /C lloglz|?] Tr, [exp(£, A.)).

Proof. By the construction, it is enough to prove that axiom 1 is satisfied by

ni= / [log|z|*] Tr, [exp(€, A;)).
c

But this may be proved as follows.
First, we consider the convergence of 7 when |z| — co. By definition, we know that
A? = |z?A+R,,
where A := (vv" + v*v), R, = V? 4 vdz + v*di + zV(v) + V(v") has the degree > 1 on

M x P! with V := V+ 4 V-, so0 it is nilpotent. Thus by Duhamel’s formula, we have the
finite sum expression:

exp(—A?d) = E(—l)"/m e~(-tsPap  Re~tlAgt, | dt,.
E :

Note that since A has the smallest eigenvalue A > (, we have

fle=(t=ti-0la4) <

for all j, and for at least one j,

IIC-—(t_,'—t,'_|)|z{’n|l < o=

Therefore, we have

llexp(~AZ)|f < C(1 + |2|™) < e~ =HI

with C a uniform constant with respect to the M-coordinates. That is, we have the expo-
nential decay.
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Similar estimates hold for the derivatives of exp(—A3) with respect to z, 2.

Thus, we may extend a(z) := exp(—A?) in a smooth way onto M x P! by declaring
that a(z) is 0 on M x {co}. Also it is not difficult to show that a(z) € &, APP(M x P!). So
a(z) is also dj;, pi-closed. In this way, we have

diedign = duedy [ foglsPa(2)
= [ duaxerdaacs (loglefa(:)

= [ ddloglz ] a(z)
p!
= iga(z) —iga(z).

So we have our theorem.
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Chapter 1.4
The Mellin Transform

In this chapter, we introduce the Mellin transform. The technique comes from classical
mathematics, but as the existence of the Bott-Chern secondary characteristic objects de-
pends heavily on this technique, we will give all the details of it. The references are [T 30]
and (WG 89)].

This chapter consists of the following sections. In section one, we recall the basic
properties of Bernoulli polynomials and Bernoulli rumbers. In section two, we recall certain
properties of Gamma functions. In section three, we recall the properties of the Riemann
zeta function. In section four, we discuss the Mellin transform in general. Finally, as an
application of the Mellin transform, we give another construction for the classical Bott-Chern
secondary characteristic forms following [BGS 88].

§1.4.1. Bernoulli Polynomials and Bérnoul]i Numbers

The n** Bernoulli polynomial, denoted by B, (z), are defined by using a generating
function as follows: -

—E B (z). (1)

n..U

The series i8 convergent for |¢| < 2, since the nearest singularities of the generating function
tot =0 are £27i. When z = 0, we have

o "
=) =B (2)
n=0 n!
Usually, this formula is expressed as
1 1, t 24 et/? et
(i +3) = 3 Gm—emm) = 1 Z 1P
Thus, we see that
1
Bo(0) =1, B1(0) = —3 Ban(0) = (~1)""'B,, Ban41(0) =0 (3)
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forn=1,2,.... As usual, we call B, the Bernoulli numbers.

Since

L ER0Y =T 53 (D aoe,

n=0

we have the following relation of Bernoulli numbers and Bernoulli polynomials
Bn(z) = Z (:) Bi(0)z"~*. (4)
k=0
Also by
“at — ti 1 o0 n-i Bk(O)
1= B 0 B (0) n-i —_
Z H0) = Z 1 Zk' +(0) ;‘ Zﬂk!(n—-k)!’

we get the recurrence formula for Bernouili numbers:

n-1
Bo(0) =1, ZHEB"(O) =0 (5)

for n > 2. Symbolically, we may write the above formula as
Ba(z) = (B(0) + z)"

forn=0,1,... and
(B(O)+ 1)* = By(0)=0

for n = 2,3,.... Here it is understood that, after the binomial expansions have been devel-
oped, the symbols B*(0) for powers are to be replaced by B(0).

We list the properties of Bernoulli polynomials and Bernoulli numbers as follows:
Properties. 1 (Derivatives)

dP n!

= mopionr(®)

2. (Difference Relations)

Bo(z + 1) =Bo(z),
Bl(:l?+1) :Bl(z)+1, ‘
Ba(z + 1) =Bn(z) + nz*~!, forn>2.

3. (Functional Equation)
Bn(1 —z) = (-1)"Bga(2).
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4. (Addition Formuia)
Bi(z+y) = Z (:) Ba(p)z"~*.
k=0
5. (Summation Formula)

m

= ﬁ‘l[BNH("‘ +1) = Ba41(0)]

=t

forn > 1.

We end this section by using the Bernoulli polynomials to obtain the asymptotic expan-
sion of an analytic funetion, which can then be used to deduce the famous Stirling formula
for nl.

Let f(z) be an analytic function along the straight line from a point a to z. Then for
any polynomial ¢(t) of degree n, and 0 < ¢ < 1, we have

% z (-D)™(z - 0)m¢(""")(t)f(m)(a +(z - a)t)

mz1
=—(z— )¢ () f'(a+ (z = a)t) + (=1)"(z — a)" ' (1) f"*)(a + (z — a)t).
Hence by integration, we have the Darboux formula:

#™(0)(£(z) — f(a))
=Y (=172 = )P (1) £ (2) - ¢ ™(0) £ (a)]

m=1

1
+H(=1)"(z — )" f (1) f"+D(a + (z — a)t)at.
0
Now let ¢(t) = Bn(t) and replace n by 2n. Note that since

BER(0) = n)!, B (o) = 2 B (a),

Bm(1) = (=1)7 Bm(0), B1(0) = -3 sz+1(0) 0(k2>1),
we have
f(z)~ f(ﬂ)
(z—a)*
)k (2k)' By [ (2!:)(2)_.’-(2&)(“)]
+-—-——(" ‘(2‘2’"“ [ ¢:n(t)f(’"+‘>(a+(z—a)t)dt
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Let F(z) = f'(z), write h for z — a, take the summation of the integration of the above
formula with respect to [a,a + A},[a + h,a + 2A),...,[a + (m — 1)h,a + mA), we have

[a " ey
=h[f.(§ﬂ+p(a+h)+..-+F(ﬂ+("“1)")+£E-’2-Lh)]
with 1 m—1
Rn = %/0 Baa(t) g Fi™(a+ ho + ht)dt.

We call this formula the Euler formula. We can further simplify the formula by introducing
periodic functions P, () with the period 1 as follows:

P,(t) := Ba(t)/n! Vt€[0,1).
Since P
—=Pa(t) = Paoi(t),  Pantr(1) = (=1)*" T Paays(0) =0,

we have

m
R, =h**! / Po()F™ (a + ht)dt
0
m
=— p¥nt? / Prnyr1 (8)FCOH1)(a + ht)dt.
0

A natural question is to ask how fast the error term R, goes to 0. To answer this, let us
consider the period function P,(¢). Since it is a function with the period 1, and

Pg,-,(t) = P]n(l -_— t) = P]n(—t)

for 0 <t < 1, we see that Py,(t) is an even function. So

oQ
Paa(t) = Z apcos(2kxt),
k=0
With i
ap ‘—'/ Paa(t)dt = Panyi(1) = P2n41(0) =0
0

2

1
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for k£ > 1. We may do the same for Pin41(t). In summary, we have

Pan(t) =(-=1)""! Z - E;si(:—;:t) Vo> 1

Panss(8) =(- 1)"*’2%31"()22‘;?3 ¥n >0

Especially, we have the estimates

=1
IPn(t)i<(27r gk_" (6)

Example. Let F(z) = ¢'*,a =0,m=1,h = 1, we have

= —(e 1)+ Z ( (;l)lBkt"'l(e' -1)

_t2n+l/ Pgn+1(8)e"d8.
0

Thus
hid t2n +2

s R T e

which is the finite Taylor expansion of the function ¢/(e*—1). Note that there is no restriction
on t now (compare this with the equation (2)).

§1.4.2. Gamma Function

Here we list the basic properties of the Gamma function which are needed for our own
interests.

The Gamma function I'(s) is the function which is given for Re(z) > 0 by the formula

['(z) := j:oe"t'?. (1)

Since

(==}
L(z+1) =/ et dt
0

=[—e~t*)ize0 + z/ e~'t*ldt = 2I(2),
0

we have that

I(z) = (2)

()
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where (2)p :=2(z+1)...(z+n—1), and

fa el
F(l):/ e~tdt = 1.
0

(Here, the reader should know that the Gamma function is a natural generalization of n!.)

Thus I'(z) is a meromorphic function with the simple poles at 2 = 0,-1,-2,...,—-n,...,
and where the corresponding residue at z = —n is
. r 1"
Res;=—n(T) = lim,— (2 4 n)[(2) = iz(*;;‘—“)h:_,. = nl) . (3)

Using the fact that

. . t
C-' = llITln_.m(l - ;)n,
we have, for large n,

1] n le o]
l"(z)—/ (1—1)":*5'5:/ [e"—(l’—i)"]t'£+/ et 8t
0 t o n t n t

n

Obviously, the second term has the limit 0. For the first, let us look at e=* — (1 — £)”. Since
for0<y<l,
I+y<e <(1-y)h

Thus : .
=Y "oet > (1 - )
A+ 5722 (-5
Now by ef > (1 +t/n)"*,

0<e™ = (1= 2y = eI (1= )] S e - (1= )

Hence by the fact that (1 — a)® > 1 - na for a € [0, 1], we have

2
0<e™t —(1- -t—)" < t—e".
n n

In particular, the first limit goes to

141
lim.,_.m] L g=tRe@rtigy = g,
0 n
That is
limp—eoAn(z) = T(z)

with " , dt
= I— =) —.
an(e)i= [ (1= 2o
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On the other hand, if we let ¢t = nr,

An(z) =n* /1(1 B

1

—n‘[—(l—‘r)"] n'n : (1=7)""1r3dr
nfn(n-1)..
- r1+n 1
z(z+1).. (z+n—l ./ dr
n! :
= n
(2)n+1)
Hence by the fact that
n-1
E - 1 3

(resp.

n* = e*'"" = exp[2(lnn — Z )] H ™)

m= 1

we have the following

Euler’s Infinite Product Expression.
te) = LTI+ Sy + Ly
: Tz gt n n
(resp. Weierstrass’ Infinite Product Expression
-l— = ze"* H[(l + = )e"/"]

where 7 := limp—.co {_m—; & — Inn} is the Euler constant.)

Remark. The right hand side of Euler’s product formula is well-defined for all z in C,
so we may take it as the general definition for I'(z).

As a consequence of Weierstrass’ infinite product formula, we know that

T

T()[(~2) = == Hu =

foke] zsin(rz)

Hence

[()r(1-z)=

sin(7z)
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and

F(3)= V7.

Another very important property of the T' function i3 the following

Multiplication forrhula.

n—1

[(z)T'(z+ %)I‘(l + %) Mz 4+ - )
= (2m)(P= D21/ 3=nap(n gy,

In particular, when n = 2, we have
2z-1 1 1
245 ()T (z + -2-) = 73[(22).

Proof. For this, let

pns r
#(z) := AT (ne) ,I:J(:, T(z+ ;)
Then, by the limit formula, we obtain
[(m _ 1)!]nmnl+§(n—l)nnm
(nm — 1)l(nm)n*

[(m - 1)!]"m§("-1)nnm-1
(nm = 1)!

¢(z) =n™ " Himmeco

=limp—eo

Thus ¢(z) is independent of z. Now let z = 1, we have

n-1 I‘+1 n—1 r n-1 r
¢= ] ¢ - ):Hr(;)=gr(1—;).

r=0 r=1
SO -1 n-1
2. r _rv_ n-1 LY
é _Er(n)r(l =)=r H(smn) .
But by
n—1 RN n-1 awrif
r— — __ g2xrifn
z = r—1 - H(Z € )Y
r=0 r=1
we have

n-1 ’ n-1 n—1
— _ plxir/ny _ arifng o o; E = gn-—1 . TT
n_,I_];(l r ) Hr ( 2:smn) Esmn

r=1
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which completes the proof.
We end this section by deriving the Stirling formula.

Let

p(z) = %ln I'(z) =

.

Then, by the functional equation, we know that

oz +1) = p(z) + =

Therefore |
— 1
p(z+n) = w(2)+§ —

On the other hand, by Weierstrass’ infinite product formula, we have

1

(=-r-teydo L

PrE="T7"7% ~'n z+n
——‘l--i-li {lnm—i L 1
=TT Mmeeo z4+n’’

n=1

So I"(1) = ¢(1) = —+. Furthermore, by

lnm:/ (e"—e'“")ﬁ,
A t

we have

==} 00 ~stf1 _ ,—(m+1)t
‘P(Z) = l“nm--oa[/ (e—i _ c—m!)% ‘_‘[ € (1 e )dt]
0 0

1—e~t

—-mt

Now since the integrations of the terms containing e go to 0, we have

o) = [ (- e

et

o0 1 | S
= — Zle—tdt
7 .[0 [1—3_‘ t]e ,

' 00 4=t _ o=t
=- = .
o(z) 7+/0 T

When z = 1, we have

and

71
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But

w(z) —lnz+ e *dt

—_ - I S 1 4
=inz + / (= + e‘) s,
Thus, integrating with respect to z from 1 to z, we obtain

mru)=u_fgmz_z+1
/ STl — e

et t

Now we claim that

© 1 1 1 _dt 1
I.—./[; (§+?__l—c"‘)c T—EID(QW)_L
In fact, let z = 4 and we have
1 1
[-J=-lnm—+
nw -,
where 1 1 ) dt
= a2 -tf1%t
/u (2 T e"‘) t’
Also © 1 3 1 dt
= hl -1/2
,/0 (2+t l—e"/z) t’
* d
4
I— 2 —-t/2
1= [CG- el
Thus

©1 o, 1, ett? dt
J—./(; (-2-e +te ; )T

Integrating by parts with respect to the last two terms, we have

e~t—e"t? 1 [* (/2 dt
Y L -t _ =t/
J e - [ et - e
1
=—§—-ln—.
Therefore, )
=;2—ln(2rr)—1

and | 1
InT(z) =[(z — —)lnz —z+4 iln {2m)]

1 _,.dt
f ( +—— _e_‘)e tT.
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Furthermore, by the result at the end of 4.1, we know that

n

—t ¢ (_l)f—lBr , t?n-l-?
=11 =1+ 5 + Z (21‘)’ t2 + 1 / P2n+1(27)€ 'zdI.
r=1 '
But -
/ 1221y @r-2)!
o z2r—-1
and

1 4 i 4 et -1
-tz -t _—
|/0 Paapr(z)e™dz| < (27)2n+1 /0 e”¥dz = @r)n T —f

So, we have
InT(z) =(z — l) Inz —z + l In(27)

=18, ) —n-1
+ Z 2r(2r +0( )-

Then, by putting z = n, and using ['{n + 1) = n!, we have
Stirling’s formula

In(n!)~nlnn—n+ %ln n+ %ln (27) + O(n™1).

§1.4.3. Riemann Zeta Function

In this section, we consider the famous Riemann zeta function. The reference here is
[T 51].

The Riemann zeta function, {q(s), is defined by
= 1
(q(s) := Z -
for Re(s) > 1. Since each integer n has a unique factorization as a product of primes, we

know that
_ A
a9 ==z

The restriction to Re(s) > 1 in the definition depends on the fact that, for any 6 > 1, the
infinite sum and product are absolutely convergent when Re(s) > 6. On the other hand, we
have the following
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Theorem. (q(s) has a meromorphic continuation on the whole complex plane. On the
complex plane, this function is regular for all s except s = 1, where there is a simple
pole with residue 1. Furthermore, it satisfies the functional equation

£(s) =&(1 - s).
Here .

£(s) := %s(s - 1)1.»-*'1“(%3)(0(3).

Proof. (Riemann) (I) The meromorphic continuation: This is based on the following

fundamental formula
@O =15 | s

for Re(s) > 1. In fact, for Re(s) > 1,

o0 . o]
[Ceertz o L [ ety 16
0

z n* fs y n?

Hence, by the absolute convergence for Re(s) > 1, we have

(s)a(e) = Z A A Ze‘"* - [

z:-l
I(B) .:Lmdz,

where the contour C starts at infinity on the positive real axis, encircles the origin once in
the positive direction, excluding the points £27¢, +4ni,... and returns to positive infinity.
Here z'~! is taken as e(*~1)!98% when the logarithm is real at the beginning of the contour.
(Thus Im(log z) varies from 0 to 27 round the contour.)

Now consider the integral

Take C aa the real axis from oo to p, the circle |z| = p, and the real axis from p to oo
with 0 < p < 27. On the circle,

Izs—ll - e(Re(s)——l)loghl—tnrg: < Ile.e(n)—lCQﬂtl,
and
le* — 1| > Alzl.
Hence the integral round this circle tends to 0 with p if Re(s) > 1. But if p — 0, we have

_ © 25 dr [=+] (ezn‘)a—lz: d_t
I(s)_—/o e‘—l?+_/o e*—-1 =z
=(e¥" — 1)I(s)¢q(s)

21ne

=T- CQ( s).
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Hence ’
e~ T(1 ~ 8)
2mi

Cqls) = 1(s)

for Re(s) > 1. On the other hand, the integral I(s) iz uniformly convergent in any finite
region of the s-plane, and so defines an integral function of s. Hence the formula provides
the analytic continuation of {q(s) over the whole s-plane. In this way, we see that the only
possible singularities are the pole of T'(1 — s), say, s = 1,2,3,.... But we know that {q(s)
is regular at 8 = 2,3,.... So the only possible singularity is a simple pole at 5§ = 1. Since

dz ,
1(1)_/;”?2__1 = 2mi

and

Tl-s)= —ﬁ + the regular part,

the residue at s = 11is 1.

(IT) The functional equation. To deduce the functional equation, take the integral along
the contour C, consisting of the positive real axis from infinity to (2n + 1)=, then round the
square with corners (2n + 1)x(%1 + i), and finally back to infinity along the positive real

axis. In the region between the contours C' and C, the integrand has poles at the points
+2wi,...,£2nxi. The corresponding residues at 2mwi and —2mmi are

(2mre™ /3y~ 4 (2mredT /3yl = —2(2mﬂ')“‘e"‘sin(%ﬂ).

So, by the residue theorem,

z‘-l R L7 1 - =1
I(s) = —/C'. = 1dz+41ne 51n(21r3)mz=1(2mr) .

€

Now let Re(s) < 0 and n — oco. The function 1/(e* — 1) is bounded on C,, and z’~! =
O(|z|®*(*)~1). Hence the integral round C, tends to 0, and we obtain

I(s) = 41ric'i’sin(%ﬂ'3)(2r)"1Cq(l - 3).

From here, by the properties of the Gamma function, we easily have the assertion.

With above, we may also obtain the values of the Riemann zeta function on the positive
integers. In fact, if n is an integer, the integrand in /(n) is one valued, and I{n) can be
evaluated by the residue theorem. Therefore

(_l)mBm

2m

¢a(0) = =3, Ga(-2m) =0, (q(t —2m) =
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for each positive integer m. Now by the functional equation of the Riemann zeta function,
let s = 1 — 2m and we have

Bm

cq(2m) — 22m—lw2m (2m)| .

Another minor application is as follows: By the functional equation, we know that

Cq(l—s) lﬂ_ ants I'(s) <q(s)
DN ~logr — grtangs " T) i)

But in the neighborhood of s =1,

%ﬂ' t&n%sr = —zs—i—l—) +O0(|s — 1)),
C'e) _ I'(H =
o) ~T() T T

and _
Q) _ _ ~1/(s=1P+k+... 1
¢Q(s) " Y- +v+k(s~1)+...  s-1

where k is a constant. Hence, making s — 1, we have

+7+-”)

{q (0) —-= log 27.

We end this section with the following remark. The Riemann zeta function is very
important in number theory, complex analysis, etc. One reason is that there are two ex-
pressions for it: One is as a sum, while the other is as a product. Especially, one may
study primes by using the Riemann zeta function. There are many conjectures related to
the Riemann zeta function. The most famous one is the following

Riemann Hypothesis. All the non-real complex zeros of (q(s) lie on the line Re(s) =
1
5

§1.4.4. Mellin Transform

The Mellin transform comes originally from the Mellin inversion formula, which con-
nects two functions f(z) and F(s) by the relations
z a+ooi
Fo= [ 1@2Z, f@=0 [ Feaas

a—oal

where a is given a real number. The simplest example of this is

f(z)=e7", F(s)=T(s).
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From an earlier section, we aiso have the example with

f(z) = F(s) = T(s)¢q(s)-

1
et —1'
The importance of the above formula is that after such a transform, we may make a
continuation of a function, which is originally only defined in a restricted region.

Let f(t) be a continuous function of ¢ > 0, such that
M1. For t — oo, f(t) decays exponentially. That is, f(t) is O{e™°*) with ¢ € Ryq.
M2. There is n, for t — 0, t” f(t) is C*. That is, f(¢) has an asymptotic expansion

i)=Y att +0(1).

k=-n

Then the Mellin transform of f(t), denoted as M[f](s), is defined to be the complex

function ) o it
o /0 ran .

The basic properties of M{f](s) are in the following

Proposition 1. (a) M[f](s) converges for Re(s) > n.
(b) There is a meromorphic continuation of M[f](s) to the whole cornplex s-plane.
(c) M[f](s) is holomorphic at 0, and hence it makes sense to talk about M[f])(0).

Proof. We divide the integration into three parts: [0, 6],[6, N],and [N, o0} for 0 < 6 <
N < oo. The fact that the integrate for each part is convergent just comes from the above
conditions. Hence we have (a). For the proof of (b), we use the same method as in last
section by using the contour C. In this way, we get the expression that

—1ru -3 l—l
M) = g [ 2

Hence we have (b). Now (c) is a direct consequence of the above expression. Since the only
possible singularities are that s = 1,2,.... Therefore 8 = 0 is a regular point for M[f](z).

Example. Let f(f) = e~**, then we have M[e~**](s) = A~* and

o0
j es""ﬂ = —log),
0 t

which is equal to M[e=*!}'(0). Motivated by this fact, we will also denote M[f])'(0) by
J57 f(t)4, even through the integrate may not really exist as what stands.

Now we give a precise expression for M[f]'(0).
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Proposition 2, With the same condition and notation as above, if

F(£y =" axt® + po(t),

E<0

then

M[f]’(U)—-/Opg(t)—— / f(t)--—[" °0+Z—"-

n<0

Proof. In fact, by our condition, we have

a 1
MIf)(e) H)]pm —+2:"‘[w“?

n<o
dt
+m[l, f(t) t

MO = [ 0l ges) +Z%m@ﬂﬁm

tl
+[fwﬁym7

Now the conclusion comes from the following facts:

Hence,

v,

Ts) |=0=1!

(

RS SRRV W ¢

(m)::o - (m)::ﬂ = [‘(1)3
(s =
L(s){(n+8)""=" " n’

=-T'(1),

Now we turn to applications of the above idea. The final aim is to deal with Laplacians.
By Lemma 3.2, we can show that the eigenvalues of a Laplacian over a compact manifold

are non-negative numbers and they are discrete.

Recall the following

Fact. Let A be an endomorphism of an n-dimensional Euclidean vector space V with

real strictly positive eigenvalues

D<A <A <. <A,

Then

n

det A = H,\ = exp(~ ZA;-'|,=U).

i=t J=
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But for infinite many positive numbers A4, as the product may not be convergent, how
we can offer a reasonable definition for [T A;? To do so, let us look at Stirling’s formula. So
we may take the finite part of the expression of n! as the definition for co!. That is

ool := V21 = exP(*C:Q(O))'

With this in mind, we introduce the follows:

For an increasing sequence of positive real numbers
U</\1S4\25...5An_<_...,

the zeta function associated with this sequence is defined by

(a(s) =3 A57

n>1

Suppose we have the following conditions:

Z1. (\(s8) converges for Res :» 0.

Z2. (x(s) has a meromorphic continuation to the whole s-plane.
Z3. (1(s) has no pole at s = 0.

By definition, we set

I An = exp(=¢3(0)).
n=1

With an increasing sequence as above, we define the associated theta function as

e)\(t) = i et

n=1

Lemma. Suppose A is such that
©1. O,(t) converges for ¢ > 0;
©2. For t — 0o, 9,(t) decays exponentially.
©3. Fort — 0, t"O,(t) 18 C™,
Then we have

(a(s) = M[Ba](s)
satisfies Z1, Z2, and Z3. In particular,

G0 = [ e0F.
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§1.1.4.5. Another Construction of
Classical Bott-Chern Secondary Characteristic Forms

[.4.5.a The Double Transgression Formula

Let B be a connected complex manifold, and let J € End (T B) be the compiex structure
of B. Let
0—Eg2 ... % Epn—0

be a holomorphic chain complex of finite dimensional complex holomorphic vector bundles
on B with hermitian metrics p; on E; for 0 < j < m. Set

E* :=®; evenEj, E- = ®j oaaBj, E=EtYOE".

Let N be the number operator on E which defines the Z-grading of E, ie. N is the
multiplication by j on E;. Similarly, let T be the number operator defining the Z;-grading
of E,i.e. 7= 21 on E*. Also et v* be the adjoint of v. For a € C, set V°® := av + av* and
V := V1. Then, if V = V' + V" is the canonical connection of (£, p := @p;) with V', V"
the holomorphic and antiholomorphic parts of V, ¥V + V9 is a superconnection on E.

" In the proof later, we have to use the following properties of the number operator N,
which may be easily checked:

[V,N]=0, [v,N]=-v, [v',N]=v", [§,N]=-0, [8" N]=-8".

Let P be the subspace of the smooth sections of AT, B, which are sums of the differential
forms of complex type {p,p). Let P’ be the set of 8, J-exact smooth forms in P, i.e. these
that can be written as 8% 7+8%n/ with 5,7’ smooth forms on B. Then if 4 denotes the vector
subspace of AT BQEndE generated by smooth sections of AP9TE BHom(E;, Ejp—g) for
all p,q,7 > 0, A is an algebra and Tr,n € P for any n € A.

Theorem. (1) For any a € C, the differential forms
Tr, [exp(—(V + V)?)], Tr, (N exp(—(V + V*)?)]

are in P and only depend on |a].

(2) Tr,lexp(—(V + V?2)?)] is closed.

(3) (Double Transgression Formula.)

2 Ty fexp(~ (7 + V)] = - PPTr, [ exp(—(7 + Vo))
D e, exp(—(7 4 V)] = - 37T [v"exp(~(T + V)
Tr, [av exp(—(V + V?)*)] = = 07Tr, [V exp(—(V + V*)*));
Tr, [@v"exp(—(V + V*)?)] =05 Tr,[N exp(—(V + V).
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Therefore,

S lexp(=(7 + Vo)) = = 28505T0, [N exp(~(7 + V)7

LT [exp(—(V + V4)?)] = = 26508°Ty, [V exp(~(V + V*)?)L

Proof. 1. From the definitions, we have
eiﬂN(v + Vn)c—“N =v + Vuzi'

for § € R. Thus Tr,[exp(=(V + V?)?)] and Tr,[N exp(—(V + V*)?)] are radical functions
of a. On the other hand, by a direct calculation,

(V+V2)?2 =94 a}(vv* + v'v) + aV'v +aV"v".

So, by definition, we have (1).

(2) That Tr,[exp(—(V + V*)?)] is closed is a standard result in the superconnection
formalism, say Prop. 1.3.2.

(3) The last two relations are direct consequences of the formal relations. For the first
two equalities, we proceed as follows: On Bx C, the form Tr, [exp(—(V+da g +da & +V*)?)]
is closed. It is equal to Tr,[exp(—(V + V¢)? —dav — dav*)]. Thus by Duhamel’s formula,
it becomes

Tr, [exp(—(V + V“)’)] — Tr,[vexp(—(V + V“)z)] da
— T, [v'exp(=(V + V9)?)] da + adada,
with o a differential form on B, since Tr, vanishes on supercommutators. Now our first two
relations may be deduced from the fact that this last combination of form is closed under

8% + da% and &% 4+ dﬁfi. Finally, a simple degree counting argument of the following
relations will complete the proof:

dBTx, [N exp(—(V + V)]
=Tr,[V+ V2, Nexp(—(V + V*)?)]
= Tr,([V®, N]exp(=(V + V*)?)]

= Tr,[(~av + dv") exp(—=(V + V)?)].

Here we use the properties of number operators listed before the theorem.



82 The Mellin Transform
[.45.b. Asymptotic Expansion

For any u > 0, let A, := V + \/uV. Then, as in the Mellin transform, if we have the
right asymptotic expansion, then

+00
o) =7 [ W TV exp(-AD) S

is a well-defined element in P for s € C, Re(s) > 0, and {g_,.(s) has a unique meromorphic
continuation on the whole complex plane such that it is holomorphic at 0. Thus by the
above theorem, we know that

Foo du a
Tr, [V exp(- AN — = (87 - §°)(,.(0)
0

Tr,[exp(~V?)] = —58‘93(;3.,;:.(0)-
Hence, if we define '
chec(E.,p.) = [27i)(g , (0),
axiom 1 is valid. Axiom 2 is trivial. And axiom'3 is a consequence of the fact that, in the

splitting case, v commutes with ¥V and vv* + v*v = Id.

Now we have to show that (g ,.(s) makes sense as in the Mellin transform. For this,
we check the condition for the Mellin transform. First, iook at the asymptotic expansion
of Tr,[Nexp(—A2)] when u — 0%. Even through at this stage, we may offer a simple
method to deal with it, but in order to explain the basic idea of the proof for the infinite
dimensional case later, we prove it by a certain concrete calculation. Also, we will go widely.
More precisely, we have the following

Theorem. When u — 0F,

k
Tr,(Nexp(—Ad)] = ) pj v/ + o(u*)

j=-1
with
Ho = ’Il',(Nexp(~V2).

Here o is uniform for any compact subset of B.

We do this by introduce a new parameter . The key point for this is the following easy
generalization of the theorem in subsection a:

Proposition 1. For any a,b € C, we have
OB Tr,[exp(—(V + V°)? + 6N)]
=ba Tr,[v* exp(—(V + V2)2 4+ bN)};
P Tx, [exp(—(V + V*)? + bN)]
= — baTr,[vexp(~(V + V*)? + bN)).
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Proof. Indeed, we may deduce the result from the degree counting of the following
obviouse relation:
dBTr, (exp(—(V + V)2 + bN))
=Tr,([V + V2, exp(—=(V 4 V)% + bN)))
=bTr, ([V®, Nlexp(—(V + V*)? + bN)])
=bTr,((—av + av*)exp(—(V + V)2 + bN)).

Now let a)(a), oz(a), and as(a) denote the differential forms on B defined by

(9 - 8 a\2
Tr, [N exp(—(V + daa + daa—a + V9]

=Tr,[N exp(—(V + V)] + o, da + a2 dd + a3 dadd
according the Grassmannian degree on C. (In general, if n =+ da+ yda+ nydada
is a decomposition of  according to the Grassmannian degree of C, we may also denote 13
by [7]4* 93.) On the other hand, since
Tr, [exp(—(V + V*)? 4 bN)]

is a smooth function of |a[?, then by Duhamel’s formula, there exists a smooth form
Bi(z,a,b) for {z,a,b) € B x C x C, which depends smoothly on |a|? and is such that

Tr, [exp(—(V + V?)? + bN)] = Tr, [exp(=V? + bN)} + [af* Bi (2, a, b).

Proposition 2. With the same notation as above, we have

~p.1 82
ai(a) =ab? [5 35 Bils=0;
aaa) = — a8 gy},

Proof. By Duhamel’s formula, we know that in the expression of the Grassmannian
degree on C,

8 _6 ay?
'IY,[exp(—(V+daa—a- + da-6-5+ V) 4+ bN)),

the form which appears as the coefficient of da is given by

—Tr,[vexp(—(V + V*)? + bN)],

le.
ééﬂn. fexp — (7 + V°)¥]
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by the above proposition for ab # 0. On the other hand, formally, by the fact that

i szt 1 a szt —_ t
6:6 Iz'— Ea_(ze )l::() = 8¢,
we have .
D Tr fexp(=(V + das- + da2e + V92 4+ b))
ab sleXp da a'a—- + =0
19 8 8 ey
= Emb'I‘r,[exp(—(V + da% + ciaﬁ + V) 4+ 0N )=
_ 8 = 4 ay2
= Tr,[Nexp(—{V + daa—a + dGB_& + V4.
Hence,
1 92
aa;(a) = a%’n S exp(—=(V + V) 4+ bN)s=0

Let a = 0 and we have

aaéé’;bﬁ [exp(~V? + bN)]y=0 = 0.

So
18
aay(a) = 6% azb("n J[exp(—=(V + V?)? 4+ bN) — exp(=V? + bN)])s=0-
Now by the definition of 8 (z, a,b), we have the first relation. The proof for az(a) is similar.

Proposition 3. For any (a,b) € C x C,

(—%('D.[exp(—(v + V¢)2 + b|a|9N)]) = —dB(TI‘, [v exp(—(V + Va)2 + b|al2N)})
+5a Tr, [exp(—(V + V°)? + (blal® + dada)N) — adav — adav*)]*%.

In particular,

o 9
3o la (T, [Nexp(—(V + V°)*)}) = —d” Z(Tr,[vexp(—=(V + V)* + blal* N)]Js=o
+aTr,[exp(—(V + V®)? + dada N — adav — adav*)[%%.

Proof. Differentiating the first relation at & = 0, we easily have the second relation.
For the first, we know that the LHS is the coefficient of the da in

[da%vT‘r.[exp(—(V + da% + V2?4 blal*N)]).
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But, by the properties of the number operator N, we know that the last expression is

3 8 . 8 .
’I&,([daa, —(V+ daa + V)2 + bla|* Nlexp(~(V + daa—u + V)2 + bla]*N))
=T, {([V+ Ve (V+ daga- + V)] + bla]* Nexp(—(V + da(% + V3?2 4 bla]’N))

=T, ([V+ Ve, (V+ da% + V)2 — bla[2N] + bla]?[V®, N] + ba N da)

exp(—(V + da;—‘J + V)% 4 bla|’N)]

= —dBTr, (exp(—(V + dab% + V)2 + blaj*N))

+Tr,(bjal*(—av + av") + ba N da) exp(—(V + da% + V)2 4 bla]®N)).

Here, as before, we also use the properties of the number operator N. On the other hand,
taking the factor of da in

g 8 a 0 a
Tr,({daa, -(V+ dat-,,-; + V)2 + bla]*N]exp(—(V + da% + V)2 + bla|2N)),

we have
ai Tr, [exp(—(V + V°)? + bla|*N)] =

— dB(Tr, [vexp(~(V + V*)2 + bja]*N)])

+ ba Tr, [exp(—(V + V°)? + (bla}? + dada)N)

~ avda — (—av — Gv*) da + N dada)]*®?.
Thus the assertion comes from the facts that

avda + (—av + aV")da =av (da — da) + av" dg;
(da — da)da =da da.

With above propositions, if we let a = u? for u > 0, we easily see the following

Corollary. With the same notation as above,

o {u e, [Nexp(~ AZ) lu=o = Tr, [Nexp(~ V7))

From this we easily see that as u — 0%,
Tr,[Nexp(—A})]

has an asymptotic expansion starting from u~!. Hence, we have the theorem stated at
the beginning of this subsection. Moreover, in the definition of (g, we do have the same
situation as in the Mellin transform. Indeed, for the purpose here, we only need to know the
asymototic expansion for the associated trace class. We will see later that for infinite dimen-
gional cases the analogue still holds, because we will carefully choose the superconnection
and the number operator, which provide the right cancellation.



86 The Mellin Transform

1.45.c. A Construction

In this subsection, we use the results above to give another construction for the classical
Bott-Chern secondary characteristic forms.

In order to use the Mellin transform, we still need to diacuss the behavior of

Tr,[Nexp(—A3)]

when 4 — oo. For this, we introduce the basic assumption that (E,v) is acyclic. With
this assumption, V = (v+v*)? is self-adjoint and positive definite. So we may use Duhamel’s
formula to deduce the fact that as u — +o0o, Tr,[exp(—A2)] and Tr,[Nexp(—A2)] decay
exponentially and uniformly on compact subsets of B. Therefore, we have the following

Proposition and Definition. Let (£.,p.) be a complex of hermitian vector bundles
on B.
(1) For s € C,Re(s) > 0, let

+o0 d
o) =t g5 [ W Nexp(-ADIS

Then ((¢. ,.)(s) € P is well-defined.
(2) There exists a meromorphic extension of (¢ ,)(8) on the whole complex plane
which is holomorphic at 0. :

‘Obviously, we know that
Ce.,p)(0) =Tr, [Nexp(—V?)]

i
Cle.op(®) = [ [ [Nexp(—AZ)] + To Vexp(~TH]

1+°° 'I‘r,[Nexp(-—Af,)]-c-i;u — ['(1)Tx, [Nexp(=V?)].

Theorem. Suppose £. is acyclic, then
oo . 241,,1/2 du B _ ABy\r

T [(v + v )exp(—Ag)]u - =(0% = 07)¢(.,p(0);
Tr, [exp(— V)] = A du e, (0).

In particular, we get
chac(€.,p.) = [2ﬂ-i}c(’f.,p.)(0)

Later we will give a similar construction for the relative Bott-Chern secondary char-
acteristic objects. At that moment, since the situation is infinite dimensional, we have to
choose the correct superconnection and number operator in order to have certain cancella-
tion, and hence, a suitable asymptotic expansion.
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Chapter 1.5
Local Family Index Theorem

In order to prove the existence of relative Bott-Chern secondary characteristic forms
with respect to a smooth morphism, we need to study the local family index theorem:
Roughly speaking, the construction of relative Bott-Chern secondary characteristic forms
for smooth morphisms is very similar to the one in the final section of the last chapter.
There we used the local index theorem in the absolute situation by a discussion about
the assoctated heat kernels. Here we will use the heat kernel associated with a suitable
generalized Laplacian.

To do s0, we now meet certain problems. The most important one is about the conver-
gence: For the local index theorem in the absolute situation, we know that the heat kernels
associated with a generalized Laplacian has an asymptotic expansion when time goes to
small; in the relative situation, if we choose a ’natural’ connection, the asgsociated second
order differential operator has a kernel, and usually, there is no good asymptotic expansion
for it when the time is small. So we need to modify this connection. Now, by the proof of
the local index theorem in the absolute situation, we see that the Lichrerowicz formula is
a crucial point. Therefore, we know basically how to make this modification. (In practice,
we introduce the Bismut superconnection.) The reference here is [BGV 92].

I.5.1. The Bismut Superconnection

Let # : M — B be a family of oriented Riemannian manifolds (M;|z € B) with a
Riemannian metric gar;p on each fiber M,, and let £ be a vector sheaf on M such that
E: = £|um, is a Clifford module for each z € B. We denote by T(M/B) the bundle of
vertical tangent vectors. We assume that the bundle M /B possesses the following additional
structure: a splitting TM = Ty M @ T(M/B), so that the subbundle Ty M is isomorphic
to the vector bundle #°T'B; and a connection VM/Z on T(M/B). Let P be the projection
operator P : TM — T(M/B) with kernel the chosen horizontal tangent space Ty M. For X
a vector field on B, denote by Xy the horizontal lift on M. Choose a Riemannian metric
gp on the base B and pull it up to Ty M by means of the identification Ty M ~ x*T B, we
then obtain an inner product on the bundle Ty M, which we call a horizontal metric. (We
usually make use of a local frame ¢; of the vertical tangent bundle, and a local frame f, of
TB, with dual frames ¢’ and f2.) We form the total metric ¢ = gg ® gar/p on the tangent
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bundle TM of M. Let V9 be the Levi-Civita connection on TM with respect to this metric,
and define a connection V#/8 on the bundle T(M/B) by projecting this connection

vM/IB .= pyip,
The first result is the foilowing

Proposition 1. The connection V*/2 on T(M/B) is lndependent of the metric gg
on TB used in the definition.

