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Abstract

For elliptic curves over rationals, there are a well-known conjecture
of Sato-Tate and a new computational guided murmuration phenomenon,
for which the abelian Hasse-Weil zeta functions are used. In this paper,
we show that both the murmurations and the Sato-Tate conjecture stand
equally well for non-abelian high rank zeta functions of the p-reductions
of elliptic curves over rationals. We establish our results by carefully
examining asymptotic behaviors of the p-reduction invariants aE/Fp,n (n ≥
1), the rank n analogous of the rank one a-invariant aE/Fp = 1+p−NE/Fp
of elliptic curve E/Fp. Such asymptotic results are based on the counting
miracle of the so-called αE/Fq,n- and βE/Fq,n-invariants of E/Fq in rank
n, and a remarkable recursive relation on the βE/Fq,n-invariants, both
established by Weng-Zagier in [19].

Key Words: elliptic curve, high rank zeta function, murmuration, Sato-Tate
distribution

1 Statement of Main Theorem

Murmuration is an intriguing phenomenon newly discovered by He-Lee-Oliver-
Pozdnyakov in [7] for families of elliptic curves E defined over the field Q of
rationals, offering an aesthetic intuitive relation between the averages of the co-
efficients aE/Fpi

for the pi-reductions E/Fpi
of E/Q and the arithmetic ranks of

E(Q). On the other hand, the Sato-Tate conjecture is a statistical statement for-
mulated around 1960, exposing a natural density function for the distributions
of the a- invariant aE/Fpi

’s of a fixed elliptic curve E/Q, as a secondary struc-
ture beyond the Riemann hypothesis. Both of these two are obviously closely
associated to the classical Hasse-Weil zeta functions for elliptic curves over finite
fields. While the mystery surrounding murmurations of elliptic curves remains
to be understood, the Sato-Tate conjecture (and its generalization to all totally
real fields) was proved by Clozel-Harris-Shepherd(-)Barron-Taylor under mild
assumptions in 2008, and completed by Barnet(-)Lamb- Geraghty-Harris-Taylor
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in 2011. Several generalizations to other algebraic varieties and fields have been
made and are widely open.

In this paper, we show that both murmurations and Sato-Tate conjecture
stand well when higher rank non-abelian zeta functions of elliptic curves are
used, instead of the classical Hasse-Weil zeta functions. Recall that, for an
integral regular projective curve X over a finite field Fq, its high rank zeta

functions ζ̂X/Fq ;n(s) were introduced by the senior author in [16] to study rank n
semi-stable vector bundles overX/Fq, as a genuine generalization of the classical

congruent Artin-Weil zeta function ζ̂X/Fq
(s):

ζ̂X/Fq
(s) = ζ̂X/Fq ;1(s).

We establish our results on the high rank Sato-Tate and high rank murmura-
tions for elliptic curves E/Q by carefully examining asymptotic behaviors of the
invariants aE/Fpi

,n of the pi-reduction E/Fpi
of E/Q, the rank n analogous of

the rank one a-invariant aE/Fpi
:= 1 + pi −#E(Fpi

). Here pi denotes the i-th
prime number. As to be seen below, these asymptotic results are established
based on some structural recursion relations, which themselves are obtained
from the ‘counting miracle’, on the so-called αE/Fp,n- and βE/Fp,n-invariants
for elliptic curves E/Fp. In fact, the ‘counting miracle’, relating αE/Fp,n- and
βE/Fp,n-invariants, was first proved by Weng-Zagier in [19] for elliptic curves
E/Fp using Atiyah bundles and some combinatorial techniques, then general-
ized by Sugahara [13] and Mozgovoy-Reineke independently [9] for curves over
finite fields, and the structural recursion relations on the βE/Fp,n-invariants are
established in [19] through some complicated combinatorial discussions.

To facilitate our ensuing discussion, next, we give a quick review of rank n
zeta function for curves over finite fields following [16], see also [20]. For a fixed
n ∈ Z≥1, let X be a regular projective (integral) curve of genus g defined over
a finite filed Fq with q elements. It is well known that the classical Artin-Weil
zeta function of X/Fq can be defined using the following power series

ζX/Fq
(s) := exp

( ∞∑
k=1

#X(Fqk)

k
(q−s)k

)
ℜ(s) > 1. (1)

Here, as usual, X(Fqk) denotes the set of Fqk -rational points of X. In addition,
with a change of variables t = q−s, we arrive at the corresponding Zeta function
for X/Fq:

ZX/Fq
(t) := ζX/Fq

(s) = exp

( ∞∑
k=1

#X(Fqk)

k
tk

)
. (2)

The following theorem is well known:

Theorem 1 (Zeta Properties, see e.g. [5]). Let X be an integral regular projec-
tive curve of genus g over a finite filed Fq. Then

(1) (Rationality) ZX/Fq
(t) is a rational function of the form

ZX/Fq
(t) =

PX/Fq
(t)

(1− t)(1− qt)
.

where PX/Fq
(t) is a polynomial of degree 2g with integer coefficients.
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(2) (Functional Equation) ζX/Fq
(s) satisfies the standard functional equation

ζX/Fq
(1− s) = q(g−1)(2s−1) · ζX/Fq

(s).

