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0 この講義の目標
• 目標：単体複体のホモロジー群を理解する．

単体複体 チェイン複体 ホモロジー群

幾何的対象 代数的対象

◦ 単体複体とは，「単体（点，線分，三角形，四面体，…）を組み合わせて作られる図形」のこ
と（もちろんこれは正確な定義ではない）．

◦ ホモロジー群は，チェイン複体に対して定まるアーベル群である．
◦ 単体複体という幾何的対象に対しチェイン複体が定まり，そのチェイン複体からホモロジー
群が定まる．

◦ 単体複体のホモロジー群は，多様体の幾何学をはじめとして現代幾何学の研究には欠かせな
い道具である．

• 教科書の例（一冊は持っておき，講義内容との対応を確認するとよい）

◦ 田村一郎，トポロジー，岩波書店，1972

◦ 加藤十吉，位相幾何学，裳華房，1988

◦ 坪井俊，幾何学 II ホモロジー入門，東京大学出版会，2016

• 講義の構成について

◦ 単体複体を先に学んでどういう対象を扱うかを先に知っておくほうが，動機のある健全な数
学の学習の順序かもしれない．しかし，「幾何学 II」の講義では演習の時間を設けている都合
上，代数的基礎を早い段階で身につけ，時間をかけてその計算に慣れ親しんでいく方が，計
算を実行する能力を養うためにはよいと判断した．

• 理解のために

◦ 演習問題に取り組むなどして，定義された概念の理解を深める努力をお願いします．定義を
一つ一つ確実に理解しながら進めるのがコツです．抽象的でわかりにくいことは例をたくさ
ん考えることで少しずつ分かってくることがあり，分からないことに粘り強く向き合わない
といけないことがあります．

◦ 加群の取り扱いはあまり説明しないので，「代数学 II」の受講をお勧めします．
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1 アーベル群の復習

Def. 1.1. (M,+)がアーベル群 (abelian group (ab. gp.)) とは，
M : set, +: M ×M → M : map で次を満たすもの．

(1) ∀x, y, z ∈ M,x+ (y + z) = (x+ y) + z,

(2) ∃z ∈ M, ∀z ∈ M,x+ z = z + x = x（ 0 = zと書き，（M の）ゼロ元という）,

(3) ∀x ∈ M, ∃x′ ∈ M , s.t. x+ x′ = x′ + x = 0（ −x = x′と書き， xのマイナス元という）,

(4) ∀x, y ∈ M,x+ y = y + x.

今後，演算+は明示せずに単に「M は ab. gp.」などと言う．

Ex. 1.2. • ゼロ元のみからなる ab. gp. 0．

• 整数の全体 Zは通常の和+で ab. gp.となる．
ゼロ元は 0であり，x ∈ Zのマイナス元は符号を変えて得られる−xである．

• r個（rは 0以上の整数）の整数の組の全体

Zr =



a1
...

ar


∣∣∣∣∣∣∣∣∣ ∀i, ai ∈ Z


は成分ごとの和を演算として ab. gp.となる．
ゼロ元はすべての成分が 0となる組であり，マイナス元は各成分の符号を変えて得られるもの．

• n ≥ 3のとき n次対称群 Snは条件 (4)をみたさないので，ab. gp.ではない．

• 記号：M : ab. gp.のとき，x, y ∈ M と正の整数 nに対し

◦ nx := x+ · · ·+ x︸ ︷︷ ︸
n 個

◦ 0x := 0

◦ −nx := −(nx) = n(−x)

◦ x− y := x+ (−y)

と表す（これにより ab. gp.は自然に Z-加群となる）．

Def. 1.3. X: setのとき，各 x, y ∈ X に対し x ∼ yかそうでないかが決まっているとき，∼をX

上の関係 (relation) という．
さらに∼が同値関係 (equivalence relation) とは次をみたすこと．

(1) ∀x, y ∈ X, (x = y ⇒ x ∼ y),

(2) ∀x, y ∈ X, (x ∼ y ⇒ y ∼ x),
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(3) ∀x, y, z ∈ X, (x ∼ y, y ∼ z ⇒ x ∼ z).

[x] = {y ∈ X | y ∼ x}を xが代表する同値類 (equivalence class represented by x) という（x̄な
ど別の記号を使うこともある）．
X/∼ = {[x] | x ∈ X}をX の∼による商集合 (quotient set) という．
また，p(x) = [x]で定まる写像 p : X → X/∼を射影 (projection) という．

（商集合からの写像を代表元を使って定義する際にはwell-definednessを確認しないといけない，などの
基本事項の説明はここでは既知のものとして省略する）

Def. 1.4. M : ab. gp., L ⊂ M : subset のとき，
LがM の部分群 (subgroup (subgp.)) とは，次をみたすこと．

(1) L ̸= ∅,

(2) ∀x, y ∈ L, x+ y,−x ∈ L.