Proof. We first recall the following basic formula for the Levi-Civita connection

2(V§'Y’ Z) = ([Xv Y],Z) - ([Ys Z] X) + ([zv X]vY)
+X(Y,2)+Y(Z,X) - Z(X,Y).

Thus, if X,Y and Z are all vertical, the right hand side reduces to the Levi-Civita connection
on the fibers for the vertical metric gasp. On the other hand, if X is horizontal, but Y and
Z are vertical, then [Y, Z] is vertical, so that ([Y, Z], X) vanishes, and we see that

AVHIBY z) = (P[X,Y),2) + (P[Z,X],Y) + X(Y, Z).

From this formula, it is clear that only the vertical metric gpsyp and the vertical projection
P are used to define V’,}”B for X horizontal. This completes the proof.

Next we construct a new connection on TM, that is
ve .= vB g UM/E

Note that if we replace g by the rescaled metric ugp @ gayg, with u > 0, then V8 does
not change, and neither does V®. Usually, the connection V® has a non-vanishing torsion,

even through it preserves the metric. The next proposition shows us the relation between
Ve and V9.

Proposition 2. There exists a three-tensor w on M such that, for all X, Y, Z €
C=(M,TM),
(V4Y,2) = (VBY, Z); + w(X)(Y, 2).

Furthermore w € A1(M,A?T* M) is defined by the formula

w(X)Y,Z) :=S(X, Z)(Y) - S(X,Y)(2)

+ %(Q(X,Z),Y) - %(Q(X,Y),Z) + %(Q(Y, Z), X).

Here the tensor S, which is called the second fundamental form, is the section of the
bundle '

End(T(M/B)) @ TyM ~ T*(M/B)® T(M/B) @ Ty M
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defined by
(5(X,9),2) =< V¥/BX _ P[Z,X],0 >

for Z € C°(M,TyM), X € C®°(M,T(M/B)) and 6 € C=(M,T*(M/B)), while the
tensor {2 is the section of the bundle Hom(A?Ty M, T(M/B)) over M defined by

QX,Y) = —P[X,Y]

for X,Y € C=(M,Ty M), i.e., the negative vertical projection of [X,Y].

Proof. First, since for any ¢ € C™(B), if Y is the horizontal lift of a vector field on
B, Y(n*¢) = n*(n.Y ¢). Hence, for any vertical vector X, [X,Y] is also vertical.

Now observe that (V% Y, Z) — (VY, Z) is antisymmetric in Y and Z, because each of
the connections V9 and V® preserves the total metric g on M. Hence we may check the
proposition case by case for the different situation in which X, Y and Z are horizontal or
vertical. As an example, if X,Y and Z are all horizontal lifts from the base, it is easy to
gsee that the difference is 0, while w(X)(Y, Z) vanishes. Other cases which are very similar,
are left to the reader.

" Let u € (0,1], and let
g* = ug® & gM®

be the metric on 7*M. Then ¢° = limy_og® is the degenerate metric, which induces a
metric on T* M and vanishes in the horizontal cotangent direction T(M/B)t C T* M. The
family of metrics g* is a powerful tool to investigate the geometry of g°. Let g, be the dual
metric on TM so that

gu=ugp® dM/B

which explodes in the horizontal direction as u — 0. We call this process the blowing-up
of the base metric.

Let Cy(M) = C(T* M, ¢") be the Clifford algebra bundle, and denote the canonical
quantization map from AT* M to Cy(M) by c,. Thus the Clifford bundle Cp(M) is the
limit of the one parameter family of algebras bundle C,(M). Let

™ :A*T°M — End(T° M)

be defined by
cu(r(@)§) = [cu(a), cul§)),

where @ € A*T; M and £ € Ty M. Then

(i Ava)é = 2((11,€)go 1 — 8" (14, €) g 11)-



90 Local Family Index Theorem

Therefore, for the orthogonal frame of T* M of the form {e'} U {f°}, we have

%TU(eicj)ek =kl _ kel
.
(f7fP)e’ =0,
ST (E N = - s,
ST =u(5 P~ 0 £,
r(e'ed) f* =0.
Taking the lAimit as u — 0%, we have _
%To(e‘ej)eb =6ikej _ 6‘“8‘,
Lr0(et foed =g g,
(2 1%)e’ =0,
°(a)f* =0,
for all @ € A2T* M. Hence, 7° vanishes on T" B.

Thus, if we denote the negative of the adjoint of r“(a) € End(T*M) by r,(a) for
u € [0, 1], then

1
§(Tu(a)X,Y)g. =<a,XAY >,

for X,Y € C®(M,TM) and a € A?T*M. Hence if V™% u > 0, is the Levi-Civita con-
nection on TM corresponding to the metric g,, then we may restate the proposition above
as

Proposition 2/: V¥ = ¥® 4 L1 (w).

It follows that the family of connections V% has a well-defined limit as u — 0, which
we will denote by V. In particular,

oMo .- g -;-‘rg(w).

Obviously, we have the following facts: The connection V¥ is torsion free. The projection
of VM0 to the bundle T(M/B) equals YM/8_ The restriction of VM:® to each fiber depends
only on the vertical metric gpyp and the connection on the fiber bundle M/B. We let
VT*M.u be the dual connection on T* M for u € [0, 1). Motivated by this, we introduce the
following discussion:
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Now let £ be a vector sheaf on M such that £, = £, ia a Clifford module for each 2
and suppose that there is a connection V¢ given on £ whose restriction to each bundle £, is
a Clifford connection. Denote by m.& the infinite dimensional bundle over B whose fiber at
z € B is the space C®°(M,,£,). Let D = (D*|z € B) be a family of Dirac operators acting
on the fibers of 7, £, constructed from the Clifford module structure and Clifford connection
on £. That is, on the fiber M,, D* is the composition of the Clifford connection followed
by the Clifford action. Introduce the vector bundle E over M by

E:=7*(AT"B)®¢E.

This bundle carries a natural action mg of the degenerate Clifford algebra Co(M): the
Clifford action of a horizontal cotangent vector a € C®(M,T; M) is given by exterior
multiplication mg(a) = €(a) acting on the first factor AT M in E, while the Clifford action
of a vertical cotangent vector simply equals its Clifford action on £. This Clifford module
will be the main tool in calculating the index of the family operator D.

In order to study E, we write it as the limit of a family of Clifford modules for the
bundles of Clifford algebras C,, (M), all constructed on the same underlying vector bundle
E: The Clifford action

My : Cy(M) — End(E)

is defined as follows: For a horizontal cotangent vector a € C*° (M, Ty M),
my(a) :=-£(a) — ui(a),

acting on the first factor AT M in E; while the Clifford action of a vertical cotangent vector
is simply its Clifford action on £.

There are connections VE% and VE® on the Clifford module £ analogous to those in
T*M: The connection VE® on E~ 7" AT* B ® £ is defined by

VE® .- *yB g1 +1@ VE.

The connection VE* ig defined by the following formula (inspired by the discussion for
VM,I.I)'
: 1
vEu .= yE® 4 Emu(w)

Proposition 3. For all u € [0, 1], the connection VE* is a Clifford connection for the
Clifford action m, of C,(M) on E. In particular, the connection

VED .= lim, o VE® = VE® 4 %mn(w)

is a Clifford connection for the Clifford action mq of the Clifford algebra bundle Cy( M)
on E. The restriction of those connections to each fiber of the bundle M/B is indepen-
dent of the choice of the horizontal metric gg used in the definition.
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Proof. Note that since
(VX% mu(a)] = mu(TFa),

we know that the connection VE® is a Clifford connection with respect to the Clifford
action my. Now the first two statements are the consequences of the fact that

[mu (@ (X)), my(a)] = my(r*(w(X))a).

Others are trivial.

Next we define the Bismut superconnection on =.£. We consider that the space
A(B, m.£) of differential forms on B with coefficients in 7.£ as the space of smooth sections
of the Clifford module E over M. The Bismut superconnection B,

B : A(B,m.£) — A(B, m.£)

is the following Dirac operator for the Clifford module E — M:

B := Z mgVaE‘o.
a

Here m? denotes my(e') or m,(f®), VGE'“' denotes VE¥ or Vi’“, and the summation is
taken over all the orthonormal frames e; and f,.

Remark. Remember that the Dirac operator for the absolute situation is given by

D=Y fV.,.

Let B = Byg) + Byj) + By + .. ., be the decomposition of the Bismut superconnection
according to its degree. Then we have the following

Proposition 4. With the same notation as above, the restriction of B to C*(M, &)
has the expression

; 1 . 1 )
DT+ D e (Ve 5 D (Slene), fa)) = 3 20 D" N S, fo) ).
i a i acf i
In particular, Bjgy = D and Byy) = V™+£_ (For the precise definition of V™€ see 1.5.3.)
Proof. From the definition, we see that .

; [
B=) cdVP®4+5 covEo 4 ZZw(ea)(eb,cc)mSmgmg.

abe
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On the other hand, by a direct calculation, we have
Y w(ea)(es, ec)mimbms —22 E(S(en yJa)mg — -Z (far f5), €:)mEmimy,.
abde afi

Thus we have the first formula. Then, by comparing the degree, we have the other two.

-

We saw that the Lichnerowicz formula is very important in the proof of the local
index theorem, which makes us to use the Mehler formula possible. Next we discuss the
corresponding formula for the Bismut superconnection.

Theorem. (The super-Lichnerowicz formula) With the notation as above, we have

— AMIB | era+zmom3ﬂ' {ea €s).
a<h

Here rpp denotes the scalar curvature, and F€/5 € A(M,Endcpm;8)(€)) denotes the
twisted curvature of the Clifford module £.

Proof. By definition, we know that
1 E
B =2} [m{ve® myv,]
ad
1
=3 E[mg, mé|VEOgEL

+ Emo[VEO,mO]VE Oy - Zmomu[vE 0 VbE 9.

Now we compute each term in the last equation. Since for any a e C>®(M, T M),
my(a) = e(e) — ula), [mu(a) my(e)] = —g%(a, a),
we know that for the orthonormal basis ¢', f*, the first term is equal to — 3°,(V:*°%)?

By the fact that VE? is a Clifford connection, we know that the second term is

3 mgmo(VE MOV =3 mimg < VT MOt e > V0

ad abe

=—%Zm3m0 es e,]+zvgﬂlﬂ

ac

Here we have used the facts that VM0 agrees with VM/B when restricted to a fiber M,,
that the connection VM? is torsion-free, and the adjunction formula

vT‘MD b E< VT M'('.'c L ec S ef = z‘(el’vf.ﬁec > ef.
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On the other hand, by definition, we have
E. )
AMIE = S OR,, Y (VRO
i ' i

Therefore, .
1
B = AM/B 4 2% T mim([VE®, vy - Vil

[e=,
ab :

Furthermore, we know that

1 .
(V) =-3 X RE St +3 Rl

a
i<jalh a<d

[VE®, mo(w)] = mo(VOw);
[mo(w), mo(w)] = mo([w,w]o);

Also, if, locally, for any A € End{V'), we define

AMA) = Z <&, Aey > g5k,
ik

globally, we get
(VE@)? = A(V2)) + (V) = A(RP) + gmo(RM/P) 4 FFIS.
So, by the fact that
(VB0 = (VB9Y? 4 2752, mo(w)] + glmo(w), mofuw)],
we get

Y - mimb(VE0)(eq, 04)
ad

1
= Z m3mSA(RB (e, €,)) - 3 Z mimbmSmd Rapead + Z memi F€/5(e,, e).
ab abed ab

From the fact that the antisymmetrization of R? over any three indices is zero, we know
that the first term is zero. In particular, we see that

' 1
B? = AM/B 4 Z mimd FE/5(eq, e5) — 3 Z mimymim3 Rased.
ah abed
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Now the original formula is a consequence of the following standard calculation:

b d b d bob,d
Z mgmomomg Raped = Z mgmymimf Rabad + Z mgmomomg Rassa

abed abd abd
d
=2 mimiRaiai = =2 Rijij = —2myB.
. adi 7

§1.5.2. Existence Of Heat Kernels In Relative Version

In this section, we prove that, associated with the Bismut superconnection, there exist
heat kernels. For doing so, we put the problem in a relatively large content.

With the same situation as in the previous section, we have a family of manifolds,
together with the associated structures. Let D(€) be the bundle of algebras over B whose
fiber at z is the algebra of differential operators, and whose smooth sections are families of
differential operators D*, with coefficients (in a local trivialization of M and £) depending
smoothly on the coordinates in B. Let K(£) be the bundle of algebras whose fiber at z is
the algebra of smoothing families of smoothing operators K*. Since X(£) is a bundle of
modules for D(£), we may form an algebra from the sums of operators in D(€) and KX(£).
We refer to the smooth sections of the bundle D(£) + K(€) as the P-endomorphisms
of the infinite-dimensional bundle #,£, and denote by Endp(#.£) the space of its smooth
sections. ' '

As an illustration, first, we consider the situation when B is a point. Let A = i, A®
be a finite-dimensional graded algebra with identity. Let M be the algebra P ® A. There
is a natural decreasing filtration of the algebra M with M; := ij,- P @A Let

F = Ho+K+.7:[+]

be in M with Hg a generalized Laplacian, K € K and Fj4) € M;. We define a heat kernel
for ¥ to be a continuous map (t,z,y) — pi(z,y) € €, @ & ® A which is C' in ¢, C? in =
and satisfies the equation

L+ Fpen =0,

with the boundary condition that for every s € C*(M,£) ® A,

limy_o / eMp:(z,y) s(y) = s(z)
Yy

uniformly in z € M.
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Theorem 1. Let
F .= H(] + K+ -7'-[+]

be an element of M with Hy a generalized Laplacian, K € K and F{4) € M,. (In the
sequel, we call F an essential generalized Laplacian.) Then there exists a unique heat
kernel p¢(z,y) for F. '

Proof. First, we assume that A = C. Then F{4; = 0. In this case, since we know that
Hp has a-smooth heat kernel satisfying certain strong estimates, it is not surprising that we
can prove the same things for H = Hq + K by Duhamel’s formula. To construct the heat
kernel for H, we use a generalization of the Volterra series as follows:

Lemma 1. With respect to any C'-norm, [ > 0, the series
o0
Q: = E(—l)"/ e~ Totto gro—nitHe  pro—oxtHo g,
k=0 8a

converges to a kernel
g € C=(M x M,p}€ @ pE”).

~ The sum is C™ with respect to ¢ and is a solution of the heat equation
(0 + (Ho)e + Kz) qilz,y) =0

with the following boundary condition at ¢ = 0: If ¢ is a section of £, then with the
uniform norm,

limg_oQ;8 = 3.
Hence g¢(z,y) is a heat kernel for H. Furthermore, the difference

o
emtH _emtHo = E(—t)" / e~0tHo fro—ortie  gro=ontHog,
k=1 a

tends to 0 when ¢t — 0.

Proof. Since K is a smoothing operator, the operator e~*#° K has a smooth kernel for
allt >0, and
lle'*e K|l < COIIK s

for some constant C() depending on {. It follows that, for k > 1,

k+1 k
“ c—oanch—dNHu L. K’e—dhtﬂodU” S CU) ;'”K”I .
Ay -

Thus the series ) .., converges with respect to the C'-norm, uniformly for ¢t > 0, with
similat estimates for the derivative with respect to t. Others are easily to check.
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In general, the operators 7 and H differ by an operator Fi; of positive degree in the
finite-dimensional graded algebra A. Thus by the heat kernels of H, the Volterra series once
more gives a candidate for the heat kernel of F: For fixed { > 0, define the operator e~*%

by
e-t}' = c—lH + Z(-t)klkt
k>0

where
I =j e"’°'H°.7-'[+]e°"H° ...f{+]e"""H°da.
Ay

The sum is finite, since Iy € M;, and for k large, A* = 0, hence AM; = 0. Thus it is
sufficient to make sense of each term in this finite sum. For this, we need the following

Lemma 2. Let D be a differential operator of order k. There exists a constant C > 0
such that if K is a smoothing operator, for t € [0,T], with T being a positive real
number, we have

1De=*# Kjr < CliK [kt

|Ke*# Dy < Cl|K ||x4-

Proof. By the fact that there exists a constant C({) such that for ¢ € ['(M,£), one
has for t € {0, 7Y, '
lle=*" &lir < CWD)lIlh,

the bound ||De~** K||; < C(Dl|K||s41 follows easily. Using the adjoint, we have the other
inequality.

Now we can complete the proof of our theorem. Obviously, it is enough to show that
each term I, has a smooth kernel. On the simplex A,, one of the ¢; must be greater than
(k4 1)1, Since for a fixed o with (k+1)~! < ¢ < 1 and a fixed ¢, the operator e~?** has
a uniformly smooth kernel, it follows by iterated applications of the above lemma that the
operator '

e—ﬂolHnj_-H-]e—U;l‘HQ .. ”7.'[+]e-0k'H0

has a smooth kernel which depends continuously on (oo, ...,0:) € A;. Thus the integral
makes sense as an operator with smooth kernel. The rest is trivial.

We now come back to the relative situation. Let # : M — B be a family of manifolds
over a base B. Denote by M x, M the fiber product which is a fiber bundle over B with
fiber at z € B being M, x M,. Let £ = M be a family of vector bundles. By definition, a
smooth family of smoothing operator acting on the bundles £, — M, along the fibers
is a family of operators with kernel

ke C®(M x. M,pl€£ @ p3E).

When restricted to the fiber M, x M,, the kernel £k may be viewed as a kernel k* in
C=(M, x M,,p1&: ®p3E;). Let K(£) be a bundle over B, whose smooth sections are given
by ‘

C®(B,K(£)) = C®(M xy M,piE @ p3£*).
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Asg explained above, K(£) is a sub-bundle of Endp(&).

Theorem 2. Suppose we are given a smooth family of generalized Laplacians H* along
the fibers of M — B, then the corresponding heat kernel pi(z,y, z) defines a smooth
family of smoothing operators, that is, a section in C®(B, K(£)).

Proof. As usual, arqund any point zp € B, we can find a neighborhood on which the
families M and £ are trivialized. Thus, we may replace B by a ball U C R? centered at 0;
M by the trivial bundle My x U; and £ by the bundle & x U, where & is a bundle over
Mp. Since the change of coordinates, and its inverse, used to obtain this trivialization are
smooth, we see that the data used to define the family of generalized Laplacians H* gives a
smooth family of one for defining generalized Laplacian on the bundle &£, parameterized by
the ball . Hence by the result above, with respect to the parameter, we have our assertion.

Similarly, by localization, we have the following theorem, which shows that the heat
kernel exists for the Bismut superconnection B,,.

Theorem 3. Let A be a bundle of finite-dimensional graded algebras with identity
over B and let M be the bundle of filtered algebras M = A @ Endp(£). Let F €
C* (B, A® Endp(£)) be a smooth family of P-endomorphism with coefficients in A,
of the form

}-= H0+Aﬁ+f'[+]s

where Ho € C*(B, D(£)) is asmooth family of generalized Laplacians, K € C®(B,K(£))}
is & smooth family of smoothing operators, and Fi4j is an element of C®(B,A' ®
Endp(£)). Then for t > 0, the kernei of the operator ¢'7 is a smooth family of smooth-
ing operators with coefficients in A, that is, a smooth section in C®(B, A ® K(£)).

§1.5.3. Chern Characteristic Forms In The Relative Situation

In this section, following Bismut, we will extend Quillen’s theory of superconnection
to the infinite dimensional bundle #.£ — B, thereby obtaining a formula in terms of heat
kernels for Chern characteristic forms in the relative situation. As the space of sections of
T.& is C®(M,£), it is natural to define the space of differential forms on B with values in

7€ by A(B,ﬂ'.f) =C=(M, =" (AT*B) ®¢).

By definition, a differential operator on A(B, 7, £) is a differential operator on the space
C=®(M,n*(AT"B) Q). Let

A(B,D(£}) := C®(B,AT"B®D(£))
be the space of vertical differential operators with differential coefficients. If a differential
operator D on A(B, n.£) is supercommutative with the action of A(B), then this operator

is given by the action of an element of A(B,D(£)). Similarly, we write

A(B,K(£))
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for the space of smooth families of smoothing operators K¢ with differential form coefficients.
Denote by dg the exterior differential on B.

Let D be a smooth family of Dirac operators on £. A superconnection associated to
D is a differential operator A on A(B,7.£) of odd parity such that
(1) (Leibniz’s rule) For all » € A(B) and ¢ € A(B,7.£),

A(v¢) = (dgv)é + (-1)"'vA(9).

(2) A=D+T3mB) Ay, where Ay : A(B,7.£) » A(B, 1.£).

It is easy to see that Af) supercommutes with A(B) if i # 1, and hence belongs to
A'(B,D(&)).

Next we construct a superconnection associated with a family of Dirac operators D: It
is sufficient to define a connection V*+¢ on the bundle 7,&, i.e., a differential operator from
C*®(B,7.£*) to A(B,7.£F) such that

V*E(fe)=df Aé+ fU™Eg
for all f € C(B) and ¢ € C®(B, 7.£).

For doing 8o, assume that the bundle M/ B possesses a splitting TM = Ty M&T(M/B),
so that the subbundle Ty M is isomorphic to the vector bundle #*TB. If X is a vector field
on the base B, denote by Xy its horizontal lift on M, i.e. the vector field on M whichis a
section of Ty M and which projects to X under the pushforward #. : (Tg M) — Ty()B.
Furthermore, let us suppose that the bundle £ over M is provided with a connection V¢,
which is compatible with its hermitian structure. We can now define a canonical linear
connection on the vertical tangent space T(M/B) using the projection operator

P:TM — T(M/B)

which has the chosen horizontal tangent space Ty M as its kernel.

Proposition and Definition. Let s € C*(M,£). For X a vector field on B, define
the action of V¢ on s by the formula

Vs =%,

Then, we have
(1) This formula defines a connection on =, £ over B.
(2) The connection V*+¢ is compatible with the inner product on 7.£.

Proof. To show that V*+¢ is a connection, we must show that V33 = z°fV¥°¢ for
f € C*(B). But that is a direct consequence of the definition. On the other hand, by the
fact that V¢ is compatible with the hermitian metric, we also have (2).
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Thus associated with a connection on the fiber bundle M /B and a connection on the

bundle &, there is a natural superconnection A := D+ V*+£ for the family of Dirac operators
(D*|z € B). The curvature

F=A'=D*+ F4) € A(B,D(£))

of the superconnection A is a vertical differential operator with differential form coefficients.
Also D? is a smooth family of generalized Laplacians and

Fi4] EC®(B,AT"B® D(£))
is a smooth family of differential operators with differential form coefficients which raises

exterior degree in AT; B ® C°(M,,£,). Here, by the results in section 5.2, we obtain the
existence of a smooth family of heat kernels for F, which we denote by e~** € A(B,K(£)) :

et = e—tD’ + Z(-t)”‘“
k>0

with

Ii =-/; c”"m:fme'”‘w’ ... Fiyje~ o Hodo.
L

Since I vanishes for k > dim(B), the sum above is finite.

On the other hand, for K = (K*|z € B) € A(B,K(£)) a smooth family of smoothing
operators with coefficients in .4(B), given by a kernel

< z|Kly >€ C°(M xx M, =" (AT"B) ® pi€ ® p3&°),
there is a supertrace on K(&,) over each fiber M, of M/B, which gives a supertrace
Tr, : C*=(B,K(E)) — C=(B).
When restricted to the diagonal, the kernel < z|K*|z > is a smooth section of the bundle
7 AT"B @ End(€) over M, and its pointwise supertrace Tr, ¢ < z|K*|z > is a section
in C*°(M,x* AT"B). Such a section can be integrated over the fibers, and hence gives a

differential form on B. Thus the A({B)-valued supertrace Tr, : A(B,K(£)) — A(B) of the
family of operators K is the differential form on B

zr—»/ Tr,e < z|K*|lz > .
M,

A local calculation shows that

dpTr,(K) = Tr,([A, K]) € A(B).
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With this, we may define the Chern characteristic forms in the relative situation for a
superconnection A on the bundle 7.£, associated with a family of Dirac operators D, to be
the differential form on B given by the formula

ch(A) = [2mi]Tr, (e~4).
Since e-A" = ¢=F ¢ A(B,K(£)), it is well defined. As an immediate consequence, we have
the following

Theorem. Let A be a superconnection on the bundle 7.£ for the family of Dirac operators D.
(1) The differential form ch(A) is closed.
(2) If A, is a one parameter family of superconnections on the bundle x,£ for a family
of Dirac operators D,, then

d

- dA,
(e Al) = —dgTr,(

do

e~ 7).

Thus, the class of ch(A,) in de Rham cohomology is a homotopy invariant of the
superconnection A.

As we have seen above, one may study the Chern characteristic forms by using the heat
kernels associated with a superconnection on #.£. In the absolute situation, by rescaling
the superconnection, we show that the associated heat kernels give us the information we
need. Unfortunately, in the relative situation, the problem is rather complicated. The main
reason is that when the time goes to small, the associated heat kernel is not convergent.
Thus, the first thing we have to do is to modify the superconnection so that the limit of the
supertrace of the heat kernel on the diagonal exists whenever the time goes to infinity or
small; this is why we need to use the Bismut superconnection.

§1.5.4. Local Family Index Theorem

In this section, as in the absolute situation, we prove the local family index theorem by
studying the behavior of the heat kernel associated with the square of Bismut superconnec-
tion B when the time goes to zero. (By the result of §1.5.1, we know that these heat kernels
do exist.)

Let us summarize the data that we are working with:

( 1) A relative dimension 2m fiber bundle # : M — B with a vertical metric gps/p
and a splitting TM = Ty M & T(M/B) with TyM ~ n*Tp. From this, we obtain a
connection VM/B on the vertical tangent bundle T(M/B).

( 2) A Clifford module £ for the vertical Clifford bundle C(M/B) with a Clifford con-
nection V¢ which is compatible with VM/B,

Using this data, we construct a family of twisted Dirac operators D = (D*?|z € B), and
the Bismut superconnection B, with Big) = D. Hence the curvature F := B? of B acts on
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the space A; @ (7.£), of sections of the bundle E = Ax*(T* B)® & along the fiber M,. Here
A, denotes the finite dimensional algebra AT; B. With this, we may state the following

Local Family Index Theorem. (1) For each ¢t > {, the heat operator e~*% acting
on C*°(M,E) has a kernel

<z[e |y >E C®(M xo M, 7" AR PIEQ P3E”),

in the sense that if ¢ € C*°(M,E), we have

(e 8)(z) = / < zle=Fly > 6(y)dy,

where dy is the Riemannian volume form of the fiber M, and z = r(z).
( 2.) When t — 0%, we have the asymptotic expansion

k(z,t,z) ~ (47t)~™ i t'ki(z)

i=0

such that
(a) The coefficient k; lies in ZJ-S,-A’-"(M, Endcasy8)(£)).
(b) The full symbol of k(z,¢, z), definéd by o(k) := ?;’3(")” a2:(k;), is given by the
formula
o(k) = A(RM/B)exp(—F¢/5) € A(M,Endg(m8)(E)).

Proof. By the result of section 1 and section 2, we easily have (1). The proof of (2) is
similar to that in the absolute situation:

Forz € Band zg € M;, let V =T, (M/B) and H = T; B be the vertical and horizontal
tangent spaces at zg. Then T := T, M = VO H. Let U := {£ € V : |¢]| < €}, where
£ is a positive number which is smaller than the injectivity radius of the fiber M,;. So we
may identify U with a neighborhood of z¢ in M, by the exponential map § ~— exp, €.
Let 7M/B(zq, z) be the parallel transport map in the bundle T(M/B) along the geodesic
from z to zo, defined with respect to the connection V¥/8 . Since we are working on a
single fiber M,, this connection is nothing but the Levi-Civita connection of M,. Using
this map, we identify the fiber T,.(M/B) with the space V, so that the space of differential
forms A(U) is identified with C™(U,AV*). Choose an orthonormal basis d§; of V*, and
let ¢ € C®°(U,T*(M/B)) = C=(U,V") be the orthonormal frame of T*(M/B) over U
obtained by parallel transport of dé; along geodesics by the Levi-Civita connection on M.,.
We denote by e® a local frame of T*M on U consisting of the union of the cotangent frame
¢! and of a fixed basis f* of T B.

Let E = &,, be the fiber of the Clifford module £ at zy, let Sy be the spinor space
of V*, and let W = Homg(v+)(Sv, E), so that E is naturally isomorphic to Sy @ W. Let
7E(zy,z) be the parallel transport map in the bundle A, ® £ along the geodesic from z to
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T, defined with respect to the Clifford connection VEC, Using this map, we identify the
fiber A; @ &; of E at z with the space AH®* ® Sv ® W, and the space C®(U, A, @ £;) with
Co(U,AH*® Sv ® W).

If we let A* be the Laplacian on M, associated with the connection VE-®, then by the
super-Lichnerowicz formula, we have

FP=A"+ %'M. +y_ mimbFE/5(eq, e4).
a<h

Hence we may transform this operator to the one on C®(U,AT* ® End(W)) by using
the quantization map; that is, replace the Clifford action mg(e®) at £ = 0 by the action
m' =¢' — ', m® =% In this way, we get the corresponding operator

L= _Z((VE 0)2 V Z Sb/Sm m

a<d

Next we introduce the rescaling operator 8, on the space C®°(U,AT" @ End(W)): If
a € C®(U,A'T* ® End(W)), then

u(a)(€) := u=2a(ul2).
In the same way, if a € C®°(U x Ry0,A'T* ® End(W)),‘ we define
bu(a)(t,€) := w=/%a(ut, u'/%).
Thus if we let
k(t,€) :=.rE(zo,x) < zle”Flzo >,

where z = exp, £, we know that k(t,) is in C®(U,AH* ® End(Sv) ® End(W)), which, by
the symbol map, may be thought of as a map from u to AT* ® End(W) and satisfies the
heat equation

(8 + L) k(t,€) = 0
with the initial condition
lime—ok(2,€) = 6(£).
Hence first as in the absolute situation, if we rescale k(¢,£) as

n

r(u,t, E) = Z u(2m-i)/2k(ut, ulhf)[i],

i=0

we have
(O +uby L6 ")r(u,t,€) =0
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In this way, we see that the local family index theorem means that

. ey 12, RMIBJ2 /s
limy—or(u,t,€)1,6)=(1,0) = (47) " det (m)exp(-l" ).

Now we expand the eguation
(0 + uby L6 ) r(u,t,€) =0
with respect to u!/?. For this, we need the following easy

Proposition. When u — 0%, the differential operator ué,Lé;! on C®(U,AT* ®
End(W)) has a limit

K := _.zi:(a.. - %Z ai;&)? + F.

7 .

Here F is the element of A?V* ® End{W), obtained by evaluting the twisted curvature
FEIS at zg.

The proof of it is quite similar to the one in the absolute situation.

On the other hand, we also have the AT* @ End(W)-valued polynomials v;(¢,€) on
R, x V such that for N > j + |a|/2, u € (0,1], (t,€) € (0,1) x U,

N

11608 (r(,1,6) — ae(&) Y w7t )| S C(N, j, a)u®.

i==2m
Therefore, we have

r(u,t,€) ~ q(€) Z u'/3i(t,€).

i=0
Hence, by using the Mehler formula, we complete the proof.

We end this section with the following application of the local family index theorem.

Theorem. (1) Let B, := t!/268B(67)~! be the rescaled Bismut superconnection, then
ch(By) =/ 6B(Tr, ¢ [k(z,t, z)))dz.
M.

(2) When t — 0%, the section 62 (Tr, ¢_[k(z,t,z)]) € C®°(M,n* AT*B) has a limit,
which is equal to .
(2mi) "™ Tarya(A(M/ B)ch(£/S)).

Hence, we have

ch(By) =.(21ri)‘"' fwB A(RM/B)ch(£/5).
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Here Tpyyp + A — C®(M,x*(AT* B)) is the map given by decomposing the bundle
AT*M as a tensor product AT*(M/B)® n*(AT* B) and applying the Berezin integral

to the first factor; that is, projecting onto A"T*(M/B)® n*(AT* B) and then dividing
by the vertical Riemannian volume form.

Proof. (1) Note that since F; = t§8F(6F)~!, we have

ch(B,) =Tr,[e" 7
=Tr, (67 (e™*%)]
=67 (Tr,[e"*%)).

Thus by ,

Tr,(e™*) =/ Tr, . [ki(z, 2)] dz,
M,

we have (1).

For (2), we define the bigrading on

APITIM =) AL ® ATT; (M/B).
P

Thus for any a € A, ® End(£;),

Tr, Ex (a) = (_2’7’-)"' Z Trn,t‘/S[a[p,n](a)]'
4

Therefore, we have
82 (Tr e, [k(z, 1, 2)]) ~ (2mi)™™ D 7™ P12 Ty, o) slopy ) (kj ()]
Jp

Since for 2j < n + p, Tr,[o}, n)(k;)] = 0, we see that there is no singular term in the
asymptotic expansion of §2(Tr¢_{k(z,t,z)]) as t — 0. Hence, we have the result.

§1.5.5. The Situation At Infinity

In this section, we will study the behavior of the heat kernels associated with any
superconnection A when ¢ — +oo. This is a result of Berline and Vergne. Since the proof
for this result has the same structure as the one for the finite dimensional case, we will first
explain such a finite dimensional result.
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1.5.5.a. The Situation In Finite Dimension

Let £ = £t @ £~ — M be a hermitian super-vector bundle over a manifold M. Let
D be an odd endomorphism of £ with components D¥ ; £* — £F such that ker D has
constant rank. Then the family of superspaces {Ker(D,) : z € M} forms a superbundle, the
index bundle of D, over M. Suppose that £ has a hermitian structure so that the adjoint
of D~ is D*+. Then D is self-adjoint. So, if let £ C & be the superbundle Ker D graded by
E*, let Py be the orthogonal projection of £ on &, and let P, = 1 — P, be the orthogonal
projection of £ to &, where £, = Im(D) C £ is the image of the operator D, then there are
decompositions

Et=cFfopct

with £F := Ker(D*) and the endomorphism D* gives an isomorphism between the bundles

& and €.

Let A := Ao+ A+ A} + . .. be a superconnection of £, with curvature ¥ := A% €
A(M, End(€)). Then,
ch(A) = [27i]Tr,(e=4%),

in de Rham cohomology, is equal to the difference of the Chern characters of the bundles
£* and £7. Furthermore, if Ajg) = D, then

ch(A) =ch(£1) — ch(€£7)
ch(EF) + ch(&) — ch(Ey) — ch(€])
=ch(£F) — ch(&;) = ch(Ker (D).

I

Now we may say that our final result in this section is a refined version of the similar result
at the level of differential forms.

Let A be the superconnection
A = PPAP, + PIAP,

which preserves the spaces A(M, &) and A(M, £,) C A(M,E). We need to use the following
notation: If K € A(M,End(£)), we write

k=(3 %)

[4 4 ﬁ _ PoKPo PoKPl
b §) 7 P]Ir‘:Po P;Kpl

with a € T'(M, End(&y)), ete.

which simply means that
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Since A commutes with Py, we see that its curvature has the form

. ., (RO
F=A ‘(0 s)

with R being obtained as follows: Denote by V¢ the connection on the bundie £ given by
the projection of the connection A[y) onto the bundie &£p:

Vo = PoAy Po.
We filter the algebra M := A(M,End{£)) by the subspaces
M; =) A(M,End(£)).
Y
Then we have

Lemma 1. The differential form R lies in My, and the curvature of the connection
Vo equals Ry

Proof. This comes from the fact that the superconnection Ajg) = PoA P on the bundle
& has its curvature A2 = R, and

Ao=Vo+ ) PoApPy
i>2

as PoA[o]PQ = Po.DPo =0.

Now, for t > 0, let 6; be the automorphism of A{M,£) which acts on AY(M, ) by
multiplication by t=*/2. Then
Ag = t1[26¢A6,'1

is again a superconnection on £ and the decomposition of A into homogeneous components
with respect to the exterior degree is given by the formula

A= tlnA[o] + Ap + t-l,,A[Q] +....

The curvature X; := A? of A, is the operator t§,F§; !, and the cohomology class of ch(A,) =
[2‘n'i]’n' [e=7*] is independent of ¢: It is equal to the difference of the Chern characters
ch(&F) — ch(&F) for all t > 0. Next, we study the limit of ch(A;) as t — +oo It is
remarkable that the foliowing stronger result holds.

Theorem. Let £ = £* & £~ be an hermitian super-vector sheaf and let D be an odd
endomorphism of £ whose kernel has constant rank. Let A be a superconnection of £
with zero-degree term being D. For t > 0, let

A=t A8 =t 2D A+t A+
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be the rescaled superconnection, with curvature F;. Then for ¢ large enough,
lle™% — e~ Rl = O(t=/?)
uniformly on compact subsets of M.
Proof. We begin with the following lemma.
Lemma 2. (a) Under the decomposition £ = & & &1, the curvature F may be written
as
#=(z r)<(W 2)
(b) The endomorphism Tjo) € T(M,End(£))) is equal to PyD?P, and is positive defi-

nite.
(c) Denote the inverse of Tjg; on £ by G. The curvature Ryy) of the connection Vg on

&y is given by
Rpy) = X — Y G-
Proof. Let A = A +w with
0 o
w=FRAP + PLAP, = v 0 € M.

Then } .
F=F+[Awl+wAuw,

F

R+ pv Po[A,}.l]Pl
P[A,V]Py, S+vpu

Ry + sy s 2 Ma M,
( Dy D2 {mod \ ).

Thus if we write

we see that
Xta) = YinG 2y = (Rpzy + pu) = (s D)G(Dvyy) = Rya).

Next we give a key technical lemma.

Lemma 3. There exists an invertible matrix g with ¢ — 1 € M, such that

a_ (X YN . _{(U 0
979 ‘Q(ZTg“ov-'
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Furthermore
U=X-YGZ (mod Mj),
V =T (mod My).
Hence
t6,(U) = Ry + O(t~'2).

Proof. Obviously the set of matrices of the form 1 4+ K with K € M, forms a group
. To construct

So it makes sense for us to find an invertible matrix g so that ¢ — 1 € M,
such a matrix ¢ which puts F into a diagonal form, we use the induction on dim M — i

Assume that there exists g; such that

Xi Y\ ( My M
9 Fe (z T)E(M.- Mo)’

with 7; = D? (modM,). In particular

(0 1 GT,) € M.
But .G
(GZ. ) €M,
8o -1
1 -YG 1 Y.G
(GZ.' 1 ) _( GZ; 1 )EM?I
Hence, if we define X;, etc., by
1 -Y%G\ (X Y\(1 Y\"'_ (X Y
Gz 1 Zi T;/\Gz 1 ‘\Z T}’
then .
Xi =X - 2(YiG)Zi + (YiG)Ti(G Zy)
=X; (mod My;);
Vi =Yi(1 - GT) + (Xi ~ (YiG) Zi)(Y;G) € Miyy;
Z; =(1 = T\G)Z; + (GZ)X; — (GZ)Yi(GZ:) € Migy;
[; =Ti + (GZ:) Xi(YiG) + Zi(YiG) + (GZ)Y,

=T; (mod.M1)

Thus by looking at the sub-index, we may continue the induction
Now suppose that we have a matrix g of the required form which diagonalizes 7. Then

14K M \(X Y\_/(U O\(1+K M
N 1+L)\z T]T\0 v N 1+L)’
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for some

(K M

KUY e,

So
= (U%K) V(LllfL)) ‘

Since X € M3 and K,L,M,N,Y,Z € M,, we have

X+KX+MZ Y+KY+MT
NX+Z+LZ NY+T+LT

(8) V=(T+LT+NY)(1+ L)~! =T (modM,), hence GV = 1 (modM,).

b)) U=s(X+KX+MZ)(1+K)'= X+ MZ (modMj).

