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1

7—RILEDES

Def. 1.1. (M,+) 3 7—NJLEF (abelian group (ab. gp.)) &1,

M: set, +: M x M — M: map TRZE=5dD.
(1) Va,y,z2 € Mz + (y + 2) = (x +y) + 2,
(2) zeMNVzeM,x+z=z2+z=2 (0 =2FZ, (M®) EOmx I) ,
B)VeeMIAreM,st. z+2' =2'+2=0 (—z=2" 2 EE, zDIM1FTRAT I) ,
(4) Ve,y e M,z +y =y + .

S, HE + 13IRETICEIC TM iZab. gp.) REELES.

Ex. 1.2. o YOLOAN 525 ab. gp. 0.

o BHDEIRZ \3EH D + Tab. gp. £725.
YoulE0 THD, 2 € ZDYA FATLEINEEZEZTELNS 2 ThH5.

o il (rid0 UL DB DDA

ai
7" = Vi,a; € Z
(078

WEETT Z e OFIZEE E LT ab. gp. £72 5.
TRITTETRXTORID0 L2 ZHTHD, 4 FRATIEHTDIEEZEZTHELNE D OD.

o n>3DLE n IS, X5 (4) ZAT2ZXHRVDT, ab. gp. TIXRW.
e ilH I M:ab. gp. D& X, z,yc M EIEDEEH n I L

onr:=xr+---+x
N——’

n
o 0z:=0
o —nx:= —(nz) =n(—x)

o z—yi=a+(-y)

¥FERT (ZHITED ab. gp. (ZHARIC Z-MEBEL 725).

Def. 1.3. X:set D2 &, Zr,yc X ITHLa~yDZITHROLDPPRE-STVWEEE, ~ % X
Lo Bf& (relation) &\ 5.
X 51T ~ 7 [EEREfR (equivalence relation) &IERE AT Z L.

(1) Ve,ye X, (z=y=>x ~vy),

(2) Ve,ye X,(x~y=>y~ux),



(3) Ve,y,z€ X, (x ~y,y~z=1x ~ 2).

7] ={ye X |y ~x} % x BMUKRT BEMELE (equivalence class represented by z) £\ 5 (z &
ChHloGgiE 2o vdH3).

X/~={z]|z€ X} Z X D~ X% BES (quotient set) £ I.

F7z, plx) =[2] TEF2EHp: X - X/~ % I8 (projection) &\ 5.

(RGP DB ERFILZ M > TER T S BRITIE well-definedness ZHERE L2V EWIT RV, 728D
EARFHOFHHIZZ ZTREHMOd DL LTEHIES 3)

Def. 1.4. M: ab. gp., L C M: subset D ¥ X,
LM @ 884538 (subgroup (subgp.)) &%, REAT L.

(1) L#0,

(2) Ve,y € L,x+y,—x € L.
Rem. 1.5. (2) DIRED RFT (1) 1& 0 € L & [FHA.

Def. 1.6. M: ab. gp., L C M: subgp. D& &, 2,y e ML z=ymod L Zx—yec LW
MO oZ e $3y, ZAUIRMEBERICRS.

ZDOFRMERIRIC X %A M/L = M/(= mod L) % M ® L2 &% &8 (quotient group) %7z
T RIREE VO,

K, M/LiZ[z]+[y] =[x +y] CTEXZEBFITED, ab. gp. &2 5.

[z] + [y] = [z + y] D well-definedness :
r=2'mod L,y=y mod L ¥ 5 5.
ZoeZxx—a y—y € LIRDT,

(@+y) - @' +y)=@-a)+@y-y)el
5. XoTlz+y]=[2"+y] &%, well-defined.
Rem. 1.7. ab. gp. D subgp. (&% T normal.

Ex. 1.8. meZDEmZ={ne€Z|3k eZst. n=mk}EZ D subgp.
m>0DE X,
Z/mZ =A{0,...,m—1} : i m OK[EHEE

Def. 1.9. M,N: ab.gp. DY %, f: M — N 25 ZEEBE{R (homomorphism (hom.)) &%, X%
Aleg L.

Vo,y € M, f(z+y) = f(z) + f(y)



hom. fAEHH DL &, [ AREMR (isomorphism (isom.)) &\ 5.
isom. f: M - NDFET S E, M NIZREZRE (isomorphic) EWVWw», M= N rEL.

Rem. 1.10. #E[FA! £ 12DWT £(0) =0, f(—x) = —f(z) DK D ILD.
Ex. 1.11. e M: ab. gp., L C M: subgp. D ¥ =
WEFSi: L — M, $5% p: M — M/L 1 hom.

e M,N: ab. gp., L C M: subgp., f: M — N: hom. D& X,
Ve e L, f(x) =0%&51%, f: M/L - N2EZD, hom. 12k 3.
¥z, fop=fAEDID. ZOIZrERDOKAIZ A (commutative) TH B X\ 5.