Rem. 1.5. (2)の仮定の下で (1)は 0 ∈ Lと同値．

Def. 1.6. M : ab. gp., L ⊂ M : subgp. のとき，x, y ∈ M に対し x ≡ y mod L を x− y ∈ Lが
成り立つこととすると，これは同値関係になる．
この同値関係による商集合M/L = M/(≡ mod L)をM の Lによる商群 (quotient group) また
は剰余群という．
実際，M/Lは [x] + [y] = [x+ y]で定まる演算により，ab. gp.となる．

[x] + [y] = [x+ y]の well-definedness：
x ≡ x′ mod L, y ≡ y′ mod Lとする．
このとき x− x′, y − y′ ∈ Lなので，

(x+ y)− (x′ + y′) = (x− x′) + (y − y′) ∈ L

となる．よって [x+ y] = [x′ + y′]となり，well-defined．

Rem. 1.7. ab. gp.の subgp.は常に normal.

Ex. 1.8. m ∈ ZのときmZ = {n ∈ Z | ∃k ∈ Z s.t. n = mk}は Zの subgp.

m > 0のとき，
Z/mZ = {0, . . . ,m− 1} : 位数mの巡回群

Def. 1.9. M,N : ab.gp.のとき，f : M → N が準同型写像 (homomorphism (hom.)) とは，次を
みたすこと．

∀x, y ∈ M, f(x+ y) = f(x) + f(y)
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hom. f が全単射のとき，f は同型写像 (isomorphism (isom.))という．
isom. f : M → N が存在するとき，M とN は同型 (isomorphic) といい，M ∼= N と書く．

Rem. 1.10. 準同型 f について f(0) = 0, f(−x) = −f(x)が成り立つ．

Ex. 1.11. • M : ab. gp., L ⊂ M : subgp.のとき
包含写像 i : L → M，射影 p : M → M/Lは hom.

• M,N : ab. gp., L ⊂ M : subgp., f : M → N : hom. のとき，
∀x ∈ L, f(x) = 0ならば，f̄ : M/L → N が定まり，hom.になる．
また，f̄ ◦ p = f が成り立つ．このことを次の図式は可換 (commutative) であるという．

M N

M/L

f

p
f̄

• M,N : ab. gp., f : M → N : hom. のとき，

ker f = {x ∈ M | f(x) = 0} f の核 (kernel)

im f = {y ∈ N | ∃x ∈ M s.t. y = f(x)} f の像 (image)

は subgp.

Thm. 1.12 (準同型定理). M,N : ab. gp., f : M → N : hom. のとき，
f が全射ならば，f̄ : M/ ker f → N は isom.
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2 チェイン複体とホモロジー群

単体複体 チェイン複体 ホモロジー群

幾何的対象 代数的対象（この節ではこちらを扱う！）

Def. 2.1. ab. gp.の列C = (Cn)n∈Zを次数付アーベル群 (graded abelian group (gdd. ab. gp.))

という．

Def. 2.2. C = (Cn)n∈Z, C
′ = (C ′

n)n∈Z: gdd. ab. gp.のとき，
hom.の列 f = (fn : Cn → C ′

n)n∈Zを次数付準同型 (gdd. hom.)といい，f : C → C ′と書く．
各 fnが isom.のとき，gdd. hom. f = (fn)n : C → C ′は次数付同型 (gdd. isom.)といい，
gdd. ab. gp. C,C ′ の間に gdd. isom.が存在するとき，C と C ′ は（次数付加群として）同型
(isomorphic)であるという．

• f = (fn)n : C → C ′, f ′ = (f ′
n)n : C

′ → C ′′: gdd. hom.のとき，
合成 (composition) f ′ ◦ f = (f ′

n ◦ fn)n : C → C ′′が定まる（gdd. hom.になる）．

Def. 2.3. C = (Cn)n: gdd. ab. gp. に対し，
hom.の列 ∂n : Cn → Cn−1 (n ∈ Z)が与えられていて，
各 n ∈ Zに対し ∂n ◦ ∂n+1 = 0が成り立つとする．
このとき，C = (C, ∂) = ((Cn)n, (∂n)n)をチェイン複体 (chain complex (ch.cpx.))という．