(c) Y+ MT = UM — KY € Mj. Hence multiplying on the right by G, we have M =
=Y G (modM3). But this is what we want for this lemma.

As for the theorem, we may write

- _y ety 0
e ) = §,(g)! ( 0 e—lé,(V)) 6:(g).

Now by the fact that Viey = Tpo) = D? is positive definite on £, using the Volterra
series, we have the following

Lemma 4. There exist constants £,C > 0, such that [e=*%(V)] < Ce—¢t.

Hence, we have

e=t8(F) = §,(g)"! (e-Rm +00(t-1/2) g) 5:(9) + O(e=*").

But &(g) and §,(g~!) = &:(g)~" have the form

1+0(t=Y%  O-'1?)
o(t=1/3) 1+O(t-1f2))'

It follows that

-Rp -1z -\
e=ti(F) — (e [é(t"ou(:) ) O(;;*'l))) '

Similarly, we can deal with the situation for derivatives with respect to the base. Hence, we
have the assertion.

Corollary. The limit lim¢_ ;och(A,) exists, and equals the Chern character of the
connection Vg on the superbundle £ = Ker(D).
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[.5.5.b. The Infinite Dimensional Situation.

We use the same notation as in §1.5.1. What we discuss in this section is a fundamental
theorem of Berline-Vergne, which generalizes the result of last subsection to the case of a
family of Dirac operators. Assume now that D is a family of Dirac operators such that
KerD? has a constant dimension, so that KerD is a superbundle over M. If PZ is the
orthogonal projection from f,£, to KerD?*, then P, € I'(M,K(£)) is a smooth family of
smoothing operators. Also we have the following easy

Lemma 1. The operator Vj defined by the formula Vy := Py A1 P is a connection
on the superbundle KerD.

~ For t > 0, let § be the automorphism of A(M,x,£) which multiplies AYM,m.E) by
t=*/2_ Then A, :=t'/26,A6; " is a superconnection for the family of Dirac operators t}/2D.

Theorem. For ¢ > 0, let
A = t"8A67 =D+ A+t P A+
be the rescaled superconnection with curvature F; = t8;(F). Then for t large enough,
le=7¢ — &= ¥|l; < C(te= 7
uniform]:y on compact subsets of M x, M.

Proof. The structure of the proof for this theorem is the same as the one for the finite
dimensional case. First we filter the algebra

M := A(M,Endp(£)) = (M, 7" AT"M ® Endp(£))

by the subspaces
M; =Y A'(M,Endp(£)).
sz
In the same way, we also get a filtration for the algebra A := A(B,K(£)).

Let G := (G* : z € M) be the family of Green’s operators G* of (D*)?. Thus locally
G= /w e~HD +Po) gy _ p
0

Then G preserves N. In fact, for every K € N, we may decompose 8%((G + Pg)K) into
terms proportional to

oo
f (81~ PPy (B2 K Yt
0

with a; + a; = a. Thus by Duhamel’s formula, we see that, in general, this integration has
the form

jw . ./m et(D*+Po) ) o=ta(D’+Po)\D),  o=tu(D*+PO) D gy | dy,
0 0
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where £ = |oy|+ 1 and D; € [(M, Endp(7.£)). So the fact that < z[e~HDP’+Po))|z > decaies
exponentially implies that the above integratal is bounded. Now by the formula

07(GK) = 0%((G + R)K) — 8%(PyK),
we see that GK € N. Similarly, we know that KG e N.

Let P, = 1~ Py be the projection onto ImD. If K € M, we let
K=[2% B\ _ ({PKP PKP c N N
“\y &) T \PKP, PIKP N M}

Lemma 2. (a) Let Ry be the curvature of the connection Vj on the bundle Ker D,

and let
: (X Y
#=(3 1)
be the curvature of the superconnection A. Then X,Y,Z € A and
Ryg) = Xpg) - YinG2p).

(b) There exists g € M with g — 1 € A}, such that
Z Y\ ._{(U 0
Nz )9 o v}

U=X-YGZ (mod N3)

Furthermore

Pl;oof. If G is the Green operator of D?, and Y, Z € A, then the operators Y G and
GZ are also in N, but Y(1 — GT) and (1 — TG)Z are in N;4,. So we may construct g as
in last section as a product of matrices of the form

1 -YG 0 M
(GZ l )E”(M 0)'
Now the proof of this lemma is obvious from the one in the last section.

Since U = Ryy (modN3) and V = D? (modM). So for each ¢ > 0, the family of
operators 6,(V) is the sum of a family of generalized Laplacians D? and an element of
Py M, P,. Hence, e=**(¥) ig a section in A for each ¢t > 0. Thus, by the uniqueness of the
heat kernels, we know that

_ a e—lﬁ,(U) 0
g~ t0(F) = b¢(g) 1( 0 e~ t8u(V) b:(9)-
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With this, if U is a relatively compact open subset of M, and X is the infinitum over {/

of the lowest non-zero eigenvalue of the operators D?, then, by the Volterra series, we easily
see that over U,

Pie~tV)p = 0(eM3).

(Here, we use the following convention: If A(t) : Ryo — T{B,K(£)), we write A(t) =
O(f(t)) if for all € > 0, | € N and each function ¢ € C®(M) of compact support, there is
a constant C(!,¢, ¢) such that

li="(6)(=) < z|A(D)ly > [l < C(, &, ) ()

for all ¢t > £.) Therefore, we have

- _ —Ryy 0 _ -1/2
e™ 4 (F) = 6,(9)! (e 0 0) b:(g) + 6:(9)"} (O(to ) O(e'(’}”‘/z)) 6:(g)-
But &(g) — 1 = O(t~%/?), so we have

—t8, e R 0 o2y o(-1/?
e a(r)z( . 0)+(0Et_m§ é(t_l))).

From here, the theorem follows for | = 1. For derivations, we may proceed in the same way.
The details are left to the reader.

Corollary. The limit
limy oo ch(A¢) = ch(Py Ay FPo) € A(M)

holds with respect to each C'-norm on compact subsets of M.

§1.5.6. From The Real Situation To The Complex Situation

In this section, we present the results discussed in the last few sections in the sense of
Kihler geometry, by comparing them with those for Riemannian geometry.

1.5.6.a. Absolute Situation: Dirac Operators

First we present the complex theory of dirac operators. This may be treated by the
following

Theorem. (1) Over a Riemannian manifeld, the de Rham complex is given by

0— AYM) B AV M) B A2 B .
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Furthermore, we have
(a) The bundle AT™* M is a Clifford module defined by

c(a)f = e(a)f - ua)B

fora e I{M,T"M), g € A(M).
(b) The Levi-Civita connection on the bundle AT* M is a Clifford connection.
(¢) The Dirac operator associated with the above data is the operator d + d~, with

& A (M) = AN (M)

the adjoint of the extertor differential d.
(d) (Weizenbdock’s formula):

(d+d-)2 = AAT'M _ Z&jk'ek‘lsi‘j'
ifkl

(2) Over a Kahler manifold M, the Dolbeault complex is defined by

0— APO _5. AP! ﬁ. AP3 i )

with § := Y1, (d#') 5% locally. Furthermore, we have
(a) The vector bundle of anti-holomorphic differential forms A(T%!M)* is a Clifford

module defined by
o(f)n = Vae(fON) = (),

where f = fO0! 4+ f1.0 and fo* ¢ (THeM)".
(b) The Levi-Civita connection is a Clifford connection.
(c) The associated Dirac operator is v2(8 + §*).
(d) (Bochner-Kodaira’s formula):

(B+8")Y =A% + 5 e(dz )(d)F¥ (8., 85:).

W
Here K = A"(T"M)* is the canonical bundle of M.

Proof. (1) By a local calculation in this case, since V is torsion-free, we know that
d=coV,d*=—toV. Sod+d" =coV. Now by the Lichnerowicz formula, we have

. i y
(d+dt)l — AA’I‘ M +§§ :R{jk!(Ek —a")(e' _ LI)E'LJ-
ifkl

But R;ji vanishes over the antisymmetrization of three indices, so

Zs‘eje"z'R;jk; =0, z FIeFd Ry = 0.
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Hence we have the assertion.

(2) We know that without the Kahler condition, the vector bundle A(T%1)* is still
a Clifford module and the Cliffiord action is self-adjoint. In general, the corresponding
canonical connection is not a Clifford connection. But once we have the Kahler condition,
the situation changes dramatically. In fact, by the Kahler condition, we know that the Levi-
Civita connection of the underlying Riemannian structure preserves the bundles T1'°A and
T%! M (which may be thought of as the definition of the Kahler condition.) Hence we have
the assertion that the corresponding canonical connection is a Clifford connection. Next,
we have to prove that the associated Dirac operator is v/2(8 + 8*).

Let Z; be a local orthonormal frame of TH°M with dual frame Z*' € (T*°M)*. Then
d=) ((2')Vz,+e(Z2)V3g), 6= (Z')V3p.
i i

Hence it is enough to show that

8 =- Z W(Z)V i

Let a be the one-form on M such that for 8, € AP9(M) and f,41 € APIH(M),

a(X) = (ﬂqn‘(xo'l)ﬂﬁ-l)-
Since V preserves the splitting TM ®g C =T °M @ TO' M,

TH(Va) = 3_(Zia(Z) - a(V2,2)).

Thus
(29280, Bytr)e = =(Be, Q_UZ )V 2:By1)s + TH(Va).

Now the assertion comes from the fact that the integration of the last term over M vanishes.

Finally, for (8 + §*)3, do the same thing as for Lichnerowicz’s formula. We have
(B+8)?=9" 4+ e(di)u(d' )R (8,5, 0r:)
i
with R* the curvature of A(T%!M)". Thus, it is enough to show that
3 e(de)u(de) )R (8,5,05) = Y e(dF )u(d2' ) FH7(8,,81).
ij i
By definition, we know that the left hand side is equal to
D €22 Z U Z N R(Z;, 2:) 2k, 21)
ijkl

= Z E.(Z;)L(Z;)(R(Zj 12:) 2, Z5).
ijk
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Now by the facts that
R(Z;,Z2)Zx + R(Zk,2;)2: + R(Z:, 2:)2; = 0
and that R(Zy,Z;) = 0, we have
R(Z;,2:)Zx = R(2x,Z:)Z;.

Hence we have the final assertion.

1.5.6.b. The Absolute Situation: Index Theorem

Theorem. (1) (Atiyah-Singer Index Theorem) The index of a Dirac operator on
a Clifford module £ over a compact oriented even-dimensional manifold is given by the
cohomological formula

Ind (D) = /M A(M)ch(E/S).

(2) (Hirzebruch-Riemann-Roch Theorem) The Euler number of the holomorphic
vector bundle £ over a Kahler manifold M is given by the cohomological formula:

x(M,&) = /M td(M) ch(€).

Proof, (1) This is a consequence of the result of Patodi and Gilkey stated in subsection
3.7a.

(2) We may deduce this formula from (1). In fact, if we consider the Riemannian
curvatufe ft to be the matrix _vyith two-form coefficients, then the curvature operator
(VAT*IM) N2 ig 5 (RZ;, 2;)e( 27 )u(Z*). But the End(A(T%! M)* )-valued two-form RAT™M) |

equals

%Z(RZ,-, Z;)e(Z7)e(27) + % Y (RZ:, 2;)c(Z)e(2).
ij ij

So
TOAM)*\2 _ pA(TO' M) l L5
(A )")2 = RM +2§i:R(Z.,Z.).

We know that, by definition,
FA(TO.IM)O@E,’S = %’I\'Ti.OM(R+) + FE.

Here Rt denotes the curvature of the bundle 7"°M and F? denotes the curvature of £.
Now by the splitting TM @r C = T"°M & T°! M, we see that

. Rt
A(JW) = det.( m)
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Hence
A(M)Trpcron my e sexp(— AT MTOEIS)) = td(M) Tr(exp(~ FF)),
since the Todd genus

—_ p R+ R+ +

Therefore, we have our assertion.

1.5.6.c. The Relative Situation: Smooth Fibrations

Let m : M — B be a smooth family as in the previous chapter. We assume that M and
B are complex manifolds of dimension n and m respectively. Then we have the following
exact sequence of holomorphic tangent bundles over M:

0—THZ = TVM — x 7108 . ).

Also, as C*-bundles, we know that T,l,.’OM ~ 7*TH%B. However, in general, we do not have
this isomorphism as holomorphic bundles. Hence T#OM is not a holomorphic subbundle of
T'PM. Now we state the complex situation for the smooth family as a triple (=, gz, Ty M)
with a smooth 2-form w on M of complex type (1,1), which has the following properties:
(1) w is closed;

(2) Ty M and TZ are orthogonal with respect to w;

3) X, Y €TZ, then w(X,Y)=< X,JY > .

Usually, we call such a family a Kihler fibration with associated (1,1) form w. In
this case, we know that (M,w) and (Z,g?) are Kéhler and B is locally Kahler; i.e. there is
an open covering I of B, such that there is a closed (1, 1) form p¥ on U, which induces a
Kihler metric on TB. We also know that on #~!(/), one may replace w by w + Axr"nY for
any A > 0. Since the fiber Z is compact, if A is large enough, w + Ar*n* is a Kahler form
on x~}(U), which induces the metric g% on Z and is such that Ty M = (TZ)*. Denote by
wg,wg the restrictions of w to Ty M,TZ, respectively. Thus, on TM, we have the relation
w = wy +wgz. We know that the pair (9z,Ty M) is entirely determined by w. In fact, we
easily have the following

Proposition 1. Let w be a smooth 2-form on M of complex type (1, 1), which has the
following properties:

(a) w is closed;

(b) If X,Y €eTZ,{(X,Y)  w(JX,Y) defines a hermitian product gz on T'Z.

For any z € M, let

Tg:M:={Y €T-M :w(X,Y)=0,VX € T Z}.
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Then, Ty M is a smooth subbundle of TM such that (7, gz, Ty M) is a Kahler fibration
with associated (1,1)-form w.

The bundle 7% Z is identified to T'°Z by the metric gz. Therefore T*%!Z inherits
the holomorphic structure of T7*°Z. V2 induces the corresponding canonical connections
on T*%!Z. Hence we know that AT*%!Z is also a holomorphic hermitian vector bundie on
M. If £ i3 a holomorphic Hermitian vector bundle on M of complex rank k, for 0 < p < I, we
let E? denote the set of C™ sections over M of APT*!Z @ £. We also regard EP as the set
of C™ sections over B of an infinite dimensional bundle: For any y € B, the corresponding
fiber EP is the set of C™ sections over Z, of NPT**'Z @ £. Set

E* =@y even B, E~ =®p odd 7, E=EtgQE-.

Let dz be the Riemannian volume element for the fiber Z. Then for any y € B, we have an
L? metric

j <e e >(z)dz
on E,. Let (z! = z! +iy',...,z = z' +iy') be'a complex system of coordinates in one
given fiber Z, and let T'Z be oriented by the base (9/0z",8/8y",...,8/8z',6/8y"). (So we
have 8/8y = J8/8z’.) Let

9 10 0. 0 10 9
57 =357 "5 57~ 2(ga tigg)

and - . . . - -
ded = dod +idy, d =dzd — idy.

Locally, let

Then for every y € B, the operator 8% acts naturally on E;. Let 87* be the formal adjoint
of 8% with respect to the hermitian metrics on E,. Motivated by the result of subsection
6.a, we let
8y = V26%, 8y = V2§%*, D, =8, + 3.

Then the Dirac operator D, interchanges E’;' and E;. Let Dy, be_t.he restriction of Dy to
Ef. Also, by a local trivialization of the fibration r, we know that (9,,,5‘;, Dy are first order
differential operators whose coefficients depend smoothly on z € M, and Dy is formally
self-adjoint on E.

Next we define a Clifford module structure on AT**'Z @ £: If X € TH0Z, denote
X* € T*%1Z the I-form Y € TeZ —< X,Y >, we define ¢(X) € End(AT**'Z @ &) by
e(X):=VIX A UM X' €T Z, we let ¢(X') = —v2ux:.

With this, we can give another description of Dy. In fact, if we let e;,...,eq be an
orthonormal basis of TZ, wy, ... w; an orthonormal basis of T!1'°Z, with the corresponding
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basis wj, w’, @/ on T%!'Z,T*1°Z T*%'Z respectively. Then by the fact that Z, is Kahler,
we have ~ i . -
62' =dz’ /\Valap' =w /\ij, Bz" = -"ijvw}-.

Therefore we have
Proposition 2. For any y € B, D, =Y }_, c(ex)Ve,.

Just as in the real situation, we introduce a connection V™€ on E as follows: for any
C® section of £, if Y € TB, then

Vi€h = Vyuh,
where YH is the lifting of Y in Ty M.
Theorem. (1) The connection V**Z does not depend on the metric on B, and preserves
the hermitian metric on E.
(2) Asa2-form(V*+¥)? is of complex type {1, 1). Furthermore, forany U € T'°B,V €

T%1B, ) )
Vitd =0, V68 =0.

Proof. (1) may be proved as in the real situation.

(2) We know, by a local calculation, that the curvature of V*+¢ is given by
(VO Y, Yy = RE(YH, Y *Y® 1+ 1@ RYYH Y H) ~ Upiyn ymy,

for Y,Y’ € TB with RZ, R the curvature of TZ and £ respectively, and T the torsion of
Ve, Thus by the condition for a Kihler fibration, we have that V% on TZ preserves the
complex structure of TZ and induces on T'°Z its canonical connection, and T is of type
(1,1). So we know that (V*+€)? is of complex type (1,1). On the other hand, if (3',...,y")
is a complex coordinate system of B with (8/8y*) the corresponding basis of T!:°B, etc,
then by a local calculation, since RZ, R®, T are of type (1,1), we also have that

Ve D =Yg 4 TG
=dy”e(w;)[RZ((8/6y"), ;) ® 1
+1® RE((8/8y"),W;) — Vr(asoy=).u;))
+ d®c(w;)[R? ((8/05%), w;) ® 1
+ 1@ R*((8/03%), w;) — Vr((aseg=),wy)-

Since V*+¢ preserves the grading in E, and so V€8 (resp. V**£3*) increases (resp.
decreases) the degree in E by 1. But R?, R, Vr do not change the grading in E, hence

V=€ =dy®c(w;)[RZ((8/8y"),w;) @ 1
+1® RE((8/8y°), ;) — Vr(aaye),w);

VreEd =dy*c(@;)[R?((9/05"), w;) ® 1
+1® R¥((8/85%),w;) = Vr((a/89%),u,))-
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Therefore, by counting the degrees of both sides, we have the assertion.

Remark. If F i3 a finite dimensional complex hermitian vector bundle on B, endowed
with a hermitian connection V whose curvature is of complex type {1,1), then by
Newlander-Nirenberg theorem we know that there is a unique holomorphic structure on
E such that V is the gorresponding canonical connection. For the infinite dimensional
situation, as stated above, we can still attach a unitary connection whose curvature is
of complex type (1,1). Also V*¢8 = 0, so formally, we have a kind of *holomorphic’
on E. In this sense we usually call such a connection a holomorphic connection.
We do not use the notation of canonical connection here as by the result in the real
situation, this connection is not the right one for us to study the problem at the level
of differential forms; it does not give us the nice cancellation. For this reason, we have
to use the Bismut superconnection.

We end this section by the following explicit formula for the Bismut superconnection
in the complex situation.

Let X,Y be two vector fields on B. Then we have the horizontal lifting X g, Yy to Ty M.
Let [X,Y] be the commutator of Xg, Yy and T(X,Y) € Tpyp be the projection of —[X, Y]
along Ty M. The map T defines a tensor in C°(M,Tp g ® A*TM). Let T := T10 4 TO1
be -the decomposition of T according to its type in Tyryp and c(T) = c(TH%) + (T%)
the corresponding decomposition of Clifford action ¢{(7T). Then, we know that the Bismut
superconnection in our case is just given as follows:

B:=V"f4+§+6 - i-c(:rw) - ic(zﬂll).

Moreover, if we scale the metric for the fiber by a factor %, we know that the associated
rescaled Bismut superconnection associated with this new metric is given by

= = 1
e TTLE "
B, := V"€ 4 u(§+8") = —e(T).
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Chapter 1.6
Relative Bott-Chern Secondary Characteristic Forms
With Respect To Smooth Morphisms II: Existence

From the construction for the classical Bott-Chern secondary characteristic forms at
the end of Chapter 4 by the Mellin trasform, we know that such a theory depends on the
existence of ceratin trace classes which have the right asymptotic behaviors when the time
goes to zero or goes to infinity. In this chapter, we will give a construction for relative
Bott-Chern secondary characteristic forms with respect to smooth morphisms. Similarly,
the basic idea is to use the Mellin transform. In general, this process is rather complicated.
So we first deal with a special situation for the infinite dimensional case, in order to get an
easy statement for the exponential decay of our objects when the parameter goes to infinity.
Then, we study the most general situation, by using the key observation which comes from
both the finite dimensional situation and the special infinite dimensional situation mentioned
above. The references for this chapter are {[BGS 88] and [Fa 92)].

§1.6.1. A Special Case In The Infinite Dimensional Situation

In this section, by imitating the process in 4.5 for the finite dimensional situation, we
give a construction of relative Bott-Chern secondary characteristic forms for certain special
cases following [BGS 88], from which we may get a good feeling for the construction in
general.

1.6.1.a. Bismut’s superconnection

We use the same notation as in the previous chapter: (x : M — B,gz,TyM) is a
Kibhler fibration with the associated (1,1) form w, etc. Let

0—b>26 2. 2 m—0

be a holomorphic chain complex of finite dimensional holomorphic vector bundles on M
with hermitian metrics p; on §;. Set

E+ = @J evenf}'v {7 = ®J O‘ddEJ" § = E+ ®E
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Let V7 be the canonical connection of (§j,p;) for j = 0,...,m, V¢ = @V, LE .= (V¢)?
and R¢ := —31-(V¢)2. Let v* be the formal adjoint of v. Set V :=v +v".

For 0 € j £ m, we make the various constructions as in 5.6.c for ;. Denote by
E}’ ) E'j*, Ej the corresponding infinite dimensional hermitian vector bundles on B which we
endow with the (unlabelled) ’holomorphic’ hermitian connection V*+. Also we have the
unlabelled families of operators 4,8*, D on E; as well as the vertical Clifford multiplication
operators c(e;).

Let T be the involution defining the grading on Ej, i.e. 7= %1 on E,-*. We also make
the convention that v, v*,V act on E; like 7(1 ® v); therefore they anticommute with c(e;).
‘Hence we have a "holomorphic’ double chain complex of infinite dimensional vector bundles
on B:

0 0 0
Lo l

0 — E§ = -E) = ... > E} — 0
16 16 ¥
16 1B ¥

0 - E} > E X .. X E, =0
| l I
0 0 0

Taking the grading naturally, we also set
E = @j,pE;?, E* = Dj4p evenEE: E” = Dj+p oddEr

The operators 8,8, D,v,v*,V are odd in End E. Hence for u > 0, we have the supercon-
nection

V™ +Vu(D+V)

on E. But as we have already seen in the real situation, this superconnection is not the
right one for our purpose. More precisely, by a complex realization, we have the following
Bismut superconnection: For u > 0,

Ay =V +Vu(D+V)- g_;)
where
o(T) = Ay P o T ).

[.6.1.b. Local Family Index Theorem

With the same notation as above, from the local family index theorem in the real
situation which was proved in Chapter 5, by taking the correspondence at the end of the
last chapter, we have the following
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Theorem. 1. Let P be the vector space of smooth forms on B with complex type
(p,p), 0 € p < dimB. For any u > 0, the smooth differential forms on B

Tr,fexp(=(V™* + Vu(D +V))*)], Tr,fexp(-Al)]

are in P; and they are closed.
(2) (Local Family Thdex Theorem.) Uniformly on compact subsets in B,

[Zfri]limu_.o'ﬁ',[exp(—Az)]=-/th(—Rz)'1‘r,[exp(—Rf)].

Remark. Even through Tr,{exp(—=(V™ + Vu(D + V))?], Tr,[exp(—A2)) are in the
same cohomology class, in general, Tr,[exp(—(V** + /u(D + V))?)] does not converge as
u — 0. It is at this part that we must use the Bismut superconnection.

[.6.1.c. Number Operators

The double complex £ has a horizontal and a vertical grading. Let Ny, Nv be the
number operators corresponding to these two gradings: Ny and Ny act on Ef by the
multiplication with j and k respectively. Thus N = Ny + Ny is the total grading number
operator. We know that this number operator is the right choice of the number operator
if we use the superconnection V** + \/u(D + V), when we do everything as in the finite
dimensional case. For example, we may have the double transgression formula associated
with Tr, [exp(=(V™* 4 +/u(D + V))?)]. On the other hand, since finally we use the Bismut
guperconnection, so we have to change number operators, in order to make our theory
go through. Now suppose N, is the right number operator with respect to the Bismut
superconnection. For getting the right cancellation, similarly to the finite dimensional case,
we need the following basic relations

[Vr.rNu] =0, [S’Nu] = _51 [5'aNu] = 8‘1

[0, Na] = —v, [0*, Nu] = v°, [c(T™), N] = —c(T™), [(T%), Nu] = —c(T).

Therefore, by a direct calculation, we have a natural choice for N,. To expia.in it, we make
the following observation.

First note that we do not change the horizontal data, so it is enough to modify Nv. For
this purpose, we first evaluate Ny in a more geometric way, via the vertical Kahler form wz.
In fact, by a local calculation, we know that, as an element of the Clifford algebra C(T'2),
wg is given by |

wg o= = gwz{wj, B)le(d;), e(w;y)],
i.e.

i _ _ o {
wz = g(=to;0j A+ Ato;) = i(d; A, = 3)-
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Here, { i3 the relative dimension. So from the fact that 2}:1 Wy Atg; on E’f is given by the
multiplication by k, we know that

l
NV—_——iW%+§.

From here, with the above basic relations, we let

} i 1
Nyvy = —twg + ﬂw;{ A +§-, Ny := Ny, + Ng.

1.6.1.d. Double Transgression Formula
With above notation, we have the following

Theorem. (1) For any u > 0, the smooth differential form Tr,{N, exp(—A2)] is in P.
(2) (Double Transgression Formula)

9, fexp(~A2)]

du
== 5207 + IV (VD + V) + T Dyexp(~AD)
T, [(Va(D + V) + fﬁf-;l)exp(-Aan
= (8- 0%)Tr, [N, exp(—A2)].

In particular,

-’-9%’1\', [exp(—AlZ)] = -%5333’1‘r.[Nuexp(—A£)].

Proof. By the construction, (1} is trivial. For (2), by the choices of the Bismut
superconnection and the properties of the number operator listed in the last subsection,
one may exactly imitate the proof of the corresponding assertion for the finite dimensional
situation, to give a complete proof for this part. The details of this translation are left to
the reader.

I.6.1.e. Asymptotic Behaviors Of Certain Forms

By the result in the last subsection, in order to imitate the definition of the classi-
cal Bott-Chern secondary characteristic forms for finite dimensional case, via the Mellin
transform, we now need to consider the asymptotic behaviors of

Tr, [BXP(—A‘Q, )]s
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TIW/D + V) + S Dexp(-AZ)
and
Tr, [N.exp(—A2)),

when u — 0% and u — +o00 respectively. In this respect, we have the following

Theorem. (1) There exist C™ even differential forms Ay, A;,... in P such that for
any k€ N,

Tr,[exp(—A2)] = EA_,U’ + o(u)

where {
Ao = m—i),/ztd(-RZ)Tl'a[eXP(—Le)]-

(2) There exist C™ odd differential forms By, By, ... such that for any £ € N,

k
T, [(Ve(D + V) + f) exp(-AJ)) = > Bjw +o(u¥).
J=0

Moreover, By = 0.
(3) There exist smooth differential forms C_;,Cp, ... in P such that as u — 0,

k
Tr,[Nuexp(~AJ)] = Z Ciw + ofu®).

j==1
(4) The various o{u*) are uniform on compact subsets in B.

Proof. By the local family index theorem 1.5.4, we have the asymptotic expansion in
(1), since the super-trace vanishes on all elements of Clifford degree strictly less than 2, and
the fact that the corresponding o is uniform on the compact subsets in B. Furthermore, by
the discussion for the local family index theorem in section 5.6 for the compelx geometry,
we have the expression for the term Ag.

Now, we consider (2). By Duhamel’s formula,

e(T)
oy ke u)]

=Tr, [exp (—AD] + T [(Vu(D+ V) + \/l)exp (-Al))du.

Therefore, it suffices to give the asymptotic expansion for

Tr,fexp(—A% + (Vu(D+ V) +

Tr,[exp(—Al + (Vu(D+ V) + c(j—)) du)].
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For doing so, we may use exactly the same procedure for the proof of the local family index
theorem to deduce the asymptotic expansion, since, as an essential generalized Laplacian
the structure of the super-Lichnerowicz formula is just the same. With this, By = 0 is a
direct consequence of (1) and (3), provided that we use the double transgression formula in
the previous subsection.

So, to compiete the proof of the theorem, we need to prove (3). From the above proof
of the asymptotic expansions in (1) and (2), we see that if we could give a formula, in
which only the terms Tr,[exp(—A2 + B,) occur, where, as essential generalized Laplacians,
—A? 4 B, has the same structure as what is for the super-Lichnerowicz formula, we then
can use the same procedure as what we did for the proof of the local family index theorem
to give the asymptotic expansion. In fact, this is the general method for the proof of the
existence of asymptotic expansion in the sequel. Here we demonstrate it by the example
with

a,.
a—u(u'l‘r,[Nuexp (=AD)).
We are supposed to show that its values at u = 0 i8 a smooth form C_, on B.

We first recall the situation for the finite dimensional case. At that place, we got the
assertion

o [uTr, (Nexp — (¥ + ViV ) )lumo = Tr, [Nexp(~ )]

Therefore, the assertion (3) is not really surprising. But now we get a certain trouble,
as the higher Grassmannian degree terms in A2, N, scale with negative powers of u'/2,
Fortunately, finally when we count the Clifford degrees as we did before, we will find that
the terms with a low u-power also have low Clifford degree by the properties of the Bismut
superconnection and the number operator listed at section 5.6 and subsection 6.1.c. Thus
by the fact that the super-trace vanishes on elements with low Clifford degrees, we find the
correct cancellation.

In practice, we do as follows, which is the same as for the finite dimension situation:
First, we have a generalization of the double transgression formula: For u > 0, 6> 0

buTr, [(Vu(D + V) + (\/l)exp(—Aﬁ + buVy)]

=(8% — #%)Tr, [N, exp(— A2 + buN,)].
Hence, by the fact that

e(T)
a
)exp( Al £ buNy)l=o,

Tr,[Nuexp(—AZ + (Vu(D+ V) +

¢(T)
4/u

)d ]d'u

=%T:.[(ﬁ(0 +V)+
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we have, if we replace 5 75 by 3 1.0 3d,

Tr, [Nyexp(—A2 + (Vi(D + V) + :(:‘;l u)]™
16?
B Y]
=08 -8 )2ab2Tr JJexp(=A2 + bN,))b=o0,
On the other hand, by the fact that

d - {
%(HNH) = -y + Ny + 5,
we get

9 2
—6-1-‘—'1‘1', [exp(—Aj + buN,))

=~ (8% 4 BV ILIVA(D + V) + (T jexp (A2 + buny)]

W
+ b foxp (- = (Va0 + ) + L) o
- (Vu(@ +v*) + C(T(\;_l ))da - iw$ dadd + buN,)|%* %

{
+Tn (N + 3)exp(=AJ + buly)).
Differentiating with respect to b and evaluating at b = 0, we then get

—(u”ﬁ-[N exp(-AD)])

=Tr, [exp(—AZ - (Vu(d +v) + (T:/—O ))
- (Vu(8 +v*) + o7 1)))da: — iw§ da da))de 92

aa
+ T[N+ 3)exn(-AD)

1 u
= (8% + B7) (5 T, [Nuexp(—AL + (VD + V) + S 7) .

Therefore, put all this together, we get

ST [Nyexp(~AZ))

¢ 10
T fexp(— A2 — (VG + ) + 5 s
— (V@ +v") + C(T(}l )) da — iws, da da)]s 4@

£ T [(Va + g)exp(-A)

- Bﬂaﬂéw'ﬁ', [exp(=A2 + bNy)]s=0.

127
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Hence, we expressed the term
2 (uTv, [Nuexp(~A2))
du e u
as a combination of the forms of
’I‘r,[exp(—A;‘: + By)l,

as stated above. Thus, by the method used in the proof of the local family index theorem, i.e.,
first, to use the normal coordinate to localize the problem, then, as an essential generalized
Laplacian, to use the structure for —A3 + B, in the sense of the super-Lichnerowicz formula
to give the discussion over the Euclidean spaces via the generalized oscillators to give the
asymptotic expansion. More precisely, we have

k
To, (Vi + exp(-AD]) = Y Fyod +ofu)

with
Fo= g [ W(-RaV (W + exp(-Le )
- e 1,0)
Tr,fexp( - A2 = (Va(8 +v) + (Tﬁ )) da
_ 1)
— (Va8 +v*) + "(Zf;; ) da — iw, da da)|4e 8
k
=Y Ejw +o(ub),

j=0

and

62 k R
s Tlexp(=AL +0N)l=o = 3 Djud +o(u')

j==1
with D_;, D_q closed forms. Thus, we complete the proof of the theorem.
From the proof above, if we write all terms down in a precise form from the local

discussion over Euclidean spaces as what we did for the proof of the locai family index
theorem, we also can have the following
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Corollary. With the same notation as above,

Cor =gy [ 54 (-Ra) W ex(— L.,

Co =(2_71f;57/z -‘%(td(—Rz-bl)),,ﬂTr,[exp(-Lc.,,,)}
g [ W Ra YT fexp(= L.,
+ gy [, W= ReY e [Nexp(~L. )
- %dBEo.

Indeed,
C_y = limy=o(uTx, [N exp(—A2))).

So, by the fact that

ulNy = —iuw$ + %w” +u(Ny + %)

contains no nagative powers of u, we may get above expression of C.; by imitating the
process in the proof of the local family index theorem. For Cy, we see that

limu_.o;;u(uTr. [Nuexp(—A2)]) = Go.

Thus, by the last part of the proof of the theorem above, we see that only the part for

Tr, [exp( ~ AL - (Vu(9+v) + df\;)) )da
_ (T
— (Vu(d +v")+ (T\; ))da — iw dada))de 9

matters. But then, we may first assume that v = 0 to deduce the result. In general, we
need to know that fact that the 0 order operator [§°,v]+ (8, v*] has the weight u, so it does
not contribute to the limit. In this way, we get

c(T11.9))
4/u

— (Va8 +v') + C(T\;;)) )da - iws, da da)|® 4
1

8 . 1
G J, AR = Il TR ool -Lc.o )

limy=oTr,fexp(—A2 - (Vu(8 + v) + ) da
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v

where A denote the Hirzebruch A genus. Hence, we get

=—(2;); fz a%[A(Rz + bI)]é:oexP(-'%Tr[Rz])Tr,[exp(—L,_-_,p_)]
+ (2:-1'_)‘ /z‘d('Rz)'I\‘.[(NH + -;-)exp(—Lc,,p_)] _ _;_dBEO_

So, by using the relation between complex Kahler geometry and Riemannian geometry listed
in the final section of the last chapter, we get the cotollary.

1.6.1.f. The Construction In A Special Case
We have already described the asymptotic behavior of
Tr, [NuexP(-Aa)]

as u — 0F. Therefore, if we can also prove that it decays exponentially when u — 400,
then we may use the Mellin transform to construct a good object. In general, however,
this is not the case, say, we do not always have the condition that the double complex
(E,0+ v) is acyclic. So in order to go further, we make the basic additional assumption
that (£,0 + v) is acyclic. Then, as in the finite dimensional case, the eigenvalues of the
corresponding Laplacian are strictly positive. So by using Volterra’s series, it not difficult
to show that when u — +o0,
Tr, [eXp( "A?J )] ;

TIWAD + V) + S d)exn(-AL)
and

Tr, [Nuexp(—A2)]

all decay exponentially and uniformly on compact subsets in B. Therefore, we can use the
Mellin transform to give the following

Theorem. With the same notation as above, assume that (E,J + v) is acyclic. Then,
(1) For 8 € C,Re(s) > I, let

1 [+ d
CE..p.,r(s) = m‘)'-/; u,Trs{Nuexp(_Ag)]Tu'

As a notation, usually, if there is no confusion, we may also denote (¢ , » 23 (g. Then
(g is well-defined, and is an element in P.

(2) There exists a meromorphic continuation of ¢ ,. x(5) to the whole complex plane
such that this extension is holomorphic at s = 0. In particular, it makes sense for us to
talk about (¢ , ,(0).
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1.6.1.g. Certain Properties Of The Construction

Here, we prove that the object constructed above satisfies the corresponding modifica-
tion of the axioms for relative Bott-Chern secondary characteristic forms with respect to

smooth morphisms, i.e. the axioms subtracting the term associated with 7., since we here
assume that (E,8 + v) is acyclic.

Theorem. If (€, v) is acyclic, then
(1) We 'have the modified axiom 1, i.e. the double transgression formula:

- , 1
52 0C5(0) = —— [ td(=Ra)Tr,fexp(~Le...)
(274) Jz
- (2) We have the modified axiom 3, i.e.

oy = L _ 1
0= /Z td(=Rz) e (0).

Proof. (1) is nothing but the integrated form of the double transgression formula:
Since we have the correct decay at infinity and the right asymptotic expansion at zero, the
integrating process works well.

The proof of (2) is based on a deformation process. More precisely, it cornes from the
following two statements:

(a) For t > 0, let (g¢(s) be the zeta function associated with the chain complex
(E, /18 + v), then as an element in P/P',

¢e4(0) = (g(0) + ALoglt|.
(b) When ¢t — 0%, we have

. A
[2rilc.(0) + 5 — /z td(~Rz) chac(é.. p.).
Here A and A’ are smooth forms of B,

Suppose we have (a) and (b), formally, after we consider the constant terms, we com-
plete the proof of the theorem. But, in practice, it is not so simple: The difficult is that in

general P’ is not closed in P. Hence, in the convergence arguments, we have to be more
careful.

We next give a proof of (a). The basic idea for proving this is to use a deformation
process. That is, we prove the result by studying the relations between the zeta functions
associated with the following complexes:

(E,8+v), (E,ad+v), (E,0+bv), (E,ad+bv).
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(i) The Bismut superconnections:

First, for (E, 8+ v), from the previous discussion, we get the associated Bismut super-

connection ()
c
A, =V" V) - ——=.
u +Vu(D + V) Wa

Thus, if we consider the chain complex (E, 8 + av) for (y,a) € B x C, which is acyclic for
a # 0, then the corresponding Bismut superconnection is

v+ dal tdal ay_ 0
Acu =V +daaa+daaa+\/§(D+V)—4ﬁ.

Here we set V® := av + dv*. Similarly, for ¢t > 0, we scale §,8" by the factor v/Z, then we
may get the associated Bismut superconnections as follows

Al =V + ﬁ(ﬁD+ V) - %;

a ) e(T)
¢t — —_ - ay _ A/
Ag, ._V+daaa+daaa+\/§(\/¢'D+V ) e
With above, if we look at the dependence of those elements on v, i.e., we let
A, = Ayu(v), Acu =:Ac.u(v),

then we have the following relations among the above superconnections.

Al = A 2 , AL, = A 2 .
u U‘(\/t') C,u C.M(\/E)

(ii) The number operators.

With the Bismut superconnections as above, we easily know that the corresponding
number operators are Ny, Ny, Ny and Ny;.