(3) (Riemann Hypothesis) If ζX/Fq
(s) = 0, then ℜ(s) = 1

2 .

It turns out that the classical Artin-Zeta function ζX/Fq
(s) above is an

abelian starting point of a family of the so-called rank n zeta functions for
X/Fq (n=1,2,. . . ). Indeed, by using the Euler product and the ramification
theory on the base changes of the constant fields Fq 7→ Fqk , it is not difficulty
to arrive at

ζX/Fq
(s) =

∑
d∈Z

∑
L∈Picd(X/Fq)

qh
0(X,L) − 1

q − 1
(q−s)deg(L) ℜ(s) > 1.

Here h0(X,L) := #H0(X,L) denotes the 0th cohomology of the line bundle L
on X, and deg(L) denotes the degree of L.

The first version of a rank n non-abelian zeta function for the curve X/Fq

was introduced by the senior author in [15], by counting all rank n semi-stable
vector bundles on X/Fq. Even these newly defined functions satisfy most of the
zeta properties, including the functional equation and the rationality, but fatally
they do not satisfy the Riemann hypothesis as examples indicate. This means
that our counting at the moment was not correct. Motivated by Drinfeld’s work
([3]) on counting two-dimensional irreducible representations of the fundamental
group of curves over finite fields, an essential genuine restriction on rank n semi-
stable vector bundles is introduced, namely, counting only those rank n semi-
stable vector bundles on X/Fq whose degrees are multiples of n. This then leads
to the right current formulation of the rank n zeta function ζX/Fq,n(s) of X/Fq

in [16]: in the region ℜ(s) > 1,

ζX/Fq,n(s) := ζX,n(s) :=
∑
d∈nZ

∑
V

qh
0(X,V ) − 1

#Aut(V )
(q−s)deg(V ), (3)

where the second sum on V rums over all rank n (Fq-rational) semi-stable vector
bundle on X/Fq of degree d = mn ∈ nZ, Aut(V ) denotes the automorphism
group of the vector bundle V , and h0(X,V ), resp. deg(V ), denotes the 0th
cohomology, resp. the degree of V .

As in [16], we introduce the following α- and β- invariants of X/Fp:

αX/Fq,n(d) :=
∑
V

qh
0(X,V ) − 1

#Aut(V )
, βX/Fq,n(d) =

∑
V

1

#Aut(V )
,

where similarly, in both of the summations, V rums over all rank n (Fq-rational)
semi-stable vector bundle on X/Fq of degree d. Then, easily, the rank n zeta
function ζX,n(s) can be rewritten as a generating function of αX,n(mn):

ζX/Fq,n(s) =
∑

d∈nZ≥0

αX/Fq,n(d)t
d =

∞∑
m=0

αX/Fq,n(mn)Tm, (4)

where we have set Tn := tn = Q−s
n with Qn := qn. When n is clear from the

text, we often omit the index n. For examples, write Q for Qn and T for Tn.
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Similar to Theorem1, by using the Riemann-Roch theorem, the duality and
a vanishing theorem for semi-stable bundles, we have the following:

Theorem 2. [Zeta Properties [16], see also [20]] Fix a natural number n. The
rank n non-abelian zeta function ζX,n(s) of an integral regular projective curve
X/Fq satisfies the following standard zeta properties:

1. (Naturality) The rank one zeta function ζX,1(s) coincides with the classical
Artin-Weil zeta function ζX(s) of X/Fq.

2. (Rationality) There exists a polynomial PX,n(T ) ∈ Q[T ] of degree 2g, such
that

ζX,n(s) =
PX,n(T )

(1− T )(1−QT )
.

3. (Functional Equation) ζX,n(s) satisfies the standard functional equation

ζX,n(1− s) = Q(g−1)(2s−1) · ζX,n(s).

Furthermore, it is conjectured in [16] that all these rank n zeta functions
ζX,Fq ;n(s) satisfy the Riemann Hypothesis. Surprisingly, this conjecture remains
widely open, even its number theoretic analogue has been established (except
when n = 1 for the lack of symmetry), up to a finite box depnding on n ([18]).
The first major breakthrough in this direction is the following:

Theorem 3 (n = 1: Hasse [10], n ≥ 2: Weng-Zagier [19]). Let E/Fq be an
elliptic curve. Then ζE/Fq,n(s) satisfies the Riemann hypothesis. That is to say,

ζE/Fq,n(s) = 0 implies that ℜ(s) = 1
2 .

1

From now on, we focus on the case when X/Fq is an elliptic curve E/Fq. By
Theorem2(2),

ζE/Fq,n(s) =
PE/Fq,n(T )

(1− T )(1−QT )

for a certain degree 2 polynomial PE/Fq,n(T ) with rational coefficients. There-
fore, there exists a rational number aE/Fq,n such that

PE/Fq,n(T ) =: αE/Fq,n

(
1− aE/Fq,nTn +QnT

2
n

)
.