Def. 2.4. C = ((Cn)n, (∂n)n), C
′ = (C ′, (∂′

n)n): ch cpx. のとき，
f = (fn)n : C → C ′: gdd. hom. がチェイン写像 (chain map (ch. map)) とは，
各 n ∈ Zに対し ∂′

n ◦ fn = f ′
n−1 ◦ ∂nとなること．

f : C → C ′: ch map., gdd. isom. が存在するとき，C と C ′ は（チェイン複体として）同型
(isomorphic)という．

• 条件 ∂′
n ◦ fn = f ′

n−1 ◦ ∂nは「次の図式が可換」ということ．

Cn C ′
n

Cn−1 C ′
n−1

fn

∂n ∂′
n

fn−1

Def. 2.5. C = ((Cn)n, (∂n)n): ch. cpx. に対し

Zn(C) = ker ∂n = {z ∈ Cn | ∂nz = 0}

Bn(C) = im ∂n+1 = {b ∈ Cn | ∃c ∈ Cn+1 s.t. b = ∂n+1c}

と定める．Cnの元を n次のチェイン (chain)，Zn(C)の元を n次のサイクル (cycle)，Bn(C)の
元を n次のバウンダリー (boundary) という．
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• Bn(C) ⊂ Zn(C)となる．

Proof. b ∈ Bn(C)とすると b = ∂n+1cとなる c ∈ Cn+1が存在するので ∂nb = ∂n(∂n+1c) = 0

となり，b ∈ Zn(C)である．

Def. 2.6. C: ch. cpx.のとき，
Hn(C) = Zn(C)/Bn(C)をCの n次ホモロジー群 (n-th homology group) といい，Hn(C)の元を
C の n次ホモロジー類 (n-th homology class) という．

• Hn(C)の任意の元は [z] (z ∈ Zn(C))と書ける．

• f : C → C ′: ch. map between ch. cpxes. のとき，f(Zn(C)) ⊂ Zn(C
′), f(Bn(C)) ⊂ Bn(C

′)．

Proof. z ∈ Zn(C)とすると ∂′
n(fn(z)) = fn−1(∂nz) = 0なので fn(z) ∈ Zn(C

′)となり，
f(Zn(C)) ⊂ Zn(C

′)．
b ∈ Bn(C) とすると b = ∂n+1c となる c ∈ Cn+1 が存在するので，fn(b) = fn(∂n+1c) =

∂′
n+1fn+1(c)となり，f(Bn(C)) ⊂ Bn(C

′)．

• これより f∗[z] = [fn(z)]で準同型写像 f∗ : Zn(C)/Bn(C) → Zn(C
′)/Bn(C

′)が定まる．

Proof. まず，z ∈ Zn(C)に対し fn(z) ∈ Zn(C
′)なので，[fn(z)] ∈ Hn(C

′)が定まる．次に
z, z′ ∈ Zn(C)に対し [z] = [z′]とすると，z − z′ ∈ Bn(C)なので，fn(z − z′) ∈ Bn(C

′)とな
り，fn(z − z′) = fn(z)− fn(z

′)なので，[fn(z)] = [fn(z
′)]が成り立つ．

• 以下では混乱の恐れがないときは f = fn, ∂ = ∂nなど，添え字を略することがある．

Def. 2.7. f : C → C ′: ch. map between ch. cpxes. のとき，f∗[z] = [f(z)]で定まる準同型

f∗ : Hn(C) → Hn(C
′)

を f の誘導準同型 (homomorphism induced from f) という．

Ex. 2.8. C: ch. cpx. を次で定める．

· · · 0 0 C2 C1 C0 0 0 · · ·

Z Z Z2 倍 0

Z0(C) = C0 = Z, B0(C) = 0よりH0(C) ∼= Z．
Z1(C) = C1 = Z, B1(C) = 2ZよりH1(C) ∼= Z/2Z．
Z2(C) = 0よりH2(C) = 0．
n ̸= 0, 1, 2のとき Zn(C) ⊂ Cn = 0よりHn(C) = 0．

ホモロジー群の計算に役立つ事実をまとめておく．
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Def. 2.9. M : ab. gp., x1, . . . , xr ∈ M のとき，
x1, . . . , xr がM を生成する (generate) とは，任意の y ∈ M に対し，y = a1x1 + · · · + arxr とな
る a1, . . . , ar ∈ Zが存在すること．このとき x1, . . . , xrはM の生成系 (generators) という．
M に有限個の元からなる生成系が存在するとき，M は有限生成 (finitely generated (fin. gen.))

という．特に，一つの元から生成されるアーベル群を巡回群 (cyclic group) という．

• 巡回群は Zまたは適当な 2以上の整数mに対し Z/mZと同型になる．

Def. 2.10. M,N : ab. gp. のとき，M とN の直和 (direct sum) M ⊕N とは，直積M ×N に
演算

(m,n) + (m′, n′) = (m+m′, n+ n′)

で定まる演算を与えたもの．

Thm. 2.11 (有限生成アーベル群の基本定理). M : fin. gen. ab. gp. のとき，M は有限個の巡回
群の直和と同型になる．
つまり次のような形の ab. gp.と同型になる（r, s ≥ 0,mi ≥ 2）．

Zr ⊕ Z/m1Z⊕ · · · ⊕ Z/msZ

• 各次数が fin. gen. ab. gp.である ch. cpx.の各次数のホモロジー群は fin. gen.