(1i) The zeta functions.

Hence, we also know that the associated zeta functions are respectively as followa:

Ga(6) =~y | T [Vuexp(=(A) )l

(rel0) =5 [ " W Ty [Muexp(~(Ac,e))ldu,

) = ~gr; | v T Nsexp(~(AL) ),
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and | o~
Cec(s) = -m)-fo u'Tr, [Nucexp(—(Ag )*))du.

Also, if we consider them as a function of v, then, we get
Cen(8) = 7' (e, 2. (5), Cp.co(8) =t7"CEC, ()
As a corollary, we see that
(ko (0) = (e, 3'(0) - (g, (0) Logt,
and

(ke (0) = (g, 3'(0) — Cec, 3 (0) logt.

(iv) The local family index theorem.

On the other hand, by the local family index theorem for = x ldc, we see that
lim—~of27ilTr, [oxp(~AZ,)] = [ td(~Ra) Trlexp(~Re. )
z

So, we see that there is no da or da term in the right hand side. Thus, later on, we may use
the trick of counting the Grassmannian degree in C to deduce the result.

(v) The expansion of {¢’(0) with respect to C.

First, we consider the acyclic chain complex (E,ad + v) on B x C* for a # 0. For
{Ee,c, the corresponding zeta function, there exist differential forms 8, 6,, 6_;, and 82 on
B depending smoothly on (y,a) € B x C*, such that

Cec'(0) =0+ 0, da + 6_, da + 6, dada.

Similarly, by considering the Grassmannian degree with respect to C, for a € C*, there
exist smooth forms 9} on B, depending smoothly on a € C* such that

¢t 5'(0) = 6 + 0% da + 6", da + 0} dada.

Thus, if i; : B — B x C” is the embedding y — (y,a), then
8o = i3¢e,c'(0), ¢£'(0) = i1¢e,c'(0),

while ,
G4 ) = i £ 0),

and ’ ‘
Oo(y, 1) = ii¢c £ (0) = (kg (0).
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Therefore, to study the relation of (g’ and (g ,c’, we need to study & and 6.
(vi) 85 and 85.

First, we study 8. Since, by the double transgression formula, we have
dody 2rilce'(0) = [ td(=Ra)Tr,exp(~Re )
dpxcdgxc [27i)(e.c'(0) = /z td(— Rz )Tr,[exp(—Re ,.)].

'In pa.rticu_la.r, dexcdyycCe.c’(0) does not contain da or da terms. Hence, by the relation
of Opxc, Orxc with those for B and C, we have
6280 —6B§-9—1— _5366._1
dada da Oa
So, by the facts that 0y is a radical function of |a|, that 3%;3, acting on the radical function
of |a| = r, coincides with

- 88889, = 0.

1, d3 +1 d]
4'dr?  rdr”
we have

22(r) = l[%(1)+4f 07(5) + 3°(5=4) + 86 (02)](5) b,

Thus, by integration, if I is the linear operator C*°(RY ) into itself such that

Fre () ir 100) =4 [ SBbLog] b,
1
we have

Lemma. With the same notation as above, for a € C*,

864 a6,

0o = C(0) + F2(1)Loglal + 8° 1( 2 904

=)+ §? (=) + 82681(8,).

On the other hand, if we let »;{ : C — C be the map defined by a — \—‘/’7, Then

CB,C, 3 v.0) (0) = 715 G o (y,arviy (0)-

In this manner, we get

Bo(4 —77) =C'(0) = L 20 (1)togt
a6, 86_, 1
+07 150, 2 + 071 5w )

+ 3507 1(02)(v, ).
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Now we are ready to consider 8§. For this, we use that fact that

(B.c. () (0) = riCe.Coy, 3 (0) = CB,C, 35 (0) Logt.
In particular, we get

0oy, a) + 01 (y,a) da + 6% (y,a) dé + 05(y, a) dada = r{ (g ,c,u,(y, ) "0y ~<¢e.c :;.(0) Logt.
But, by definition, we get*

ride.con 30 (0) =04y, )

1 .., a 1 a.,
+ 791(9: W) da + 79—1(% W) da
030, ) dad
so we get
oo(y: a) + 61 (yl Cl) da + at—l(yra) da + 92(.'1»0) dada
=30 )+ 200 ) dak 200 7 da
+ ?92(;!, ﬁ) dadd — CB,C,*(O) Logt.

To go futher, we need an expression for (E,c'*(ﬁ).

(vii) Ce,c, 2(0)

To give the value of CE,C.;;:(O), we start with (g(0). With the same notation as in the
asymptotic expansion theorem and its corollary in subsection e, by definition, we see that

(e(0) = -

and

1
¢5'(0) = - / (T, [Nuexp(~A2)) - S - ) &2

- / s [N..exp(-Az)]— +Coy + T'(1)Co.

We could do the same thing for (g c(s). For that, we may introduce the followmg family
of closed differential forms on B:

e =y o7 [ 5 R) T exp(—(T . + VAV

Culw) = ez [ 35 (4(=Rz = bD)omsTosfexp(=(Te. .+ V)]
{

t @y
1
+ (2ms)}

L By o~V + VIV

]2 td(=Rz)Tr, fexp(=(s.p. + vaV)?)]

'[z td(—Rz)Tr, [Ngexp(—(Ve_, + VuV)?)]
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Here Eq is Eg calculated with € = C endowed with its canonical hermitian metric.

Directly from the definition, note that
Eo =EqTr,[exp(-V} ,)]

+—(2,,1.,-)1_/3 igtd(=Rz)( \/-Tr s[Vexp(=(Ve.p. + VuV)?)u=0,

and henct_:
dBEo :dB E'Q'I‘r,[exp(-vg.,p.)]

- (2::')1 Li‘”td(‘ﬁﬂ(%"f‘fa [exp(=(Ve.,p. + VaV) )0,

we immediately get
C-i = C_1(0), Co= Co(0)+ C-1'(0).

Similarly, with the definition from above, replacing V¢ , by

d i)
Ve + daa— + daa_
and V by V°, we may also define Cc,o(u) and Cc,-1(u). In this manner, using the same
process as above, we have the following

Lemma. With the same notation as above,

¢e.c.3(0) = —Co(0) - Co,-1'(0)

t

Indeed, here only v is changed to j?, but v does not appear in Cp(0), so we have the
assertion.

Now we return back to (vi). Write out the closed form Cg¢,—,'(0) with respect to C,
we find that there exist smooth forms K, K_;, K3 on B, such that with respect to the
Grassmannian degree in C

Cc,-1'(0) = |a* C_,'(0) + aK, da + aK_, dd + K, dada.
Thus, by the d-closed property of Cg,—1'(0), we have
8BK1 = C-]'(O), a_BK_] = C-lr(O), 58K2 = Kl, 3BK2 = —K_l.
So, by comparing the Grassmannian degree with respect to C, from the last part of (vi)
above, we get
/'(0)

0 (y,a) =bo(v, f)+(co(0)+| ot =L Logt;
8} (y,a) = 1(y, f)+ Lost
8L, (y,a) =%0—1(y, 7;) + T"lLogt;

1 a K
82(y,a) =?67(y, —ﬁ) + TzLogt.
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Thus,
g Bx(y.a) Stez 9 (v, avt) — K1Logt;
6 3
9-1(%0) —t"‘g Li(v,avt) — K_iLogt;
fa(y,a) _tﬂa(y,a\/-) — KjLogt.
So

1V
I(%al(yv —1\/7)) =4./| gal(y, b) LOS(\/-L)bdb

1
bdb
=/ 3- l(yv ‘/-)L gt [¥]
bd b db
/ 6_8 ] 1)Log — - K1/ Log(b)Logt oR
Thus, if J is the operator acting on C*°(R) such that

Fe a0t [ oegt S,

then 8 1 8 Logt 2
I(ﬁal(y, W)) = J(ﬁﬁilul) - KI(T + Logt + i 2).

In the same way, we have expansions for

lij 1 1
I(=—=0-1(y,—=)), I{0a(y,—=)).
(5040 1020, 7))
Putting them together, by the fact that

B5(y, 1) = (£'(0),

we have
(5'(0) =¢o(0) + (Co(0) - 12"—“(1))@: +C_1'(0)

+3B(J(3§9i|n=l))(‘)+35(-7(5 Ztla=1))t)
+ 80P (J (0a=1))(2)
- (BBKI + 5BIf_1 + gaaBKg)(lngt + Logt + % -2). .

Logt

Thus, by the relation that
8K, =8P K_, = -8P8B K, = C_(0),

we have the the following
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Proposition. With the same notation as above, we have

GH'(0) =C&'(0) + (Go(0) = 5 52(1) = C-'(0) Logt

+2C_1'(0)(1 - ?)

405 (o tile=))(0) + 37T ( 2 lam0)()
+8%6° (I (83)a=1))(®)-

In particuiar, we get (a).

{(b) We now give the asymptotic expression for (i ,(0) as t — 0%. For this, by the
definition, or, better, by the expression of {’(0) used in the proof of (a}, we need to know
the behavior of the corresponding integrant Tr,[Nycexp(—(Af)?)], when the parameter u
goes to zero and infinity respectively.

(1) We start with the situation for u — 0+. By deﬁnition, we know that this is equivalent
to studying the asymototic expansion of

c(T)

Tr, [Nuwexp(~(V + Vo' D + aV - \/—) )

when v/ — 0t. Here, by definition, Ny = Ny + Ny o

We separate the above into two parts according those for Ny:. For the part with Ny,
as u' — 07, we get

Tr,{NHexp(—(V+ VD +/aV - E/l)z)]

~ G 7 [ TR YT Waexp(=(7 + VAV

So it 1s sufficient to study the behavior of

'I},[NVIUJGXP(—(V + \/7]7D + \/I—‘V - ;%)%]r

as u' — 0*. Now we use the same method as what we did in the proof of the theorem in
subsection e: That is, to express

Tr, [Nv urexp(— (V+\/_D+\/_V- \/—))1
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as a combination of the super-trace for the heat kernel of certain essential generalized Lapla-
cians. For doing so, by a local discussion, we see that

%(U’Tr, [Ny.wexp(~(AY /"))

=T, fexp(~(AY /)2 - (Vi75 + 5-") da

(\/_6' c(fl\;u_) )da — iwj da da))]d"" daa

+ T fexp(~ (A7)

— dPTr, [Ny yrexp(—(A¥ /%Y 4 (VoD + f/l) W)

In particular, after following what we did for the corollary of subsection e, we find that

Tr, [Ny-exp(—(V + V¥’ D + JuV — f/l) )
C_l(u)

+ Co(u) + Ou(u').
That is, we have the following

Lemma 1. Foru> 0,as8¢{ — 0t,

C_l(u)

Tr, [Nurexp(—(A)*)] = +Cu(v)+0 (ut).

(ii) Now we consider the uniform estimates as u — +oco. For this, we may use the
method of Berline and Vergne in section 5.5. Thus, by the fact that the complex E is
acyclic, we have

Lemma 2. For any compact subset K of B, there exist ex > 0, dx¢ > 0 such that for
u>1, t>0, y€ K, we have

[T (Murexp(~ (A7)~ S| < ey exp(~dxcu).

(iil) Now we are ready to obtain the asymptotic expansion of (5 ; with respect to ¢, as
t — 0%. To state the result, we make the following definition: For Re(s) > 1, set

Ao(8) :% /um u'Cu(u)%ti;

)\1(8)’=I‘—(18—) j:o U'C_l(u)dtu
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Then Ao and A; may be extended to meromorphic functions on the whole complex plane,
which are holomorphic at s = 0.

Proposition. There exists an element § € P such that aa t — 0t

AL, (0)
n +

(E.(0) = Ao(0) + Bt + of2),
and o(t) is uniform over compact subsets in B.

Proof. First, by definition, we know that

C-1(0) + C-1'(0)u
ut

1
¢5'0) = [ (M [NVucexp(~(AL] - - Colon 2

C_1(0)
t

+ [T T Muexp(-(ADMIE +
1 u
C—l (0))

Thus, by Lemma 1, for u < 1, we have [0y (ut)] < Cut. Thus if t — 0%, we have

— I'(1)(Co(0) +

! du
1/0 Ou(ut)—| < Ct.
So

/l(h,[Nugexp(—(A:‘)i)} _C(0) "rt"f)-l'(())u

_1 [P Coy(w) = C-1(0) = C_i/(0)u du
U u

1
+ [ (Cotw) = ColoN 22 +0(0).
0

On the other hand, by Lemma 2, we have

- G0y

+00
1 Tr, [Nurexp(—(Ag)?)|du
=l/+°° C_l(u)d_u . +o0
u 1

Co(u)% + e(t).

Here £(t) is such that lims_oe(t) = 0. Hence, if we let £(t) = £(t) + O(t), then
! C..l(u) - C-l(O) - C-ll(O)u gﬁ

u u

] 1
(g (0) iy

e C_U(U) du + C_1{0) + I"(1)C-1'(0)]

1

t u
[o (Cofe) - Co(O) = - j Co(w)Z + T"()Co(0) + ()
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Therefore, )
A_4(0
&' = 22 4 v+ 60,
This completes the proof of the proposition, and hence (b).

Now we may finish the proof of the theorem. First, we know that C“BIC'(O) has an
asymptotic expansion simtlar to that in the above lemmas, simply replacing B by B x C*.
Moreover, we easily see that

a )

5‘561 |n=l: 5’;6'_1 |a=1r 9;'«:-—'1

have similar expansions. Thus, by the fact that

1 1 bdb 1
(U0 = [ Logy 3 = Logt—1-1;
Voobdb 1,
)0 = [ LogF = glogt,
we know that as t — 0F,

8 1
J(550le=1)(t) = 3 + afLog’t + alLogt + of + x(1).

Here o (1 < j < 4) are C™ forms on B and «(t) — 0 as t — 0*. Furthermore, one may
verify that such expansions may be differentiated and we can apply the operator 8% on both
sides of the the above equation and 88x(¢) — 0 as t — 0*. Similarly, we may do all of these
for

Tt lem)(O), I (Oslem)(t):

Hence, using (a) and (b), if we identify the constant term in the expansion of (4'(0) as
t — 0%, we find
A'(0) = ¢£"(0) - 2C_1'(0) € P'.

But we know that C_,’(0) € P, so
2o'(0) —¢£'(0) € P

On the other hand, by the fact that
1
Cow) = [ Td=Ra)Tr, Naexp(~(V + Vav)?),
(2mi)' Jz

as in the finite dimensional case, we have that

1

AOI"(O) - (2,‘")[

/z Td(=Rz)Ge..» ' (0).



142 Construction w.r.t. Smooth Morphisms

Here, (¢ ,.(8) is the zeta function associated with the exact sequence (£.,p.) on M, which
is a finite dimensional version. Therefore, by the degree counting,

p 1 '
=0~ o /Z td(—Rz)Ce.,.'(0) € P.

This completes the proof df the theorem.

Remark. We may also discuss the dependence of {g'(0) on the choice of the metric gz
on the fibre. For doing that, we also should use a deformation process as in the above proof
of (2) of the theorem. More precisely, we may first consider the variation of the metric by
a rational family tgz + (1 — t)g’z. In this case, we then deformation the double copmlex
(E,3 + v) as stated in subsection a vertically. Thus the similar discussion as above could
offers us a corresponding result for this change: We should first express the associated terms
as a combination of the supre-trace of certain trace classes, say Tr,exp(—A32 + B,). Then,
one may use a local discussion for the essentia! generalized Laplacians —A2 4+ B,,, which
have similar structures as what are for the super-Lechnerowicz formuia, so that we could
wirte the associated asymptotic expansions down. For the gerenal situation, one may use a
partition of unity to deduce the final answer. We will not give the full details here, as the
principle behind this now becomes quite clear, and the discussion is rather dull and tedious.

§1.6.2. The Construction In General

From above, we know that if we put the acyclic condition on (E,# + v) then the
corresponding

Tr, [Nyexp(—A2)]

decays exponentially when ¥ — oo: Since in this case, the corresponding Laplacian is
positive and self-adjoint, hence the eigenvalues are strictly positive. But in general, this is
not always the case. In this section, following Faltings, we give a method which removes
this technical assumption. :

In fact, it is not very difficult. Recall that {from sheaf theory, for any two complexes E.
and F. of coherent sheaves with a quasi-isomorphism ¢. : £. — F., then there is the cone
construction, cone(¢.), such that we have the following exact sequence:

0 — F. — cone(¢.) — E.[1] =0,
which is defined as follows:

ENP = EP*, dpyy = —dg.

and
cone(¢.) := E.[l]@ F.,
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where the differential operator is given by

deqy ¢
0 dr.
In this sense, at the level of cohomology classes, cone(¢) may be thought of formally as the
summation of F. and E'[y, i.e. the difference of F. and E.. In this section, we prove that
this can go through even when we study everything at the level of differential forms. In

order to do 80, we have to find out the key rule behind the very complicated constructions
in the previous section.

1.6.2.a. Key Observations

We start with the finite dimensional situation. When necessary, we suggest that the
reader refers to section 4.5.

Suppose M is a complex manifold and (£.,v.) is a finite complex of holomorphic vector
sheaves on M. Let p; be the hermitian metrics on £;. Then £ := @&; has a hermitian
metric p and a canonical connection V. Let v* be the formal adjoint of v with respect to
this metric. Then we have the superconnection V, := V+v +v* on &, and (V + v + v*)?
is of type (1,1). We know that

[2mi] Ty, [exp(~(V + v + v*)?)]

represents the Chern character

ch(£) =Y (-1Ych(£;)

H

in cohomology. Also, the classical Bott-Chern secondary characteristic forms measure this
construction under the change of metrics at the level of differential forms.

By the construction in sections 4.5 and 6.1, we know that the number operator plays a
very important role. Previously, we gave a precise description of the number operator. But
here we look at this in an essential way, i.e. we consider the number operator as the one
being the measure of the change of metrics. There are two ways to change the metrics: One
is for the vector sheaf £, another is for the Kahler metric gas. We discuss them separately.

First we discuss the change of the metric p on £, but instead of discussing it in general,
we only deal with the infinitesimal variations: Suppose we have a one-parameter family of
metrics on £. defined by

< e),e2 >i=< e, > +£ < e1,N(eg) > +0(62),

where N is a self-adjoint endomorphism of £.. (For example, if we assume that (E.,v.) 18
acyclic, and we multiply the metric on £; by a factor ¢ with ¢ > 0, then we know that the



144 Construction w.r.t. Smooth Morphisms

ordinary number operator N, which is defined by the multiplication by j on &;, is given by
the above definition.) With respect to this change of metrics, we know that V) = ¥V 4. v
remains unchanged, while V|, = V' 4 v* changes by —¢[¥, V,]. Since the conjugation does
not change the trace, so we may conjugate with 1+ $.V to get a more symmetric situation,
i.e. the variation in connections is given by

6(V.) = £[N, v, - L],

Thus, we have

8 2
B_ETT. [exp(_vu,‘ )]t =0

__8_ 2 £ "_ o
_as'I‘I_,[CXp( VV - 2[VUI[N!VH Vv]])}‘=°

=%qy,[[v,, (V4 - V), N]lexp(-V2)]

1
=5d T, [V} =V}, Nlexp(- ]}
On the other hand, we know that

dTr,[Nexp(—=V3)] = Tr,[[V,, N]exp(~=V?)]
=T, [[V,, Nexp(=V})] + Tr, [[V, Nlexp(-V})].

By comparing the holomorphic and antiholomorphic parts, we see that the two terms are
just 9 and 9, respectively, applied to Tr,[Nexp(—V2)]. So finally, we have

Ie] -
3¢ Trs [exp(= V. Nle=o = 0Tr, [Nexp(=V))].

So locally, we may let
chpc(€., N) := [27i]Tr, [Nexp(=V32)],

we will have 3
dd°chpc(€.,N) = gch(&,p..).

In particular, if £. is acyclic, we may have the integral version, which is just our construction
of classical Bott-Chern secondary characteristic forms in section 4.5, since, in this case, at
infinity, we have the exponential decay.

Now we consider the change of gas. In this case, the Kahler formwas = — 5k 3 dz; AdE;
is changed by £6(war). Here dz; denotes a local orthonormal basis. (The reason for us to
consider this change comes from the definition of the Bismut superconnection.) This change
effects the metric on £ ® /\Qg'll in two ways:

First the volume on M changes, and then so does the hermitian metric on Qi‘ll. For
the first case, if we let Q € End(T};") denote the hermitian operator, which infinitesimally
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generates the change of metrics, then this first effect is measured by the scalar number
operator Tr(Q). For the second one, the number operator is given by

1 - 1 .
-5 Z dz; (-Q'dz) = —§Tr(Q) + 7ib(we).
Thus the total number opgrator is given by
N = %’I‘r(Q) + mib(w®).
Thus, for in the relative situation, we may have the follows:

Let # : M — B be a Kahler fibration. Then we study the metrics gar, = gpr +
s~ 'gp on M. By the definition of the Bismut superconnection, we know that the Bismut
superconnection may be thought of as the limit of the corresponding ordinary Clifford
superconnection as 8 — 0*. (For this, see the definition in section 5.1.) Therefore, we may
need to consider the corresponding limit for the total number operator N, as introduced
above. We change the notation and denote this limit as N. The formulas at the beginning
of this subsection for the finite dimensional case now turn to be the one which describes the
dependence of the Bismut superconnection B on gx. For example, we then could have

2 o, fexp(~B?co = 05T, [Nexp(~B?],

or, formally, by the local family index theorem,

_[Ch(""'-(g @0 /B))]:-o = [2ni] dBdfg.Tr,(Nexp(~B2)].

To demonstrate how the above relation works, we go as follows: Introduce a new parameter
t on replacing the original metric gas by t~1gas, which could introduce a family of Bismut
superconnections B;. Then, for ¢ — 0%, the asymptotic expansions of the above relation go
as follows: (For this, consult 6.1.d.)

On the left hand side, we obtain the derivative of [, td(M/B)ch(£), which is dpdj of

L tdpc(M/B,Q)ch(£).

On the right hand side, we know that the ¢~! term in Tr,(Nexp(—~B?)] is equal to a
closed form f, “atd(M/ B)ch(é') a8 what we gave in the proof of Theorem 1 g. Further-
more, the corresponding t° term is the sum of

3 [ @iz )M/ B)eb(€) and [ Aoc(T., Qen(o)

So, we may get the coincidence. In fact, for ¢°, the first term is the contribution of the factor
exp(3¢1(T%)) to the secondary characteristic class tdpc(Tx, Q) associated to the Todd genus
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td(Ty) = A(T.)exp(%cl(T,)), so the sum of these two terms is just [, tdac(M/B, Q)ch(£).
This proves the claim above.

As we said above, the Bismut superconnection may be thought of as the limit of the
associated Clifford superconnection with the blow-up of the metrics gar,, = gar + s~ 7" gp
when s — 0*. We introduce a parameter ¢ by rescaling the metric gas as t~lgss, which
affects the fibre part, and then we have the super-Lichnerowicz formula for them, and so
on. In the next subsection, we use all these observations to give the corresponding concepts
for the cone construction.

1.6.2.b. The Situation For The Cone Construction

Let # : M — B be a Kahler fibration and (£, p) be a w-acyclic vector sheaf on M.
There is a natural morphism :

vim€ — m.(E®AQPY).

Here 7.€ is with the natural push-out hermitian metric 7.p. Hence we have the associated
mapping cone, cone{v). On this mapping cone, we consider the super-Dirac operator

Acone i= Vr.(.‘:,p) +B+v+

with * the limit of the formal adjoints ¥ when s — 0*. This contains terms of positive
Grassmannian degree because the pull-back metric on #*Qp may not coincide with its
subspace metric induced from §a¢. Such a difference in metrics, in the limit, is given by
the number operator N, and #* diffets from the naive v* by a factor exp(IN). Furthermore,
we rescale the metric gps as t~!ga, by introducing the parameter ¢. At the same time, the
metric on 7.&® Aﬂ%l is scaled by an additional factor t! with { the relative dimension of m,
to account for the volume forms. (This makes sections of ».£ uniformly square integrable
on the fibers of x.) In this way, we have Acone,:, and we denote the associated number
operator by N¢. Then by section 5.2, we know that there exist heat kernels exp(—A2, .. )
for the essential generalized Laplacian A2, .. As one may imagine, in order to give the
relative Bott-Chern secondary characteristic forms associated with the »-acyclic hermitian
vector sheaf (£, p), we use the Mellin transform for

Tr, [Nt exp(_A?:one.t )] .

Therefore, we need to consider the behavior of this super-trace when ¢ — 0% and ¢t — +co
respectively.

1.6.2.c. Conditions For The Mellin Transform

Let # : M — B be a Kahler fibration, {£, p) a m-acyclic hermitian vector sheaf on
M. For the metric g, ¢ :=t~"(gm + s~ !7"gpg), consider the Laplacian A, =t A, on the
mapping cone of
v:C®(Y, mEQ@AQSY) — CF(M, £ ® AQY).
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On C®(Y, 7L ® AQ%‘I) the metric is scaled by an additional factor t!, to account for the
volume forms.

By the result in subsection 6.1.d, we know that it is enough to consider the effect of the
terms associated with v. As an illustration, we treat first the absolute case, i.e. when Y isa
point. In this case, v and all its derivatives are uniformly trace class. By Duhamel’s formula,
the corresponding super-traces for Bismut superconnections have an asymptotic expansion
when t — 0%, Furthermore, by the fact that v only influences terms with positive t-power,
we have the same formula as in subsection 6.1.e. On the other hand, the exponential decay
is a direct consequence of the fact that the complex is acyclic and thus all eigenvalues are
positive.

The basic idea to treat the relative situation in general is that we first consider the
object for the ordinary Laplacians, then consider the limits for ¢, and finally let s — 07 to
get the result. If we proceed in this way, one may ask that why the final results are just the
same as when we first let s — 0% and then take the limit for ¢. The answer is simple: the
constructions do not depend on the paths we choose. As an example, we consider the heat
kernels exp(—A, 1). We want to prove that when t — +-c0, exp(—A, ;) decays exponentially
together with all its s-derivatives: By a local discussion as in the proof of the local family
index theorem, it is enough to show that the associated Laplacian have strictly positive
eigenvalues. Hence, we need to show the following

Proposition. With the same notation as above, the eigenvalues of A, ; are uniformly
bounded below by a fixed ¢ > 0, which is independent of s.

Proof. Let y € B and Z = n~!(y). Near Z, we identify M with Z x Tg . Scaling the
coordinates on the second factor by /5, we know that Ay, is a direct sum of the Laplacian
of Tg , and the relative Laplacian on the fiber Z. On the other hand, by our construction,
we know that the cone is acyclic along the fiber, as we assume that £ is 7 acyclic, so the
relative Laplacian has positive eigenvalues. So by the perturbation process, it follows that
for each y, there exists a small neighborhood U, in B and an ¢y > 0 such that for any
C-section with support in Uy, and for s small enough, we have

<A(f)f>22, <fif>.
Moreover, by the compactness of B, we may choose finitely many U; and hence a £ > 0,
which is independent of y. Therefore we may use the Sobolev estimation uniformly in s with
the metric g,,; by the finiteness stated above. In particuiar, we have a uniform Garding-
inequality for A, ;. From this, the assertion may be deduced easily: In fact, we may choose
a small open cover U; of B such that if £ has support in U;, then

< A:,t(f)lf>2 25 < f;f> M

Now choose C* functions ¢; with support in U; such that 3, ¢? = 1 is a partition of unity.
Then the Sobolev norm of [A, 1, ¢;] is8 O(v/8). So, for a C* section f on M, we have

<Bui(f)f>= 3 <didoal(f).8if >
=3 <An(gif)4if > =3 <[Aundil(f) bif >
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Since ¢; f has support in U;, the first termis > 2¢ < f, f >, while the second one is bounded
by a fixed muitiple of \/s(< A, 1(f),f >+ < f,f >). Thus for s amall enough, we have

< AJ.I(f)!f >2£ < flf >
This completes the proof.

With this lemma, we know that as t — +o0, s9™Pexp(~tA, ;) decays exponentially
together with all its s-derivatives. In other words, the asymptotic s-expansion of exp(—tA4, ,)
as well as all remainder terms, decay exponentially at infinity. From the fact that the s-
expansion starts with s~9™8 and the sP~9™B_terms have Clifford filtration degrees in B
at most 2p, we know that when t — +0o0, the super-objects for the cone construction decay
expansionally, since the super-trace vanishes on the low Clifford degree terms.

Finally, we consider the asymptotic expansion for { — 0%. As we stated above, we first
consider the asymptotic expansions as ¢t — 0% for a fixed s. Hence, we use a cut-off in B
and scale the B-coordinates by v¢. Thus A, : becomes a perturbation tAz + Ar, . We
know that the coefficient of t4imP exp(—tA, ) is C™ in v/t. Furthermore, the terms with
low t-power aiso have low Clifford degree in B. On the other hand, the terms involving
v have at least a /% in front of them, and have Clifford degree zero. Hence, they do not
contribute to the leading terms. So, taking the super-trace and letting s — 0, we get the
formula similar to that in subsection 6.1.e. That is, when restricted to the diagonal, there
is no negative t-power, and the constant term is independent of v. Similarly, we may also
do this for the objects by twisting the number operator, as it could be represented as a
combination of certain trace classes. In summary, we have the following

Theorem. (1} There exist C™ even differential forms Ag, Ay,...,C_,Cyp,... in P
such that for any k¥ € N,

k
Tr,[exp(— A2 ...)] EA w4 o(u),
0

'I\l‘ [NtexD cone t)] - Z C U" + O(Uk)

i=-1

where o is uniform on compact subsets of B. Furthermore Ao, C—-; and Cp are inde-
pendent of v.
(2) When t — +oo, Tr,[exp(— A2, )], Tr,[Neexp(—AZ,. )] decay exponentially.

1.6.2.d. The Construction In General

With the results in the previous subsections, we may make the following

Proposition and Definition. (1) For s € C,Re(s) > 1, let

1 +oo du
(o) =5 [ W TN (-ALu IS
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Then (¢. 5. »(8) is well-defined and is an element in P. _

(2) There exists a meromorphic continuation of {¢. , »(s) to the whole complex plane
such that this extension is holomorphic at s = 0. Hence it makes sense for us to talk
about (¢ , .(0).

Now we have the relative Bott-Chern secondary characteristic forms by the foliowing
Main Theorem. chpc(€, p; 7, px) = (27i](; , ,(0).

The proof of this theorem is given in the next section.

§1.6.3. Checking The Axioms

To prove the theorem at the end of last section, we have to check the axioms for relative
Bott-Chern secondary characteristic forms with respect to smooth morphisms.

[.6.3.a. Downstairs Rule
We start with the proof of the following equality:

dd®chpc(€, p; 7, px) = 7 (ch(E, p)td(Tx, px)) — ch(m.E, 7. p).

This is a direct consequence of the double transgreséion formula. In fact, by the double
transgression formula, it is enough to show that the limits of the corresponding heat kernels
associated with the Bismut superconnection for the cone construction behave as follows:

As t — 400, they decay exponentially; and as t — 0%, the limit .is

fo(ch(€,p)td{Tx, px)) — ch(m.E, 7up).

For { — +oo, the assertion is obvious by Theorem ¢. On the other hand, as t — 07,
the limit has two parts: one comes from the local family index theorem associated with
7.(€ ® AQ%?), which gives the term

m.(ch(&, p)td( Ty, px)).
The other part comes from =,(&, p), which gives the term

ch(m. &, m.p),

gince the cone construction now will just give us the difference between them. So we have
axiom 1.
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1.6.3.b. Functorial Rule

This axiom simply states that the relative Bott-Chern secondary characteristic forms
are compatible with flat base changes. But this is easily checked by the fact that everything
in our definition for relative Bott-Chern secondary characteristic forms is compatible with
the flat base change. Therefore, we have axiom 2.

[.6.3.c. Triangle Rule For Vector Sheaves

There are two different ways to check axiom 3: One is obtained by using Theorem l.g
and Theorern 5.5. The other is obtained by using the P-deformation.

We first give a proof using Theorem 1.g. With this theorem, the conclusion is easy, as
we know that the cone construction may be thought of as the difference of terms associated
with 7. (£ ® AQ21) and 7.(€,p). Thus, write each term down, in which only the push-out
matters, we have axiom 3. Next, we use the P!-deformation to check the axiom.

The P!-deformation method relies on axioms 1 and 2. In fact, by the construction of
classical Bott-Chern secondary characteristic forms in section 1.2, we know that

chpc(€.ip1, P2, P3)
= / DoglzI7lch(DEz, Dpa).
P
Then by axiom 1, we have
(7 x Idp1 ). (ch(DE2, Dpy) td(Tayxp1/Bx Pt 1 gMxP/BXP!))
=dd°chpc(DE3, Dpz, m X Idp1, g pi/BxP1)

+ch((1r X ldpl).DSﬂ,(ﬂ' x Idpl).Dﬂz).

On the other hand, we have
m.(chsc(€., 01, p2,p3) td(Tars 8. 9M/8))

=/ [loglzl*]((x x Idp:).(ch(DE2, Dp2)td(Tarxpr/BxPrs GMx P/ BXP?))-
pl
Therefore,

Tu(chpc(€., 01,2, p3)td(Th; B, 981/ B))

-—-/ [log|z|2] ddfchec(Dgz, Dpz, T X Idpl,ngplfopl)
pt
+[ [logizt?]ch((r x Idp1). D&, (7 x Idp1 }o Dpg)
P!
=/lddc[108|3|2]Cth(952,DPz,W x Idp1,gpxpr/BxP!)
P

+f log|z|2ch((fr X Idpl).Dgg, (‘J'l' X Idpl ).Dp;_)).
p1
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Then by the following equation of currents,
dd*[log|z|*] = & — bco,
we have

m.(chec (€., p1, 02, P3) td(Tae/ B, 9/ 8))
=iychpc(DEz, Dpa; 7 x Idpt, gy xpi/Bxpt)
~ foothpc(DE2, Dp2; 7 x Idp1r, gmxpiyBxpr)

+ / [log|z|*|ch((x x Idp1)s DE;, (7 x Idp1). Dp3).
Pl.
Now, by axiom 2 or better by the constructions, we know that

igchpc(DE2, Dpy; 7 x IdPlngxP‘/BxP‘)
= chpe(ig DE2, iy Dpa; 1"":QM,’B)
= chpc(€3, 237, 9M/B),

and
iochpc(DE2, Dpa, ® x Idp1, gprxpi/axpt)

= chpc{ic, DE2, 15, Dpa; @, gmy )
= chpc(&1 @ &3, 01 @ pa; 7, QM/B)-

Obviously, our construction is compatible with the direct sum, so we have

isochpc(DE;z, Dpa; 7 x 1dp1, gy xpr/Bxpt)
= chpc(&1,p1; 7, 9myB) + chec(€s, p3; 7, 9Mm78)-

Then, by the fact that

ChBC(F-E-rW-Pl,W-P?,W-Ps)
= / log|z|*¢h{(x x Idp1). D&, (7 x Idp1). Dp3),
pt

we have
chpc(€2, p2; ™, 92) — chec(€1, P15 7, 92 ) — chpc(E3, p3; 7, 9x)

= m.(chpc(£.,p.)td(Ty,gx)) — chpc(m.&, 7up).
This is just axiom 3.

Remark. From the proof above, we know that we may use the degenerate triangles in
axiom 3. That is,
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Axiom 3'. (Degenerate Triangle Rule For Hermitian Vector Sheaves) For any f-acyclic
vector sheaf £ with hermitian metrics p and p’. We have

chac(€,p; fi9xsv) — chec(€, 0 fiaxsy)
= fu(chpc(&; p, PN Txsv, 9x7¥)) — chee(fo&; fup, fop').

In addition, let (£, p) and (F,7) be two f-acyclic hermitian vector sheaves on X. Then

chac(E® F,p® 7;f,9x7v) = chpc(€,p; f9x7v) + chpe(F, 7 fax)v).

1.6.3.d. Triangle Rule For Morphisms

After the proof in the last subsection for hermitian vector sheaves, one may naturaily
use P!-deformation to deduce axiom 4 for smooth morphisms from the following

Axiom 4’. (Degenerate Triangle Rule For Morphisms) Let f : X — Y be a smooth

morphism of complex compact manifolds. Let (£,p) be an f-acyclic hermitian vector

sheaf. Let gx;v, g:’le be two hermitian metrics on Tyx;y. Then

chgc(€, i f9x/v) — chec(€,p frg%y)
= fo(ch(&, p)tdBc(Tx/v, 9x7v, 0% v))-
Here tdpc(7x/v,9x/v, gfx’,y) is the classical Bott-Chern secondary characteristic form
associated with the Todd class with respect to the metrics gx,y, g’XIY and the relative
hermitian tangent sheaf. In addition, if ¢ : ¥ — Z is another smooth morphism
with f.£ being g-acyclic. Suppose that the associated short exact sequence of relative
hermitian tangent sheaves is split, then
chpc(€,p90 f,9x2)
=chac(fo€. fop;9.9viz) + ge(chnc(&,p; f,9x/v Wd(Tyyz, hy;z)).

In practice, we proceed as follows. Recall the data: We have three Kihler fibrations
f: X—=Y, ¢g:Y—>2Z,gof:X — Z and an f-acyclic vector sheaf £ on X such that g.€
is g-acyclic. Thus we have the following natural morphisms:

fEL fE@ndh;
00(£-€) L 0. (£.£ @ ADDY);
(g0 0)-E % (g0 (€@ A%,

From them, we have associated cone constructions, and the relative Bott-Chern secondary
characteristic forms with respect to f, g and g o f, respectively. So, in order to discusa the
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relations of the relative Bott-Chern secondary characteristic forms for those morphisms, we
consider the following diagram:

9-(ﬁ-5) = (£ A 4 g9.(f.(£® AQ}!) @ AQYY)
I i

g-(lfI.S) i_g.(f.&‘ﬁ/\ng-l) EA g_(f_(g;@,\g?l,;@f.,\gg,;))
(/-8 = (-5 @ n23") L g.(f.(SﬁAﬂg;ll))
(0ot Loareenagy Lo (gofn(eonall
(9o /)€ = (go f).(£”® AQ).

Thus, we do as before to formulate the cone constructions with respect to the morphism §, f
and f. We also introduce the associated superconnections, number operators and then their
heat kernels respectively. Finally, one has similar elements by using the Mellin transforms.
Denote those final elements by

chpc(cone(§)), chac(cone(f)), chac(cone(f)).
Then, the above diagram and the fact that chpc corresponds to the difference of the complex
give )
chpc(cone(§})) + chac(cone(f)) = chpc(cone(g o f)).
Also the difference of chnc(cone(f)) and chac(cone(f)) is given by

/ch(E,p)tdBc(X.Y, Z).
r;

(This is a consequence of the discussion of the remark at the end of subsection 1.g.) So, in
order to check axiom 4, it is enough to show that

chgc(cone( f)) = gu(chpc(cone(f)) td(T;, g;))-
But the proof of this equality is not difficult. We have

f£ L L(E @AY,

g4 (£-£® A0 L g (£.(£ @ MDD © AQDH).
Thus, at least, formally by the results in the previous sections, we know that the additional
term AQJ'! will give the td(T;,g,). Hence we have the assertion. Even in practice, this
statement works well, since when we take the integration with respect to the parameters,
our construction does not depend on the path we choose. Therefore by changing the order
of taking the limits with respect to the parameters, we have the above relation.as we did in
section 6.2.