Mt N

e
)|
0 f

M/L
e M,N: ab. gp., f: M — N: hom. D& X,

ker f = {x € M | f(z) =0} f D # (kernel)
imf={yeN|JzeMst y=f(x)} f D& (image)

& subgp.

Thm. 1.12 (¥EEZEM). M, N: ab. gp., f: M — N: hom. D& %,
[32H R 51F, f: M/ker f — N & isom.



| s b = 1 ik o mEns—| |
R B R (COEITIRC BB RS )

Def. 2.1. ab. gp. DHI C = (Cp)nez = REYFT7 —NILEE (graded abelian group (gdd. ab. gp.))
EWno.,

Def. 2.2. C = (Cp)nez, C' = (C}))nez: gdd. ab. gp. D& =,

hom. DF f = (fn: Cpy = C)nez % REBUFEREL (gdd. hom.) W\, f: C — C' 2 EL.

H foiisom. D& X, gdd. hom. f = (fn)n: C — O 1F REYFEE (gdd. isom.) & W\,

gdd. ab. gp. C,C' DRNIZ gdd. isom. BEET L X, C ¥ C'1F (CREYIMEEr L T) AR
(isomorphic) TH 2 &\ 5.

e f=(fu)n:C=Cf =(fl)n: C'" = C": gdd. hom. D & =,
B (composition) f' o f = (fl o fa)n: C — C" BEE S (gdd. hom. I2725).

Def. 2.3. C = (Cp)n: gdd. ab. gp. IZXfL,

hom. D% 9,,: C, = Cp_1 (n € Z) BHZ 5TV,

BneZITHL 0p00php =0DHIIDOE T 3.

ZOtE, C=(C0) = ((Cn)n, (On)n) Z FxAEE (chain complex (ch.cpx.)) £\ 5.

Def. 2.4. C = ((Cp)n, (On)n),C" = (C',(9),)n): ch cpx. D& X,

f=f)n: C— C" gdd. hom. 3 FxA B4R (chain map (ch. map)) &1,

BEneZITHML O, ofn=1Ff _100,7235Z%.

f: C — C": ch map., gdd. isom. DMFET I X, Cr C'lx (Fxa1EEKLT) RE
(isomorphic) &\ 9.

o S&MFEO o fn=f_100,1F TRORAHAH L5 Tk,

anl Jo

Cn1 5 G

Def. 2.5. C = ((Cp)n, (On)n): ch. cpx. XL

Zn(C) =ker0, ={z € C, | Oz =0}
B, (C)=im0p41 ={be C, | Ic € Cpt1 s.t. b= py1c}

EEDD. Cp DILE N KD FLA Y (chain), Z,(C) D% n XD HA 2L (cycle), B,(C)D
L% n XD NI AV — (boundary) ¥\ 5.




o B,(C)C Z,(C) %%,

Proof. b€ B,(C) £ 328 b=0,11c 2785 c € Cpy1 FIET 2D T 9pb = 0,(0nt1¢) =0
YIRD, be Zn(C) THS. O

Def. 2.6. C: ch. cpx. D& &,
H,(C)=Z,(C)/B,(C) %Z C ® n RAFEOZ—EFF (n-th homology group) W\, H,(C) DIL%
C D nREEOP—4% (n-th homology class) £\ 9.

o H,(C) DITEDILIZ [2] (2 € Zo(C)) L EIF 3.

e f:C — (C’: ch. map between ch. cpxes. D& &, f(Z,(C)) C Z,(C"), f(Bn(C)) C Bp(C).

Proof. z € Z,(C) €55, 0,(fu(2)) = fu-1(0nz) = 072D T fo(z) € Z,(C") &7 D,
f(Zn(C)) C Zn(C).

be B,(C) 528 b=20p1ce’bc € Cpp1 DFEETSZDT, fr(b) = frn(Ontic) =
Oy 1fnt1(c) 872D, f(Bn(C)) C Bu(C). O

o TN file] = [fn(2)] THEREER f.: Z0(C)/Bn(C) = Zn(C")/Bn(C") HEE 5.

Proof. %, 2 € Zo(C) TN fu(2) € Zn(C') RDT, [fu(2)] € Ho(C') BEZ 5. RIC
2,7 € Zo(O) U [2] =[] £F B, 2— 2 € Bo(C) BDT, fulz —2') € Bu(C') L2
D, falz =2') = ful2) — fu(2)) BDT, [fo(2)] = [fu(z')] 3R D LD, O

o UTTIHEADOBND LW ZE f=f,,0=0,7RE, BRAFEWT LI rdH5.
Def. 2.7. f: C — C’: ch. map between ch. cpxes. D& X, f.[z] = [f(2)] TE % 5 HEFRR
fe: Hp(C) — Hyp(C')

%z f OFBERFEE! (homomorphism induced from f) £\ 5.

Ex. 2.8. C: ch. cpx. ZXTED 5.