Def. 2.12. M : ab. gp., x1, . . . , xr ∈ M のとき，
x1, . . . , xrが線型独立 (linearly independent) とは a1x1 + · · ·+ arxr = 0となる a1, . . . , ar ∈ Zは
a1 = · · · = ar = 0のときに限ること．
M の線型独立な生成系をM の基底 (basis) という．
M の基底が存在するとき，M は自由 (free) であるという．

• M の r個の元からなる基底が存在するとき，M は Zrと同型である．

• free ab. gp. の任意の subgp. は free である．
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3 単体複体
• Euclid空間内の幾何的単体複体でイメージをつかんでから（抽象）単体複体を定義する．

• 本講義では主に（抽象）単体複体を扱う．

Def. 3.1. v0, v1, . . . , vk ∈ RN (k ≥ 1) が一般の位置にあるとは，
v1 − v0, . . . , vk − v0が RN のベクトルとして線型独立であること．
k = 0のとき，v0 ∈ RN は（無条件に）一般に位置にあるということにする．

Def. 3.2. v0, . . . , vk ∈ RN が一般の位置にあるとき，

⟨v0 · · · vk⟩ =

{
k∑

i=0

tivi

∣∣∣∣∣ ∀i, ti ≥ 0,
k∑

i=0

ti = 1

}

を v0, . . . , vkを頂点とする幾何的 k-単体 (geometric k-simplex) という．
また，部分列 vi0 , . . . , viℓ も一般の位置にあることが確認でき，⟨vi0 · · · viℓ⟩を ⟨v0 · · · vk⟩の ℓ-次元
の面 (face) という．

Ex. 3.3. 　

0-単体 ⟨v0⟩

v0

1-単体 ⟨v0v1⟩

v0 v1

2-単体 ⟨v0v1v2⟩

v0 v1

v2

⟨v0v1⟩

⟨v1v2⟩⟨v0v2⟩

3-単体 ⟨v0v1v2v3⟩

v0 v1

v2
v3

• たとえば v0, v1, v2が一般の位置にないとき，⟨v0v1v2⟩は線分や一点に「つぶれる」．

Def. 3.4. K: RN 内の幾何的単体のなす有限集合とする．
次が成り立つとき，KはRN 内の幾何的（有限）単体複体 (geometric (finite) simplicial complex)

という．

(1) σ ∈ K のとき σの面 τ に対し τ ∈ K，

(2) σ, τ ∈ K のとき σ ∩ τ ̸= ∅ならば，σ ∩ τ は σの面かつ τ の面．

Ex. 3.5. 次の図のような図形は R3内の幾何的単体複体を与える．
v0

v1

v2

v3

v4

v5

v6

v7

v9

v8
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• 幾何的単体複体のトポロジーを考えるとき，RN の点としての座標は重要ではなく，各面同士の交
わり方さえわかればよい．そこで次のように「抽象化」する．

Def. 3.6. Ṽ : 有限集合, K: Ṽ の部分集合からなる集合のとき，
K が（抽象有限）単体複体 ((abstract finite) simplicial complex (simp. cpx.)) とは次をみたす
こと．

(1) ∅ ̸∈ K,

(2) ∀σ ∈ K, ∀τ ⊂ σ, (τ ̸= ∅ ⇒ τ ∈ K).

各 σ ∈ K をK の面 (face) またはK の単体 (simplex) という．
dimσ = (σに含まれる減の個数)− 1を σの次元 (dimension) といい，
dimK = max

σ∈K
dimσをK の次元という．

また，V (K) = {v ∈ Ṽ | {v} ∈ K}を K の頂点集合 (set of vertices) といい，V (K)の元を K

の頂点 (vertex) という．

• 混乱のおそれが無ければ Ṽ がどんな集合か明言しないことが多い．

Ex. 3.7. Ex. 3.5の幾何的単体複体に対応する抽象単体複体K は次のようになる．

K =



{v0}, {v1}, . . . , {v9},

{v0, v1}, {v0, v2}, {v0, v3}, {v1, v2}, {v1, v3}, {v2, v3}, {v2, v4},

{v3, v4}, {v4, v5}, {v5, v6}, {v5, v7}, {v7, v8}, {v7, v9}, {v8, v9},

{v0, v1, v2}, {v0, v1, v3}, {v0, v2, v3}, {v1, v2, v3}, {v2, v3, v4},

{v0, v1, v2, v3}


• 逆に抽象単体複体から幾何的単体複体を作ることもできる．

Def. 3.8. K: (abstract) simp. cpx., V (K) = {v0, . . . , vm}のとき，
u0, . . . , um ∈ RN が次をみたすとする．