Up to now, we have already proved the existence of the relative Bott-Chern secondary
characteristic forms with respect to smooth morphisms. There is another statement for the
uniqueness of our object. We will postpone the proof of this uniqueness after we have the
arithmetic Riemann-Roch theorem in part II.
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Chapter 1.7
Relative Bott-Chern Secondary Characteristic Currents
With Respect To Closed Immersions I: Axioms

In the previous chapters, we proved the existence of classical Bott-Chern secondary
characteristic forms and the existence of relative Bott-Chern secondary characteristic forms
with respect to smooth morphisms. In this chapter, we obtain the axioms for the relative
Bott-Chern secondary characteristic currents with respect to closed immersions.

We first consider the classical Riemann-Roch theorem for closed immersions. Let i :
M’ — M be a closed immersion of complex manifolds. There exists an exact sequence:

0—+TMJ—D‘.-TM—DN:—$0,

On the other hand, for any vector sheaf on M , the direct image 1.7 is usually not a vector
sheaf on M: It is only a coherent sheaf on M. By classical sheaf theory, there exists a vector
sheaf resolution of i,57 on M:

0=y — ... =& — Eg — iug— 0,

or
E. —i.np—10.

Then the classical Riemann-Roch theorem for closed immersion says that we have the fol-
lowing equality at the level of cohomology classes, i.e. in CH(M)q,

ch(i.n) = i.(td(N) ™ ch(n)).
Thus by the fact that iun = 3 (—1)'j, we have
ch(€.) = i.(td(N) ™! ch(7)).

(For all of this, see I1.1.)

Now we consider the problem at the level of differential forms. Then we may put metrics
on the exact sequence of normal sheaves. Also, even through i.n is only a coherent sheaf,
we may still put the metrics on £;. Just as for smooth morphisms, a natural question is
how we can measure the change of (7, g, ), after the action of the closed immersion 3, at the
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level of differential forms. It is for this reason that we introduce the relative Bott-Chern
secondary characteristic currents with respect to closed immersions, chpc(n, gn:1, 9i). (Here
we have to use the language of currents, as, at least formally, the i.-image of a form may
be written as the product of this form with the Dirac symbol §}; of M’ in M.) In practice,
we have the downstairs rule as follows:

dd°chpc(n, 9731, 9i) = td(N, gar) ™" ch(, g5) 64¢ — ch(€.,p.).

Nevertheless, the situation is not so simple. We know that the metrics on £. are not
unique and, in general, we cannot control them very well. In order to introduce the relative
Bott-Chern secondary characteristic currents with respect to closed immersions, we need a
technical assumption on the metrics, which is nothing but the so-called Bismut condition
(A), which gives certain compatibility condition for the associated metrics. The references
here are [B 90] and [We 91).

§1.7.1 Basic Facts Associated With Closed Immersions and Resolutions

1.7.1.a. Assumptions and Notations.

In this subsection, we recall some basic facts associated with closed immersions and
resolutions of the direct image of a vector sheaf. Even through we only deal with the closed
immersions, since there is no further difficulty or complexity, we work with the following
data:

(1) A closed immersion i : M’ — M with M’ = UTM]. Each M; is a compact connected
complex submanifolds of dimension I; + ' of a dimension [ + ' complex manifold M,
such that if j # j', M; N Mj, = 8.

(2) A submersion = : M — B which restricts to a submersion 7 : M’ — B, where B is a
compact connected complex manifold of dimension . The fibers Z of 7 are compact
connected complex submanifolds of dimension {, and the fibers Y; for M; are compact
connected submanifolds of dimension ;. We let Y = U7Yj, and denote i : Y — Z the
induced closed immersion. .

3. A hermitian vector sheaf (7,g,) on M’ with a vector sheaf resolution of the coherent

sheaf i.n by a chain complex of vector sheaves on M:

(6,0): 0 =8 = ... 58 56— 0.

We also use the following notation: Tr is the real tangent bundle and T the (1,0) part
of the bundie T ®r C. For 1 < j < n, Nr; is the real normal bundle of M; in M, and N;
is the (1,0) part of Nr ; ®r C. We often write Np, N instead of Ng j, Nj, etc.. For any
vector bundle, the dual is denoted by a symbol *; for example, T is the dual of Tr.
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We have the following exact sequences

0—TZ —TM —"TB =0,

0—-TY = TM' — n"TB — 0,

0 —=TM' = TM|p — N =0,
« 0=TY —=TZ|yy — N —0.

Also there exists an exact sequence
0—6m —u’_y'fl —"'fo—rn'.r)ﬂo.

Moreover, the complex (£.,v.) is acyclicon M — M’.

1.7.1.b. The Homology of (£.,v.)|s:.

For 1 <j < n,let mj : Nj — M| be the natural projection. If £ is a vector bundle on
M, we will also denote by E the vector bundle #](E) on the total space of N;. Consider
Mj as the zero section of Nj, via k;. Then on Nj, we have the following exact sequence:

0 — On(NTH(N]) ®1j) = ... % Oy (nj) — ke Opey(n;) — 0
the Koszul complex, with i, the interior multiplication for y € Nj.

For any z € M, there exist holomorphic coordinates (2%,...,7") on an open neigh-
borhood U of z in M such that M; N U is represented by 24 =0,...,2"5 =0. On
M;NU, N; is spanned by the forms dz?,... ,dz'='i | which extend to the whole open set
U. Hence N; on MJ' N U extends into a holomorphic vector bundle on U, say N;. In this

way, y=Y ), z* 2. is a holomorphic section of N; (the dual of N’j' on U), which exactly
vanishes on M{NU.

Now we choose U small enough, so that 7;| MinU extends to a holomorphic vector bundle

A; on U. Hence, we get a Koszul complex (A([\'/J-‘) ®1;,4y) on U. By the local uniqueness of
resolutions, there exists a holomorphic acyclic chain complex (4, a) on U such that on U,

(€,v) = (A(N}) © 71;.,1,) @ (A, a).

Next, we use the above isomorphism to study the homology of the complex (£, )|
For z € M’', denote by Fyr,..., Fip » the homology groups of the chain complex (£, v):.
Let F; = ®J'Fi .. For any holomorphic trivialization U of (£,v), and any X € (TR M),
we may define the derivative Oxv(z) of the map z — v(z) in the direction X. By the fact
that v2 = 0, we know that Ox v acts naturally on the vector space F,. This action does not
depend on the local trivialization. (In fact, if 8% v(z) is the derivative of v in the direction
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X with respect to another holomorphic trivialization of £, there exists A,(X) acting linearly
onépz,. .. €m,c such that

Oxv(z) = Oxv(z) + [A:(X). v(z)}.)

Obviously, Oxv(z) decreases by 1 the grading in F;. Since v is a holomorphic section of
End(¢), if X € Tﬁo'l)M, then dxv(z) = 0.

With the above notation, we have the following

Proposition. (1) The vector spaces For,...,Fm o are the fibers of smooth vector
bundles Fy,..., Frn on Mj, which inherit a canonical holomorphic structure from the
holomorphic vector bundle &, ...,&m.

(2) For any z € M, X € (TrM])s, Oxv(z) = 0. Hence the linear map
y € Nj: — Oyv(z) € End(F;)

is well defined, depends smoothly on z,y, and (tf?,u(..*:))z =0.
(3) On the normal bundle N;, the complex

8yv Syv

(F,0,0): 0= Fpp 2 Fy 2. % Ry =0

is a holomorphic Z-graded chain complex, which is canonically isomorphic to the holo-
morphic Z-graded Koszul complex (A(N?) @ n;, ).

Proof. (1) Since for any x € M{ N U, there is an isomorphism
Fy e = (NN ® 1)e,

we know that F; : has constant dimension on M;. But the Fys are the homology groups of
the holomorphic chain complex (£, )| M}, 80 they are the fibers of the smooth holomorphic

vector bundles on M; .

(2) By the fact that Oy v corresponds to ¢y(x), where N(X) is the component of X in
Nj, we easily have 2.

(3) From above, for any y € N;, there exists an isomorphism
(F,0yv) = (AN} ® 1, 1y)

on M;NU. Therefore, it is enough to prove that this isomorphism is canonical. This last
statement is a direct consequence of the fact that the restriction map is canonical.
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1.7.1.c. Bismut Condition (A)

We see from the above discussion that there is a natural algebraic isomorphism on ¥,
(F,8yv) = (A(N)* ® ,iy).

On the other hand, if we put metrics on the vector bundles in question, there are induced
metrics on each side of the above algebraic isomorphism. Now a natural question is: when
is this algebraic isomorphism an isometry? It is to achieve this that Bismut condition (A)
is needed.

Put hermitian metrics g; on ; for = 0,...,m. By the Hodge theorem in Chapter 3,
we know that if v* is the adjoint of v with respect to the metrics, we have

Fro=Fp .= {f €& v(z)f = 00" (2)f = 0}

Hence there is an induced metric on F} from £;. We denote this metric by gp,. We say
that the hermitian metric g, satisfies Bismut condition (A) with respect to the hermitian
metrics gy and g, if the identifications of holomorphic chain complexes on N by

(F,0yv) = (A(N") @ n,1y)
also identifies the metrics above.

Proposition. Given hermitian metrics gx and g, on N and 7, there exist hermitian
metrics gx on ¢ which satisfy the Bismut condition (A) with respect to gy and gy,

Proof. We start with any hermitian metrics ¢’; |as» on €x}asr. Let v* denote the adjoint
of v on M’ with respect to these metrics. Therefore, for 0 < k¥ < m, by the Hodge theorem,
there exists a decomposition

Eh,t = U(Eb-}-l): & v-(EE—l)t 145 F;,za

and this splitting is orthogonal with respect to ¢’y |ar:. Now we may modify these metrics:

Obviously, there is a hermitian metric g | on €xlasr so that

(1) The above splitting for £ is still orthogonal;

(2) The restrictions of gi|p+ and g’y fare to v(€e4+1) ® v™(€x—1) coincide;

(3) When F¥ is equipped with the metric induced by ¢’;|s-, the canonical identification
F'* ~ AF(N*) ® 7 also identifies the metrics.

Now by a partition of the unity, we may extend the metrics on £, which satisfy Bismut
condition (A). This completes the proof.

Next, we give some consequences of Bismut assumption (A). This kind of result is
usually proved by the so-called Mathai-Quillen’s method, developed in the paper {MQ 86].

First we need some more notation. There exist hermitian metrics on the homology
bundles Fy, ..., F,. Forany y€ N, we have § € N and ¥ =: y + § € Nr. We know that
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Ogv" is the adjoint of d,v. Hence Oy V =: 8,v + G3v” is a self-adjoint operator acting on
F. Let VF =: @ VFs be the canonical connectlon on F, then F lifis naturally to a vector
bundle on N, which we also denote by F. Also

B= VF + 8yV

is a superconnection on the supervector bundle F on N. Let Ny be the number operator
in End(€) which maps f € £ to kf € &,.

Theorem. With the notation as above, if the metrics go, ..., gm on the vector bundles
£o,...,&m satisfy the Biamut assumption (A) with respect to the metrics g™ and g, on
N and 7, then we have the following equalities of differential forms on M":

]N Tr, [exp(=B2)] =(@mi)3™N td=} (—(V)?) Tr, fexp(~(V")?)],

Lﬁ.[Nnexp(—Ba)] == (2m) ™ (™Y (~(VV)?) Trufexp(—(V7)")).

Proof. Under Bismut assumption (A), we have the identity of holomorphic hermitian
chain complexes on N, (F,9,v) =~ (AN* @ n,i,). In particular dyv* = yA, and

/T&,[exp(—B’)]
N
=THexp(~(VV)) [ Tolexp(=(TN" +i, + 307
N
We identify N with N* by the metric of N. The algebra A(N") is an Ng-Clifford
module. Namely, if U € N, V € N, set
(U) = —ivV2y, (V)= —iV2V A.

Soif Y =y + 3, then

The connection V¥ splits the tangent bundle Tr N into a horizontal part, and into a
vertical part which may be identified with Np. If Y € Nr, X € TNRr, let DxY be the
vertical component of X. If (f,) is a basis of TR N with dual basis (f*) in TR N, we let

(DY) = Zf"c(D,,_Y)

Then we have
ic(Y) ic(DY) + Y|?

(V7 + =2 = (V) - S+
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Under Bismut assumption (A), (VF)? is the action on A(N*) of the curvature tensor

(VN)2 of the connection V» on N. Furthermore, if €1,...,edimn 18 a complex orthonormal
basis of V, let &,...,E4mn be the conjugate base of N, then
1 - _
(VF)! = 5 < (V)i > cl@)ele;).

As in [MQ 86], we may replace (V¥)? by a skew-adjoint endomorphism A4 of N with A
invertible. (Later, by the continuity, we can drop the condition that A is invertible.) The
co-action A’ induced by A on A(N*) is given by the analogue of above relation:

A= - < Aey, &5 > co(&i)e(e;j).

[T

Observe that if X € Ng,
[(A”'DY), (X)) =2< A”IDY, X >e TR N.
Then, by the above expression for d,v + dgv*, we have

[((A7'DY),[c(A"'DY),c(X)]) =0,

and so
=1 ca-1 .
exp(%)cvf)exp(—f—(iﬁan) =c(X)+ % <AT'DY, X >.
Therefore
, (DY) ic(A"1DY), |, ic(A"'DY) 1 -1
A - = — A - )= —< AT'DY, DY > .
\/i exp( ﬂ ) exp( ‘/Q' ) 2 <

Since the supertrace vanishes on supercommutators, we have

ic(DY)

Tr, [exp(—4' + 7

)] = Tr,[exp(—A")] exp(% < AT'DY, DY >).

But classically
Tr,[exp(—A")] = det(I — exp(A)).

Hence, we get'

, (DY) |Yi?
[ mlexp(-a+ 0 - B

Y1
=det(] — exp{A)) / exp(—% -3 < A”'DY, DY >).
N
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The Pfaffian of ~A~!, with the canonical orientation of Ng, is given by 31:7"%5, so that

ie(DY) |V
7z 2

which completes the proof of the first relation.

/N Tr,fexp(=A' + )] = @iy mNid=1(~ ),

After the above discussion, we easily have the second relation. A local caleulation gives
1 - -
Ny = -3 < Inei, & > c(&)cle;).
On the other hand, we have

ico(DY)
\/ﬁ

By integration over N, with a similar discussion as above, we get

L4
)

+

0, [Na exp(~B)] = £ Trfexp(~((VF)? = by Mlb=o-

ic 3
[ edesn(-((v oy - EED L

=(2xi)3™Ntd " (= RN — bIN)Trfexp(—(V")?)].

So, we have the second assertion.

1.7.1.d. Wave Front Sets

Let ¥ be a current on M and denote by WF(v) the wave front set of v. For the definition
and the basic properties of wave front sets, see [H6 83). We know that WF(y) is a closed
conic subset of TR M — {0}. If p: TR M — M is the natural projection, p(WF(7)) is exactly
the singular support of v, whose complement in M is the set of points z such that v is C™
on a neighborhood of z. We let

Dy; =: {y € D:WF(y) C Mp},

then the elements in Dy, are smooth on M — M’. Furthermore, there exists a natural
topology on Dy given as follows:

Let U/ be a small open set in M, which we identify with an open ball in R¥. Over
U, we identify Ta M with U x R?. Let I' be a closed conic set in R¥ such that if
z € U TNNy_, = 0. Let v be a smooth current on R? with a compact support
included in I/ and let m be an integer. If 4 is a current, denote by ¢y the Fourier
transform of ¢y (which is considered as a current on R%). For any v € Dy, let

Pu.To.m(7) =: supeer ™ |#Y(E)I.
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We say that a sequence of currents {y,} € Dy converges to v € Dyg if
1. liMpe.ooYn = ¥ in the sense of distributions; and
2. limp—ooPulom(Tn —7) = 0.

As in the case of differential forms with P and P’, we also let
PH ={be Dy w is a sum of currents of type (p,p)}.

And
Pyi® = {w € Pff, :w = Ba + 58 with a, § € Du2 }.

If M’ = @, we write PM, PM9 instead of P}, PM:% respectively.

§1.7.2 Axioms For Relative Bott-Chern Secondary Characteristic Currents
With Respect To Closed Immersions

Suppose we have the following data: A closed immersion i : M’ — M with hermitian
metrics on N, Tps and Tyys. Let (7,9,) be a hermitian vector sheaf on M’ with a vector
sheaf resolution of i,n on M:

0o &n=... 26 D& D iup—0.

Suppose that p, are hermitian metrics on £, which satisfy Bismut condition (A) with respect
to gn, g. In the same spirit as in Chapter 2, we introduce axioms for the relative Bott-
Chern secondary characteristic current with respect to closed immersions, chpc(, ¢5; 1, £i),
on M, as follows:

Axiom 1. (Downstairs Rule) In there is an element chpc(n, gn;1,pi) € Pff./P;f;o,

such that

dd®chac(n, gni i, pi) = td™ (N, ga)ch(n, gn)bpm — ch(E., p.).

Axiom 2. (Base Change Rule) Let f : M — M be a holomorphic morphism. Assume
that f is transversal to M, i.e. for any z € f~1(M'),

Imdf(z) + Ty y)M' = Te M.

Then we have
chpe(f™n, 7 gni4y,24,) = f chpa(n, gq:, p3)-

Axiom 3. (Triangle Rule For Hermitian Vector Sheaves) Let

0—.7}1—.1]2—41}3—0
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be a short exact sequences of vector sheaves on M’. Then we may find the resolution
&i. for i.my in the above sense, with the condition that, for all j,

0 g gl.j - Ez'j hand £3|J‘ —0

is a short exact sequence. Put metrics satisfying Bismut condition (A) on them. Then
we have

3
> (=1)¢chpc (e, gnai i) 0)

k=1

=i.(td™ (M, pw)chBe(7., 90.)) — D _(=1Y chpc(€ 4, p.5)

i=0
: 0
in anf{l/ Hl’ .

Axiom 4. (Triangle Rule For Closed Immersions) Let i : M" < M be another closed
immersion such that M’ and M" intersect transversely, i.e. if £ € M’ N M”, then

TeM +T:M" =T M.

Let i’ : M' N M" < M be the induced closed immersion. For any vector sheaves
(resp. ') on M’ (resp. M"), let 0" =: 5/|p+ ® 0'\sgvr. Then, in P, pen/ PMispgo, we
have

chpe(n”, goui i, pin) )
=ch(&'., 0’ Jehpc(M gni i, pi) + i (td ™ (N, gn)ch(n, g4) i chpe (', gpri ¥/, o))

and

chac(n”, ggn; i, pin)
=ch(£.,p.) chpc(n', gos; 1, pir) + 84 (td™ (N7, gar) ch(n', g ) i° che(m, 9n3 4, 1))
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§1.7.3 Existence Theorem
For Relative Bott-Chern Secondary Characteristic Currents
With Respect To Closed Immersions

We have the following

Existence Theorem Of Relative Bott-Chern Secondary Characteristic Cur-
rents With Respect To Closed Immersions.

With the same notation as above, let i : M’ — M be a closed immersion of compact
Kahler manifolds. Let (1,9y) be a hermitian vector sheaf on X. Then there exists a

unique current in PA‘}’,, chpe(n, g3, i), such that the axioms stated in the previous
subsection hold.

We will prove this theorem in the next chapter, which are taking from [BGS 91}. As in

the case of smooth morphisms, this theorem is proved by the following steps:

(1) The introduction of a family of superconnections with a parameter ¢ > 0.

(2) Investigation of the convergence of the associated heat kernels when t — 0%, and
t — +o0.

(3) The use of the Mellin transform to construct the relative Bott-Chern secondary char-
acteristic currents.

(4) Proof of the axioms step by step.

[t is clear that in this process, the number operator plays a very important role.
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Chapter 1.8
Relative Bott-Chern Secondary Characteristic Currents
With Respect To Closed Immersions II: Existence

We now give the proof of the existence theorem for relative Bott-Chern secondary
characteristic currents with respect to closed immersions as stated in the last chapter. The
basic ideal for doing 8o is as follows: Firat, we need to find a family of superconnections with
one parameter ¢ > 0; then investigate the convergence of the associated heat kernels when
t — 0% and t — oo; thus with the right convergence, we may construct the relative Bott-
Chern secondary characteristic currents by using the Mellin transform; finally, we check the
axioms case by case.

We study the above aspects in different sections of this chapter. The basic strategy
is that we first discuss the general formula without Bismut assumption (A), and see how
far we can go. Then we adopt Bismut assumption (A) so as to deduce the final axioms.
Essentially, this chapter comes from [B 90], [BGS 90}, [BGS 91] and [We 91].

§1.8.1 Convergence Of Heat Kernels Associated To Certain Superconnections

We use the same notation as in the previous chapter: i : M’ < M denotes a closed
immersion of complex manifolds, etc.. Let V¢ =: @ V¢* be the canonical connection on
€= 9. Set V =v+v*. Foru>0,let A, = V¢ 4+ /uV be a superconnection on the
supervector bundle &, with A := A;. There are natural hermitian metrics on the homology
bundles Fp,...,Fy,. Forany y € N, we have j € N and Y =: y + § € Ng. Since dpv* is
the adjoint of 8,v, hence 8y V =: §,v 4 Oygv* is a self-adjoint operator acting on F. Let
VF =: @V be the canonical connection on F. F lifis naturally to a vector bundle on
N, which we also denote by F. In particular,

B=V 46V
is a superconnection on the supervector bundle F on N.

Using the above superconnections and the result of Chapter 3 and Chapter 5 about the
existence of heat kernels for generalized Laplacians and their beyond, we know that there
exist heat kernels for A2 and B2. Hence it makes sense to talk about Tr,[exp(—A2)] and
Ty, [exp(—B?)]. Our first result for convergence is the following micro-local estimations.
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Theorem. (1) As u — oo, in P}M,, we have the following convergence of currents on
M
Tofexp(-AD] = [ Toufexo(~B7)owe

(2) For any natural number k, there exists a constant C, > 0 such that for any smooth
differential form 4 on M and u > 1,

[, T fexp(-AD) - [ T lexp(~BO6m Hlea) < SElllorssan

(3) If U, T, o, m are taken as 7.1.d, there exists a constant C > 0 such that for u > 1,

Pt m(Th exp(=A2)] - / Tr,fexp(~B)éx1) < f

Proof. By definition, (1) is a direct consequence of (2) and (3).

{2) We first consider the case with ¥ = 0. Later we will see that the proof for this
special case is also valid in general.

Assume first that the compact support of y is inclused in M — M’. Since the linear
self-adjoint map V' € End(£) is invertible on M — M’, by Duhamel’s formula, we know that

[ #Teexp(-Ad) — 0
Z

uniformly together with its derivatives.

Take now zo € M’, let z = (zl,...,z”‘") be holomorphic coordinates on an open
neighborhood U of zg in M, such that locally, M’ is the vector subspace (z!,...,2%) = 0.
There exists an open neighborhood V of 25 in M’ and € > 0 such that if D, is the open
ball, center 0 and radius € in C*, then U/ = V x D,. We then need to prove the statement
for the case that u has compact support included in U.

Let oy : Vx D, g — V x D, be defined by ou(z,y) = (z, :k) By a direct calculation,
we have

[ wtlexpi-a) = [ (o2 (oT T exp(~AD)).
Z

(YnV)xD, 5

In this way, we reduce the problem to a local discussion. Obviously, the vector bundle
o.€ on V x D, sz is equipped with the metric 07 g¢, and the connection oL V¢ =: V&, Thus,
by oLV = V(z, i:), we have

X -_ 2 = | [e8 £ z
/Z WTr, lexp(~A2)] ](WMM( o) T, exp(=( 5 + VAV (2, )
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But for u > ¢~2, we have

o Tk, (e _ UE <+ uVi(z ——y 2
~/(‘YI'IV)XD_ .( up) l[ Xp( ( u \/_ ( 1\/'.—‘) )]
= oou)Tr —(V¢ + VuV(z e
~/(th)>101( u#) a[eXp( ( “ \/_ ( ,\/1_1)2)}

o, (vt ” RV
+](‘an><(0,\,;—&)( uwht)Tr, [exp( (V"+\/_V(:’\/E) )l

Now we let P be the projection from { to F defined locally by the orthogonal projection
operation £, to Fr for any z € M’. Hence for any smooth section f of F on M’, we have

VFf = PVES.
The first resuit in the theorem is then a direct consequence of the following

Lemma. For u — 400, we have the following estimates:

(1)
| ]v (Lo fexp(= (5 + VaV(z, 2]
- i —(vF £ 2 i A
/v (") /Iyug“'[“"( (97 + PEL VPN < sl
(@)
o xp(—(V¢ U zia
| /v o, TP (TE + ViV (2, )
N _(OF ¢ 2 < .
/v () fnsmsw“'[“"( (VF + POLV P € =lelloniny
3)

" ; C
| ] () / Thfexp(~(V" + PYLV PP € —lbllcrony
v e/US|yl<+oo u- .

Proof of the lemma. First, we give the proof of (3). By Duhamel’s formula, it is
sufficient to prove the following

Sublemma 1. There exists a constant ¢ > 0 such that foranyz € M', Y € Nr ., f €
F,
8y V(2) fI 2 el [ | f -

In particular, on N, Ty, [exp(—B?)] decays faster than exp(—C|y|%) when |y|y — oo.

Proof of Sublemma 1. We only need to prove the assertion for |Y| = 1. In this case,
the complex ( F,8,v) ~ (AN* ®n, i) is acyclic. Thus by Hodge theory, 8y V is a self-adjoint
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invertible operator. Hence by the compactness of the sphere bundle S, on Nr, we deduces
that there exists ¢ > 0 which is a lower bound for the smailest eigenvalues of (v V)} s, -

n
So we have Sublemma 1.

Next we prove (1) and (2) in the lemma. For doing so, we need some more notation.

By Prop. 7.L.b, since* M’ is compact, we know that there exists a constant 4 > 0 such
that if z € M’, V?(z) has no eigenvalue in the interval }0,2b]. Therefore, if £ > 0 is small
enough, z € V and |y| < ¢, we may choose b > 0 so that b is not an eigenvalue of the
operator V2(z,y). Hence if for 0 < k < m, we let f:(z.v) (resp. &, ) be the direct sum of
the eigenspaces of the restriction of V3(z,y) to €k (z.y) corresponding to eigenvalues which
are strictly larger (resp. smaller) than b, then

+,+ . + +- . _ + + g+, +,-
o =B evenbiyy iy = Orodtdicyy o) = @EGw

are smooth vector bundles on V x ), with
G=&og, ¢=cttot

Furthermore, we know that as Z-graded vector bundles, £~ |y = F. Hence £*|y is exactly
the subbundle F* of €|y orthogonal to F. Let P* be the orthogonal projection operator
from € to £*. Obviously on V =~ V x {0}, P~ is just P defined before the lemma. Thus if
we let Iz, Ir be the identify maps on £ and F, the orthogonal projection operation Q from
Elme to FLisgiven by Q = I — P. Andon V, Q@ = P+,

Let
vt:=ptoé, V- =PV, VR =TtV

which are connections on £*, £~ and £ respectively. As in the smooth morphism case, we
consider the difference of these two connections, and denote it as S, i.e., §:= V¢ —=V®_ If
we identify the fiber £ ;) with the fiber {; o) = £ by the parallel transport along the line
s € [0,1] = z + sy with respect to the unitary connection V®, the linear map V(z,y) acts
as a self-adjoint operator on the fiber £; and preserves the splitting £, = £ @ £Z. In this
way, we introduce the operators V¥ as the restrictions of V on £*.

Since a 1-form on V x D, is the sum of a 1-form on V and a l-form on D,, we may
denote by H the set of one forms of the ﬁrs’t kind, i.e. on V, and by H' the l-forms of
the second kind, i.e. on D,. Let (z!,...,z'*") be holomorphic coordinates on V. Then we
define

v V(z,y) = Z(dz“Vi&V(z,y) + df"VfﬁrV(z, ).

Using the identification £, ;) = £, we find that Vf,, V(z,y) liesin A}(Ty M'®End€).. Hence
if we identify ¥ € R?% with the vector field (z,Y) — (0,Y) on V x R?*, where we let
ej ;=1 —1lj, then [Y, %] = 0, [V, z35] = 0 for any . In particular, VE(PV{V(z)P) is a
well-defined 1-form on V which takes values in End(F'). Now we need the following technical
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Sublemma 2. (a) If z € M’, X € (TrRM’):, then V5 V(z) maps F into FL+. With
respect to the splitting |y = F® FL,ifz eV, U e (TRM),, we have

_ 0 PVVIQU)
SO =ynmawgme )

In particular, .
(V) = P(V4)?P ~ P(VEV (V) 208V P,

(b) For any z € V, Y € R,

PV (V4 V)(2)P = VE(PVLV(z)P).

Suppose that Sublemma 2 is proved, we also need the following

Sublemma 3. (a) If V and ¢ > 0 are small enough, there exists a constant C > 0 such
that if (z,y) € V x D,, then
V(z,»)" 2 Clyl*.

In particular, for A € T,z € V,y € C° with y # 0,ly] < e/u, Al — \/EV(z.j;) €
End&: is invertible.
(b)lfz€eV,y€ N;,Y =y+y, we have

[PV V(2)P| > Colyl.

In particular, for A € T,z € V, M, — PV V(z)P € End F; is invertible.
(c) For A € T,z € V,y € C* with y # 0,|y] < ey/u, let Y = y + § and define
A(ulz‘l yt A) e End(i:) by

(M - aV(z, %))-l =P(Mp - PV, V(2)P)~1P
+ %{%P(Mp - P‘V5YV(::)P)‘1PV$V$ V(z)P

(Mp — PYLV(2)P)' P - Q(VH)  (z)Q}
+ A(u,z,y, A).

Then for € > 0 small enough, there exists a constant C > 0 such that

A,z 3,2l < — S Iyl + o1 + 121+ AP).

Suppose we have the above two sublemmas, for the first estimation in the lemma, we
then need the following

Proposition. For any A € C with {ImA| = 1, let I{u, A) be

(e = (¥ = w2, Z2) (8 + VAVEV (2, 2D} (e - ViV (e, T
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Then for u — 400, I{u,A) — (o0, A), where

I(c0,X) :=P{Ir — (\Ir = (PVL VP! (V)? + VF PVL V P))} !
(Mp - PULVPY™ = (N2Up = (PYSVP))(PUSV(VH)IQ).

Proof of the propo‘sition. Let
J(N)
=:P{Ir — (\Ip = (PYSLVP)) (V) + VE PV VP)} (M F - PYSL VP

then it easily follows that

77 L ex(=A) (0, Nah = —jexp( —23)7(\)dA
where I is the oriented contour in C defined by [ImA| = 1 and taken clockwise, since the
second term in [{oo, A) is an even function of A. On the other hand, we may also easily have

exp(—=(V¢ + VuV)h) = m]{: Y7 ?p(_i \)/EV

A priori, the right hand side of this equality is a differential operator of degree 1, while the
left hand side is of degree 0: There is some canceliation here, which may be explained as
foliows: Since {V¢, V] belongs to AY(Tp M)®EndE, (Al — V¢ — /uV)~! can be expressed
as the sum of two differential operators of degrees 0 and 1 respective:

dA.

(Mg = V¢ = Vuy)~!
={Ig = (ML = uV3)TH(VE? + Va[VE, VD)) (M = VuV) ™! + (WL — uV?)~1T).

By the fact that the A-function
exp(=A){Ie — (A g — uV?) 7 ((VE)? + Vu[V8, V)Y 1 (AT —uV?)™!
is even, we know that its integral on I' vanishes. From this,
exp(—(VE + vaV)?)
= [LeRP=A e = (W3l = uV ) (T4 + VRIVE VDY (O - Vav) i

Hence, we get

exp(— (Vf+\/‘V(z, \/_)) /exp( A4, \)dA
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Similarly, we have

exp(—(VF + PV, VP)?) = % j exp(—=A7)J(A)dA.
r

The connection V¢ on £ converges to the connection V¢ , which is the pull-back of the
connection V¢|y on the vector bundle €|y by 0o This means that in a given trivialization
of &, the connection-forms of V£ converge uniformly to the connection-form of V¢, together
with their derivatives. Hence if we define E{u,z,y) by

(V£)2(z, y) = (Vgo)z(:c) + E(u,z,y),

then c
NE(u,z,y)ll < %(1 + lyl)-
Moreover, we know that if F(u,z,y) is defined by
VaviViz, %) = VuViV(2) + V2V V(2) + VL V(2) + Flu,z,y),
then

IF(u, 2, 9)]l < —Cﬁ(lyt + ).

Note that since V%,V (z) maps F. into F} by sublemma 2 (a), we know that if A € T, as
u — 00,

(Me+Vav (z, %))‘VWE; V(z)(Me - VaV(z, —};))"
=(VH)~"Y &)V V(2))P(M\F ~ PV V(z)P)' P
— P(Mp = PYLV(z)P) ' PV V)NV + 0(%).
But by Sublemma 2 (b), we know that
PYE(V4V)(2)P = VE(PVLV(2)P),
80, together with Sublemma 3 (c)
(et vV (2, )™ TRVEVI @M - ViV (z, )™
=P(Mr + PV V(2)P) ' PVE(PV, V(2)P)(AlF — PV, V(2)P)7'P
+ 0(%).
On the other hand, by definition,

P(V,.V)(z)P = PV§.(PVi V(z)P),
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so similarly, by using Sublemma 3 (c), we have

(Me+VuV(z, \/_)) e V() (Al ~ VaV(z, T -
=P(AF + PV, V(2)P) ' VEL(PYV(2)P) (M ~ PV, V(2)P)~' P

+0(%). :

Therefore, for A € ', as 4 — +co, the form I(u, A) converges pointwise to the form I(oo, A).
Also, for A €T, we have

(AT, — VaV(z, %))-‘u <1, |l(MF, - PYLV()P) Y < 1.

Therefore, in the above expression, the norms of the various O(&:) can be dominated by
7%( 1+ |A1®). This proves the proposition.

With this proposition, the proof of the first estimation in the lemma becomes quite
easy.

. Indeed, if G(u,z,y) is the form defined by

(euu)(z,y) := (058" )2, 0) + G(z,9,u),

then
IG(z,y,u)] < \/—”P“c'(M)(l + ).
Finally, for any A € T,
lexp(=A%)| = exp(—|ReA|? + 1)

and so for any p € N, |A|P exp(—A?)] is integrable on T'. Thus, by (*), let u — co, we get the
first estimate in the lemma. The second estimate is proved similarly: In this case, instead
of using I', we have to use the contour

=1 {z€C:Re(z) 2 COTM with |[Im|(z) = 1 or Re(z) = C[;'yl

}.
The details are left to the reader.
Next we give the proof of Sublemma 3 and Sublemma 2 that were stated above.

Proof of Sublemma 3. (&) By the uniqueness of the local resolution, we know that
if V and ¢ are small enough, then

(€,v) = (AN" ® 7i,i,) ® (4, a).

Further, there is a metric & on the right hand such that
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(1} The (A)F are mutually orthogonal.
(2) The splitting is orthogonal.

(3) The metric on the complex (AN*® i1,i,) comes from metrics g"c' and ¢ on N and 7
respectively.

Let 7, be the adjoint of ¢, with respect to the metric g”.’. Ifye N is identified with an
element of N* by the metric g, then iy = A . Therefore,

AAY I 2
("V + "y) - Iylg.ﬂ'-

Let &° be the adjoint of v with respect to A. Set V =: v + &*. From (¢, + )= |y];ﬂ,
we know that there exists a constant C' > 0 such that if (z,y) € V x D,, then

02(::1!’) 2 C'lyl2
We use this estimate to deduce the assertion.

Now fix (z,y) € V x (D¢ — {0}). As all the estimates will be done at the point (z,y)
in the sequel, we omit (z,y). Alos, both V2 and V2 preserve Ker(v), by Hodge theory, the
lowest eigenvalues can be calculated by considering those on Ker(v), so let f € Ker(v) N &,
and set g := 7*(V?)~!f, we have f = vg. But Hodge theory tells us that g = vo + v* 3 for
certain a, 3. Hence f = vv*B. Sov*f = v (VI 1f.

Taking the metrics, we have
lgl} =< (V)7 £,F >4

and
lglla = =Bl =< (V™11 f >

But for V and £ > 0 small enough, there exist constants C' > 0, > 0 such that on V x D;,
ClIIE<IIG<CNIE.

Hence, )
<V >R2C< (VAT f >y

Therefore, if /\,:\ are the lowest eigenvalues of V2, V7, there is a ¢ > 0, which is uniform on
V x D,, such that A > cA. Hence, we have the estimate {a) by using

Vi(z,y) 2 Clyl".

(b) Note that if z € V, y € N.,Y =y+ § € Nz, then

by V(z) = PV, V(z)P = PUSV(z)P.
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Thus, by Sublemma, we find that there is a constant Cp such that
PV V(2)P| > Colyl.
(c) Let Iex be the identity map of £* and define A*(u,z,y,A) by
) 1
Mer = VAV (z, —=))"! =i === (V)" + .
( &+ \/I—JV (z’ \/E)) \/E(V ) (310)'{"4 (U'I,yw\)
Similarly, note that since V~{z) = 0, we may define A~(u, z,y,A) by
- Y -1
M- —VuV~ (2, —=))
( € \/-

—().15- -VeV-(z)!

+ 50 - VOV~ (2)) VEVEV (2) (Mg — VEV(2))"
+ A7 (u,z,y,A).

Obviously, A = A" + A~. We next deduce the estimate for A from those for A*.

We begin with an estimate for A*. First, we have

V) (z,
(Mo = VaV*(z, 7)) " = —(—)\,—(;“-"—-fi)(m - %(V*)"(x, ol

Thus by finite increments, we have
||(!s+—%(v+)-‘(z, L)t =t
\/-II(V+) 'z, \/—)llsumem yll{ e+ — T(V+) Yz, ﬁ))'lllz-

But for any A # 0, we have

: 2 JImAJ?
infaer|l — dA|)® = BV
Hence, for A € [, i.e., ImA| = 1, we have
(2 - v e L) = Ll <Cw3
v 'V T

Also by finite increments, we get

v+, o - (v @0y < S,
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Therefore, put the above all together, we know that if z € V, |y| < £/u, |ImA| =1,

C
1A* (2,9, ) < Z (Il + AP).

Now we deal with tha estimates for A~. We define B(u, z,y) by

VuV(z, %) = VeV (z)+ ﬁv?v?v- (z) + B(u,z,y).

Obvioualy, if z € V, Jy| < £4/u, we have

3
1B,z vl < S5

and hence

VeV (=, -};) - V8V~ (2)|| < Celyl.

On the other hand, define D(u,z,y,A) by
(Me- = VoV~ (3, Z=))" = (M- = VRV~ (@)™
+HMle- - YV (2) 7 (VaV ™ (2, =) - VBV~ ()
(M- = VRV~ (2)™* + D(u, 2,3, ).
By finite increments again, we find that
DG, 2,4, Ml| < 90p.ego, (I~ = €YV (2) = (1 = YAV~ (z, )"}

IVaV~(z, %)— vEV-(2)|.

Therefore by the fact that in Endé;, VEV~(z) and V~(z, :k) are self-adjoint, together
with the estimate for B(u,z,y), we have

C
"D(tl,t,y,/\)” < ;IyP.
In particular, if z € V, |y| < £/u, ) € A, we have

C
IA~ (u, 2,5, DI < =(wl* + 1W®).
. u

So we have the estimate (b). This completes the proof of sublemma 3.
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Proof of Sublemma 2. {a) If f i3 a smooth sectionof F, V f =.0. Hence if X € Tp M,
(VEVIF+ VI F=0.
In particular, we get (Vf‘-V)f € FLX. Buton Vx D,,if U € TrRM,
* ULV = VRV + S(UW - VS(U).
Hence by the fact that on V, V@V preserves the splitting £|y = F @ FL, we have
PYLVQ = PS(UWVQ, QVLVP=—-QVS(U)P.

So we have the structure formula for S;(U). Others may be obtained from a direct compu-
tation.