0 0 CQ C() > 0 > 0
7, 2 F‘ 0 7
Zo(C) = Co = Z, By(C) = 0 & b Hy(C) = Z.
Z1(C) = Cy = Z,B,(C) = 2Z & b H,(C) = Z/27.

ZQ(C)—OJ:D H>(C) = 0.
n#£0,1,208 % Z,(C) C Cp=0&b Hy(C) =0,

RERY ORI OFEREZ T LD TEL.



Def. 2.9. M: ab. gp., #1,...,2, e M D& X,

Ty 2 DM % ERT D (generate) I, EFEDye MIIXL, y=a1z1+ - +apz, £7&
bai,...,ar CELHRFETHIE. TOLZxy,...,20. 13 M D ERR (generators) &\ 5.

M IZEREDIED 53 2 EMEDBHFET 2 & =, M X BRER (finitely generated (fin. gen.))
EWVS. Rz, —oompoE kI s 7 — Lz KEEE (cyclic group) £ 5.

o WEIFHX Z /21058 Y 72 2 L EDOBER m 1o L Z/mZ e [ARNC R 5.

Def. 2.10. M,N: ab. gp. D2 %, M ¥ N @ Bl (direct sum) M & N &%, ERE M x N IZ
A

(m,n) + (m',n') = (m+m/,n+n')
TEZHHAZE5 X725 D.
Thm. 2.11 (GRAENK 7 —~~VEEOEAER). M: fin. gen. ab. gp. D =, M FHREDKE

REOEM R 5.
DEDRD XS RIED ab. gp. L[@EICKR S (r,s > 0,m; > 2).

7"®L/miZ & - D L/mZ

o ZEH fin. gen. ab. gp. TH 5 ch. cpx. DERD KER Y —FEIX fin. gen.

Def. 2.12. M: ab. gp., 71,...,2, € M D ¥ X,

T1, ..., o D ARBYMST (linearly independent) &l a121 + -+ a2, =0 2K % ay,...,a, € Z1Z
gl =-=a,=0DLXIZRBZ L.

M ORI AR T M O BIE (basis) £ 5.

M OREEPFET 2 %, M X BHAE (free) THZ LWV,

o M DrHDITT LR Z2EEVPFET S E, MIZZ LAMTH 5.

o free ab. gp. DIEED subgp. & free TH 5.



3 B{FER
o Euclid BN SMNEKBIETA X —Y 2OhATHE (%) BIKMIKEEHT 3.

o AT TITIIT (HR) HFERZNRS.

Def. 3.1. vg,vy,...,v € RY (k> 1) 2 —ROMEICH S © 13,
V1 —Vg,..., 0 — V9 RN DR FL e LTHRAMN, TH 2 &,
k=00t %, vope RVIZ (FEEMFIZ) —BINBEICHZ 20D ZRIZT 5.

Def. 3.2. vg,...,v; € RN RN BEICH B & &,

k k
<U0"‘Uk;>:{ztivi VZ,tlZO,th:].}
=0 i=0

% v, ..., RIHRE T 2 BAIH k-B{E (geometric k-simplex) W15 .
72, W vig, ... v, B—RDOMEICD D Z EDHERTE, (v -vi,) Z (v vg) D L-RITL
DM@ (face) LW 5.

Ex. 3.3.
0-HK (vg) 1-BK (vgvy) 2-BK (vovyv2) 3-BUA (vovyvav3)
(%) vy
U3
AN
[ ] o—0O
V0 Vo U1 Vo (vov1) U1 V0 o

o 72X 21X vy, v1,v0 B—DMEITRNE F | (yovive) IFHRTR—RIC DR 3.

Def. 3.4. K: RN NOBRMMHEAKD L THRES L T 5.
RKHBEH o &, KIZRY Ao &R (BR) &SR (geometric (finite) simplicial complex)
LW,

1) ce KO EoDHEITIINL 7€ K,

(2) o, TEKDEZoNTADRBIX, oNTido DHEIDD T DH.

Ex. 3.5. XORID & 5 & HFIE R3 WORANEARERE G2 5.

Vo V6

V2 & &
V4 Us




o BIMHEMAERD FRuY—%2FEZ 2%, RY O LTOREBIIEE TR, FHFELOR
OO ZbrUT L. 22 TRDO LS gkl §5.

Def. 3.6. V: AR&ES, K: VORAEG» LR 2EEDL &,
K 725 (RBMR) BEEEE ((abstract finite) simplicial complex (simp. cpx.)) & &K% AT
k.

1) 0 ¢ K,
(2) Yo € K,NT Co,(t#0= 7 € K).

KoeK%x KDM@ (face) £7213 K @ B (simplex) &\ 5.
dimo = (0 KEENZWOMEE) — 1 % 0 D RIT (dimension) & WO\,

dim K = maxdimo % K ® RJg £\ 5.
oceK

7, VIK)={veV|{v) e K} % KoDIERES (set of vertices) £\, V(K) DIt%E K
D TR (vertex) £\ 9.

o RELOBZNNINIV DBEAREESLHE LN BB,

Ex. 3.7. Ex. 3.5 OR{AMHIEAEIRITIIC T 2 MREARER K IZRD K 51272 5.