(1) 各 σ = {i0, . . . , ik} ∈ K に対し，ui0 , . . . , uik は一般の位置にある．

(2) 各 σ, τ ∈ K に対し，|σ| ∩ |τ | = |σ ∩ τ |となる．

ただし σ = {i0, . . . , ik}のとき

|σ| =


k∑

j=0

tjuij

∣∣∣∣∣∣ ∀j, tj ≥ 0,
k∑

j=0

tj = 1


とする．
すると，GeomK = {|σ| | σ ∈ K}は RN 内の幾何的単体複体となる．
このとき，GeomK や |K| =

⋃
σ∈K |σ|をK の幾何的実現 (geometric realization) という．
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Ex. 3.9.

∆n = {σ ⊂ {0, 1, . . . , n} | σ ̸= ∅}

∂∆n = ∆n \ {{0, 1, . . . , n}}

の幾何的実現は n = 0, 1, 2のとき次のようになる．

∆0

0

∂∆0

∅

∆1

0 1

∂∆1

0 1

∆2

0 1

2

∂∆2

0 1

2
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4 単体複体のホモロジー群
Def. 4.1. K: simp. cpx., Kq ⊂ K: the subset of q-simplices とする．
Cq(K)をKq の元を基底とする free ab. gp.とする．つまり

Cq(K) =

∑
σ∈Kq

aσσ

∣∣∣∣∣∣ ∀σ, aσ ∈ Z

 ,

∑
σ∈Kq

aσσ =
∑
σ∈Kq

a′σσ ⇔ ∀σ, aσ = a′σ,

∑
σ∈Kq

aσσ +
∑
σ∈Kq

bσσ =
∑
σ∈Kq

(aσ + bσ)σ.

q < 0のときは Cq(K) = 0とする．
V (K)の全順序をひとつ固定する（どんなものでもよい）．
すると，各 σ ∈ Kq に対し頂点を小さい順に v0 < v1 < · · · < vq のように並べることができる．
このとき，σ = ⟨v0v1 · · · vq⟩と書く．
境界準同型 (boundary map) ∂ : Cq(K) → Cq−1(K)を次で定まる hom.とする．

∂⟨v0 · · · vq⟩ =
q∑

i=0

(−1)i⟨v0 · · · v̂i · · · vq⟩ (v̂iは viを除くことを意味する)

Rem. 4.2. Cq(K)は freeなので basisの像を決めれば hom.が定まる．

Ex. 4.3.

∂⟨a⟩ = 0,

∂⟨ab⟩ = ⟨b⟩ − ⟨a⟩,

∂⟨abc⟩ = ⟨bc⟩ − ⟨ac⟩+ ⟨ab⟩.

Lem. 4.4. C∗(K) = ((Cq(K))q, ∂)は ch. cpx.

Proof. 各 σ = ⟨v0 · · · vq⟩ (q = 2, . . . , dimK)に対し ∂(∂σ) = 0を示せばよい．

∂(∂σ) = ∂

 q∑
j=0

(−1)j⟨v0 · · · v̂j · · · vq⟩


=

j−1∑
i=0

(−1)i

 q∑
j=0

(−1)j⟨v0 · · · v̂i · · · v̂j · · · vq⟩

+

q∑
i=j+1

(−1)i

 q∑
j=0

(−1)j−1⟨v0 · · · v̂j · · · v̂i · · · vq⟩


=

∑
0≤i<j≤q

(−1)i+j⟨v0 · · · v̂i · · · v̂j · · · vq⟩+
∑

0≤j<i≤q

(−1)i+j−1⟨v0 · · · v̂j · · · v̂i · · · vq⟩

= 0
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Def. 4.5. K: simp. cpx. のとき C∗(K)をK に付随するチェイン複体といい，そのホモロジー
群H∗(K) = H∗(C∗(K))をK のホモロジー群という（Zq(K) = Zq(C∗(K)), Bq(K) = Bq(C∗(K))

という表記も使う）．

• いくつか計算例を与えておく．

• 以下で Z{x1, . . . , xr}は x1, . . . , xrを basisとする free ab. gp.を表す．

Ex. 4.6. K = {{v}}（1点）のとき，

Cq(K) =

Z{⟨v⟩} (q = 0)

0 (q ̸= 0)

より

Hq(K) =

Z{[⟨v⟩]} (q = 0)

0 (q ̸= 0)

Ex. 4.7. ∂∆2 = {{0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}}のホモロジー群を求める．

Cq(∂∆
2) =


Z{⟨0⟩, ⟨1⟩, ⟨2⟩} (q = 0)

Z{⟨01⟩, ⟨02⟩, ⟨12⟩} (q = 1)

0 (otherwise)

より

Z0(∂∆
2) = Z{⟨0⟩, ⟨1⟩, ⟨2⟩}

B0(∂∆
2) = Z{⟨1⟩ − ⟨0⟩, ⟨2⟩ − ⟨0⟩}

Proof.