Indeed, the constant term of PE/Fq,n(T ) can be easily seen to coincide with
the α-invariant αE/Fq,n(0) of E/Fq from the definition, while the coefficient of

Tn in 1
αE/Fq,n

PE/Fq,n(T ) is simply Qn is a direct consequence of the functional

equation, i.e. Theorem2(3).

1We mention in passing that, besides this elliptic curve case, the Riemann hypothesis for
ζX/Fq,n(s) has been established successfully when

(i) n = 2 by H. Yoshida, see e.g. §2 of arXiv:2201.03703.

(ii) n = 3 by Weng in ‘Riemann Hypothesis for Non-Abelian Zeta Functions of Curves over
Finite Fields’, arXiv:2201.03703.

(iii) g = 2 asymptotically by Shi, in preparation.
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This rational number aE/Fq,n introduced above will be called the a-invariant
in rank n for E/Fq, since it clearly is the rank n analogue of the classical a-
invariant aE/Fq

:= q+1−#E(Fq), or equivalently by PE/Fq
(t) =: 1−aE/Fq

t+qt2.
In the sequel, these a-invariants aE/Fq,n in rank n will be the central players

of our studies. Simply put, the existing murmurations for aE/Fpi
’s associated

to families of elliptic curves E/Q’s through their pi-reductions E/Fpi
, and the

Sate-Tate conjecture for the aE/Fpi
’s associated to these elliptic curves E/Fpi

’s,
stand equally well for the corresponding a-invariants aE/Fpi

,n’s in rank n.
To state our main results, we make the following preparations: Let E be

a (regular integral) elliptic curve defined over the field Q of rationals, and for
the i-th prime integer pi (i ≥ 1) e.g. p1 = 2, p2 = 3, . . ., let E/Fpi denotes the
pi-reduction of E. Introduce the rank n average value fr,n(i) by:

fr,n(i) :=
1

#Er[N1, N2]
×

∑
E∈Er[N1,N2]


aE/Fpi

,1 n = 1

aE/Fpi
,2 + pi − 1 n = 2

1
n−1 ·

(
aE/Fpi

,n + (n− 1)pi + n− 5
)

n ≥ 3

(5)
where N1, N2 ∈ Z+ satisfying N1 ≤ N2, and Er[N1, N2] denotes the set of elliptic
curves over Q of arithmetic rank r with the conductor in the interval [N1, N2].

2

In addition, recall that for an elliptic curve E/Fq, by Theorem3, the Rie-
mann hypothesis holds for ζE/Fq,n. This is equivalent to say that

−1 ≤ 1

2
√
Qn

· aE/Fq,n ≤ 1.

Since cos-function is strictly decreasing in the interval [0, π], accordingly, intro-
duce the rank n argument θE/Fq,n of E/Fq by

θE/Fq,n := arccos
( 1

2
√
Qn

· aE/Fq,n

)
∈ [0, π]. (6)

At this point, it is pretty tempting to formulate the high rank Sato-Tate distri-
bution using these primitive rank n arguments θE/Fq,n. However, one may soon
realize that there are several fatal obstacles lying in front.

Indeed, as noticed in [17], there are three additional refined structures in-
volved. Namely, for n ≥ 2, first, as the dominant term, the θE/Fq,n’s converges
to π

2 when qn approaches to infinity. This then yields the so-called small δ-
invariant in rank n distribution theory of E/Fq, namely, the Dirac distribution
δπ/2. Secondly, even after subtracting this accumulating point π

2 , the difference
appears to be still too tiny to be detected. Hence a suitable huge magnification,

namely,

√
qn−1

n−1 , should be introduced. But this give rise to the third struc-

ture, since there is still a certain blow-up of level 1
2 (
√
q+ 1√

q ) for the magnified

2Here as in the rank one case, for each isogeny class of elliptic curves E/Q, only a single
representative elliptic curve is selected in Er[N1, N2]. For examples, as in [7], from the database
of elliptic curves listed in the LMFDB, we know that

#E0[7500, 10000] = 4238, #E1[7500, 10000] = 5194,

#E0[5000, 10000] = 8536, #E2[5000, 10000] = 1380.
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√
qn−1

n−1

(
θE/Fq,n − π

2

)
’s. To control all of them, a new genuine normalization

process should be introduced, in order to furmulate our high rank Sato-Tate.
With some histories explained in the footnote below, this then finally leads to
the current big ∆-invariant3 ∆E/Fq,n in rank n of E/Fq, defined by:

∆E/Fq,n :=


√
q cos θE/Fq,2 +

1
2 (
√
q − 1√

q ) for n = 2

√
qn−1

n−1 (π2 − θE/Fq,n) +
1
2 (
√
q + n−5

(n−1)
√
q ) for n ≥ 3

(7)

Now we are ready to state the main theorem of this paper:

Theorem 4. Fix a natural number n ≥ 2.

(1) (Rank n Murmurations) For families of a regular (integral) elliptic curves
E/Q’s, when plotting the points (i, fr,n(i)) i ≥ 1 in the sufficiently large
range, the murmuration phenomenon appear in exactly the same way as
the one associated to the (i, fr,1(i))’s (of the same families).