( )

{vo}, {v1},- .., {ve},

{vo, v1}, {vo, va}, {vo, vs}, {v1, va}, {v1, vs}, {v2, v3}, {v2, va},
K = ¢ {vs,v4},{vs,vs}, {vs,v6}, {vs,v7}, {vr, v8}, {v7, vo}, {vs, vg},
{UOa V1, v2}a {UOa U1, U3}a {007 V2, Ug}, {Ula V2, /U3}, {U2a U3, U4}a

{U()a V1, V2, ’U3}

o IR EAENRD S RMA A ERZED Z L TE 5.

Def. 3.8. K: (abstract) simp. cpx., V(K) = {vo,...,0m} D E X,
U, ... Um € RN BRE AT LTS,

(1) o= {io,...,’ik} & K&:}H'L, Wjgs - -+ 5 Uy, E—RDALEIICH 5.
(2) Fo,re KITMNL, |o|N|r|=lonT|&”23.

fofLO':{io,...,ik}@X%

k
o] = th“ij
=0

k
Vj,tj>0,2tj1}
j=0

55,
T3, GeomK = {|o| | 0 € K} & RN NOBHAKERE 72 5.
D%, GeomK R |K| =,cx o] Z K O BAIREIR (geometric realization) W5,

10



Ex. 3.9.

A" ={oc c{0,1,...,n} | o # 0}
DA™ = A"\ {{0,1,...,n}}

DBMAEIRIIN=0,1, 20 EXD X512k 5.

AO Al A2
2
o o—©O
0 0 1 0
OA° OA! ON?
2
0
[ J [ J
0 1 0

11



4 BiFEFOREODS—8

Def. 4.1. K: simp. cpx., K, C K: the subset of ¢g-simplices & 3 %.
Cy(K) &% K, DIt BJK e T 5 free ab. gp. £ 55%. D% D

Vo,a, € Z} ,

/ /
E aaazg a,o0 & Vo,a, = a,,

Cy(K) = { > ago

oeK,

oeK, oeK,
g g0 + g byo = E (ag + bs)o.
oc€K, oceK, oc€Ky

g<0DEZFIFCYK)=0kTF 5.

V(K) D2EFz 0 EDEET S (YARDDTSH XW).

T8, Boe K WMLERZ/PNEWVIHIC 0 <v1 <+ <y DEIZMRSEZEHRTES.
ZDEE, o= (vv1--vy) EEL.

IBRZERZE (boundary map) 9: Cy(K) — Cy—1(K) ZXTE% % hom. £ F 3.

q

Ovo--vg) =D (=1)(vo--Ti---vg) (B & v BBRL 2 X BHIKT 3)

Rem. 4.2. Cy(K) 3 free 72 DT basis DfZ kDU hom. DVE X 5.
Ex. 4.3.

d{a) =0,
d{ab) = (b) — (a),
d{abc) = (bc) — (ac) + (ab).

Lem. 4.4. C.(K) = ((C4(K))q,0) & ch. cpx.

Proof. %o =(vg---vy) (¢=2,...,dim K) IZX L 9(dc) = 0 Z/REIX KW

Jj—1 q q q

=) (-1) Z(_1)3<UO...@...UJ....%> + Z (—1)° Z( 1) HNug - B+ 0y - - vg)
=0 7=0 i=j+1 7=0

= (_1)i+a<vo...@...@...vq>+ Z (—1)i+j‘1<v0---@---@----vq>
0<i<j<q 0<j<i<q

12



Def. 4.5. K: simp. cpx. D& X C,(K) % K ICAfET3F =1 VEE v, ZOFRERY —
B H.(K)=H.(C.(K)) % KDFREAS—8 25 (Z,(K) = Z,(C(K)), By(K) = By(C«(K))
EWVWSKREDHMES).

o W OEtEBIZEZTHL.
o LINT Z{x1,..., 2} & 21,...,2, % basis £ 5 free ab. gp. Z&T.

Ex. 4.6. K = {{v}} (15 ot %,

&b

0 (¢ #0)
Ex. 4.7. 0A% = {{0},{1},{2},{0,1},{0,2},{1,2}} D FER I —#H%EKD 3.

Z{(0),(1),(2)}  (¢=0)
Cg(0A%) =  Z{(01), (02), (12)} (¢=1)

0 (otherwise)
B ))
Zo(0A%) = Z{(0), (1), (2)}
Bo(9A?) = Z{{1) - (0), (2) — (0)}
Proof.
9(01) = (1) — (0)
9(02) = (2) - (0)
9(12) = (2) — (1) = ((2) = (0)) — ((1) = {0))
THY, (1) —(0),(2) — (0) KT, O

(1) — (0), (2) — (0), (0) 1& Zo(OA?) D basis 72 DT, Hy(0A?) = Z{[{0)]}.
Rem. 4.8. [(0)] = [(1)] = [{2)].