∂⟨01⟩ = ⟨1⟩ − ⟨0⟩

∂⟨02⟩ = ⟨2⟩ − ⟨0⟩

∂⟨12⟩ = ⟨2⟩ − ⟨1⟩ = (⟨2⟩ − ⟨0⟩)− (⟨1⟩ − ⟨0⟩)

であり，⟨1⟩ − ⟨0⟩, ⟨2⟩ − ⟨0⟩は線型独立．

⟨1⟩ − ⟨0⟩, ⟨2⟩ − ⟨0⟩, ⟨0⟩は Z0(∂∆
2)の basisなので，H0(∂∆

2) = Z{[⟨0⟩]}．

Rem. 4.8. [⟨0⟩] = [⟨1⟩] = [⟨2⟩]．

また，
Z1(∂∆

2) = Z{⟨01⟩ − ⟨02⟩+ ⟨12⟩}
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Proof. ∂(a⟨01⟩+ b⟨02⟩+ c⟨12⟩) = 0 (a, b, c ∈ Z) とすると，

(左辺) = a(⟨1⟩ − ⟨0⟩) + b(⟨2⟩ − ⟨0⟩) + c(⟨2⟩ − ⟨1⟩)

= (−a− b)⟨0⟩+ (a− c)⟨1⟩+ (b+ c)⟨2⟩

であり，⟨0⟩, ⟨1⟩, ⟨2⟩は線型独立なので，−a − b = a − c = b + c = 0となり，これを解くと
a = −b = c．
よって ⟨01⟩ − ⟨02⟩+ ⟨12⟩は Z1(∂∆

2)の basis．

であり，B1(∂∆
2) = 0なので，H1(∂∆

2) = Z{[⟨01⟩ − ⟨02⟩+ ⟨12⟩]}．
ゆえに，

Hq(∂∆
2) ∼=

Z (q = 0, 1)

0 (otherwise)

Def. 4.9. K,L: simp. cpx. のとき，

K ∗ L = K ⊔ L ⊔ {σ ⊔ τ | σ ∈ K, τ ∈ L}

をK と Lの joinという．これは simp. cpx.になる．

Ex. 4.10. CK = K ∗ {{b}}をK の錐 (cone) という．

b

CK

K

hom. Φ: Cq(CK) → Cq+1(CK) を Φ⟨v0 · · · vq⟩ = (−1)q+1⟨v0 · · · vqb⟩,Φ⟨v0 · · · vq−1b⟩ = 0

(v0, . . . , vq ∈ V (K)) で定めると，
q ≥ 1のとき c ∈ Cq(CK)に対し，(∂Φ+ Φ∂)c = cが成り立つ．

Proof.

∂Φ⟨v0 · · · vq⟩ = (−1)q+1∂⟨v0 · · · vqb⟩

= (−1)q+1

(
q∑

i=0

(−1)i⟨v0 · · · v̂i · · · vqb⟩+ (−1)q+1⟨v0 · · · vq⟩

)
= −Φ∂⟨v0 · · · vq⟩+ ⟨v0 · · · vq⟩

(∂Φ+ Φ∂)⟨v0 · · · vq−1b⟩ = ⟨v0 · · · vq−1b⟩も容易に確認できる（略）．

これより任意の z ∈ Zq(CK)に対し z = (∂Φ+ Φ∂)z = ∂(Φz) ∈ Bq(CK)なので，Hq(CK) = 0．
また，CK は連結（演習参照）なのでH0(CK) = Z{[⟨b⟩]}．
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5 単体写像とその誘導準同型

Def. 5.1. K,L: simp. cpx. のとき，写像 f : V (K) → V (L)が単体写像 (simplicial map (simp.

map))とは，各σ ∈ Kに対し f(σ) ∈ Lとなること（f(σ)は fによるσの像）．このとき，f : K → L

と書く．

Ex. 5.2. (1) K: simp. cpx. のとき，L ⊂ K が部分複体 (subcomplex (subcpx.)) とは，Lも
単体複体となること．このとき，包含写像 L → Kは simp. map．特に L = Kのとき，恒等
写像は単体写像 idK : K → K を与える．