(b) By definition, we have
V(T V)(2) = T4 (VE V(=) = [S(Y), V4 VI(z)

and
VE(VEV)(=) = Vi V5 V() + (VY. V), V](z),

since Y commutes with the vector fields 5‘%, 5%. But (a) tells us that V$, V(=) interchanges
F; and FZ}. So, from above, we get

PYE(VEV)(2) = P{V5, V5 V(z) - S(Y)V4 V(z) + V&, V(2)S(Y)}P.
Hence, by the fact PV5V(z)P = VV(z)P, we have
PV V(z)P = (V4 V(z) + V(2)S(Y))P.

Thus for any smooth section f of F on V, since VF f = PV¢f as stated before the lemma,
we have

(VR(PYSLVP)S = P{V§(VLV + VS(Y))f = (V§V)(Vif ~ S(H))}.
Therefore
VEPYEVP) = PV, TV + (V4 V)S(Y) + (V4 V)S(H)) P.
Using again the fact that V§V(z) maps F. into F}, we finally have
P(S(Y)V§V(2))P = P(VLV)(@) (V)™ (2)(VV (2) P

PV V(2)S(H)P = = P(VEV (2))(V*) ™ (2)(T§; V(=) P
This completes the proof of Sublemma 2 and hence part (2) of the theorem for k = 0.
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Now we show how one can get similar estimates for a general k. Using a partition of
unity, we need only discuss the case in which x has its support as in case (b). Let z = (2,,23)
be a holomorphic system of coordinates on V such that #(z) = z;. Then by our choice of
the coordinate y, #{z),z3,y) = z;. Therefore we may lift any smooth real vector field X,
on B to the vector field (X;,0,0) in the coordinate system (z,,2z3,y). For short, we also
denote it as X,. Now, we need to study the behavior of

(Lx,)* j (LR len(=(75 + VAV (2, 27

D'\/: u

Obviously, if [ImA| =1,
Ve (M — VuV(z, %)r‘

=(Me = ViV (z, Z=)7 Va(TE, Ve, %) (Me = ViV (z, =)

Now V and V® preserve the splitting £ = £+ @ £~; while on M’, V vanishes on £~ = F
and maps £t = FL into itself. Therefore, V?}lV(z),...,(V?}l)"V(z),... all vanish on F
and map F! into itself. With the same method in the proof of Sublemma. 3.(b), as u — oo,
we get a similar asymptotic expansion for the left hand side of the above relation. Thus we
see that the form (Lx,)* [, yTr,[exp(~A2)] has a limit as u — o, and that the norm of
the difference in C°(B) with the limit can be dominated by %HpHCHI(M). So we have the
result for a general k.

The Proof of Part 3. From the proof above, this estimate is not difficult to obtain.
The point is to replace the corresponding concept at the right place.

Now we briefly explain how this to be done. With the notation as above, recall that
dimM;' = I; +1'. Let £ € C'*' and § € C*% be variables conjugate to z and y and set
z=(z,y), € =(Z,9). Denote by < z,£ > the real scalar product of z and £. Let ¢ be a
smooth current with support in U. Take a > 0 and let I'* be the cone

I :={(2,9) € C*": |3 < el2l}.
Then obviously, our assertion comes from the following

Lemma. For any natural number m, there exists C > 0 such that ff £ € ['*, u > 1,
we have

|ﬂ=m_11[MCi("f>¢(z)’l‘r'[exP(_A3)]'jM, e <EE> i 4 ) Lﬂ.[exp(—Bﬂ)]lS —%

Proof of the lemma. Let P,, be the differential operator with constant coefficients

in the variable z such that
I£I2m8i<x’£> = Pm(6‘<"£>).
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Integrating by parts, we get

22| /Me‘<'-f>¢(z)'n.{exp(-A:)]- /M £<EE> 2 () / Tr, [exp(=B?)

=If e’ <*4> P (¢ Tr, fexp(-AJ))) - e"’”Pm(i'tb/ Tr, [exp(~B?)))I.
M . N

AM'xC*s

On the other hand, if A is a partial differential operator with coefficients on C*/', 4
may be seen as acting on the variable x € V. Hence we can apply the resulta in the proof
of 2 to the fibration V x D, — V with fiber D,. That is, if V is small enough, there exist
C>0, C’'">0suchthatifz €V, u>1, ye C® |y < ey/u, then

| Aoy Tr, [exp(— AJ)] — ATx, [exp(~B?)]| < \/—CXP( =C'lyl*).

Now by the fact that on compact subsets of M — M’, as u — oo, the form Tr,[exp(—A2)]
converges uniformly to 0 faster than exp(—Cu) for certain C > 0 and similarly for the
derivatives, we may assume that U is a small open neighborhood of x5 € M; of the form

V x D, chosen as before. Let u be a differential form on U. Denote by ||y, “%’;H the sup
of the norms of u and of the partial derivative on U. Hence if |y| < £\/u,

o) - (e < P I

Therefore, by the fact that the form Tr,[exp(—B?)] and its derivatives decay as |y] — oo
faster than exp(—C"|y|?) with C" > 0, we get

| [ naciTelexp(-AD] = [ it AT fexp(-BY)

_f(llull + II II)

In particular, put A = P, then by the fact that the first derivative of the function
€'<%€> in the variable y is bounded by |3, we get

Ped ] /<> §(2)Tr, fexp(~A2)] - ]M <=8 () j T, [exp(=B2)]|
\/_ (L+|g))-

But |§| < a|Z|, so we have the assertion, which completes the proof of the lemma and hence
the theorem.
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§1.8.2 Number Operators and the Double Transgression Formula
1.8.2.a General Double Transgression Formula

In this section, we will give a general double transgression formula. With the same
notation as above, for 0 < k < m, let M, be the set of smooth hermitian metrics on
the vector bundle &,. Set M = Ho M. If gp € Mp,z € M, let B8 be the set of
endomorphisms of &; , which are self-adjomt with respect to the metric g;. We also identify
the tangent space T,, M, with the set of smooth sections of B* on M: In fact, if g, €
End(£¢,€;) is an infinitesimal deformation of Ay in M, then g;‘gi is the corresponding
element in B%*. Let da be the exterior differentiation operator on M. For g¢ € M, let w
be the connection-form associated with the corresponding canonical connection V¢. Then
daqw is a 2-form which 1s the equivalent representation of a 2-form ¢y on M x M. Obviously,
we know that

==V, (¢*) " dmgf]
with values in End €. Recall that A = A; = V€ + V. We let
A=V 40, A=V 40
Then, we have the following

Proposition. 1. The following identities hold
dpaTr, [exp(-A%)] =0Tr [y — [v", (¢°) " daegt]) exp(—A%));
Tr((y — ", (9°) " damgt]) exp(—A?) = — 8 Tr, [((9°) ' daag®) exp(—AY)).

Therefore, B
dpTr, [exp(=A?)] = =88 v, [((g¢) ™" dpg® Jexp(— A?)).

2. Similarly, for any odd Grassmannian variable z, we have
dpTr fexp(—A" + 2(g°) " daug)]
1 -
=50 T {[A”, (9°)7 dumgtlexp(-A% + 2(¢°) " dasg)]

— SOTHAY, () g exp(-A% + 2(¢5) " duag)]

Proof. Consider £ as a vector bundle on M x M. There is a natural canonical
connection V¢ on €, which restricts to the canonical connection V¢ with g¢ € M on M x {g¢},
and is trivial on {0} x TM C T(M x M). As a superconnection on £ over M x M, for
VE + V, we have

(TE+ V) = (V)P +7 -, (65) dumet).

By Duhamel’s formula,
Tr, {exp(=(V¢ + V)?)]
=Tr, [exp(—A%)] = Tr, [(v = [*, (6°) ' daeg®]Jexp(—A%)]) + C
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with C being of degree > 2 in the Grassmannian variables in T* M. So
AT, fexp(~AD)] = dTx, [(y = [b°, (66) " daglexp(—A%)].
Therefore, by counting the degree, we have
AT [exp(~A7)] = 3T [(7 = ", (56) " duagDexp(~ A)]

OTr, (v = [v",(9%) ™ darg*]Jexp(—A%)] = 0.

But by definition, we know that
0T, [(¢°) ' dagtexp(~A%)] = T, [[A", (¢°) " dasg’lexp(-AT)),

so we have the second equality.

The proof for 2 is very similar and is left to the reader.

[.8.2.b. Number Operators And The Double Transgression Formula

Let Ny : £ — £ be the operator in End(£) which maps f € £ into kf € £¢. We call Ny
the number operator for . As an application of the result above, we have the following

Theorem. For any u > 0, the smooth forms Tr,[exp(—A2)] and Tr,[Ny exp(~Al)]
are in Pps. Moreover for any u > 0, we have

;;uTr, [exp(—A2)] = — %,[;%exp(di)]
= - 0T, [ exp(-AL);

Tr,[;—-.iexp(—Af,)] = - §Tr,[—exp(-A})]

T exn(-AD)] =0Ts [ exp(-AL)

Therefore, for u > 0,

O0Tr,[Ngexp(—A2)].

L

ST, fexp(~A2)] =

Proof. For u > 0, replace the metrics h¢ = (héo,... hfm) by

hS = (hfo,u'hb L uT ™A,
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Then the adjoint of v with respect to hf is uv*, where v is the one with respect to h¢. Also

7] N a
Réy-1— E:——‘H > §y-1 €1 = .
(h)™ 5ot Lt (hy) auhu} v

If we let T, € End € be defined by T, f = u!/2f for f € £, we have

T WTh, = vy, T, W' T, = \V/_i.

Hence, by result in the last subsection, we get the first and the third relations. Similarly,
by interchanging holomorphic part and anti-holomorphic part, we get the others.

1.8.2.c Convergence Properties

Since, later, we will use the Mellin transform to define the relative Bott-Chern secondary
characteristic currents, so we need to asymptotic expansions. In this subsection, we give
convergence resuits for

Tr,[aVexp(~AL)], Tr,[Npexp(—A2)].
There are the following

Theorem. (1) There exists a constant C > () such that for any £ € N, any smooth
differential form p on M and u > 1,

C
I [, W lvavexe(-AZ)llcxay < Slilloraan
and
2 -. 2 Ck
| | wTr,[Ngexp(~AL))— [ i"n [ Tr,[Nyexp(=B)licx(s) < Tllﬂllcwlwy
V4 Y N - u
(2) As u — oo, we have the following convergence for currents on M:

Tr, [VuVexp(—Ad)] — 0,

and
Tr, [Nuexp(-A2)] — [ ]N Tr, [Nuexp(~B?)]}6ar

in Dis (M)
(3) If U,T,p, m are taken as in 7.1.d, there exist constants C, C' > 0 such that for
u>1, .

pur.om (T VAV exp(=AD) < =
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and '

P pm(Trs[Nrexp(~AD)] = [ [ T, Nuexp(-BHJon:) < CT

Proof. By the fact that if K is any smooth section of End(£), then the analogue of
Theorem 8.1 still holds for
' Tr.[Kexp(—Au)?),

whose limit a8 u — in fty will then be the current [, Tr,[PK Pexp(—B?)]5s:. we see that
the statements about the relations concerning Ny may be similarly proved by following the
proof for Theorem 8.1, we will not do it here. Instead, we use Theorem 8.1 to prove the
assertions for \/uV .

For (z,a) € M x C*, set #(z,a) = (rz,a) € B x C*. Then % has essentially the same
properties as 7. Let j be the embedding M’ x C* «— M x C*. The vector bundles &; (resp.
77) extend naturally to M x C (resp. M’ x C). Then on M x C*, we have the exact sequence
of sheaves

0 — Omxce(€m) 5 Omxce(bm-1) = ... = Orrxce(€0) = joOmxce(n) — 0.
The natural canonical connection on £ over M x C* is given by V¢ + daz% + d&s%. Thus if
a€C* withja—1| < %, by Theorem 8.1, we know that

liMy— 400 f uTr, [exp(—(VE¢ + d“ai + dai_ + Vu(av +7))%)]
7 a fa

=/ i‘,u/ 'I&,[exp(-(VF+da£+dﬁi+03yv+ﬁay"')a)]-
Y N da da

Also, with the correct parameters, we know that the difference between the expressions
appearing in both sides above is dominated by %"pllcul(M). But by Duhamel’s formula,

we know that there exist forms v, and ¥ on B, such that over B x {1},

/ HTy,fexp(—(V¢ + daai + dﬁ% +Vu(av + 5*))%)]
z a a

=/pTr,[exp(—A3)]“'/ #Tx, [Vuvexp(—Ad)] da
z z

= [ TV exp(- A2)] da+ v, dada;
z

Ga da
= [ ru [ lexo(-B2) - [ ¢da | Tefoyvere(-B)

_/ pd&/ Tr, (87" exp(-B?)] + 7 dada.
Y N

/i"p'/’ Tr,[exp(—(VF+dai+d&—q—+a¢9yu+&3gu')2)]
Y N

Thus, assertion {1) is a direct consequence of the following
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Lemma. With the same notation as above,

f Tr, [8, vexp(—B?)] = 0, / Tr, [6;v"exp(—B?)] = 0.
N N
Proof. Note that if y € N is considered as a vector field on the total space of N, then
clearly ¢, (VF)? = 0. Also
B’ = (VF)? +[VF,(PV{VP) + (PVSVP),

and then
ty(B?) = §,v.

But ¢, is a derivation of the Z;-graded algebra AT* Np®End F; by Duhamel’s formula, and
the fact that Tr, vanishes on supercommutators, we have

1y Tr, [exp(~B?)] = ~Tr, [8, v exp(~B2)].

Therefore the form Tr, (8, v exp(~B?)] has no component of maximal degree in the direction
of the vector fibers N, and so

/ Tr, 8, exp(~B?)] = 0.
N .
Similarly, we could have

/ Tr, [8yv" exp(—B?)) - 0.
N

In this manner, by a similar process as in the proof of Theorem 8.1, we may aslo get
the rest.

§1.8.3 The Construction Of
Relative Bott-Chern Secondary Characteristic Currents
With Respect To Closed Immersions ’

1.8.3.a. A Construction
By Theorem 7.1 and Theorem 7.2, we know that for u — oo, the difference

Tr, (Nexp(~A2)] - ( /N Tr, (Nrexp(~B)])6:

is bounded by u~'/2, Also, we know that when u — 0%, the asymptotic expansion exists
from the general discussion for the heat kernels. Therefore its associated Mellin transform
makes sense. With this, we easily have the following
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Proposition-Definition. 1. For s € C, 0 < Re(s) < %, let

+00
Gy =t g [ v I menp(- A = (| T (Vorexo(~B7 )b} o

Then (¢(8) is a well-defined current on M.
2. For any smooth form g on M, there exists a unique meromorphic extension of

fo+°° #Ce(8) to the whole complex plane such that this extension is holomorphic at
58=0.

3. Let (¢(0) denote the current on M such that for any smooth differential form y on

?

ren O
[ 0= 5[ se(@lumo
Then

40 = [ (T W (exp(-AZ) - expl-AD)) 2
+00
+ [ annexp(-AD] - (| TeiNexp(-BDour} -

~T ()T [Nexp(-AD)] - (| Tr(Niexp(~BH )b},

If, as before, we let [27i] be the natural operation on the graded algebra D(M) such
that

[27i] fiig = (2m0)* fia,

then we define the relative Bott-Chern secondary characteristic current, denoted
by chsc(n,g";1, pi), to be [21ri](é(0), but with g¢ defined by Bismut condition (A). Usually,
if we do not have Bismut condition {A) on the metrics g¢, we denote the corresponding
current by

chec(n, 9" 1, pi; €, ¢°).

From section 8.1, we know that for a given vector sheaf resolution of 1,7, there are
metrics on &, such that the Bismut condition (A} is satisfied. Hence the above definition
for relative Bott-Chern secondary characteristic current makes sense. Next, we have to
check the axioms, from which it follows that chsc(n,¢";4, pi) does not depend on some of
the special data used in the definition.

§1.8.4. Checking The Axioms

In this section, we check the axioms listed in section 7.2. As stated at the beginning
of this chapter, we first work without Bismut assumption (A), but once this assumption is
made, the translation can be easily done by using Theorem 7.1.c.
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1.84.a. Axiom 1.

Let
7g6) = (5;;1)—.,—2 /0 [27i](Tr, [VaV exp(~ AL 3.

Here, we fix once for all ope square root for 27i, Then the transgression axiom is verified
by the following

Theorem. (1) The current chpc(n, g7;1,0;;€, ¢°) lies in Pﬁ,.
(2) The following identities of currents hold

dchpe(n, 9”1, pi; €, ¢°) = — v(%);
d(gf) =ch(€, o) - ( /N (2] T, [exp(~B2)])b-.

Therefore,
dd°chac(n, 9" i, pi;€,9°) = (/ [27i] Tr, [exp(—B*)))ép- — ch(¢, g°).
N
If ¢ satisfies Bismut condition (A), we have

dd°chpe(n, 9%, pi) = td ™ (g™ )ch(g")bm- — ch(¢,g°).

Proof. (1) By Theorem 2.b and Proposition 3.a.3, we see that chpc(n,9”;1, pi;€,9%)
is a combination of currents of type (p,p). So, for the first assertion, we only need to prove
that WF(¢;(0)) is included in Ng. To do so, by Proposition 3.a.3, it is enough to prove that

the term for fl+°° has its kernel in Ny,. For short, we also denote this term by f]+°°, ie.,

+00 +co du
[ = [ Vaexp(-a) - ([ (Nmexp(-BDEw) T
1 1 N u

By Duhamel’s formula, we know that fl+°° ia smooth on M — M'. On the other hand, if we
choose U,T', ¢, m as in subsection 2.c, we know that

+o0 +00 du
poren [0 [ 8 < e
¢m(l . w2

Hence, we have W F(chpc(n, h";1,pi)) C Ng.

(2) We use the result in section 2. We let

ye =: (2mi) /2 [2i] " (g"),
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/ pdvye = —/ dpve.
M M

e =t [ it/ 32
=—limq_.+oo/0 {Lpd’[‘r,[\/ﬁVexp(—Aﬁ)]}g—Z.

Thus by Theorem 2.b, and Theorem 2.c, we have

then for any smooth form g,

But

[ wve= [ utfess(-ad1- [ i [ Tfexp(-B7)
M M M! N
This proves the second equality. Similarly, by definition, we know that
[ e = [ aucio)
M M
Now by the closed properties of associated currents, we know that
/M d°uTr,[Ngexp(—Ad)] =0
| it [ o (Naexp(-BH) =0.
M! N
Thus, similarly, as we did above for the second eqality, we. may alsc have the first one.

[.8.4.b. Axiom 2.

By Proposition 2.a.3, we know that if we let

o= (T [N (exp(~A2) - exp(-Aam}"—“
/ {Tr, [Nuexp(—A2)] - ( / Tr, [Nyexp(—B?) ]).sM,}—
~ PO Nrexp(-AD] = (| Te(Naexp(~B o,
then in D). (M), by Theorem 2.c and Theorem 4.2,

lima~ +006¢ "(0) = G¢(0).

Therefore, what we need to check is the functorial property of each term in { }. But this
is quite easy. Since f is transversal to M’, we know that f*£& provides a resolution for f*n
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and N = fuN. By the functorial properties of characteristic forms, we only need to show
that

[rome =60

But, such a result can be proved by using a local approximation of §x4+ with a sequence of
smooth currents, which converge ’transversely’ as in example 8.2.8 of [Ho 86]. Hence we
have the assertion, again by the fact that f is transversal to M’.

1.84.c. Axiom 3.

In the same way, as for smooth morphisms, we use the P!-deformation technique to
deduce the most general triangle relation from the degenerate triangle relation, i.e. we let
13 = 0. As an illustration, we give the following

Theorem. (1) Let 8(g") be the smooth form on M’ defined by
0(s°) =: [ [2ni(T,fexp(~B2)).

Then 8(g") € PM' is closed.
(2) Suppose t € R — gf € MF is asmooth map. Let t € R — B, be the corresponding
 family of superconnections on the graded vector bundle F'. Define

1 Fy-1
x(of) = [ dt [ femime (6 8 exp(-B2).

Then x(gF) € PM' and its class in PM'/PM'0 only depends on gf,¢f. So we may
define this class as x(hf, h{'). Moreover

dd°x(gf) = 8(gf) — 8(g¢).

(3) We have the following relation

chac(n, p; 98314, i) — chee(m, 3 9536, 00) = x(95 , 97 )6a — chpc(€;95, 9%)-

(4) If Bismut assumption (A) holds for the-corresponding metrics for all situations,
then

x(95 . 9F) = tdg&(N; g, gt )ech(n, go) + td ™" (N, ¢f" )chne(7: §o, 91)
in PM’/pM’.0,
Proof. The first two statements may be proved by the method similar to these for

Theorem 4.5.a and Theorem 6.1.d. We leave the details to the reader. For (3), we have to
use P!-deformation. '

On M x P!, we equip (£.) with hermitian metrics g¢ which restrict to the metrics
o5 and ¢§ on M x {0} and M x {oo} respectively. On M x P!, the wave front set
WF(chpc(n, ¢7;1, pi; €,¢%)) is included in Ng, and

WF(log|z|*) A WF(chpc(n, ¢"; i, pi;€,9°)) = 0.
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Hence, by Theorem 8.2.10 of {H6 86], we know that the product of currents
Log|z{*chpc(n, ¢7; 4, pi; €, 9%)
is well-defined. Also the usual rules of differential calculus can be used. Thus,

F) . 8 - .
—.(3003|2I2] chac(n,9%:1, pi;i €, ¢¢) + E(LoleI’ﬁchac(n,y";=,p.-;£,g‘))

L]
=—(Log|z| )ehse(n, ¢"; 4, pi; €, 6°) — LOSIZI’—cth(n, 1, 003 €,95)

—ChBC(YLQ‘ -hpi;f;g )6MX{0} - ChBC(Thg ' ’piafsg )6MX{OO}
— Log|z[(8(s7)6mxpr — ch(g*)).
If we integrate the above equality along the fiber of M x P! — M, we have
chac(m 9", pi;€,9°) — choc(n, g7, pi: €, %)

([, LoglsP*6(a" e + [ LoglzPeh(st) € PP
P! P
By the similar process for x(g{, g¥), instead of chpc(n, ¢";1, pi; €, ¢%), we get
Xg®,a")+ [ LoglsFolg") € PH"0

Hence, we have (3), since

] Roglal* ch(s?) = ~chac(af, o).

(4) If gF satisfies Bismut assumption (A) with respect to (g{¥,¢;) for i = 0,1, we can
find a smooth family of metrics ¢t — (g{¥,g:) on N and 1 which interpolate between the two
initial points above. If gf is the metric on F associated with the metric (g{¥, g;), the family

N
t — gF interpolates between gf and gf. Also, the operator (g/¥)~! % acts naturally on
the exterior algebra AN®. One verifies easily that since F = AN* ® 1,

LahF 139’t

1Y)
=" % g1 410 (g1 2

()" e

Let (VN¥)3, (V7)? be the curvatures of the corresponding canonical connections for
(N,g™),(n,¢"). As in subsection 7.1.c, we find that

=(21ri)dim‘v%[td'l(—(vf")’—b(g,) 1 g* 22t ) Trfexp(—(V1)?)]

+4d ™ (=(VF)?) Te[exp(—(VT)? - b(g0)™ —?—mm-
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By the results in subsction 4.5.b for the classical Bott-Chern secondary characteristic forms
with respect to Todd characteristic forms, we have the assertion. So we have the proof of
this theorem. In particular, (3) and (4) verify axiom 3.

1.84.d. Axiom 4.

Let M’ be another complex submanifold of M with i : M’ < M the closed immersion.
We set M =: M'N M’. As for the immersion i, we could give the same results: We now
only have to put ~ and .” on the notation for M’ and M" respectively. Since M’ and M’
are transversal, we know that
N" = N|pn GBI{rerr.

Also N|p+ and I\.fluu are exactly the normal bundles to j : M” «— M’ and j : M" — M!
respectively. Thus if we let
(€",v") = (£€,vB1 + 1&D),
and
’7" = UlM"@ﬁiM"r

with r” = r®F, we have the following exact sequences of sheaves
0 — Om(€",v") = #204nu(n") ~ 0,
0 — 05}1((6,”)'&;) LP E.OMM(qu”) - 0,

0 — O (6, 9)|a0) = juOpn(n |ag) — 0.

Moreover, for the homology groups, we have the identification of holomorphic vector bundles

F" = FiM"éﬁ'lMl:,

Thus, similarly, we have the relative Bott-Chern secondary characteristic currents with
respect to i1,i" respectively. Note that i and i are transversal and we know that the pull-
back currents i*chpc(7, 97; 1, p;) and 1*chpc(n, ¢";i, i) on M’ and M’ are well-defined, by
Theorem 8.2.4 of [Ho 86), as, on wave fronts, statements are affected. Thus by axiom 2, we
have . ..

chpe(3'n, 179", p") =i"chpc(n, 6734, pi),
chec(i*F,4" 971, pi) =i"chpc (7, 971, p7)-

In particular, the corresponding wave front sets are included in ﬂ'ﬁ and Np respectively.
Now by theorem 8.2.13 of [Ho 86], the currents of both sides in the axiom 4 are actually

elements in PA‘:{,U 4y 8nd axiom 4 makes sense. Next, we check the relation.

Let
ay = Th[eXP(—Aa)]y Py =:Tr, [NHexP(—Az)L
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etc. Since
= Ny®1 +1&Ny,
by definition, we have
1" - 7] ! -
o, = 0,0y, Bu = ayfy + &4 B,
Furthermore, by Theorem 1 and Theorem 2.c, we know that
(1) As u — oo, the currents ay, By, &y, By, ), B2 have limits aeo, Boo, Goo, Hoo, AL, B, by

Theorem 1, Theorem 2.c.

(2) ﬁoyﬂm;ﬂorﬁm, o, Be, are cloged..
(3) Hau = -&Baﬁu, by Theorem 2.b,
(4) Set

Ao fou([?‘ - @O)d.—‘: o foru < 1;
fol(ﬁa - Go)& + INCI Boo)dt, forl < u< +oo;

etc. Then, by (2}, (3),
Gy =dg + 00y,

o, =ag + 60n,.

Therefore, we have

" ~ .
Qg =g ooy

1 1 1
[ or-m%=a [ (ﬂu-ﬁo)f‘ﬂ+a1m+ﬁoj( Ok

1

—3_-/[; aﬁu)ﬂu_-af ﬂuanu
1

Ans s d
=do [ (8. = Bo) 5+ e+ B0(fo / )
d
—af 3(8.) r;u——af Budi i
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And, similarly, for A € [1,+o0],
A d A d
[ @1 82)5F =0 [ (8= 0e) G+ aaiia — v
1 1 U
A -
+/ (au_aoo)ﬁood_u
1
_[A du
"‘B./; a(ﬂu‘“ﬁoo)'?u_"a./ .Bug"hd ﬁwéﬂw)T
A
=auf1 (B = o) 22 + i = Gaf
A -
+ 581 (Uu - ﬂoo)ﬂoud_u

= [ = du
-4 88 o ——8 ” = o 0o ) —.
]; (Bu = Poo )b j (BulBi — Boo B )u

Now we take the limit of the above expressions for each case as 4 — +00. Obviously,
by Theorem 1, and Theorem 2.c, the only problem will come from the last two terms. We
check them separately.

For any smooth differential form g on M, we know that if u > 1, from definition and
Theorem 2.c,

| jM (e = 100)] < \/-HPHCI(M)

A +o0
du du
_/1 (nu—nm)-u--*j: (nu—nm);--

Hence in D'(M),

We also know that c
PU.Tp, m(rl‘u '?co T

so in D R(M)' we have

A du Yoo du
./1 (nu_ﬂm)?_’_/l (Vu-noo)?'

By the fact that i and i are transversal, we know that, in D’ {M),

s
4 x du teo - du
[ B = [ on )BT

Thus, we get . .
= d o ~ d

50 [ b = ) e = 80 [ (1= m)fn
1 u 1 u
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in ’D;v, R (M). On the other hand, since f is closed, we have

ﬁuéﬁu - ﬁoogﬁoo = (ﬂu - ﬂm)éﬁu + 5(ﬁoo(ﬁu - ﬁoo))

Similarly, in D’ (M),

Na +N
4 +oo du
/ ﬁoo( Nu '700)_ b ﬂoo( - ;Ioo)"-
1 1 u
In particular, we may also have
_ A +o0
80 [ Bualia = )2 =00 [ (i = )

in D;\r'+N° (M). Now we need the following

Lemma. With the same notation as above,
(1) A (Bu = oot = [ (B = Ben)Biu 2, in Dl 5. (). T particular,

0 [ 6= ernn %2 5 [0 - b

in ‘D;v. +F (M).

(2) fl 9By - ﬂw)ﬁu%‘-—vf:o 8(Bu — Poo)iiu L2, in D;V‘+N' (M). In particular,

_[A . du - f® du
0[ a(ﬁu “ﬁoo)'h; " —’6/; a(ﬂu —,Bco)'?u_

in D;VR+N° (M).

Suppose we have thls lemma, then we may take the limit for A at any place above. In

particular, we get in P ,U ! P‘M’,U o

1 u $oo u
/(ﬁ::—ﬁ')f‘—+j By — gy
0 1 u
i + 00
=dol [ (G-t T+ [ (b= )T
1 - +oo . u
+aoo{/0 (ﬁu _.60){‘_“4'[1 (.Bu "ﬂoo)%"}

From here, we easily have the first assertion by certain trivial substitution.

Proof of the lemma. We only prove (1), as the rest is very similar. Obviously, the
difficulties in this convergence only occur near M”. For any z € M", let U be a small open
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neighborhood of z, and let I‘,:,o, m be as usual but with respect to M'. We know that, by
Theorem 2.c,

h’(ﬁu Beo)(€)] < \/—(1 + €1},
pU.l".w,m(ﬂu - ﬂoo) < %,

1687 (€)] < C(1+ [E2),
Pu,flél,a(f]u) <C.

Therefore, by definition and the condition N |p+ N Ng|p = {0}, from Theorem 8.7.4 of
[HG 83], we know that

(1) There exists a natural number & such that for u > 1,
lp(Bu — oo )$077u(€)] < f( L+ [eD)*.

(2) For any smooth current # with compact support in U, if A is a closed cone in R¥ such
that

AN(Np+ Np) = {0}
on (M’UM')I'\U, then for u > 1,

pU,A,O,m"((Bu ﬁm)aﬂu) <

B

Therefore, in D;v, + NR(M )

/ (8 - o), 22— / (B B 22

which completes the proof of the lemma and hence the theorem.

We have now finished our account of the theory of Bott-Chern secondary characteristic
objects in various contexts, except for the uniquness, which will be proved after the proof of
arithmetic Riemann-Roch theorem for l.c.i. morphisms. Next, we discuss the singularities of
the relative Bott-Chern secondary characteristic currents with respect to closed immersions,
which will be used in the ternary theory.

§1.8.5. The Singularities of
Relative Bott-Chern Secondary Characteristic Currents

In this section, we prove that, in general, the current chpc(n, ¢7;1,9:;€,9%) is smooth
on M — M’ and not locally integrable on M. In the process, we determine the singularities
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of chac(n, ¢";1,9:i;€,9%) near M’. In particular, if Y is a normal coordinate to M’, then
near M', chpc(n, 9", ¢i;€,95) ~ |Y|728™N | hence the integral of chpc(n, ¢";4,9i;€,9%)
on the complement of a § neighborhood of M' in M is equivalent to cLogé as § — 0.
Furthermore, we can calculate chpc(n, g7; 1, 9i; €, ¢°) as a finite part by subtracting off the
logarithmic divergence. All the results in this section will be used in next chapter to discuss
the deformation theory of relative Bott-Chern secondaty characteristic currents.

[.8.5.2a. The Singularities

We use the same notation as above. ldentifying N with the orthogonal to TM’ in TM
as C* bundle, we assume that ¢¥ is exactly the metric induced by gT™. For zo € M’,
let U be an open neighborhood of zo in M, and z = (z!,...,z') be a holomorphic system
of coordinates on I/ such that V = M/ N U is represented by z¥+! = ... = z! = 0. Set
z=(z',...,2%), y=(*"',...,7'). Then z is a coordinate system on V. For £ > 0, let
D, be the open ball with the center 0 and radius ¢ in C¢. Then for ¢ small enough, we have
V x D, C U. Usually, we use the convention that z € V,y € D,. If (z,y) € V x D,, we
consider y as an element of N..

On V x D, we have
N(TRM) = ®isj=p A" (TRM)O N (NR).

Thus, for any «, we have the decomposition a = ;‘;‘iiB"N a” according to the partial degree

in the Grassmannian variables of Np. We denote the maximal degree element in this
expression by a™*X. In particular, on M’, i.e. at (z,0), a™®* does not depend on the
coordinate system (z,y).

For u > 0, we have the superconnection
B, = VF + Vudy V.

Then we have the differential form Tr,[Ngexp(—B2)] on N, which in the sequel, we consider
as a form on V' x C°. Thus

Tr, [Nuexp(—=(VF)))™* = 0,

and as u — 0%,
Tr, [Ngexp(—=B3)]™®* = O(u).

Hence on N — {0}, we have a smooth form
Hoo du
ﬁp :=/ [2rri]’Il-,[NHexp(—Bf,)]"‘“T.
Q

In fact, as u — 400, the form Tr,[Ngyexp(—B2)] decays exponentially, so B¢ is well-defined
and depends on the coordinate system (z,y).
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Theorem. (1) For any a > 0, y € N — {0},

Br(ay) = —r Br (3).

(2) Let w(€, A¢) be the smooth form on M — M’ defined by the restriction of the current

chee(n, "4, 9i;€, )
to M — M'. Then there exists C > 0 such that, if (z,y) € V x D,,
lyl* 4™ N (€, 6¢)(z,¥) - Br(z, v < Clyl.

Hence the current w(€, g¢) — Br is integrable on V x D,.
(3) Let 8(£, g¢) be the smooth form on M — M’ defined by the restriction of the current

7(n, ¢"4,9i: €, %)

to M — M’. Here v is defined in subsection 4.a. Then 8(£, g¢) is locally integrable on
M, and coincides as a current with

(9" 9i;€,95).
(4) If the metric g¢ satisfies Bismut condition (A) with respect to g™ and g¢”, then

_ 1 1y A
ﬂp = —(dme - 1)'W(td 1) (N, gN)Ch(qsgn)m'

where A is the volume form on N with respect to the metric g%,

Proof. (1) Let ¢; be a group of diffeomorphisms of N: y — ¢*y. Then the group ¢, is

generated by the vector field Y = y -+ 3. Also

Tr,{Nuexp(~BJ)] = $1ogus2Trs[Nyexp(—B?)).
So if 7, is the map (z,y) — (z,ay)', then i 8p = lﬁp. But naturally we have

r Br(z,y) = auimNﬁp(:, ay).

Hence we have (1).

(2) In the sequel, the constants C' may vary from line to line. In the definition of

chpc in section 3, the first integral fol{ }44 defines a smooth form on M, and so does not
contribute to the singular part of the current ({(0) near M'. So we only need to consider
the other terms.

Let oy and &, be the forms on M and N respectively given by

ay := Tr,[Nyexp(-Al)], 6, :=Tr,[Nuexp(—B3)].
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+oo du +oo du
/ ay(z,y)— = j at’u/lyl’(zvy)—~
1 [ 2 u

u vl
On the other hand, if we denote oy = 7y, s, then by the proof of Lemma 8.1, we know that

if V and ¢ are small enough there exist C, C’' > 0 such that for u > 1,z € V, [y| € /4, we
have

Then

- C /
logau(z,y) — 61(z,¥)| < —HEXP(—C lyi).

Thus by the fact that
2dimN

(esa)z,y) = ; w20l (z, %),
we know that for 0 < n < 1,y <,
2dimN | |’
| E Pl a(2,) = 81(z, D) < Crexp(-C'"
So if |y| < €v/5, then n < 1, and
2dimN
P> Gl ootz 0) - bi(z eVl < CLL\/I_exp( —C'eM).

So we have proved
Lemma 1. With the same notation as above, if [y| < ¢, 0 < p < 2dimN,
+oa

u +oo u
P [ een - [ e

9l /¢ |

+oo
< Clyl [ exp(~Cletu)(evapt L.

Now we can deduce assertion 2 from the following

Lemma 2. As |y| — 0,
(a) |yl?4m¥| [7 ad(z, ) %] < Clyl.
(b)) For1<p< 2d1mN -1,

2dimN e du
|yl |l af(z,y)— < Clyl.

(o) g™V ] [F° [2miladt™N (z,y) 2 ~ Br(z, )] < Clyl.
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Suppose we have this lemma, then note that since the function 1/|y[*¥™"~! is integrable
near 0, by (1), we have (2).

(3) First, we have

VuTr,[8y Vexp(—B})] = ~iy Tr, [exp(—B})).

Therefore
VUTE, [8y Vexp(—B2)]™** = (.

Similarly as in Lemma 2, we see that

lyl* ™V [6(€, ¢ )z, v)l < Clyl.

As a consequence, 8(£, g¢) is integrable near M’.

Replat;.ing in the analogue the integrals 1+°°{ }4% by integrals IR 44 we find that

u Hl
if #9(€,¢%) is the density of the smooth approximating current 7°(¢, g¢), then we have the
uniform estimate fora> 1, z €V, ly| <,

lyPPi™¥16°(¢, ¢°) (=, )| < Clyl.

Thus as u — 00, #°(£,g%) — 0(£,g%). But v2(¢,5¢) = 6°(€,6°) and v°(£, ¢%) — v°(£,45),
so B(¢,9%) = (£, 9%).

(4) This follows from the fact that
Tr,[Nyexp(-BJ)}™™

—ulY[?
2

= — (i)™ (td~ 1) (= (VF)?) Trlexp(—(V")?)lexp( )2,

which may be proved as what we did for Theorem 7.1.c.
Finally we end this subsection by the following

Proof of Lemimna 2. Since

ba = T:/E&ls

B 8 (z,ev/us) = 8, (2, o).
(E\/_)p‘sl(zis\/_lyl) 65914( '|y|)

if y # 0, we have

(a) By Lemma 1, the assertion is a consequence of the facts that

+o0
/| 6%, (2, %) < C(Logly| + C"),

vl /e? .

and 2dimN > 2.
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(b) By Lemma 1, note that for p > 1, the integral

'/'%O (eVu)P 88 (z,6v/u-L du
4

3/43 lyl” u

is bounded as |y| — 0. Also, the expression on the right hand side of lemma 1 is bounded,
so we have (b).

c. Since 2dimN > 2, we have

lvi?/e? 2dimN 2dimN y ,du 2
[ evmpamnggamyz e iy 2 < ol
Thus by Lemma 1, we have
‘ ) +oo . im du 400 R d
[y 24N / [2rijalim¥ (g, )2 _ j simy (g V3 o)
1 u 0 ly| u

So we have the assertion {c).

~ 1.8.5.b. The Principle Part.

The form w(£, ¢%) is not integrable on M in general. However, by Theorem a.(2), we
know that it has a well—dqﬁned principal part, which defines a current. We now compare
the current chpc(n, g7;i,¢"; €, %) with this principal part.