(2) (Rank n Sato-Tate Conjecture) Let E/Q be a non CM elliptic curve. For
α, β ∈ R satisfying 0 ≤ α < β ≤ π, we have

lim
N→∞

#{p ≤ N : p : prime, cosα ≥ ∆E/Fp,n ≥ cosβ}
#{p ≤ N : p : prime}

=
2

π

∫ β

α

sin2 θdθ.

To entertaining the reader, we next provide some concrete examples on the
rank n murmurations with fixed ranges on the conductors, the arithmetic rank
r of elliptic curves E/Q and the geometric rank n.

Figure 1: Plot of fr,n(i) where r ∈ 0, 1 and n = 7, for elliptic curves with
conductor in [7500, 10000]. f0,n(i) is in blue and f1,n(i) is in red.

3In [17], a slight different normalization, namely,

√
qn−1

n−1
(π
2
− θE/Fp,n) +

1
2
(
√
q + 1√

q
)

is introduced. Even, for asymptotic considerations, particularly, for the rank n Sato-Tate

conjecture, it works. But, for smaller qn, the quantity

√
qn−1

n−1
(π
2
−θE/Fp,n)+

1
2
(
√
q+ 1√

q
) may

well located outside the closed interval [−1, 1]. The idea of the introduction of an additional
normalization proves to be very powerful: It leads to its companion for the distributions of
high rank zeta zeros of number fields, which itself lately motivated M. Suzuki’s work on the
rank two zeta zeros of Q: ‘Nearest neighbor spacing distributions for the zeros of the real or
imaginary part of the Riemann ξ-function on vertical lines’, Acta Arith. 170 (2015), 47-65.
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Figure 2: Plot of fr,n(i) where r ∈ 0, 2 and n = 6, for elliptic curves with
conductor in [5000, 10000]. f0,n(i) is in blue and f2,n(i) is in green.

As for the rank n Sato-Tate distribution for the big ∆-invariants ∆E/Fq,n in
rank n of elliptic curve E/Q, we provide the following illustrative examples.

Figure 3: Sato-Tate distribution of rank 3 zeta function ζE/Fq,3(s) over elliptic
curve E/Q : y2 = x3 + x2 − 41x− 116 and q ≤ N = 10, 000, 000.

Figure 4: Plot of ∆E/Fq,n over elliptic curve E : y2 = x3 + x2 − 41x− 116 and
q ≤ N = 50, 000 when n = 5.
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Figure 5: Plot of ∆E/Fq,n over elliptic curve E : y2 = x3 + x2 − 41x− 116 and
q ≤ N = 100, 000 when n = 5.

Figure 6: Plot of ∆E/Fq,n over elliptic curve E : y2 = x3 + x2 − 41x− 116 and
q ≤ N = 150, 000 when n = 5.

Figure 7: Plot of ∆E/Fq,n over elliptic curve E : y2 = x3 + x2 − 41x− 116 and
q ≤ N = 200, 000 when n = 5.

To end this section, we point out that there are clear geometric flows from
up/lower left to the middle right appeared in the final four pictures above. It
would be very interesting to explore the hidden mathematical structures, if any,
behind.
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2 Proof of Main Theorem

From now on, we will focus on the situation when X/Fq is an (integral projective
regular) elliptic curve E/Fq. Fix a natural number n unless otherwise is stated.

Since for a semi-stable vector bundle V of rank n on E/Fq, if its degree
d = nm is ⪈ 0, or the same ≥ n, we have the well-known vanishing theorem
h1(E, V ) = 0. In particular, for such a V , h0(E, V ) = d, by the Riemann-Roch
theorem. Consequently,

αE/Fq,n(d) = (qd−1)βE/Fq,n(d), βE/Fq,n(mn) = βE/Fq,n(0),∀d = mn, m ∈ N.
(8)

Here in the second relation, we have used the fact that each rank n semi-stable
vector bundle on E/Fq of degree nm is obtained from a uniquely determind rank
n semi-stable vector bundle on E of degree 0 by tensoring an m-th multiple of
a certain line bundle on E/Fq of degree 1, whose existence is guaranteed by
a well-known result of Artin (See e.g. [10]). Accordingly, by the well-known
Duality, a standard procedure in zeta function discussion, (4) and (8), implies
that

ζE/Fq,n(s) = αE/Fq,n(0) + βE/Fq,n(0) ·
(Qn − 1)Tn

(1− Tn)(1−QnTn)
. (9)

With E, Fq and n fixed for the time being, we simply write

αn := αE/Fq,n(0), βn := βE/Fq,n(0) (and Q = Qn, T = Tn, )

so that the rank n zeta function for elliptic curve E/Fq and its associated poly-
nomial PE,n(T ) = PE/Fq,n(Tn) can be simply expressed as:

ζE,n(s) = αn+βn·
(Q− 1)T

(1− T )(1−QT )
and PE,n(T ) = αn

(
1−aE,nT+QT 2

)
.