%7,
Z:(0A%) = Z{(01) — (02) + (12)}

13



Proof. 9(a{01) +b(02) +¢(12)) =0 (a,b,c € Z) £ T 5 &,
(73) = a((1) — (0)) + b((2) — (0)) + c((2) — (1))
= (=a—=b)(0) + (a —¢){1) + (b + ¢)(2)

THYH, (0),(1), (2) I LDT, —a—-b=a—c=b+c=0rkh, ThEfEir
a=-b=c

X o T(01) — (02) + (12) 1X Z1(0A?) D basis. O

THY, B1(0A?) =0%DT, H(0A?) = Z{[(01) — (02) + (12)]}.
Wz Iz,
(q =0, 1)

0 (otherwise)

H,(9A?) =

Def. 4.9. K, L: simp. cpx. D& X,
KxL=KULU{oUT|oeK,TeL}

K Y LODjoin EW5. T simp. cpx. 1274 5.

Ex. 4.10. CK = K x{{b}} & K @ # (cone) &\5.
b
CK
K
hom. @: Cy(CK) — Cur1(CK) & ®(vg---vg) = (=1 {vg - vgb), ®(vg---v4-1b) = 0

(v, ...,vg € V(K)) TEDD &,
q>1DtZceCyCK)IIXL, (09 + ®I)c=c DD ILD.

Proof.
OB (vg - --vg) = (1)1 (wg - - - vyb)
= (-1 (Z( 1)iun 5 0gh) + (~1)7 oo vq>>
i=0
= —P®O(vg - - vg) + (Vo - Vg)
(0P + ®O)(vg - - vg—1b) = (vg -+ vg—1b) DEZICHERTZ 2 (8). O

CHNEDERD 2 € Z,(CK) IZXL 2 = (0P + ®9)z = 9(P2) € By(CK) DT, H,(CK)=0.
¥7z, CK 3R (HEZR) 2D T Hy(CK) = Z{[(b)]}.

14



5 BEE/HEEOFEEFE

Def. 5.1. K,L: simp. cpx. D& &, Bff f: V(K) — V(L) 2 BIEER (simplicial map (simp.
map)) &1, Fo € KITHL f(o) e LER2ZL (f(o)dfIREXD0DB). ZOLZE, f: K— L
EEL.

Ex. 5.2. (1) K: simp. cpx. D& ¥, L C K 2 8353481 (subcomplex (subepx.)) &i&, L ®
BKEIRe bz, O E, WUEEMRL — Kidsimp. map. FHIC L =K Dt %, [HF
FRIEAERdk: K > K252 5.

(2) K,L: simp. cpx., vg € V(L) D& %, f(w)=vo CEES f: V(K)— V(L) (const. map)
WHEARER K- LE252%.

Def. 5.3. (1) fli Kl — KQ,fQ: K2 — Kg: simp. map DL %, él\ﬁ/%g{g% f2 o fll V(Kl) —
V(K3) i simp. map O & foo fi: K1 — K3 2ED 5.

(2) f: K1 — Ko: simp. map XL, f:V(Ky) — V(K) DEEFTH-T, f-1: V(K —
V(K1) dsimp. map 25222 % (f71: Ky —» K £EL), fi3 (BiEERD) ARERK »
WO, K 256 Ky \Disom. BFEAET S L &, K| & Ky 13 (BFEFHEELT) FE 2w,

e simp. map f: K — LIZRMETDORID conti. |f|: |K| — |L| ZiFET 5.

o f: K— L,g: L - M: simp. map D& &, |idg|=idg,|go f| = |g|lo|f|PKDILD. KT, f
73 isom. 72 5 | f] & homeo.

Ex. 5.4. inclusion f: OA™ — A" X f: V(OA") — V(A"): £HGEH, £71({0,1,...,n}) € 0A"

ZDT, fl¥isom. TIEZRW.
n =2
—

e K: simp. cpx. DX, V(K)IZ2IEFZ5Z T Cy(K) D basis (vg---vg) (vo < -+ < vg) ZE
», 0xBERLE.

o simp. map D& ch. map ZED 2 7 DICFLE Z LIRS 5.
ovg< <V DEE, 0,...,q BMENEZTdg, ..., i ITHTL

0 ---
<U’i0"'viq> :Sgn ( q) </UO.../Uq>
20 Zq
3%,

o ZBZDi%j@:jTJ‘LU,‘:’Uj LB E,
£95.
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Ex. 5.5.

(at) = (ba)
(abc)y = —(ach) = —(bac) = (bca) = (cab) = —(cba)

® vy,...,0q € V(K) VN WA TWED o7 DEELDH > TH

MDD Z e DHERTE 3.
Def. 5.6. f: K — L: simp. map D& %, f: Cy(K) = Cy(L): hom. ZXTED 3.
fe{vo -+~ vg) = (f(vo) - -~ f(vg))
Rem. 5.7. % i # jIZHU f(v;) = f(vj) DEZE, fi(vg---vg) =0 2725 LITTEE.
Lem. 5.8. f;: C4(K) — C,(L) i& ch. map.