(2) K,L: simp. cpx.，v0 ∈ V (L)のとき，f(w) = v0で定まる f : V (K) → V (L)（const. map）
は単体写像 f : K → Lを与える．

Def. 5.3. (1) f1 : K1 → K2, f2 : K2 → K3: simp. map のとき，合成写像 f2 ◦ f1 : V (K1) →

V (K3)は simp. mapの合成 f2 ◦ f1 : K1 → K3を定める．

(2) f : K1 → K2: simp. map に対し，f : V (K1) → V (K2)が全単射であって，f−1: V (K2) →

V (K1)も simp. mapを与えるとき（f−1 : K2 → K1と書く），fは（単体複体の）同型写像と
いう．K1からK2への isom.が存在するとき，K1とK2は（単体複体として）同型という．

• simp. map f : K → Lは幾何的実現の間の conti. |f | : |K| → |L|を誘導する．

• f : K → L, g : L → M : simp. mapのとき，| idK | = id|K|, |g ◦ f | = |g| ◦ |f |が成り立つ．特に，f

が isom.なら |f |は homeo.

Ex. 5.4. inclusion f : ∂∆n → ∆n は f : V (∂∆n) → V (∆n): 全単射だが，f−1({0, 1, . . . , n}) ̸∈ ∂∆n

なので，f は isom.ではない．
n = 2

• K: simp. cpx. のとき，V (K)に全順序を与えて Cq(K)の basis ⟨v0 · · · vq⟩ (v0 < · · · < vq)を定
め，∂を定義した．

◦ simp. mapの誘導 ch. mapを定めるために記号を拡張する．
◦ v0 < · · · < vq のとき，0, . . . , qを並べ替えた i0, . . . , iq に対し

⟨vi0 · · · viq⟩ = sgn

0 · · · q

i0 · · · iq

 ⟨v0 · · · vq⟩

とする．
◦ ある i ̸= jに対し vi = vj となるとき，

⟨v0 · · · vq⟩ = 0

とする．
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Ex. 5.5.

⟨ab⟩ = −⟨ba⟩

⟨abc⟩ = −⟨acb⟩ = −⟨bac⟩ = ⟨bca⟩ = ⟨cab⟩ = −⟨cba⟩

• v0, . . . , vq ∈ V (K)が小さい順に並んでいなかったり重複があっても

∂⟨v0 · · · vq⟩ =
q∑

i=0

(−1)i⟨v0 · · · v̂i · · · vq⟩

が成り立つことが確認できる．

Def. 5.6. f : K → L: simp. map のとき，f : Cq(K) → Cq(L): hom. を次で定める．

f♯⟨v0 · · · vq⟩ = ⟨f(v0) · · · f(vq)⟩

Rem. 5.7. ある i ̸= jに対し f(vi) = f(vj)のとき，f♯⟨v0 · · · vq⟩ = 0となることに注意．

Lem. 5.8. f♯ : C∗(K) → C∗(L)は ch. map．

Proof.

f♯(∂⟨v0 · · · vq⟩) = f♯

(
q∑

i=0

(−1)i⟨v0 · · · v̂i · · · vq⟩

)

=

q∑
i=0

(−1)i⟨f(v0) · · · f̂(vi) · · · f(vq)⟩ = ∂⟨f(v0) · · · f(vq)⟩ = ∂(f♯⟨v0 · · · vq⟩)

• ch. map の一般論から次が定義できる．

Def. 5.9. f : K → L: simp. map のとき，f♯の誘導準同型 f∗ : Hq(K) → Hq(L) (f∗[x] = [f♯(x)])

を f のホモロジー群への誘導準同型という．

• (idK)♯ : Cq(K) → Cq(K), (idK)∗ : Hq(K) → Hq(K)は恒等写像．

• f : K → L, g : L → M に対し (g ◦ f)♯ = g♯ ◦ f♯, (g ◦ f)∗ = g∗ ◦ f∗が成り立つ．

• f : K → Lが isom.のとき，f♯ : Cq(K) → Cq(L), f∗ : Hq(K) → Hq(L)は isom.となる（(f♯)
−1 =

(f−1)♯, (f∗)
−1 = (f−1)∗となる）．

Ex. 5.10. K,L: conn. simp. cpx., f : K → L: simp. mapのとき，f∗ : H0(K) → H0(L)は isom.

実際，v ∈ V (K)に対し [⟨v⟩] ∈ H0(K), [⟨f(v)⟩] ∈ H0(L)はそれぞれ basisであり，

f∗[⟨v⟩] = [f♯⟨v⟩] = [⟨f(v)⟩]

となり，basisを basisに写す．
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Ex. 5.11.