(10)
where

aE,n := aE/Fq,n := (Qn + 1)− (Qn − 1)
βE/Fq,n(0)

αE/Fq,n(0)
= (Q+ 1)− (Q− 1)

βn

αn
,

as to be seen by a direct calculation from (9).
The α- and β- invariants have been intensively studied with a long history

and a rich theory (see e.g. [19], [20], [17] and [13],[9]). In fact, for a general
curve X/Fq, βX/Fq,n was first introduced by Harder-Narasimhan in [4]. Here
for our limited purpose, we select the follows.

Theorem 5 (α- and β- invariants, [19]). For an elliptic curve E/Fq, we have:

(1) (Counting Miracle) For all n ≥ 0,

αn+1 = βn. (11)

(2) (Structural Recursion Formula) For all n ≥ 1, the βn’s satisfy a two-step
recursion relation

(qn − 1)βn = (qn + qn−1 − aE/Fq,1)βn−1 − (qn−1 − q)βn−2, (12)

with initial values β0 = 1 and β−1 = 0.

9



Remark 1. The counting miracle was first conjectured by the senior author for
elliptic curves based on some detailed calculations in lower ranks, with the help
of the so-called Atiyah bundles. As indicated above, the so-called Counting
Miracle Conjectured was first proved in (the first version of) [19] by Weng-
Zagier for elliptic curves E/Fq. Later, this was generalized for general (integral
regular) projective curvesX/Fq of genus g by Sugahara ([13]) and independently
by Mozgovoy-Reineke ([9]) in the form:

αX/Fq,n+1(0) = qn(g−1)βX/Fq,n(0).

Since the counting miracle offers us an intrinsic relation between the α- and
β-invariants, all the higher rank zeta functions for elliptic curves (over finite
fields) are totally determined by the sequence {βn}n≥−1 of the beta invariants.
That is to say, for n ≥ 1, the rank n zeta function of elliptic curve E/Fq is given
by

ζE/Fq,n(s) =βn−1 + βn · (Q− 1)T

(1− T )(1−QT )
. (13)

Consequently, the polynomial PE/Fq,n(T ) simply takes the form

1

βn−1
PE/Fq,n(T ) = 1−

(
(Q+ 1)− (Q− 1)

βn

βn−1

)
T +QT 2, (14)

and the associated a-invariant in rank n is given by

aE/Fq,n = (Q+ 1)− (Q− 1)
βn

βn−1
.

With this point settled, next we turn to the simple 2-step recursion formula
on the βn’s, from which the βn in rank n can be determined completely from
its initial values β−1 = 0 and β0 = 1 in terms of aE/Fq,1 and q, n.

Example 1. When n = 1, we have

(q1 − 1)βE/Fq,1 =(q1 + q1−1 − aE/Fq,1)β1−1 − (q1−1 − q)β1−2

=q + 1− aE/Fq,1 = #E(Fq).

Accordingly, the rank one zeta function of E/Fq becomes simply

ζE,1(s) = β0 + βE/Fq,1 ·
(q1 − 1)t1

(1− t1)(1− q1t1)
=

1− aE/Fq,1t+ qt2

(1− t)(1− qt)

which is nothing but the classical Hasse-Weil zeta function ζE/Fq
(s) of E/Fq.

Similarly, when n = 2, we have

(q2 − 1)β2 =(q2 + q2−1 − aE/Fq,1)β2−1 − (q2−1 − q)β2−2

=
(q2 + q − aE/Fq,1)(q + 1− aE/Fq,1)

q − 1
.

Accordingly, the rank two zeta function of E/Fq becomes

ζE,2(s) =βE/Fq,1 + β2 ·
(q2 − 1)t2

(1− t2)(1− q2t2)

=
q + 1− aE/Fq,1

q − 1
×

1− (aE/Fq,1 − q + 1)T +QT 2

(1− T )(1−QT )

10



Obviously, α2 = (q+1−aE/Fq,1)/(q−1) = β1 is a constant depending merely
on the elliptic curve E/Fq and, in particular,

aE,1 = aE/Fq,1 = q + 1−#E(Fq) and aE,2 = aE/Fq,1 − q + 1. □

Back to the general discussion, by the recursion relation, namely Theorem
4(2), we have, for n > 0,

βn

βn−1
=

qn + qn−1 − aE/Fq,1

qn − 1
− qn−1 − q

qn − 1
× βn−2

βn−1
. (15)

To simplify our notations further, for our own convenience, set now

γn :=
βn

βn−1
, An :=

qn + qn−1 − aE/Fq,1

qn − 1
, and Bn :=

qn−1 − q

qn − 1
, (16)

we have, from (15)
γn = An −Bnγ

−1
n−1. (17)

Consequently, by definition,

aE/Fq,n = (qn + 1)− (qn − 1)γn

= (qn + 1)− (qn − 1)
(
An −Bn × qn−1 − 1

qn−1 + 1− aE/Fq,n−1

)
.