Proof.

o ch. map O—fGRD LXPERTE 3.
Def. 5.9. f: K — L: simp. map O ¥ &, f, OFFEHEFE f, . H (K) — Hy(L) (fi]z] = [fis(2)])
Z fORERY —HAD BEEFRE 2\ 5.

o (idg)y: Cy(K) — Cy(K), (idg )« : Hy(K) — Hy(K) I3TEFEL.

o [t K—L,g: L—MIWIZHL (gof)y=gs0 f1,(g0 f)« = gio fu DD LD,

o f: K= LAisom DEE, fi: Cy(K) = Cy(L), fu: Hy(K) — Hy(L) & isom. 722 ((fti)il _
(F Y% (f) = (fY)s & 2).

Ex. 5.10. K, L: conn. simp. cpx., f: K — L: simp. map D& &, f,: Ho(K) — Hy(L) {Z isom.
EBE, v e V(K)IXHL [(v)] € Ho(K), [(f(v))] € Hy(L) 1ZZHZh basis TH D,

fel{o)] = [fy(0)] = [{f ()]

7D, basis % basis IZE T .
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Ex. 5.11.

Ce = {{0}7 {1}’ {2}’ {3}7 {4}7 {5}7 {07 1}’ {07 5}7 {17 2}7 {27 3}7 {37 4}7 {47 5}}
f:Ce— 0N f(0)=f(3)=0, f(1)=fA)=1 [(3)=[(5)=2

3% (FX).
0
1 5 L
2 O 4
1 2
3
Cs OA2
ERARS

o = [(01) + (12) 4 (23) + (34) + (45) + (50)] € H1(Cs), B =[(01) + (12) + (20)] € H1(0A?)
X ZNZEND basis.

fra= F(01) + (12) +(23) + (34) + (45) + (50)]
= [(01) + (12) + (20) + (01) + (12) + (20)] = 28

2%, L1zhoT f.(H1(Cs)) C Hi(OA?) 1Z index 2 @ subgp.
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6 ZIFEOAS—RZTLY

Def. 6.1. ab.gp. ¥ hom. D% L M4 Ny (M) ke (exact (at M)) TH 5 ki3,
imf=kerg &725Z¢k.

Ex. 6.2. e 0> M i>N: exact < f: inj.
| Proof.O%MLN: exact & 0 =im0 = ker f < f: inj. O

° MLN%O: exact < f: sur.

| Proof. M i>N—>0: exact < im f =ker0 = N & f: surj. O

e LLMEN f=0,g=0=>M=0

I Proof. 0 =im f =kerg= M O

Def. 6.3. ab.gp. & hom. D%l
Mo L5 a2 I g,

B TR (exact) L1&, Fi=1,...,n— LihL, My 25y B My psede (M T524) &
BHZL.

Ex. 6.4. 0> L L M % N = 0% @5l (short exact sequence) &9 .
D& E, g: M/im f — N: isom. (g(x) = g(x)).

Proof. kerg =im f, g: surj. 72D CHERIRIEH NS, O

o XD Lem. (35 RHDEHETHR 4 DN 5.

Lem. 6.5.0 5 L & M % N = 0: exact, h: N — M: hom., goh =idy D& &, (f,h): LON —
M, (f,h)(y,2) = f(y) +h(z) Fisom. (ZDXI7RhHFEET 2 & ZRTRINNE BRI S (split)
W)

Proof. (HHME) (f,h)(y,2)=0&F5& f(y)+h(z)=0.

Nz g TEITE0=9(f(y)+h(z)=0+2=-=z.

72, 0=f(y) +h(2)=f(y)+0=f(y) & f: inj. THRZILHy=0tkD, (fh)IGHH.
(&) ze Mt 5.

z=g(z) T3, gl@a—h(z)=g(x) —2=07RDT, ZEMUELPS fly)=x—Nh(z) Kb yelL
DFIEST 2. KoTa=fy)+h(z) &b, (f h)ITE4E O

e XD Lem. 2» 6 L DORFTERHNE N A3 free 72 5 split T 5.
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Lem. 6.6. M: ab.gp., N: fin. gen. ab. gp., g: M — N: surj. hom. D & &,
h: N — M: hom. TH->T, goh=idy 723 b DHTEE.

Def. 6.7. ch. cpx. & ch. map D% 0 — C ENVG I NI N cpx. DRTERH LI,
HqeLIHL, 0 Cy bl Sl 5 opmELYIL 552 L.

Def. 6.8.0—C L ¢’ % ¢” = 0: ch. cpx. DR DL %, EFEZERE (connecting hom.)
Oi: Hy(C") = Hy1(C) ZRTED 5

%2 e Z,(C)ITHL, g(d) =2"eRkbd eCl, flz) =0 %% ze Z;1(C) IT&»oT
W[ =[] L EDS.