Theorem. (1) For n > 0, let M" denote the set of points of M whose Riemannian
distances to M' are greater than 5. Let u be a smooth even formon M, then asn > 0
converges to 0,

f pw(E.g‘)+2Lognf i‘#(f (2] Tr, (N exp(—B?)])
M* M! N

has a limit, which we denote by f,, pwe(€, g¢)
(2) We have

fuchec(n,y";i,g‘;é,y‘)
M
:/ pu‘(f,gf)—/ i'p/ (2Log|Y | = I'(1))[2i)(Tr,[Nyexp(—B?)]).
M M N
(3) If the metrics g¢ satisfy Bismut condition (A) with respect to g™ and g7, then

/N (2LoglY'| - T(1))(2ri}(Tr, [Nyexp(~B2)))
dimiN -1
=~ (7Y (N ehln, ") 3.} +Log?).

k=1
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Proof. With the same notation as above, we choose geodesic coordinates in the di-
rections of TR M, which are normal to Tp M’ with respect to the given Euclidean scalar
product of TpRM. For ¢ > 0, set BR := {Y € R?;|Y| < ¢}; U = V x BF is then a small
neighborhood of z in M. We identify R?¢ with the real normal bundle Ng to M’ in M. Set

w = [2ni]70(6,66), 8= (277 B (6, oF).

(1) We may assume that the support of u is contained in U. The form ¢*u on V lifts
naturally to a form on V x R?¢. Moreover, i*u has partial vertical degree 0 and coincides
with 4%(z,0). Hence it makes sense to consider the following identity

/ Mw=/ (#—1|Y|gci'#)w+f Ly e (i p)w-
M M Mn

By the condition that u is smooth, we have
(2, v) — 1°(=,0)| < Clyl.
Thus, by Theorem 5.a, we have
lim.,,_,O/ (8= Liyjgei*piw =/ (= Ly )gei” p)w.
M= M
Moreover .
[omatue= [ inetn@-0+ [ 1ncme.
M= Mn Mn

So by the same theorem, we have
limq—D/ Liyjce (" p)(w = B) = / Ly)<e (i p)(w = B).
M IM
But by Theorem 5.a.(1), we have that if n < ¢, then
[ e wpe) = [ gy = o).
M» Me I I

Also, :
[ e w(w) = (Loge = Logm) [ *u [ inb.
M . M Sn
Now the assertion is a direct consequence of the following local result:

Lemma. Let Sy := {Y € Ng;|Y| = 1} be the unit sphere in Nr. Sn is naturally
oriented with n the unit vector in Ng normal to Sy and pointing outwards. Suppose
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a is a smooth form on N such that there exist ¢, C > 0 for which |a] < cexp(—C|y|?).

Then, on M’, we have
+00
,/“=/ / ind ads.
N SN J=0o0

In fact, by this lemma, we know that

/ infp =2 f (27 Tx, [ Ngexp(~B?)].
SN N

Therefore, as u — 07,

J o it mi|Tr, exp(—B?
[ mstest)+2108n [ v [ iy, Wrexp(-BY)

has a limit

]M ot (€, 6°) = /M(u e a) + ]M Liyice(i°p)(w — B)

+2 LOEE/M, i'p(/N Tr,[Nuexp(—B?))).

Proof of the lemma. First, by the hypothesis, we know that the integrate

+00
/ i, ¢, ads

-0

exists. Let F: R x Sy — Ng be defined by (s, y) — ¢,(y), then

j a=/ F*a.
N RXSN

Thus if j is the embedding Sy — Ng,

(Fa)(s,y) = j¢;a +ds ;" (iy $;a).
This proves the lemma.

(2) By definition, we know that

f /T du j TIY|?/e? du
ay— = U3 Y[ —-
Mp o o u M i3/ vy

We discuss the various cases.
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(a) If0 < p <2N —1, as T — 400, by the latest relation before Lemma 5.a.1, we get

T +o0
/ﬂ/af;d—u—/#/ a{’.d—“,
M 1 u M 1 u

which is a locally integrable current.

(b) Set

@ = am™™, § = §MEX,

T du T ” du
[ e = [ o an
MJo u MJ1 u

T
- . du
+// 1|y|5,ﬂ0(r,0)(&u—6u)—
MJ] u

T
- du
+/ / Ly|<ers®(2,0)8,—.
My u
(b.1) By the same relation as used in (a), a8 T — +o0, we have

T +o0
. - du - - du
/ / (B = Lyjgei® w)au— "’/ ./ (1 = Liy|gei® m)eu—
M u MJ1 u

Then

We consider this term by term.

and r .
’ - .d g _ = . du
/ / 1|Y|5e“o(z:0)(au - 6u)_u - / f IIYISt“'o(xa 0)((!,_, — by)—.
M u M1 u
(b.2) Since
§u(z,9) = b y
u(z,y) = TV iy 2 (2, m),
we have
T - du T|vi? 1 - y . du
0 _— 1 0 'TYICTR 6“ IRTY IV AN
./M-ll Liyicett (2,0)bu " _/M -/IYI’ |Y|<cHh (3'0)|y|2d1mN (z |y|) u

But for 0 < T < Te?,

1« y
D ———— —
ful\/uﬂgmﬁm-)“ (@, 0) pragmw b (@ )

=(Los (Vi/e) - Log(y 2 [ 70 [ inbuten)
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T Tl.”
- du 1 " , = du
jM-/; 1|y|$,[10(2,0)6u7 =§ Long i u/s / z,,éu—-u—
N
Te?
/: u/ / lLog(—)t,,lﬁ d_u
Sn Je?

Furthermore, by the fact that there exists a C > 0 so that for u > 1
| I:ngul < exp(-—Cu),
SN

we have

+o0 1L e? . 5 du +ool 1 ;
-/;N /': 2 OS(?)M u‘l"—'—-_ j;N jﬂ KWIS\NW ul(Z, |Yl)
+ du _
—‘/ —f Ly 12ebu
1 u Iy
Therefore, put (b.1) and (b.2) together, we finally have
1 T o - du .
l‘mT~°+°°{f / livigen (r,O)éu———LogT/ i p/ 5:)
M N u v .
- + _ du
_—/ 1 #/ lmg-/ 5, —.
Y N 1 u

Hnece, by definition, we have

/Mpc.'é(o)=1im:r_+m{ /0 : /M (e ‘ﬂo)dT"+ /lr ]M - {E
_F'(l)(fM#ag—/Yf'p-[val)_LogT/Y’i_pLgl}

Thus by (a) and (b) above, we have

2dimN -1

fucf(o //p(au_ao)_+ > / /
+/ (B = Liyygei®n) fﬂo duf{‘—‘

f tvise” p./m(_ - )__-/M 1|Y1>¢i'a“/1+°o Sui_u
v [ wao= [ v [ 8.
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So, by (1), we have

/MpCé(O) f pw +/ i ;U./[1|V|<¢(»6 /+m5 —)

+oo du ,
e [ 854 (0) - 2Logess).

+° _ du too _ dy

1 [ - by - 3 u—
/N[ ivi<e(8 ]1 =) = livi> /1 —]
1. du T du

=I/n 5= =.
Jtwse ;855 = 7850

So by the fact that &, = ¢ZL08U),,51, we have

' du Ldu =
1 by— = —_
_/]; IYI$r]0 u _/D = /Nlmgt\/:é:

=2] 1|y|5,(Loge~—Log |Y|)51, and,
N

o0 _ du +o00 du _
1 — = -
Jormoe [ 85 [ e

=2/N liy|>¢(Loge — Log [Y])é; .

on

Hence

/[1|v|<.(ﬁ / by ——)—1m>. /lmé —]_2/ (Loge — Log |Y)é,.

Therefore, we have (2).

(3) By an argument similar to the proof of Theorem 7.1.c, we have

vz
j exp( t';,l ) Tr, [Nyexp(—B?)]
N

1

~ e @) (Y (7)) Trlexp(<(97) ).

But for 0 < Re(s) < dim N, we have

+°° —tl}’]’ dt 2
) T =)

t‘ di _T(dimN - )
I‘(.s)/o (1+0)3™N ¢ — [(dimN)
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So, for 0 < Re(s) < dimlN, we have

2
]N ()" T [Nexp(~B)

I(dimN — s)

= _(2xi)dimN(td'l)'(—(VN)Z)’D’EQXP(—(V" ))) I'(dimN)

Each side of this equation extends to a meromorphic function of s which is holomorphic at
8§ = 0. Thus

f~ (2Log Y| - Log 2)Tx, [Nyexp(~B%)]

I'(dimN)

= —(2mi)3™N (1d 1Y (—(VV)?) Tr[exp(—(V”)z)]W.

Now by the fact that ['(s + 1) = F(s),rwe get

r'(dimN) _ o TN
Hamm) L (0 g«) E

which completes the proof.
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Chapter 1.9.
Ternary Objects And Deformation To The Normal Cone

In the previous chapters, we gave the theory about the Bott-Chern secondary charac-
teristic objects for various situations. Among others, the very important property for the
secondary characteristic objects is that they measure the change of characteristic objects.
Thus if we want to measure the change of secondary characteristic objects, naturally, we
need a kind of the so-called ternary objects.

Since we do not find any further application at the present time for the ternary objects
in general, in this chapter, we only deal with a special situation, which will be used in
the proof of the arithmetic Riemann-Roch theorem in part II: We discuss the deformation
theory of relative Bott-Chern secondary characteristic objects.

Before reading the first section, it may be helpful to look at the beginning of 1.9.2.
Also, if the reader is only interested in the deformation theory for the relative Bott-Chern
secondary characteristic forms with respect to smooth morphisms, he or she may just read
1.9.2. References here are [BGS 91], [Fa 92], [We 91].

§1.9.1. Basic Constructions And Facts

We recall the construction of the deformation to the normal cone for certain closed
immersions § : X «— Y and some associated facts. The advantage of this construction
is that, to study a property for an arbitrary closed immersion, we only need to study the
property for a section of a projective bundle. For topologists, this means that in a homotopy
ciass, one can find a good representative so that certain properties are very easy to check.
The references here are [SGA 6], [Ha 77] and [BFM 75].

1.9.1.a. Projective Bundles And Koszul Complexes

Let i : Y — X be a closed embedding of complex manifolds. Denote by Z; the ideal
sheaf of Y in X. It is a standard fact that if X is of codimension one, then I; >~ Ox(-Y)
and there is a canonical inclusion Ox C Ox(-Y). Also, there is a canonical normal bundle
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N; associated with i. We then have the following canonical isomorphisms:
'L NS~ 1) T2,

where A'*, the conormal sheaf, is the dual of the sheaf of the sections of N;. Moreover,
we have

: Tor? X (Oy, Oy ) = A'N;.
(The definition of Tor is given in I1.1.)

Let ¢ : V — Ox be a homomorphism of vector sheaves: Then the differential in the
associated Koszul complex K(p) := {A'V) is the complex defined by

df 1 AV — ATy

3
et A Aei Y (1)* lpler)er A AG AL A
k=1

Now let p: E — X be a vector bundle with £ the sheaf of holomorphic sections. There
i8 a canonical homomorphiam ¢ : p*£ — @ dual to the tautological section of p*E. This
homomorphism vanishes along the zero section s : X — £, and the associated Koszul
complex K(¢) := (A'p*£") is a resolution of 5.0 x. This fact has the following explaination:

Let p: P:=Px{(E ® C) — X be the projective bundle of E @ C over X. On P, there
is a universal exact sequence:

0—H—pE ®Op — Op(l) — 0.

As a divisor on P, Px(F) is given by the vanishing set of the map Op — Op(1) induced
from the inclusion Op C p°E* ® Op. That is, Px(E) is the locus on which Op C H. Since
aline L C E @ C, which maps surjectively to C, is equivalent to a homoemorphism C — E,
the complement of P x(E) is canonically isomorphic to E.

On the other hand, the map ¢ : H — p*£" induced by the projection from §*£* & Op
is an isomorphism on E, and on E, if we compose 8~! with the homomorphism induced by
the negative of the second projection, we obtain ¢. Let ¢ : H — Op be the homomorphism
induced by the negative of the projection p*£* @ Op. By the fact that this map is surjective
on P(FE) and is equal to ¢ on E, we know that the associated Koszul complex K(yp) is a
resolution of 5.0x, where s : X «— E C P(E @ C) is the zero section.

[.9.1.b. The Construction Of The Deformation To The Normal Cone

Let i : Y — X be a closed embedding of complex manifolds of pure codimension n.
Denote by :
7: W = Byx{e}X x P! = X x P!,



Chapter 1.9. 207

where By x{oo} X X P! denotes the blowing-up of X x P! along Y x {c0}. Let P be the
exceptional divisor. Then the map qw : W — P!, obtained by composing 7 with the
projection ¢ : X x P! — P! is flat. For z € P!:

“1,4 _ | X, for z # oo,
1 (Z)"{PUByX, for z = oo.

Also PN By X is the divisor at 0o on P, which may be identified with the exceptional divisor
on By X.

We know that P =~ P(Nyx{w}/xxpt) and
Ny x{co}/xxPt 2 Py Ni ® pLu Neosprs
where py : Y x {00} = Y and p : Y x {00} = {co} are the projections. Thus we have
P~P(N;® Ny p: ®C).

The bundle N p:, while trivial, is not canonically trivial. Hence P is the projective
completion of N; ® N3 p: with the divisor P(N; ® N jp:) 2 P(N:).
In particular, we have the following diagram:
P 3 w=pruByx

!l I =
Y x {0} & X x PL,

1.9.1.c. Deformation of The Resolution
At the beginning we should say that this subsection will only be used in section 4.

With the same notation as in subsection ¢, let i be a vector sheafon Y andlet € — iup —
0 be a resolution of i.n by a bounded complex of vector sheaves on X. We deform £ through
a complex € on W to a Koszul type resolution of 8,5 on P, where 8: Y — N; x N;‘l,p, CP
is the zero section.

First we construct the complex (€, df ). By the canonical exact sequence
0 = Op1(~00) = Opr — Ocq — 0,

if we let K™ be the complex Opi(—co) — Op1 with Op: of degree zero, we know that
P’ £ ®q" K™ is a resolution of is. . Thus, by exp. VII, lemma 3.2 [SGA 6], if we let

G:=m(p{®¢K”)
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be a bounded complex of vector sheaves on W and

H i= Ker(rh(N7 ® Niyyp) = Op(1)
be the vector sheaf on P, we see that

* Hp(G) = () (N K Op(m).

Here, H,p(G) denote the cohomological sheaves of G. In particular, it is locally of projective
dimension one, by the fact that P is a divisor of W. Hence if £ is a vector sheaf and

a:& = (Joo)u(NPH @ Op(npn))

is an epimorphism, then Ker « is also a vector sheaf. As a consequence, and by an induction
on i > 0, we know that Ker(d?) is a vector sheaf on W. With this, we may define £ as
foliows: '

For k£ > 0, £ 1= Ker (df) ®ow Ow(koo). Here
Ow (00) := gjy Op1(0), Ow (ko) := Ow (co)®*.

Here ¢ : X x. P! — P! is a projection to P!, and qw := g o . Similarly, we denote the
projection X x P! — X by p and pw :=por.

Next we must give the definition of the boundary maps. By definition, we know that
Gi = piw&i @ pwi-1(—00), df(z,y) = (d(=z) + (-1)'y, &_,(v)),

where we identify y € piy&i—1(—o0) with its image in pjy & under the natural inclusion.
Hence, §; is isomorphic to the fiber product of the diagram:

& —  pwéi-1((i ~ 1)o0)
! l

Pwéilicc) —  piybi-i(ico).
The differential pj, d; extends to a homomorphism df : f; — 6-.-_1. Then, the restriction of
P;vdf ® ldoy (ico) to f.- has its image in pj, £i—((i — 1)oo). But (d€)? = 0, so the image is
contained in &_y C ply&i—1((i = 1)oo0). On the other hand, dlw_w, = p_;,',(df). So d¢?
vanishes on W — W, and hence on W. In this way, we get a complex (£,d¢) on W.

In addition, we know the following

Corollary. Let U = X - Y. The restriction of € to U x P! C W restricts to a split
acyclic complex on U x {00} C By X C W,.

Indeed, this comes from the fact that if £ is acyclic, then € is the pull-back, via 7, a
complex on X x P!, which is acyclic when restricted to X x {0}.
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Now we discuss (£, d€) in more detail. Let 7 :Y x P! — W be the natural inclusion.
Since [.Oy xp: and Ow_, are Tor independent, the above construction of £ commutes with
the restriction to Y x P! C W. The restriction of £ to Y has locally free homology:

My (i"€) =Tory *(Oy, )
. =Tor)*(Oy,0v)®o, 1= NN} oy 1.

Hence, associated with i*£, we have two natural short exact sequences of vector sheaves
associated with its kernel and its image:

0 — Z,' hand i'fi band Bi — O;
0 — Biyn — Z; — Hi(i"§) — O

Therefore, g;lyxpl is obtained by pulling back the extension from the inclusion Bij(—o0) —
B; and twisting with O(ico). Thus, restricted to Y x {00} C Y x P!, we find that since
Opx(oo)lm jaud lepl,
Eilyxpr = (Zi® Nyoypi) @ (Bi @ N.;:/}l)'
Also the differential df- restricts to the map d; : (z,y) — (7:(y),0), where
Yt Bi ® ;o-,lpl —Z1® l_/lpl
is the natural inclusion. So if we let £ be the split acyclic complex with
Li = (Biy1 @ N yp1) @ (Bi @ N o)

and the differential d;(z,y) = (¥,0), then we have an exact sequence:

0 — £~ Elyxioo} — Bizo N (N] @ Noosp1) @0, 1 — 0.

Before we go further, let us look at an examble with 7 = Oy. Suppose that i : ¥ — X

is defined by equations z; = ... = £, = 0 with the z; part of a system of coordinates on
X. Let £. = K.(x) be the Koszul complex associated with the map O% — Ox which sends
a to ax. Here x := (#1,...,zn). Then K.(x) is a resolution of #.Oy. On W, we have an
epimorphism

W ® Ow(-00) — Ow(-P)
(a,b) —  ax+b.

By considering the projective dimension, we know that the kernel of this morphism is a
vector sheaf too.

Proposition. There is a canonical isomorphism of complexes £ — K.(p) with

v : pwI(o0) = Ow
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induced by the negative of the projection map O}, & Ow (—00) — Ow(—00). Further-
more, we have

(1) f_.|g,,x is split acyclic.
(2) E"M@N‘; . is the tautological Koszul compiex.
/P

(3) €. is a resolution of [,Oyxp:.
Proof. The complex py €. ® K.*° is the Koszul complex associated with the maps of
sheaves

Ow ® Ow(—c0) — Ow
induced by the inclusion Ow (— P} C Ow. Hence the Koszul differential

N O% @ Ow(—00) — A'~H(O & Ow(—c0))
is the composition of the following maps: the canonical map

N (O% & Ow(—0)) = A ~HO% & Ow (-P)),

which has the kernel A'Z; the injective multiplication
AHT) @ Ow(—P) — AY(T);
and the natural inclusion
ANYT) = AN O ® Ow(—oc;)).

Hence the inclusion . _
A'(T) — A (O ® Ow(—o0))

identifies A*(Z) with Ker (d¥). In particular, we may identify A'(Z{c0)) with &. Next, we
check (1), (2) and (3).

The negative of the projection Of & Ow (—00) — Ow (—o0) induces a surjective map
Ow(-—00)® Ow — Ow,

and hence, a map I(0co) — Ow . On the other hand, there is an induced morphism between
Koszul complexes A-Z(c0) — A (O (00) @ Ow ) which gives the commutative diagram

ANOR) =& = A(Z(x) —A(OF(0)®O0w) = /\"(OW(OO))el/\“‘(Ow(OO))
|

l

N-HOW) =bicr — ATHI(0)) — ATHOR(0) ® Ow) = A™HOw(o0)) & A~ (Ow(c0))

by .
a — (a,(-1)di(a))
l |
da —  (di(a),0).
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(1) Since Ow (—P) ® Ow(—o00) = Ow(By X), we have an exact sequence
0 — Z(o0) — ?V(OO) & Ow — Uw(ByX) —- 0.

The restriction to By X of the map Ow |g, x C (O (o0) ® Ow)|ayx to Ow(By X)|p, x
vanishes. Therefore, on restricting to By X, Z(oo) splits as a direct sum

I(o0)|Byx =Z1® Op, x C Ow(00)*|g,x ® OB, x.

The Koszul complex associated with Z{co} — Ow therefore restricts to the Koszul complex
for the negative of the projection Iy @ Opg, x ~ Op, x, which is split acyclic.

{(2) This comes from the fact that on P, T(co) restricts to the kernel of the map
Tp(Ni @ Nooyp1) ® Op — Op(By X N P),

i.e., to the analogue of the vector sheaf H above. Hence, with a similar discussion, we have

(2)
(3) It is sufficient to show that the map £. — 1,0y xp1, induced by the map

EO = 0w — t.0yxp1,

is a quasi-isomorphism of complexes. By the corollary above, we may deduces it in a
neighborhood U of Y x {co} C W. Since £.lw-w_ = p€. is a resolution of I,Oyxc and
¢.1By x 18 acyclic, if we choose a local system of equations for co in P!, then z; = ... =
z, =t = 0 is a local system of equations for Y x {oo} C X x P!. Hence 7 is isomorphic to
the kernel of the map Opt' — Ow defined by

n
(a1y...,8pn,0) — Ea;zl + bt.

i=1

Hence we may choose U so that Z%,...,£a ¢ is part of a system of coordinates on U, with
Y x P! C U given by £t = ... = 2 = t = 0. Therefore the map O}, — O}}! sending
(@1,--.,ap) to (ag,...,8n,— ;a;z,-/t) is an isomorphism onto T(0o0). Composing with the
negative of the projection O} = O3, ® Ow — Ow, we can identify the Koszul complex
AZ(co) with the Koszul complex K.(Z,..., %), which is a resolution of juOy xp:. This
completes the proof.

Now we deal with the general situation.

Theorem. With the same notation as above, we have
(1) & is a resolution of i.(py 7).

(2) f-iayx is split acyclic.
(3) There is a natural exact sequence of complexes of vector sheaves on P:

0= 7hl. — [ > K(p)@npn—0.
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Proof. (1) This is a local problem on X. So we may suppose that E C®(K(x)® V),
where ¢ is acyclic and V is a vector sheaf on X such that j°V ~ 5. Thus £ ~ CEBK(x)@pWV

with ¢ acyclic and A(x) is a resolution of I,0y cp1. Hence £ is a resolution of Oy p1 ®
PV =~ L.(pyn), which gives (1).

Note that £.|w_ is split acyciic, and hence E.]qvx is split acyclic too. So by (1) of the
previous proposition, we see that at least locally, £.[p, x is split acyclic. However, by the
construction, we get £|p, x -8, xnp i9 split acyclic. So (2) comes from the fact that all the
splitting described above are compatible, and uniquely determined.

(3) By the construction of E- , we know that there is an epimorphism of vector sheaves
on P:

€1 f & — Hi(piw€ ® (Ow(—00) — Ow))(ico) = A (H) @ Th,

where M is the kernel of N @ Noypr & Op — Op(By X). Also by the expression in the
proof for (1), (2), we know that this process is compatible with differentials. Hence ¢ is a
morphism of complexes and, on X, its kernel is {|p. On the other hand, by the inclusion

Tp(Bit1 ® Niyp1) C 5(i°6 ® Op1(00)) = (joo)* 7" (£i{io0)),
we have a morphism of complexes (joo)*Th7 — (joo)*(€ ® (Ow — Ow(o0))). Hence it is
enough to prove that the image of this morphism is contained in £ and i is equal to the kernel

of £. Again this is a local problem. Hence we may use the expression E~(OK (x) @ pwV
and we see that £ ~( ly xpr = Kere, which completes the proof.

§1.9.2. Deformation To the Normal Cone: Smooth Situations

In this section, we discuss the deformation theory for the relative Bott-Chern secondary
characteristic forms with respect to smooth morphisms.

[.9.2.a An Axiom

Let i : X — Z be a closed immersion over Y with smooth structure morphisms of
regular arithmetic varieties f : X — Y and g: Z — Y. Then we have the following diagram
for the deformation to the normal cone as stated in subsection 1.b:

X = Xx{o0} S PW@Ox)+BxZ=We — {)

l ! Jeo ! l
x & xxP' L ByeZxPl=w L P! (*)
1 T Jol 1

X — Xx{0} & Z x {0} = Wo —~ {0}
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Moreover, for f = g o i, we may have the associated picture

X x {oo} &= P(N @ Oyx)
! fo-o \ /goo !
Y x {o0}
X x P! L w
1 F\ /G 1
Y x P!
X x {0} < Wo
fo\ 7 9o
Y x {0} ,

where fo= Fo= f, go =Go=g9, 1o = Ip = i and fo, goo, ico are the restrictions of
Fooy GooyIo to P(N®Ox), respectively. Let W, := WL NW2 with W) := P(N @ Ox)
and W2 := BxZ. Then W), and W2 intersect transversally along 8We,. Choose hermitian
metrics on the normal bundle of { and relative tangent bundles of f and g. Let (£, p) be a
hermitian vector sheaf on X. Assume that

0—=F. —il—0

is a vector sheaf resolution of {.£. Put hermitian metrics on F. so that Bismut condition
(A) is satisfied. Further, choose hermitian metrics for each pair so that Bismut condition
(A) holds. By the results in Chapter 6 and Chapter 8, with certain acyclic conditions, we
have the following correspondences: (Here, for simplicity, we will omit the pull-back symbol
by the projection p.) -

(1) With respect to the smooth morphism F, we have

chac(€, p; feos Poa) —

fooue(ch(€, p) td(feo, Peo)) — ch(fooe ) fooup);
chpc(€, p; F,pr) «—

F.(ch(&,p)td(F, pFr)) — ch(F.E, Fup);
chac(&, p; fo, po) — '

Jou(ch(€, p) td(fo, p0)) — ch(fo.&, foup)-

{2) With respect to the closed immersion /, we have

chBC(‘f'.; Piioos Poo) — '
td= (Mo, Poo) ch(£, p)boo — ch{Foo-s Poo-) '
chac(€,p 1, p1) —
td~ (N7, pr) ch(&, p)6r — ch(Fi.,p1.)
chpc(€, p; io, po)
td ™ (N, po) ch(&, p)éo — ch(Fo., po.).
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(3) With respect to the smooth morphism G, we have

chpc(Feo- Poo i Joo ) Poo)

Foou{ch(Foo ., Poo-) td(goa:s Poo)) = h(goos Foo -, Joos Poo-);
chpc(F,p.;G,pc) —

G.(ch(F., p)td(G, pg)) = ch(G.F., G.p.);
chac(Fo-, po.; 90, po) —

gos(ch(Fo., po.) td(go, po)) — ch(go. Fo-, Joupo.).

Obviously, by the construction of relative Bott-Chern secondary characteristic forms
with respect to smooth morphisms, we know that, for (1), there is the following relation:

dtf/PIUOSIZIQ]Fth(&p:F,pF)
=chgc(€,; fo,P0) — chac(E, pi foo) Poo)
+];l[loglzﬂdd‘chgc(é'.p;F,pF).

This may be thought of as a trivial deformation theory of the secondary characteristic
forms, since both sides now are just zero. Nevertheiess, this sheds a light about the theory
of ternary characteristic objects. So basically, we may hope to have the following relations:

dd* [ NoglsF|chac(€.pil, o)
=chpc(€, p;io, po) — chpc(E, piico, Poo)
+_/Pl[log|z|2]dd%hac(5,ﬂ;I,PI);

dd* fp lloglz "] chac(., 3G, po)
=chac(Fo-, £0-390, p0) = chac(Foo ) Poo i Foo, Poo)
+[|DOE|ZI2] ddcchgc(]:.,p.;G,pG).
P
In this section, we only study (3). We delay the detailed discussion about (2) till the end
of this chapter.

For (3), in order to make the situation simple, we will assume that the closed immersion
is a codimensional one closed immersion: In this case, we have a natural vector sheaf
resolution for {.&, that is,

01,6 - £ =il =0,

which comes from the structure exact sequence

0TI =0z —-0x—=0.
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{On the other hand, for {2), since i, is just the zero section of the projective bundle, we
may use the Koszul complex to make a precise calculation.)

In the following, let £ be the complex Z,£(Bx Z) «— E£(Bx Z) of vector sheaves on W.
We endow £ and T := I; with hermitian metrics in such a way that on an open neighborhood
U of W2 = BxZ, the metric of Z; coincides with that on Ow . (This is possible since X x P!
does not meet By Z in W?} Hence we also have a metric on Z £.

With this, from the above discusssion for (3), we introduce the following

Axiom. (Upstairs Rule) Let 1 : X — Z be a codimension one closed immersion. Let
(£,p) be an F-acyclic hermitian vector sheaf. Suppose that £0.€ (resp. i0.£) i8 a go
(resp. geo)-acyclic vector sheaf. Then, with the same notation as above, we have

dydy /PlChBC(E'aPB-;G:PG)[l08|2|2]

=chpc(E o, PE (w, 90, P0) = chBc(E'|wy, 1 PE:(y1 5 9o0r Poo)

+ [ Guleh(E,pr ) tW(Ta(logoo), pc) loglz — [ ch(G.E",Gupe.) loglaF).
P! ) -3

Essentially, this axiom is the downstairs rule for ternary objects (in this special content).
In general, by the fact that the secondary object may be thought of as the one which
measures the change of the first level objects, e.g. chpc measures changes in ch via dd°, so
for the secondary objects, we may also want to construct a ternary object which measures
the change of them. But we do not want to go further here as there is no further application
now. Instead, let us say a few words for the structure of the supposed axioms: By comparing
Proposition 1.1.3, or better I1.1.3.a, with axioms for the secondary objects, we may say that
the axioms for ternary characteristic objects should have the same structure as these for
secondary objects, i.e. the dd® equation to measure the change of secondary objects, the
functorial rule, and the uniqueness rule. Furthermore, one may use the so-called #-calculus
developed by Melrose and others to check the above axiom, with the special attention on
8Ws. But from my point of view, all of this needs another book. So we will not really do
in this way. Alternatively, we go directly following Faltings.

To do so, the first problem we meet is that the projection from W to Y x P! is not
smooth: How we can define the relative Bott-Chern secondary characteristic forms with
respect to this projection? Note that now we are working with a very special situation, i.e.
the deformation to the normal cone with a codimension one closed immersion, we see that
once we use the logarithmic relative tangent vactor sheaf at infinity, we may do the same
thing as what we did in Chapter 1.6. For more details, see the later part of this section.

Next we denote by F- the complex f.(Z;£) « f.(£) on Y. Then, on Y x P!, we have
an augmentation v : F'(— G.(E")) — G.(E' ® AQ%'), which vanishes on Bx Z. (Note that
here F- — G.(E') is in fact a quasi-isomorphism.) For each t € P! — {00}, let v, be the
restriction of v at ¢, i.e. ¥ : F* — Fio(E'|w,). Also let voo : Foo. — Gu(E'|wy, ) denote the
augmentation at infinity.
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Note that
dd°*flog|z|*] = 6o — beo,

so to check the axiom above, as in 3.7.b for the construction of the classical Bott-Chern
secondary characteristic forms, we need to show that for the section of the augmentation v,
of v at t € P! — {00}, we have the following

Theorem. With the same notation as above, then
lim¢_ e chpc(cone(r,)) = chpc(cone(vy)),

where chpc(cone(r.)) is defined by using the same process as in section 6.2 for the
morphism v..

1.9.2.b The Proof Of The Theorem

We prove the latest theorem in the following steps.
Step I. Find A Uniform Coordinate System:

From the previous discussion towards the relative Bott-Chern object, we saw that a
suitable local discussion is necessary: For doing so, we need use the normal coordinate
system. So to prove the theorem, we should have a uniform way to choose such coordinates.

But this is not an easy task. In fact, when t goes to the infinity, the hermitian metric
on the relative tangent bundle of G becomes to singular near 8W,, = WL NW2. So,
the natural choice for the metrics does not work directly. To solve this problem, as we said
before, instead of using the relative tangent bundle of G,, we consider these associated with
the logarithmic tangent bundle at infinity, i.e., we take the dual of Qw,yxp:(logcc). In this
way, by the fact that the closed immersion is of codimension one, we know the resulting new
metric on W; looks like a small perturbation of a translation-invariant metric on X x C.
Thus we see that now we can take the limit at infinity with respect to this new metric.
Hence, one may hope that we can start from the very beginning to establish estimates with
respect to this new metric.

But by doing things like this, we meet other two problems: The first is that, at infinity,
the metric is no longer Kahler; while the second is that as ¢ — oo, the volume of W, with
respect to the new metric become infinite; therefore, we cannot make the L?-estimate by just
considering the usual sup-norm estimate as in section 3.4. Fortunately, these two problems
oniy happen near infinity around §W,,, where the associated complex is in fact split. Hence,
the problems are not that serious.

More precisely, we go as follows: With respect to the new metric, we find a good finite
system of coordinate charts, uniform for each W, in the sense of estimations, by the fact
that locally W is isomorphic to the product of X — §W,, with the product of two unit
disks {{(z,w) : |z] < 1,|w| < 1}, and the projection is given by % = zw, and hence if we
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use log(z) and log(w) instead, and identify the punctured disc via exp(2=ir) with H/Z,
where ‘H is the upper hali-plane, then the metric on W, looks like a small perturbation of
a translation-invariant metric on X x C and similar for Wl — W, and W2 — 8W,,. In
particular, we can define Sobolev-norms with them (see Chapter 3): For any positive integer
s > 0, H, denotes the completion of C§® under the square-integration of all derivatives up
to order s, and H_, is its dual. Also we see that the new metric is complete. Since C§° is
dense in H_,, there is a uhiform Garding inequality for the #-Laplacian A, and A extends
to a self-adjoint operator. Therefore, all process are quite regular ast — oo. However, as we
said above, the price we pay for this is that the volume of W; approaches infinity as t — oo,
so that the estimates in sup-norm do not imply L%-estimates as easily as before. Also an
integral operator need not to be a trace-class anymore.

Step II. Construct The Relatice Bott-Chern Secondary Characteristic Forms chpc.

As in section 6.2, we know that there is a family of super-Laplacians A2, defined as
the limit of the ordinary Laplacians coming from blowing-up the metric on Y together with
a rescaled factor u for the total metric (or better, for the fibre metric). So finally we can
define the chpc-class via the Mellin transform, i.e. the regularized integral

+o0
Tr, [Nexp(- AZ)] 22,
o] u

Then via the cone construction, with this process for the augmentation v, with ¢t € P!, we
could get chpc(cone(v:)). With this, what we intend to show becomes

lim¢—. oo chpc(cone(v,)) = chpc(cone(veo ).

Step III. Relate the Objects with respect to the New Metric And the Oid Metric.

We then have the associated relative Bott-Chern secondary characteristic forms with
respect to two kinds of metrics mentioned above. Now we discuss their relations.

Under an infinitesimal change of metrics, the derivative of the regularized integral

too du
Tr, [Nexp(~A2)] 22

is the Schwartz-limit
HmS" o4 (Q exp(—A2)),

where @ denotes the hermitian operator describing the change of metrics. If Q has support
in U, this vanishes because of the splitting, except for terms related to the augmentation
v. If we replace v by sy, with a parameter s between 0 and 1, the derivative 33"; of
this class is equal to the Schwartz-limit lim3<"4 of the derivative (described by Q) of
Tr,(Npexp(—A2)), where Np denotes the number-operator which is identically 1 on F
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and vanishes on £°. Integrating we obtain that the sj‘.—-derivative of the effect of the change
of the metrics is given by the difference in Schwartz-limits

Hm™ o Tr, (N exp(~A2)),

taken once for the origianl Kahler metric and once for the logarithmic non-K&ahler metric.
But for the original metric*this term does not depend on s and is equal to the Chern form of
F' with the associated L3-metric, while for the new metric the term converges nicely as we
move our family to the infinity along P'. (See the last step for more details.) The similar
result also holds for the integration against “,—‘. So, with respect to the change of the metrics,
the terms contributes a correction-term which converges for the family move to the infinity
along P! to the corresponding term at infinity, and thus does not affect the conclusion of
the theorem. In particular, we only then need study the situation for the new metric. Thus,
by definition, there is no problem at finite places: Only the singularities around 8W, cause
difficulties.

Step IV. First Attack Around 6W,,.

By definition, at infinity, there are two irreducible (smooth) components. ie. W,
which is a projective bundle over Y, and W2, which is the blowing-up of Z along X. On
the other hand, passing to the limit above, only W/, is concerned. Hence, we need take care
of the intersection of W2 and W2,.

We now introduce some twisted objects: Define a second family of vector sheaves
E* = (&(Bx2)=E(Bx2)), F*=((0)—(0).

The advantage for using these twisted objects is that, on one hand, the original theorem
holds directly for £* and F'* since everything is split and hence all chpc-classes vanish,
while, on the other hand, on U, E- and E** are isomorphic, and the augmentation v has a
small norm. Thus if A defines a heat kernel exp(—uA) on Wl — 8W,,, by the fact that,
for the new metric, the volume is not finite, we now have the problem that the kernel is
not of trace-class. Nevertheless, if we identify E- and £* on U N W], and consider the
difference of the heat kernels exp(—uA) and exp(—uA*), we expect that the singularities
around Wy, will cancel out. The same thing should also hold for the super-analogue, if
we consider the difference chpey — chpey: We shall see that the difference is integrable. In
particular, we could introduce the combination chpco — chacg,, although the individual
terms are not defined.

Claim. With the above notation, if
lim,_.oo(chgc, - chgc;) = t:.thm - chgc;o,

then the original theorem holds.

Proof. Suppose we have the equality, then we can repeat the same procedure for the
embedding X — WL, which is the deformation of i : X — Z, with respect to the original
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Kahler metric. Nevertheless, for X — WL, the deformation to the normal cone gives that
all fibers W, are isomorphic to WL . Hence, the original theorem holds for it, since there
is no essential change. Moreover, our construction for two closed immersions X — Z and
X « W, gives the same chpco, — chacy, at infinity. Hence if we add up all the pieces, we
have the claim and hence the theorem.

So for the proof of tht theorem, it is sufficient to verify the following
Lemma. With the same notation as above, we have

limi..o(chnc; — chpey) = chace — chpeg-

Step V. Prove Of The Lemma.

To prove the lemma, we need some technical results from the very beginning. Since the
situation is quite similar for £-*, we only formulate them for E-.

Note that the cone construction of v¢ is associated with F" @ Fi.(E" @ /\Q%:f), when we
study the chpc-classes in the sequel, we usually ignore the F'-part, since it is on the base
and hence it does not affect our discussions seriously.

Now what we need to study is to get the limit near W, when { — co. So basically, we
must discuss the following two cases:

(1) Away from OW,.
(2) Near OW,,.

We discuss (1) first. In order to explain the idea, we start with a primitive case: Let
D =8+ 8" + vy + v} denote the Dirac operator, and A := D?. So note the fact that now
we are working away from the singular part, so everything goes well. In particular, we may
hope to have the following

Fact. Let K;(z;u;y) be the heat kernel e~*2 on W,. Then, uniformly on any compact
subset of (We — 8Woo) % ]0,00[ Xx{Wew — W), the family K(z,y) converges to the
heat kernel Koo(z,y) on WL [[ W2, where K.(z,y) denotes the asymptotic expansion
of K.(z;u;y) when u — 0.

Proof. First, by that fact that for any sequence of {¢,} where t, — 00, we can find
a subsequence such that K {z;u;y) converges in the C™-topology, uniformly on compact
subsets of (Weo — OWoo ) X J0, 00 X (Woo — 8W ), we only need show that this limit K(z; u;y)
is just Koo(z;u;y).

For doing this, by taking lim;_, o, a3 C™-functions on Wy, — W, we have
8
(B_u + A)K(z;u;y) = 0.
Then, from the heat kernel analogue of the fact that for all A,

1—e ™ < Ay,
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we have, for ¢ € CP(W:,),

KL, (u)(8) = @liza < ullAgla.
Therefore, for ¢ € C§(Woo — W),

limy oK (u)¢ = ¢,

which gives the initial condition. Thus, from the uniquness of the heat kernel, by the fact
that, for such a ¢,

IDK(w)éllLs, |AK(u)dllL

are finite, so by a cut-off process, we see that as distributions, at infinity,
( o +A)K(z,y)=0
Ju ¥)=10.