(18)

where in the last equality we have used the level (n− 1) definition

aE/Fq,n−1 = (qn−1 + 1)− (qn−1 − 1)γn−1. (19)

Now we are ready to introduce our main technical result to prove Theorem4
on the murmurations and the Sato-Tate conjecture for rank n zeta functions of
elliptic curves:

Theorem 6. [Asymptotic behavior of aE/Fq,n] We have

aE/Fq,1 = aE/Fq
, aE/Fq,2 = 1 + aE/Fq,1 − q, (20)

and

aE/Fq,n = (5− n) + (n− 1)aE/Fq,1 − (n− 1)q +O
( 1
√
q

)
(n ≥ 3) (21)

In particular, for n ≥ 3

aE/Fq,n ∼ (5− n) + (n− 1)aE/Fq,1 − (n− 1)q (q → ∞). (22)

From this theorem, up to a well-understood normalization if necessary, the
asymptotic behavior of a-invariant aE/Fq,n in rank n is reduced to that of
aE/Fq,1. This indicates that the murmuration and the Sato-Tate conjecture
for aE/Fq

associated to the classical Hasse-Weil zetas of elliptic curves work in
exactly the same way for all high rank zetas as well.
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Proof. To prove this theorem, we use an induction on n, based on (18) and the
standard Hasse-Weil bound for elliptic curves, i.e. aE/Fq

= O(
√
q).

Indeed, by (18), we have

aE/Fq,n =(qn + 1)− (qn − 1)
qn + qn−1 − aE/Fq,1

qn − 1

+ (qn − 1)
qn−1 − q

qn − 1
× qn−1 − 1

qn−1 + 1− aE/Fq,n−1

= 1 + aE/Fq,1 +
−qn − 2qn−1 + aE/Fq,n−1q

n−1 + q

qn−1 + 1− aE/Fq,n−1
.

(23)

We start with n = 3. From the recursion relation (23) above, we have

aE/Fq,3 = 1 + aE/Fq,1 +
−q3 − 2q2 + aE/Fq,2q

2 + q

q2 + 1− aE/Fq,2

= 1 + aE/Fq,1 +
−2q3 + (aE/Fq,1 − 1)q2 + q

q2 + q − aE/Fq,1

(using aE/Fq,2 = 1 + aE/Fq,1 − q)

= 1 + aE/Fq,1 +
−2q(q2 + q − aE/Fq,1 − 1)

q2 + q − aE/Fq,1

+
(2 + aE/Fq,1 − 1)q2 +O(aE/Fq,1 · q)

q2 + q − aE/Fq,1

(make an oriented seperation)

= 1 + aE/Fq,1 − 2q + 1 + aE/Fq,1 +
O(aE/Fq,1 · q)

q2 + q − aE/Fq,1

= 2 + 2aE/Fq,1 − 2q +O
( 1
√
q

)

(24)

as wanted. Here in the last three equalities, we have used the Hasse bound

aE/Fq,1 = O
(√

q
)
.

Assume now inductively that the assertion holds for level n ≥ 3, that is,

aE/Fq,n = (5− n) + (n− 1)aE/Fq,1 − (n− 1)q +O
( 1
√
q

)
n ≥ 3.

To understand aE/Fq,n+1, using the recursion relation (23), we have, as q → ∞,

aE/Fq,n+1

= 1− qn + aE/Fq,1 +
(qn − q)(qn − 1)

qn + 1− aE/Fq,n

= 1− qn + aE/Fq,1 +
(qn − q)(qn − 1)

qn + (n− 1)q − (n− 1)aE/Fq,1 − (5− n) +O
(

1√
q

)
= 1 + aE/Fq,1 +

−nqn+1 + ((4− n) + (n− 1)aE/Fq,1 +O
(

1√
q

)
)qn

qn + (n− 1)q − (n− 1)aE/Fq,1 − (5− n) +O
(

1√
q

)
= (5− (n+ 1)) + naE/Fq,1 − nq +O

( 1
√
q

)
.

12



This is exact what we are looking after.

Before leaving here, we point out that, for a fixed n, aE/Fq,n is always of the
order O(q). This means that in (23), the denominator is of order qn−1 +O(q).
This also explains why in the final form of (24), the constant term is 2 instead
of −1 appeared in the recursion relation (23).

Proof of Theorem4(1) for murmurations of rank n zeta functions. Murmura-
tions were first discovered by He-Lee-Oliver-Pozdnyako in [7], using plots of
average values fr,1(i) of the geometric rank one coefficients aE/Fpi

,1 of the pi-
reductions E/Fpi for families of elliptic curves E/Q of the given arithmetic ranks
r and with conductors in a fixed range. Based on these average values, the ellip-
tic curves are grouped beautifully according to their arithmetic ranks r. Some
data-scientific experimentations and machine learnings have been performed in
[7]. Next, we establish the murmurations for high rank zeta functions of elliptic
curves similarly based on Theorem6.