Lem. 6.9. 9, & well-defined 7% hom.

Proof. e ZDEIRI 2DPFETHZL
g: surj. KD T g(d) =2" &% € Cyg BFAE.
g: ch. map ZZDT ¢g(dc) = dg(c') = 92" = 0.
FTRMELD f(z) =0d 785 2 € Cpy DIFLE.
f: ch. map 72D T f(9z) = df(z) = () = 0.
fiinj. RDTOz=0&7%%bD z€ Z,_1(C).

o 2 DEDDTTEBRNI L
(2] = [25] €T 2L 0" = 2] — 23, g(&h) = 21, 9(c5) = 23, f(21) = Ocy, f(z2) = Ocy
725 ),y 21,20 DBEND.
g: surj. BDTg(d)=c" 7% eCpy HEE (FKI(1).
g(ch — &g = 9c') = g(c}) — g(cy) — 9g(c) = 21 — 25 — 0" = 0 (FR (2))
FTERMELD flc)=d —y,—d 725 ce Cyhi#EtE (T (3)).
f(8c) = 0f(c) = 0(c) — ¢4 — Oc') = f(z1) — f(22) = f(z1 — 22) (FEI(4), (5))
fiinj. RDT, dc=z1 —2z0 (R (6)) &7, [z1] = [22] in Hi—1(C).

0 Cyr1 Cl iy o 0
Zil _
0 Cy > Cy - Cy 0
c T) c1 —co — Oc ®) 0
1(6) l(4)
0 C._ o o 0
a 1z1 — 29 d(c1 — c2) 9=t

(LD XS RMZRHZ 2 5E 2T X\ (diagram chasing))
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Oy: hom. 7252 &

[21], [22] € Hy(C") &5 2L, g(ch) = 21, 9(c) = 23, f(z1) = Ocy, f(z2) = Och
EI25 d),dy, 21,20 WEND.

ZDLE, gld+dy) =2 +2, f(z1+ 22) =9(c}| + &) 7RDT,

Ou[2] + 23] = [21 + 22] = [21] + [22] = Ou[21] + Ou[23)]

O

Thm. 6.10 (FEnY—E%E2%5). 0 - C o0 % 0" 5 0: ch. cpx. DEERIIOL E, K

e,

P m0) I B (O 2 B (O S H(0) D

Proof. e Exactness at H,(C'):

[2] € Hy(C) WXL gu(ful2]) = [9(f(2)] = [0] =0 &7 D, im f, C ker g..

[2] € ker g (C Hy(C")) €T3 &, [9(2)] =0&D g() =0 &% ¢ € Cf ) HFHE.
g: surj. BDTg(d) =" &% € Cp ) DMFLE.

g(z' = 0d)=g(z') = 0g(d) =0 — " =072DT

FTEMDD f(2) =2/ — 0 £33 z € Cyyq DIFLE.

[(02) =0f(2)=0(z —0d)=0% f:inj. £7RBIENH02=087D z€ Z,41(0).
Lo T[z] € Hi(C)THY, filz] =[f(2)] = [z — 0] =[] 72D T im f, D ker gy.

M B2 5 im f, = ker g,.

Exactness at H,(C):

2] € Hyr1 (C") WTHTL g(¢) = 2" £ 8B ¢ € Cly & f(2) =0 ¥ 153 2 € Z,(C) & & 3.

TOLE, f.(8,2")) = filz] = [f(z)] = [0d] =0 £ 72D, imd, C ker f,.
[2] € ker fu(C Hy(O)) £FB,, [f(2)]=0&D f(2) =0c 725 ¢ € Cp, ) DFIE.
2 =g(d) e Cfyy B L, 02" =0g(c) = g(dc) = g(f(2)) =0 &b 2" € Zy11(C").
WX g(d) =2", f(z) =0 DT O[] =[2] &7 D, imd, D ker f,.

ML ED S im 0, = ker f..

Exactness at Hy(C"): exercise!
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7 Mayer—Vietoris 275

o simp. cpx. IZfFPES % ch. cpx. IZERICRZ ZeDZ L, KERY —DFBEIT—MITKEZD,
Mayer—Vietoris 5825 % 5 LEHENIRCRE Z e 3D 5.

e K: simp. cpx., L1, Ly C K: subcpx.,, K =L ULy & L,
ig: L1 N Lo — Ly, jg: Ly — K (k:1,2> Z incl. £ 5.

Lem. 7.1. RiZ exact.

0 — Cy(Ly N Ly) 5 Cu(Ly) ® Cu(Ls) L CL(K) — 0
Z 2T I(c) = ((i1)sc, (i2)gc), J(c1,c2) = (J1)ger — (J2)4c2.
Proof. o [: inj. I3ME& (easy).

e im /[ C ker J:
c€ Cy(LiNLy) iTxtL

J(1(c)) = J((i1)ge, (i2)zc) = (51)a((i1)ge) — (J2)s((iz)gc) = (1 0 i1)gc — (2 0 d2)yc = 0

ZZTjrot] =7Jg0is (: incl. L1 N Ly —)K)T%%:t%ﬁﬁb\fl
XoTimICimJ &R 5.

e im/] D ker J:
(L1)g, (L2)g: ENEND g-simp. DEF L T 5.