This completes the proof.
With this, we may state the results over Wy, ~ 8W,, as the following

Theorem. On compact subsets in W, — W, we have

(a) For u -~ 0%, the asymptotic expansion of K(u,z,y) converges to Keo(u,z,y)
uniformly. .

(b) For u — 400, K¢(u,z,y) decays uniformly exponentially.

In particular, we have a complete control on W — 6W,, uniform on any compactum.

Proof. QObviously, (a) is a direct consequence of the fact above by the local nature of
the expansion. For (b), we need to control the eigenvalues of the Laplacians on cone(1;). In
fact, by a standard process, we see that (b) is a consequence of the following

Proposition. There exists a positive A > 0, such that, uniformly on each fiber
F Yy),y€Y,and foreach t € P! - {00}, the Laplacian on the cone cone(v;) has all
eigenvalues at least . The same is true for cone(ve).

Proof. First, let us discuss the situation for ;. Obviously, the problem may only
happen near co. Suppose near co, the assertion is wrong. Then there are a sequence
t, — oo and eigenfunctions f, on W, := W,  of eigenvalues A, so that A, — 0 and
[Ifall = 1. By Sobolev estimates, as in section 3.1, we see that f, are uniformly bounded in
the C*-topology. Hence, by the Rellich lemma, we may assume that f,, converges on each
compactum in W — W, and on Y. The limit must be annihilated by As. Now we claim
that the limit of f, is identically zero.

Indeed, near W) , we may suppose again that we have a sequence of eigenfunctions f,
of eigenvelues A, such that A, — 0 and ||fa|| = L. As above, we may also assume that f,
converges to f and that over U N W, f, converges to zero. In particular, f should vanish
ideitically on U, Aszf = 0 and ||f|| = L. Thus, with respect to the original Kahler metric, f
is a non-trivial harmonic form. Thus, cone(vo ) should have non-trivial cohomologh, which
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contradicts the choice of F-. Therefore, we may assume that f,, concentrate their mass
around W2, where £ is metrically split. Thus, by a cut-off process, we may also assume
that f, is supported in U N W,. Now, by the condition that A,, — 0, (that this limit must
be annihilated by Ajs,) we have ||A5fa|l < 1. On the other hand, since E- is split on U, so
there Ay is the sum of Id and a positive operator. As a direct consequence,

< AéfﬂlAé.fn >2>< fnafn >=1,

which offers a contradiction. This completes the proof of the proposition, and hence the
proof of the last theorem.

With the above primitive situation, the super-analogue is not vary hard to obtained:
As in Chapter 6, using the perturbation expansion, the above assertions also hold for the
super-case A2 as well as for the operators A2 +a N,,, with a a small parameter. Moreover,
the result is C™ in a. Some care is needed since for small u, A2 and N, may contain
Grassmannian terms which scale with negative powers of u as u — 0%, However, note that
we now also have the right cancellation, we then could derive estimates for the asymptotic
expansions. This completes the discussion for (1).

Next, we discuss case (2), i.e., consider what happens in an open neighborhood U of

w2,

On U, we can first identify the two complexes E- and E'*. Then, the Laplacian A on
E' is equal to the sum of a local operator A*, which coincides with the Laplacian for £*;
and an integral operator A’, which comes from the augmentation » and is determined by
global sections of F. So, it offers a trace-class norm O(¢) over a e-neighborhood of W2 in
the original metric. Furthermore, this primitive picture also holds for the super-analogue,
since, for the super-analogue, the difference A2 — A*? is a sum of linear terms in u with
coefficient an integral operator of Grasmannian degree zero and a constant term of u with an
integral operator of Grassmannian degree > 1: The linear term comes just as before; while
the constant term is made up from covariant derivatives (in the Y -direction) of elements of
F-. Thus note that now we use the logarithmic metrics, so the above difference vanishes
on 9W.,. Hence again the difference operator has trace-class norm Q(g). Next we use this
conclusion to deduce the assertion in the lemma.

First we give its primitive form. Note that now we need to consider the kernel for
the difference of the associated generalized Laplacians, we begin with an expression of this
difference.

Let i, be a cut-off function with its support in a 2¢-neighborhood of W2, which is 1 at
the points with the distance at most € from W,,. Also assume that ¢, has support in U,
that the C™-norm of ¢, with respect to the logarithmic norm ia uniformly bounded, and
that o, acts as zero on F-. With this, since, on U, we may identify £ and E-*, it makes
sense to consider
Le(t) = e (Ko(w) - K3 (w)) e

a8 an operator on Fi(E* ® AQ&}‘ ,Y), where, as usual, K denotes the heat kernel. Thus,
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we have 5 P
(A° + a)fdl(“) =A% (Ki(u) — K{(u))ee + %L‘(“)

=A"p (K (u) — K} (u))p.
+ (5o 0 ~Ki(u) - a 5a [t (W)ee

=A'90¢(Kt(U) K¢ (u))%
— pe(AK(u) — A"K{ (u))p
=[A%, el (Ki(u) — K7 (u))pc
— pe A" Ko(u)pe,

where y, A’ has trace-class norm O(e).

From this relation, by the initial condition that lim, _g+L;(u) = 0, we have

Ly =u [ K@) g (Ki(ow) = K; () peda
- u/ K; (au)p A’ K‘-(bu)ga.da..
a+d=1

With this expression for L;(u), we may deduce the sturcture of Li(u) as follows: The second
term is of trace class norm O(cue~*¥) uniformly in ¢ for u large, for small u, hence is O(¢)
in the asymptotic sense, i.e. all terms in the asymptotic expansion will be of trace-class
norm Oge) To determine the first term, we apply the same procedure from the right, i.e.
apply (z; + A*) from the other side, then we have the following expression for L,(u)

Ly(u) =u2/ {K{ (au)[A7, o2 (Ki(bu) — K7 (bu))pae[pe, AT]K{ (cu) }dadb
atb4c=1
+ O(eu?e™?¥).

Similarly, when we introduce the number operator, for Tr,[N, L:(u)], we could have the
follows:

Tr, (Ny Li(u))
—u? / Te, [N KC (0u)[A" 0 Joze (Ko(bs) — K (b)) pae [er A"} K E (cu)ldadb
a4bd4e=1
+ O(eu’e™)
=u2/ Tr,[K{ (cu) Ny K (au)[A*, oo (Ko (bu) — K7 (bu))pae (e, A"]]dadd
+b4c=
+ O(eule™)
- f T*aiai[e“'"(“'*“”)}a:a[zs',s,oelmz(m(bu) - K7 (bu))p2elpe, A*])da
atb=1 a

+ O(eu®e™**).
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So the above trace is an integral over Supp(de,)?. Thus, for a fixed £, we are in a compact set
of W — W, so everything has good asymptotic expansions and decays nicely as u — 400,
etc. In particular, it makes sense to use the Mellin transform, i.e. to form the regularized
integral

R A RS
Furthermore, by the above discussion, it follows that up to a term O(g), as t — oo, this
converges to the corresponding integral at oo.

By taking a limit for the blowing-up of the base metric on Y, we may also get similar
asgertions for the super-analogue as we did before: We need to replace auA® by aA:?, etc.
Thus, up to a term O(¢), as t — oo, the regularized integral converges to the corresponding
regularized integral at co. But these integrals have their contributions to chpe; — chpcy,
which comes from integrating the appropriate kernel over Supp(¢p,). So, finally, we have

limy—.o(chpcs — chpet) = chBcos — chBeg,

which completes the proof of Theorem a.

§1.9.3. Euler-Green Currents

From now on, we study the deformation theory of the relative Bott-Chern secondary
characteristic currents with respect to closed immersions. Before doing so we give one
example for such a current, one which will also be used in the deformation theory.

Let M be a complex manifold and (£, p) a hermitian vector bundle on M. Denote the
total space of E by M¥, and let i : M — M¥ be the natural embedding. Then, the Koszul
complex (AE®,iy) gives a resolution of i.0py on M and the normal bundle to M in M®
is exactly E. Let gF be the metric on AE* induced by p. We are going to calculate the
relative Bott-Chern secondary characteristic current chpc(E, p;i,pi) on ME.

The basic idea is as follows: Let ¢ be the Euler characteristic form. Then we know that
c¢h = etd™!. Therefore,

ddCChBC(E’P;i;Pi) = td_l(Ex P)(6M - C(Efp))

Here we look everything on the total space M. Thus it is natural for us to consider how
to measure the difference 63y — e(E, p). Therefore, we introduce the Bott-Chern secondary
characteristic current with respect to this difference, say epc(F, p). Then we try to construct
it. Thus finally, we may use it to deal with the original relative Bott-Chern secondary
characteristic currents. The main reference here is [BGS 91].



224 Ternary Objects and Deformation Theory

[.9.3.a. The Bott-Chern Secondary Characteristic Current of A Koszul Com-
plex.

Let M be a complex manifold of dimension { and (E, p) be a hermitian vector bundle of
rank k on M. Denote the total space of E by MZ, p: ME — M the natural projection, and
i: M — MF the natural gmbedding. Let E* be the dual of E, and let AE* = &%_, A/ E*
be the exterior algebra of E*. For any y € E, the interior multiplication operator i, acts
naturally-on (AE*)p,). Then the Koszul complex (AE*, ;) gives a resolution of 1.0 on
MPE ie. we have the exact sequence of sheaves

0= Ou=(A*ED S . 2 04s L iiOxy — 0.

Let g€ be the metric on AE* induced by p. Denote by V¥ the canonical connection on both
of them. Thus the adjoint i of iy is §A. Since the normal bundle N to M in ME is exactly
E, we know that Bismut condition (A) is automatically satisfied in this special situation.

Even though MZ is noncompact, we can taik of a current on M€ which comes from a
smooth form with a compact support on M £, Also we see that the results in the last chapter
are valid on M Z. In particular, we have chpc(E, p;i, p) the Bott-Chern secondary character-
istic current on ME associated with (AE*,i;). So by the fact that chpc(E, p; i, pi) € Pﬂs
depends only on p. For short, we denote it as chgc(E,p). .

Let € be the ad-invariant polynomial on {k, k) matrices € : A — DetA. Then e(E, p)
and td(E, p) are smooth forms on M. We call e(E, p) the Euler characteristic form of
(E, p). By the classical theory for characteristic forms, we know that

ch=etd™},
so when lifting such forms to M ¥, we have
dd*chpc(E, p) = td™ (E, p)(és — e(E, p)).

Next, we give a precise description for chgc. To do so, the basic idea is to use a locally
integrable current, which comes from td™'(E, p) and the difference 55y —e(E, p) in the sense
of dd®.

If we let w(E, p) be the restriction of chgc(E, p) to MF — M, we know that w(E, g&)
is smooth on M ¥ — M and by the finite result in section 8.5, we know that w(E, p) entirely
determines chpc(E, p). We take this as a start point.

The canonical connection VE defines a horizontal subspace T# MZ in TM¥® so that
TME = THME @ E. As usual, we let QF = (V)7 be its curvature.

Next we introduce Mathai-Quillen’s convention. If Y € TR ME, let YV be the compo-
nent in EFp with respect to above splitting. If A is an antisymmetric tensor in End Er, we
identify A with the 2-form on TR M Z:

Y, ZeTaMB <YV, AZY > .
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We also denote this 2-form by A and its exterior powers by 42, ..., A*. If A is invertible,
we may also define the forms A~! ..., A~*. If Pf(A) is the Pfaffian of A, the forms
Pf(A)A-!, ... ,Pf(A)A"‘ are rational functions of A, which may be extended by continuity
to any arbitrary A, which may not be invertible. In the following, we still denote them as

above, even if A is not invertible. Similarly, we have the complex analogue: Let Jg = +/—1ig
be the complex structure of Er with Ig the identity map of E, then for any j > 0,

QF QE ,
= it ~j
det( o + “E)(Qm' +bJg)
are defined, as forms on ME.
Theorem. (1) On MZ — M, we have
QE
w(E, %) = —ai[det,(IE - exp(T + blg))
QF
Log( + (217(— + 6J8))")]s=0-

(2) Let v(E,g%) on ME be defined by y(E,¢%) := —chBC(E, g%). Then v(E, ¢%)
is a locally integrable current on MZ and

H(E,0%) = Saer(Te — exp(Ges + 1)) (- o)y (L 4 28)1)1.

Proof. 1. This is a standard argument. Let Ny be the number operator, V := iy +i; =
iy +§A.If Ay = VE + /uV, then by the proof of the second relation in Theorem 7.1.c,
we have

Tr,[Nyexp(—A2)] = b[det(IE - e:tcp(Q‘LJ + big))

e

exp(—u{ 3 +(QF + bIg)™"))]s=0.

Hence on ME — M, if s € C with Re(s) > 0,
Lo e
F(_)/ u*Tr, [Nyexp(—Ay)]
[det(IB ~exp(QFf + b[E))(I i +(QF +5I5)" 1) ls=0.
As a consequence,
1 *,
73 j w'Te [Nyrexp(~ AZ)] 21(0)

[det(IE—exp(QE+bIE))Log(E P (@ + bI5) omo,
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which gives (1).

(2) By Theorem 8.5.b, the finite part theorem, we know that the current y(E,gF) is
locally integrable. Let

7= / v, [V exp(~ A 2o
Then 7 defines a locally integrable current on ME, and

: 7 O chac(E, p) = (2ri)/*[2xiln.

On the other hand, by the fact that iy (Qf)~! = —(QF)~'Y, we know that
Tr,[VuVexp(=A})] = iy Tr, fexp(-Al)]
— iydet(I - exp(@))exp(~u( L + (@%)1))
= — udet(I — exp(QE)) (RF)~ ‘}'exp(—u(1 I’ +(QE)~1y).
So we get.
1 2

n=—gdet(l - exp(Q%)) (QF)~ 1y (% +(QF)-H)-L,

But the form (2%)~'Y is of l'o:lma.l degree -1. Thus

lYI

[2rily = —3det(] — exp(@®)) (2ri)(@E)y (- 4 (0)-1)

which completes the proof.

1.9.3.b. Several Intermediate Results

We start with a description of exterior differentiation acting on smooth sections of
A(TpME) on ME. From the decomposition of TR M€ induced by the canonical connection
VE we know that

NTRME) = ATRM)S(AER).

Hence, by antisymmetrization, we can define an operator V¥ acting on the smooth sections
of A(To ME) by letting ®VE 3 be the corresponding j + | form on M%, and
*VE(ap) := (da)B + (- 1)*la(*VEp),

where a, 8 are smooth sections on M® of A(Tq M) and A/ Eg, respectively. On the other
hand, QFY is a 2-form on M with the values in Er C TRMZ. So the operator iqsy acts
on AT ME.
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Lemma. We have the following relation
d =a VE + insy.
Proof. We denote the lifting of V¥ on THME also by VM for any torsion free

connection on Tr M. Thug the connection V® := VM @ VE defines a connection on Tp M E
with torsion T. Hence if Y e ME U, U’ € (TﬁME)y, then

Ty (U,U") = QF(p.U, p.U")Y.
The connection V® induces an operator 2V® on ATy M€ similarly as above, we have
d="v® + ir.

Now the result comes by considering the actions on a, 3 as above. In fact, since Q€Y takes
its values in Ejy; p, insya = 0 and s0 *Vo = da. Similarly, we may get (*V+igzy )8 = d 8,
and hence the lemma.

We can now introduce several families of differential forms on ME. For any u > 0, let

_QE 2
ay :=det( 2‘:'_ )exp(—u(%+(03)-1));
1. -qF IO -1y).
bu =5 det(o—)(= Q%)Y exp(~u( 5= + (@F)71));
—QF ? E
Cu :=%[det( 2?:‘ +bIE)exp("u(‘l"Y§L+(2”(%;+bfg))-l))]a=o-

Then we have

Theorem. (1) For any u > 0, the form a,, is closed and lies in M= Furthermore, a,
is integrable.
(2) (Double Transgression Formula) For any u > 0,

) 1

aﬂu =- Q—ﬂ’t:dbu'
-0

by = ™ Cu
In particular,

8 1

—a, = ——dd°c,.

fu u

Proof. (1) By the definition, we know that ay is a form of type (k, k).

By Bianchi’s identity, we know that °VEQE = 0. So *V®(QF)~! =0, and (QF)~'Y is
a form of degree —1 taking values in E. Thus by the lemma above,

d(QF) 1y = —2(Rf) ! - |Y|%
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So v

d(iTl +(@QF)y Y=o
As a corollary, da,, = 0.

(2) From the proof of (1), we know that

QF Y aEy-1
ay = det(-—a';‘:) exp(ad(ﬂ ) Y).

Hence

9 1

6ua" =3
=d(5(A5)"Y a,).

det(- ) @) 1Y exp(-u(ZL 4 28)1)

Let # be the Kahler form of Fgr. If X.,Y € Er, #(X,Y) =< X,JgY > and the element in
E* corresponding to X is given by

V—=1l{=ixen +ixan)d.
If for any invertible skew-adjoint matrix A in End (E), let 84 be the (1,1)-form on E defined

by
84U, V) = 8(A”IU, ATLY),

we have as an element in Eg
ATYY = V-1(=igyen +iyan)f?.
On the other hand, if d€ = 8% + 0% is the exterior differential on E, set
8 = 0F i, yeom, 0F =0F +iya.
Clearly (8%)% =0, (85)? = 0. But the Lie derivative with respect to AY is given by
Lay = (df +iay)? = 8505 +050%.
Hence by the fact that L.y 84 = 0, we have
GEAE o4 = —955 04,
Note that since 84 is both 8- and §%-closed, we have
V=182 - 68)94 =AYy,
Y

T-‘I-A—l =—(3f+5f)

ATy
2
=—/=15505 92
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In particular,

IYI i’r’l2

(=—+4Y)=0, B(—+ANH=0

Therefore
det(—~—-—---)( Ay exp(--u(| i + A1)
=2m (8% — 8A)[det(—5;)9" exp(—u(% + A7)

However, if A is not invertible, the form
det(;’r ) 84 exp(— u(I * + A7)

cannot be extended by continuity to a well-defined form. Nevertheless, the form

[det( (o + ble) exp(-u(L 4 (2 4 415)) o
l?

2 fdet( (2= + bIs))he oexp(—u(' +A7Y)

-udet(——)2=r9“exp( u(l +A47h)

may be extended by continuity for arbitrary A. Thus by the fact that

2 et~ + bla Mo xpl-u( oL+ 471

is 0%, 5%-closed, we have

det(= ) (~ )1 expl-u( XL 4 471

2
=;a 21n'a a[d U= (55 +bh-;))exp(—u(l | +(2”"(%+“E))"))]»=o-

In particular, now both sides can be extended to arbitary A. So by the lemma above, we
have the first two relations, while the last one is a direct consequence of these two.

Next, we establish the convergence of the above currents. For this, we have

Theorem. For any n € N, there exists a constant C > 0 such that if 4 is a smooth
differential form on M with a compact support in B, := {Y € MZ : |Y| < n}, then,
foru>1,

C
[, wow = au) 57—||P||01(M5);
u pby| <— Ey;
.| /M | < \/—”P”C'(M)
< — .
[, ned s=lllerns)
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Furthermore, if U,T', ¢, m are taken with respect to the embedding i : M — MF as in

7.1.d, there exists C’ > 0 such that for u > 1,

A}

PU,I‘.w.m(au - 6M) <

pU,I‘,:p,m(Ubu) <

1

loglogla

pU.I‘,tp.m(Cu) < \/E

Proof. .We only prove the first part, as the proof of the second part is similar to the
proof of the correspondine part of Theorem 8.1.

Let 7, be the map Y — /uY. Then
ay = T':Cll, ub, = T;bh Cy = T;.cl'

Let oy := 77!, We have

/MB pay =]Ms(a.‘.#)al;
fm pub, = /MB(";#)bx;

/ peu = / (asm)er.
ME MEB

Hence, as u — 400, we have

]ME pHay ~fME(i'#)Lan;
/Msuubu —-»fm(i'ﬂ)/be;
/Mﬂ Heu _F./Mﬁ(i-#)-/sq'

Now the result follows from the facts that

/al=1, /b1=0, '[01:0.
E - E E
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1.9.3.c A Special Bott-Chern Secondary Characteristic Current: The Euler-
Green Current

By the convergence of section 3.b, we can use the Mellin transform to go further: For
8 € C,0 < Re(s) < 1, let pg ;5(s) be the current on M%, defined by

1 [* . du
¢E.p(5):=m o ve

+o0
(B, p) = /0 budu.

From Theorem 3.b, we know that ¢g ,(8) and ¢(E, p) are well-defined. Further, pg , may be
extended to a meromorphic function of s on the whole complex plane, which is holomorphic
at s = 0. Hence ¢; ,(0) exists and is equal to

! du e dy
'/0 (CU—CU)T""/; CUT_F(I)CO-

Now the Euler-Green current, a special Bott-Chern secondary characteristic form, denoted
by epc, is defined by

enc(E, p) := [27i]p ,(0).
Since ‘E is the normal bundle to M in MZ and ¢ is a closed form, we have the following

Theorem. (1) The total degree of ¢(E,p) is 2dimE — 1. The current epc(E, p) is of
complex type (dimE — 1,dimE — 1). )

(2) The wave front sets of the currents epc{E,p) and ¢(E, p) are contained in Eg.
Moreover, we have epc(E,p) € P‘{‘,“.

(3) The following equations of currents hold on M%:

Qi

18-8

de(E, p) =e(E,p) — bp.

In particular,

dd°egc(E, p) + 6m = e(E, p).

Moreover, we know that the singularities of epc(E,p) and ¢(E,p) are given by the
following
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Theorem. (1) The currents epc(E, p) and ¢(E, p) are locally integrable.
(?) The following equations hold

a Qe
enc(E,p) = = gr(det(=(5— + b1g))

ﬂ

. QE
Log( + (211':'(—. + b)) Ys=o

[det( ( + bIg))

{L ¥ [* e 2 (=2 bIg))~ 'Y Ys=o;
wlg+ X (i 4 015) ) Yo
2
4(E.p) =pdet(= )1y (L (e
QE dlmE o

E
——det( :)( 2m Z |Y|'U(( QE) )J_l

In particular, if dimE = 1,
' &(E, p) = Log(|yl*).

Proof. First of ali, we have

ulY|? 9 e
7 5-5Id et(— (T+bfs))

dimE

Z( 21n(— + b1g) )_l)jz—z]uo-

cu = exp(-

Then, we know that in the sum, the last index is dim E — 1, not dim E. Moreover, we see

that
+oo 1Y12 C(1 4+ Logpy), ifk=0;
t < Y1/ :
/1 exp(= 2 )“ {IYI % ifk > 0.

But, Log|Y| is locally integrable on MZ, and for 1 < k < dim £ — 1, the function |Y'|~% is
locally integrable. Hence epc(E, p) is locally integrable. Similarly, we can show that ¢( £, p)
is locally integrable. This completes the proof for (1). For (2), we only need to do the same
thing as what we did for the proof of Theorem 3.a.

2. It also follows from the above discussion that 2 holds. Furthermore, if dimE = 1,

then
E

J .0
epc(E, p) = [5('2";; + b)Js=oLogly|* = Logly|*.
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1.9.3.d An Explicit Formula For chpc(E,p)

We now compare the current chpc(E, p) with epc(E, p).

Theorem. We have the foliowing relation

thac(E, p) — td"\(E, p) enc(E, p) € P,

Proof. We can use the Mellin transform to obtain the following: For s € C,0 <
Re(s) < 1, &(s) is defined by

()= s || ([2m(Ts Wiexp(~A3)
Ttk " A=A
—td-l(E,gE)cu+(td_1)'(E,gE)6M)iut£.

Then, by the asymototic expansion of Tr,[Nyexp(—A2)], we know that &(s) is a well-defined
current on MZ, which extends to a current so that it is a meromorphic function of 5 € C.
Furthermore, the function is holomorphic at s = 0 and

6'(0) = chpc(E, p) — td™'(E, p) enc(E, p).
On the other hand, by the first equation in the proof of Theorem 3.a, we know that

(27} Ty, [Nyexp(—A2)]
QE

E
=%[td—l(—(% + blE)) det(—(?—m_ + bIg))

2 E
exp(—u(% + (Qwi(%; +b1g)™")))]o=0-

Therefore
[2ﬂ"i](Tr, [NHGXP(-Az)]) - t'd-l(E?P)cu = —(t'd_l)’(E: P)Gy.
In particular, for 0 < Re(s) < 1, we have
1 +oo du
—— =1y . 1] _ hadad
§(s) = —(td )(E’,p)[,(s) A u’(ay — 6um) —
But, by Theorem 3.b.1,
to dy
Gy — 8pg = dd° e

So, for 0 < Re(s) < 1,

du

+ o
5(s) = (td*Y(E, p) da“[ﬁ jﬁ we, )
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Since

1 -/+w u'e é}f - PE,0(8)
T(s+1) Jg “u T s

and ¢g ,(0) = co is a closed form, we have

5(6) = (4d™"Y(E, p) dav(222L2). -~ e,y
Hence "
7(0) = da=((ed~"Y (. p) 2220y,
In particular,

chpc(E,p) — td~'(E, p) enc(E, p) = dd‘(((td'l)’(E,p)w)-

Thus, the theorem comes from the fact that the wave front of the current ©% ,(0) is contained
in . ‘

The advantage of this result is that we may choose a locally integrable representative
current

td_l(E’p) eBC(E: P)

in the class of the non-locally integrable current chpc(E, p). For certain purposes, this result
is very useful.

Next we consider egc(F, p) a8 a function of p. By the fact that

[, Tosizfau=o,
Pt

we make the P!-deformation and have the following
Theorem. In Pff’/Pﬂs'u,

eBC(E1p) - eBC(Ev P') = CBC(E:py P,)'

1.9.3.e. Compatibility With Sections

We consider now the compatibility of the above process with a certain kind of sections,
which will be used in Part II. Let s be a holomorphic section of £ on M which is transversal
to M in ME. Namely, we assume that if z € M is such that s(z) = 0, and d(s) is the
differential of s at z, then Im[ds(z)] = E. Let M’ := {z € M : s(z) = 0}, then on M’', ds
identifies E|p with the normal bundle N to M’. Let i be the embedding M’ — M. Then
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the chain complex (AE®,i,) = s"(AE",i,) provides a resolution of i.Op. Hence we can
construct chpc(E, gF;5) on M associated with (AE*,s). By axiom 2, we know that

chgc(E,g%;s) = s”chpc(E, ¢7).

Also, the current epc(E, ¢F) can be pulled back by the section s. Then, s'egc(E,gE) i1sa
current on M which lies in P}, and

dd®s*epc(E, gF) = by — e(E, g%).

Furthermore, if £/, E are two holomorphic vector bundles on M, we can consider £ and
E’ as sub-vector bundles of E @ E’. In the same way, the manifolds MZ and ME’" are seen
as submanifolds of ME®E' which intersect transversely, and MEN M E' — M. The vector
bundles E and E’ lift naturally to ME®E' If ; = (y,v') € E® E', set o(z) = y, o(2) =
Then 0,0’ are holomorphic sections of £ and E’, which vanish exactly on M€ and M
respectively.

Let p and p' be hermitian metrics on E and E’'. We equip F @ E’ with the metric
p® := p® p'. By above discussion, we know that o"epc(E,p) and o' epc(E’,p') are
well-defined currents on ME®E’ If we imitate the proof of the axiom 4 for the relative
Bott-Chern secondary characteristic current, we have the following

ser’ sos
Theorem. In P:{lNuME‘/P::EuMF"

enc(E @ E',p®) =e(E',p')o" enc(E, p) + enc(E', p')pre
=e(E, p)o""epc(E', p') + enc(E, p)oy=.

Accordingly, we let s, s’ be the holomorphic sections on M of E, E’, respectively, chosen
as above, and let

M :={zecM:s(z)=0}, M :={zeM:s(z)=0}.

Then the section 8" := (s,8') of E® £’ is chosen for E®E'. Let M" = M' N M’. Then,

M 0
in Py, s P::'u 47+ from the above theorem,

8" epc(ED E', p®) = e(E',p")s*enc(E, p) + 8" ec(E, p)bas:.

§1.9.4 Deformation of Relative Bott-Chern Secondary Characteristic Currents

In this section, we give the deformation theory for the relative Bott-Chern secondary
characteristic currents with respect to closed immersions. We will use the same notation
as above. We know that there may be have two different relative Bott-Chern secondary
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characteristic currents with respect to ip and i, respectively. As before, a quite naturai
question is how we can measure the difference and this leads us to introduce certain ternary
objects. But as in the case of smooth morphisms, we only prove a weak result in this
direction. We consider this more carefully. For short, we let N = N;, N’ = Nyxpyw,
p=pz:W — Z and let ¢ = wp : P — X be the restriction to P. We fix hermitian metrics
g% .9, on N, n and ¢¢ on £, which satisfy Bismut assumption (A). If we put the standard
Fubini-Study metric on Op1(—o0), then by the fact that

Nyxpyw = pxNxz ® ¢xOpi(~00),

we have a hermitian metric ¢ on N’. We also choose hermitian metrics gé on £, which
satisfy Bismut assumption (A) with respect to g” and gV'. Since BxZ does not meet

X x {oo} at We,, we may assume that the restriction of g¢ to Wo = Z x {0} coincides with

g€, and that the restriction of g¢ to BxZ C We, is split acyclic. Hence as a holomorphic

hermitian vector bundle, the normal bundle of X in W, coincides with N with the metric

gv.

Note that I, defined in 2.a, is also a closed immersion, and hence, there are associated
relative Bott-Chern secondary characteristic currents. (As before, we omit the notation of
the pull-back from the projection.) That is, we have a current

chac(m g0; 1, 9';€, 6°).

On the other hand, we can also consider the natural current Log|z{* on W, which may be
defined as the pull-back of Log |z|? from P! with z the standard coordinate of P!. Near
P(N), we have the equation z~! = Z2y; and we know that Log|z|? is integrable on W. Thus

by Theorem 8.2.4 of [H5 86], since WF(chpc(n, gq; I, 97;€, g'f-)) C N'j,and gw : W — P!
is a submersion near Y x P! C W, we have that

WF(chpc(7,9q; 1,9%; €, 95)) N WF(Log |2[?) = 0.

Hence by Theorem 8.2.10 of [Ho 86], the product of currents Log |z|? (chpc (7, gn; gli€, gg))
is well-defined. The usual rules of differential calculus apply to this product. In particular,

50

57 (chnc(m, 90 I, g'€,4%))

30 .y
ors(Log |21*)(chBc(m, gn; I, 9" €, 65)) — Log |2

] - 8 - -
=m((3L08|Z|2)Cth(m gni 1, 976,65 + -2-,;;(LOEIZI2 (Bchac(n, gn; 1,975, 6°))) € PP

On the other hand, we have

3 Log|z]* = 6w, — bw..,

so the restrictions of the current cth(q,gn;I,g’;.‘,", gf) to Wy and W, respectively, are
well-defined with :

ChBC(’LQ‘n}I’ g!;gage)lwtj = ChBC(’T;Qq; iug‘l;fr gE)
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Therefore

chac(7,99: 1, 9" €, 65)6w, — chpc(n, pign; 1,973 €, ¢ )ow._
—Log|z|*(td ™" (N’, g™ )ch(n, 95))6x xp1 — ch(£, ¢¢)) € PW°.

But, if R is the curvature of the canonical connection on ©O(~1), from the definition,
td-l(Nr'gNl) = td-l(N. gN) + (td_l)'(N, QN)(#)
T

Thus, by integrating along the fibers of ¢ : W — Z and noting that

j [Log {z[*)du = 0,
Pt
we have

chBc(7, 903, 956, 95) = walchnc(n, gn; 1, 07; €, 6)6w..]
+ . [Log|sPch(€, D] = [ | Loglel (G0l (™Y (N, g™) chln, v
P! m

-8 o 9 o
= 2_m'¢o((a Eog Izlz) chpc(n, ns 1, gl;éy 95)) + %‘P.(LOS |Z|2 (SCth(q, anid, gl; £, gf))).
So in order to investigate the weak deformation theory at the level P/P°, we have to evaluate

- @u(chne(n, g0 1,97 €, 65 bw..).

But this is about the deformation at infinity and it is natural for us to use the Koszul
complex to study it. So we need to recall a few facts from Section 1:

Let H be the associated vector bundle of H on P. Then, by the inclusion H —
¢"(Nx/z ® N5 p1), we have an induced metric ¥ on H. On K;(p) = AV H, we take the
metric induced from g¥. Let o be the canonical section of H* and ¢*(epc(H*, 97" )) the
correaponding Euler-Green current on P.

For each j > (0, we have the exact sequence of vector sheaves:

Aj 0= 7pL.— f = jo€ — K.(p) @ xpn — 0.

/

Let L be the associated vector bundie of
L =(Bjy1 ® N p)) © (B; @ NI pw).

We can use the orthogonal direct sum of the induced metrics, so that the complex L attached
to £ becomes split acyclic, as a complex of hermitian holomorphic vector bundles. So we
metrize the complex A; and we get a smooth current chpc(A4j,p4;) on P.
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Now we have

Claim. In P§/PE°,

@« (chac(n, gn; 1, y’;f,y‘.)ﬁw )

=614 (H", 9o e H*, ™ NIch(n,ga) — (3 ~(~ 1P chnc(4s , pa, Nlx.

j=0

When the claim is proved, or equivalently, we have the following

Theorem. (1) As currents, modulo the 3- and §-exact currents, we have the following
relation -

chac(n, g2:1,9":€,4%)
=[g.[td ™ (H", g7 Yo" (enc(H", 9" ))lch(n, g,)

— @u[Log|z[*ch(€, ¢F)] = 4[> (~1Y chpc(A;, pa,)]I6y-
ji=0

(2) The integral ¢.[td™"(H*, g% ) o*(epc(H", g7 ))] along the fibers of ¢ is a smooth
closed dlﬂ'erentlal form on X, whose cohomology class does not depend on the choice
of the metric g%

Proof. (1) By the eatlier discussion, the firat statement is a consequence of the certain
statements for wave front sets: By Theorem 8.2.13 [H3] and the fact that  is a composition
of an immersion and a submersion, if w is a current on W, then

WF(p.w) C {p€ T — {0} : ¥"p € {0} UWF(w)}.

Thus it is sufficient to show that the wave front sets of

(dLog|z?) chec(n, gn; I, g7;€, o)

and ) .
Log |z (8chpc(n, 9q: I, 9" €, 6%))

are in the sum of conormal bundles to W, and to .X x P! in W. This, by definition, is the
conormal bundle to W, on P(¥), which is a direct consequence of Theorem 8.2.13 [H& 86).

Before going further, we now we prove the claim. From the very beginning, we use the
superconnection formalism for ~-system. We have A,, etc. Let k : W — W. Near P(N),
Woo is the union of two smooth manifolds intersecting transversely along P(N). If aisa
smooth form on W, the form k*a is unambiguously defined on W, — P(N), and defines
an integrable current on Woo. Furthermore, as a current on W, k*(a)éw,, is exactly the
product of the currents a and Sw_, .
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For 0 < Re(s) < 1, let C;-"'(s) be the current on W, defined by

(s = ﬁ fo " W[k T, (Nygexp(— A2)]
. + 7 [(4)7 (N, 0" )eb(n, g 6]

Since the forms 'I\',[Ngexp(—/iz)] decay exponentially as u — <400 on compact subsets
of W — X, and in particular near P(N), the finiteness theorem given in chapter 1.8.5
shows that the above process is well-defined. Furthermore, this function of s extends to a
meromorphic function, which is holomorphic at 8 = 0. So we may introduce the following

Lemma. (a) With the same notation as above,
chnc(m, 9ni 1,971€, 06w, = [271)C"(0) bwoo.
(b) CE-"”(O) =0on W, — P.
Proof of the Lemma. (a) We show this fact as follows: First, replace on both sides the

integration from 0 to co by integration from 0 to a finite T, and then equality is an obvious
consequence of the previous considerations. Finally, let 7' — +4o0o. Since the truncated

integrals approximate chpc(n,9q; 17, g€, gf-) Sw, in Dj\..i(W), and the multiplication by
bw,, 18 a continuous map of Dy.. (W) into D'(W), we have the above equality.

(b) This follows since on Wy, — P, the complex (£, &) splits as a hermitian complex,
A2 = (VE)? +ul;.

Now we continue the proof of the claim or (1) of the theorem. The support of the
current C€9°'(0) is contained in P. More precisely, the restriction of C;-”’(O) to P is exactly

the singular current associated with the complex £ |p of hermitian vector bundles. This
provides a resolution of the direct image 3.7 of # by the immersion s : Y — P.

Now consider (E-”'(O) as a current on P. By the exact sequence

0—7pL. — f*é = K.(p) ® xpy — 0,

we wee that on P, £ is split acyclic even with the metrics. Then, by axiom 3, we know that

[273)(E°(0) = chac(K(¢) ® Tpn, g') — 3 (~1F chpc(4;, pa;)

j=0

in Pf/ Pf'o. Here g' denotes the induced metric.



240 Ternary Objects and Deformation Theory
By Theorem 3.d, we know that
[chac(K.(p) ® mpn, g') = td™ ' (H™,9™") o*(enc(H", 9" ))lch(n, ")
lies in }3;'0, which is the claim. This completes the proof of (1) too.

(2) We now use the Cltern-Weil theory to prove that ¢.[td™ (H*, 9% )o* (eac(H*, ¢ )]}
is closed. Let @ be the bundle of unitary frames in N¥. Then @ is a U(e)-principal bundle,
which we equip with the connection V. With the canonical metric on C¢, there is a natural
action of U(e) on P(C* & 1) as a group of holomorphic transformations and

P=P(N®1)=Q xyx P(C°®1).

On the ’fiber’ we can form P{C* & 1) the holomorphic hermitian vector bundle Hyg, with a
morphism g : Ho — Op(cep1), 2nd hence, obtain the holomorphic hermitian Koszul chain
complex AH, = K(pg). The group U{e) acts naturally on Hg as a group of holomorphic
unitary transformations, which preserves the map ¢q. So

H=Q xy() Ho, K(p) =Q xy(e) K(po).

But the connection ¥V induces a connection on the fibration P — X. In particular, the
curvature T of P — X is obtained by llftmg the action of (Vx)? on the fibers N to P.
Hence T lifts a 2-form T on X with values in the infinitesimal unitary transformation of
H along the fibers. Let Ty be the horizontal part of T° with respect to V. Then TH isa

2-form on X with values in the skew-adjoint endomorphism of H, so that T = -V Ty.

The connection V¥ induces a splitting
TaP = ¢"TrY & Ty P,

and if R is the restriction of (V¥)? to vectors of T P, then (V#)? = R + Ty. Therefore,
we have the follows.

(a) On Ty P, (V)2 coincides with R;
(b) On the horizontal, (VH)? coincides with Tx;
(¢) f U € ¢*TrY and V € Ty P, then (VF)}(U,V) =

We now make the following changes: In the Chern-Weil formula for td(H, ¢¥), and in
the formula for ec(H,g"), we replace (V#)? by R;, . We let ug be a unitary frame in
N, which may also be thought as a linear isometry from C* into N. The above discussion
implies that for A € U{e):= the Lie algebra of U(e), there exists a smooth form w(A) on
P(C* @ 1) with the following properties:

(a) The map A — fp(c-m)“’(‘q) is ad-invariant;
(b) (p'[t‘d—l(H‘1gH )a.(cBC(H.lgH ))] = fp(c-m)w(ual(v‘v)?uol

Thus by the Chern-Weii theor).r, we know that ¢.[td" (H*, ¢ ) o (epc(H*, 97 ")) is
closed. The rest is rather simple.
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