Let E/Q be a given elliptic curve, and let pi be the i-th prime integer, e.g.
p1 = 2, p2 = 3, . . .. Then for a fixed (geometric rank) n ≥ 2, we examine the
rank n zeta function

ζE/Fpi
,n(s) =

1

αn
×

1− aE/pi,nT + pni T
2

(1− T )(1− pni T )
, (25)

where E/Fp denotes the p-reduction of E/Q. We have introduced the following
average values (i = 1, 2, . . .):

fr,n(i) :=
1

#Er[N1, N2]
×

∑
E∈Er[N1,N2]


aE/Fpi

,1 n = 1

aE/Fpi
,2 + pi − 1 n = 2

1
n−1 ·

(
aE/Fpi

,n + (n− 1)pi + n− 5
)

n ≥ 3

(26)
where N1, N2 ∈ Z+ satisfying N1 ≤ N2, and Er[N1, N2] denotes the set of elliptic
curves over Q of rank r whose conductors belong to the interval [N1, N2].

Note that by Theorem6, particularly, (22), we have, for q = pk,

aE/Fq,n =


aE/Fq,1 n = 1

1 + aE/Fq,1 − q n = 2

∼ (5− n) + (n− 1)aE/Fq,1 − (n− 1)q (q → ∞) n ≥ 3

.

Hence our result comes as a direct consequence of the following main result of
[7] for the murmurations for elliptic curves in terms of the aE/Fpi

’s.

Observation 1 (Murmurations for elliptic curves, [7]). When plotting the points
(i, fr,1(i)) for i from 1 to a large integer for families of elliptic curves E/Q,
murmurations do appear according to the arithmetic ranks r.

We end this discussions with the following comments. Murmurations of
high rank zeta function have been observed to form the same pattern as these
using rank one Hasse-Weil zeta functions for elliptic curves. This indicates that
many techniques and skills in the theory of Hasse-Weil zeta functions can also
be equally applied to the high rank zeta functions. For instance, as in [7],

13



the Principal Component Analysis(PCA) has been preformed to a balanced set
of 36, 000 randomly selected elliptic curves of r ≤ 2, with N1 = 1 × 104 and
N4 = 4× 104. Moreover, for the case r ∈ {0, 1}, curves of the form

y = Axα sin(Bxβ) (27)

can be used to fit the data on the average of aE/Fpi
,1. In addition, some more

complicated experiments about murmurations are introduced in [12]. Sincerely
hope that our high rank zeta functions will provide various mathematics com-
munities some new test grounds to study mathematical structures for various
curves, among others. □

Proof of Theorem4(2) on the rank n Sato-Tate Conjecture. Our proof is based
on Theorem6 above and the Barnet(-)Lamb-Geraghty-Harris-Taylor’s Theorem
on the original Sato-Tate conjecture. For this reason, it is more convenient for
us to recall the classical Sato-Tate conjecture for Hasse-Weil zeta function of
elliptic curves E/Fpi ’s.

Let E/Q be an (integral regular projective) elliptic curve and denote its p
reduction by E/Fp. Then, by the Riemann hypothesis for the classical Hasse-
Weil zeta function for the elliptic curve E/Fp,

−1 <
aE/Fp,1

2
√
p

=
1 + p−#E(Fp)

2
√
p

< 1, (28)

and thus we may introduce the associated argument θE/Fp,1 ∈ [0, π] by

cos θE/Fp,1 =
aE/Fp,1

2
√
p

. (29)

Theorem 7 (Sato-Tate Conjecture [1], [2], [6], [14], see also [8] and [11] for
backgrounds). Let E/Q be a fixed non CM elliptic curve. Then for any real
α, β satisfying 0 ≤ α < β ≤ π, the following holds:

lim
N→∞

#{p ≤ N : p prime, α ≤ θE/Fp,1 ≤ β}
#{p ≤ N : p prime}

=
2

π

∫ β

α

sin2 θdθ. (30)

Next, we consider its higher rank analogue. By a result of Weng-Zagier [19],
e.g. Theorem3, the rank n zeta function ζE/Fq,n(s) of an elliptic curve E/Fq

satisfies the Riemann hypothesis as well. This is equivalent to

−1 ≤ 1

2
√
Qn

· aE/Fq,n ≤ 1 (31)

Accordingly, we may introduce the associated argument θE/Fq,n ∈ [0, π] via

cos θE/Fq,n =
1

2
√
Qn

· aE/Fq,n or equivalently, θE/Fq,n := arccos
aE/Fq,n

2
√
Q

.

It is quite tempting to formulate the rank n Sato-Tate conjecture as in rank
1 case by directly using θE/Fp,n. The fact is that the structures here are rather
subtle. Indeed, as exposed in an earlier work by the senior author (see e.g. [17]),
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based on a rough asymptotic relation on the γ-invariant of elliptic curve E/Fq

in ([19]), namely,

γn :=
βn

βn−1
= 1 +

(n− 1)(q − aE/Fq,1 + 1)− c(q)

qn
+O

( n2

q2n−2

)
(32)

as qn → ∞, where c(q) = 2 + 3(a − 2)/q + ... is independent of n. In particu-
lar, we have the following earlier result, which can now be verified as a direct
consequence of Theorem4(2):

Theorem (First Approximation to Rank n(≥ 3) Sato-Tate Distribution, see
[17]). For a non CM elliptic curve E/Q, with respect to real numbers α, β sat-
isfying 0 ≤ α < β ≤ π, we have:

lim
N→∞

#{p ≤ N : p prime, cosα ≥̇
√

pn−1

n−1

(
π
2 − θE/Fp,n

)
+ 1

2

(√
p+ 1√

p

)
≥̇ cosβ}

#{p ≤ N : p prime}

=
2

π

∫ β

α

sin2θdθ.