C1 = Z 50, Cy = Z boo_a J(Cl,Cg) =0

a€(L1)q o€(La)q
i B Rt
0=J(c1,¢2) = Z (ag — bg)o + Z AyO — Z boo
0€(L1)qN(L2)q 0€(L1)q\(L2)q 0€(L2)q\(L1)q

:h;b, UE(Ll)q\(Lg)q@t%agzo, O'E(Lg)q\(Ll)q, @t%bgzo.

£oTe = Z g0 = Z byo = co 72D T,
o€(L1)gN(L2)q a€(L1)gN(L2)q
c=c1=c € C1(L1NLy) EBFXI(c) = (c1,c2). Mo TimI D kerJ.

e J: surj.:
c = Z a0 szﬁb, c1 = Z ag0 , Cg = Z (—aJ)O' Bl t, J(Cl,CQ) =cC.
c€Ky o€(L1)q o€(L2)q\
X o T J: surj.
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Thm. 7.2 (Mayer—Vietoris 5862%1). K: simp. cpx., L1, Ly C K: subcpx., K = L; U Lo,

ig: L1 N Lo — Ly, jg: Ly — K (]{3 = 1,2) % incl. £ 5.
ZorE, % (AR hom. A,: Hy(K) — Hy—1(L1 N La) (g € Z) DSFFAE L TRIZ exact.

* I* J* A* I*
B H (LN Lo) 25 Hy(Ly) @ Hy(Ly) 25 Hy(K) 25 Hy_y(I1 N Ly) 2 -

Z 2T Lax = ((11)sx, (i2)sx), Jux = (J1)sx — (J2)s2.

Proof. L@ Lem. EHii[ED Thm. 22555 .

Rem. 7.3. e conn. hom. A, IZEAKKNCH? 572 TH XV &2\,

o H.(K),H.(L1),H(L2), H (L1 NLy) DD B 3 DD oTWNIE XKD D1DOEKRD B,
EWVWSEWIHAZN (BFRD SN DITTIHRW).

Thm. 74. n>1D¢ &
Z (C]ZO,n)

H(0A™) =

0 (otherwise)

Rem. 7.5. n =00 & & 9A! = {{0},{1}} QAESR) BOTRD XS24k 5.

Z* (q=0)

Hy(0A) =
0 (¢#0)

e JANt! :AnJrl\{O,l,,..,n—l-l} Thol.

Proof.
.,n}} (horn W H) 1 A D subepx.

AL = oA ({0, 1,..
AU AP = GATTL AT N AL = AT HIK D 31D,

A2
Al

o A" CA"L AL > C(JA™) (cone) TH 5.
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Proof.

A s {{n}} = A" U {{n}}U{SU{n} |0 #S € A"} = A"
OA"™ x {n+ 1}

= (A" \ {{0,1,...,nI ) U{{n+ 13} U{SU{n+1}| S € A"\ {{0,1,...,n}}}
= A"\ {{0,1,...,n},{0,1,...,n +1}} = A™"!

Hyam) = Bty = {F @70
0 (¢g#0)

en=1Dr %, 9A2=AUA?ITBF % Mayer Vietoris 52 25NIRD & 51272 5.

0 — H1(8A2) 25 Hy(0AY) L5 Ho(AY) ® Ho(A2) 255 Hy(8A2) — 0

A2 IZHEHRER DT, Ho(A?) = Z.
Ho(0AY) = Z{[(0)],[(1)]} TH D, Al A2 1 ZEHERDT

LI1)] = (1], (D]) = (0], [{0)]) = L([(0)]) # 0
EoTH(0A?) 2 imA,=ker [, 2Z 5.

en>20Dr En—1 TEHEIPKHIIOE TS L IA™H = AP UA™T IZEH T % MayerVietoris
SERH 5

0 — H1(OA™1) 25 Ho(9A™) L5 Ho(A™) @ Ho(A™H) 25 Ho(9A™) =0 (1)
0 — H,(0A™) — H, 1(0A™) = 0 (2)

L. = Lg>2.

%3 OAMTHITEAE IR DT Ho(0A™ ) 2 Z.

SELF (1) IZBWT Hyo(0A™) = Z{[(0)]} TH b

L[(0)] = ([(0)], [(0)]) # O in Ho(A™) & Ho(A™Y) = 72 22 DT I, 1 inj.
Ih&ED A ZO0EBR»DInj. 4D Hi(OA™) = 0.

EBIT, B2 (2) &b ¢>2Dr & H (A" = H, 1(A™).
DLUE2 & EHASEL D 32D,
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