(33)

Our proof of Theorem4(2) below is certainly independent of his result.
But we recall it here for the purpose to explain the complicated refined struc-
tures on the distributions of θE/Fp,n involved. Indeed, this result implies that
there are three levels of such refined structures on the distributions of θE/Fp,n.
Namely, the first on the small Dirac delta distribution δπ/2, which means that
the θE/Fp,n’s have an accumulate point at π

2 , and even after this limit point
is subtracted, to witness the secondary structure, an essential magnified scale

factor

√
pn−1

n−1 should be introduced. However, with such a huge magnification
introduced, a blowing-up has been unavoidably introduced at the same time.

Hence thirdly, we should control this blow-up by subtracting 1
2

(√
p+ 1√

p

)
. With

all these normalizations introduced, then the rank n Sato-Tate distribution can
be introduced and proved to perform in exactly the same as the classical one
for the rank one abelian theory.

Even this earlier version works nicely in asymptotic sense which is enough
for the rank n Sato-Tate, there is a small defect in this discussion. Namely, there
may well exist some smaller p’s such that the middle term appeared above, i.e.√

pn−1

n−1 (π2 −θE/Fp,n)+
1
2 (
√
p+ 1√

p ) may well lie outside the closed interval [−1, 1].

This is the reason why a dot above the inequalities on both sides is introduced,
in order to ignore all the contributions that are out of the range [−1, 1].

This defect has been remedy in the present work: while asymptotically both
are the same, but the current one stands nicely. Indeed, the rank n Sato-
Tate conjecture, as stated in Theorem4(2), now reads as follows: Let E/Q
be a non CM elliptic curve. Then, for any two real numbers α, β satisfying
0 ≤ α < β ≤ π, we have:

lim
N→∞

#{p ≤ N : p prime, cosα ≥ ∆E/Fp,n ≥ cosβ}
#{p ≤ N : p prime}

=
2

π

∫ β

α

sin2 θdθ, (34)
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where ∆E/Fp,n is defined as:

∆E/Fp,n :=


√
p cos θE/Fp,2 +

1
2

(√
p− 1√

p

)
for n = 2

√
pn−1

n−1

(
π
2 − θE/Fp,n

)
+ 1

2

(√
p+ n−5

(n−1)
√
p

)
for n ≥ 3

(35)

In the sequel, we only consider when n ≥ 3 since the case for n = 2 is trivial.
We start with the following

Lemma 8 (Small δ distribution). With the same notation as above, the θE/Fp,n’s
converge to π

2 as p → ∞

Proof. From the asymptotic behaviors of aE/Fp,n’s in Theorem6 and the classi-
cal Hasse theorem for Hasse-Weil zeta function of E/Fp, aE/Fp,n = O(p). This,
together with the rank n Riemann hypothesis for E/Fq, namely, Theorem3 im-
plies that θE/Fp,n has a limit at π

2 as p → ∞, which yields the small Dirac delta
distribution δπ/2. Similarly, we have αE/Fp,n/2

√
pn goes to 0 when p approaches

to ∞.

By definition, (with the lemma,) we have

∆E/Fp,n =

√
pn−1

n− 1

(π
2
− arccos

aE/Fp,n

2
√
pn

)
+

1

2

(√
p+

n− 5

(n− 1)
√
p

)
=

√
pn−1

n− 1

(
arcsin

aE/Fp,n

2
√
pn

)
+

1

2

(√
p+

n− 5

(n− 1)
√
p

)
.

(36)

Consequently, for sufficiently large p, from the lemma above, we have

∆E/Fp,n =

√
pn−1

n− 1
×

aE/Fp,n

2
√
pn

+
1

2

(√
p+

n− 5

(n− 1)
√
p

)
Therefore, by Theorem6, we conclude that ∆E/Fp,n is asymptotically given by√

pn−1

n− 1
×

(5− n) + (n− 1)aE/Fp,1 − (n− 1)p

2
√
pn

+
1

2

(√
p+

n− 5

(n− 1)
√
p

)
which is nothing but

aE/Fp,1

2
√
p

, by a routine but direct simplification. That is to

say, we have proved the following:

Theorem 9 (Structure of Big ∆ in the rank n). With the same notation as
above, we have for a fixed n, when p becomes sufficiently large, we have asymp-
totically

∆E/Fp,n =
aE/Fp,1

2
√
p

.

With this, it is now crystal clear that the rank n Sato-Tate conjecture is a
direct consequence of the classical Sato-Tate, namely, Theorem9. □
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