C6 = {{0}, {1}, {2}, {3}, {4}, {5}, {0, 1}, {0, 5}, {1, 2}, {2, 3}, {3, 4}, {4, 5}}

f : C6 → ∂∆2, f(0) = f(3) = 0, f(1) = f(4) = 1, f(3) = f(5) = 2

とする（下図）．
0

1

2

3

4

5

C6

0

1 2

∂∆2

すると

α = [⟨01⟩+ ⟨12⟩+ ⟨23⟩+ ⟨34⟩+ ⟨45⟩+ ⟨50⟩] ∈ H1(C6), β = [⟨01⟩+ ⟨12⟩+ ⟨20⟩] ∈ H1(∂∆
2)

はそれぞれの basis.

f∗α = f∗[⟨01⟩+ ⟨12⟩+ ⟨23⟩+ ⟨34⟩+ ⟨45⟩+ ⟨50⟩]

= [⟨01⟩+ ⟨12⟩+ ⟨20⟩+ ⟨01⟩+ ⟨12⟩+ ⟨20⟩] = 2β

となる．したがって f∗(H1(C6)) ⊂ H1(∂∆
2)は index 2の subgp.

17



6 完全列とホモロジー長完全列

Def. 6.1. ab.gp. と hom. の列 L
f−→ M

g−→ N が（M で）完全 (exact (at M))であるとは，
im f = ker gとなること．

Ex. 6.2. • 0 → M
f−→ N : exact ⇔ f : inj.

Proof. 0 → M
f−→ N : exact ⇔ 0 = im0 = ker f ⇔ f : inj.

• M
f−→ N → 0: exact ⇔ f : sur.

Proof. M
f−→ N → 0: exact ⇔ im f = ker 0 = N ⇔ f : surj.

• L
f−→ M

g−→ N , f = 0, g = 0 ⇒ M = 0

Proof. 0 = im f = ker g = M

Def. 6.3. ab.gp. と hom. の列

M0
f1−→ M1

f2−→ · · · fn−→ Mn

が完全 (exact) とは，各 i = 1, . . . , n− 1に対し，Mi−1
fi−→ Mi

fi+1−−−→ Mi+1が完全（Miで完全）と
なること．

Ex. 6.4. 0 → L
f−→ M

g−→ N → 0を短完全列 (short exact sequence) という．
このとき，ḡ : M/ im f → N : isom. (ḡ(x) = g(x))．

Proof. ker g = im f , g: surj. なので準同型定理から．

• 次の Lem.は完全列の計算で時々使われる．

Lem. 6.5. 0 → L
f−→ M

g−→ N → 0: exact, h : N → M : hom., g◦h = idNのとき，(f, h) : L⊕N →

M , (f, h)(y, z) = f(y) + h(z)は isom. （このような hが存在するとき短完全列は分裂する (split)

という）

Proof. （単射性）(f, h)(y, z) = 0とすると f(y) + h(z) = 0．
これを gで写すと 0 = g(f(y) + h(z)) = 0 + z = z．
また，0 = f(y) + h(z) = f(y) + 0 = f(y)と f : inj.であることから y = 0となり，(f, h)は単射．
（全射性）x ∈ M をとる．
z = g(x)とすると，g(x− h(z)) = g(x)− z = 0なので，完全性から f(y) = x− h(z)となる y ∈ L

が存在する．よって x = f(y) + h(z)となり，(f, h)は全射．

• 次の Lem.から上の短完全列はN が freeなら splitする．
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Lem. 6.6. M : ab.gp., N : fin. gen. ab. gp., g : M → N : surj. hom. のとき，
h : N → M : hom. であって，g ◦ h = idN となるものが存在．

Def. 6.7. ch. cpx. と ch. map の列 0 → C
f−→ C ′ g−→ C ′′ → 0 が ch. cpx. の短完全列とは，

各 q ∈ Zに対し，0 → Cq
f−→ C ′

q
g−→ C ′′

q → 0が短完全列となること．

Def. 6.8. 0 → C
f−→ C ′ g−→ C ′′ → 0: ch. cpx. の短完全列のとき，連結準同型 (connecting hom.)

∂∗ : Hq(C
′′) → Hq−1(C)を次で定める：

各 z′′ ∈ Zq(C
′′)に対し，g(c′) = z′′ となる c′ ∈ C ′

q，f(z) = ∂c′ となる z ∈ Zq−1(C)によって
∂∗[z

′′] = [z]と定める．

Lem. 6.9. ∂∗は well-definedな hom.

Proof. • このような c′, zが存在すること
g: surj. なので g(c′) = z′′となる c′ ∈ Cq が存在．
g: ch. map なので g(∂c′) = ∂g(c′) = ∂z′′ = 0．
完全性より f(z) = ∂c′となる z ∈ Cq−1が存在．
f : ch. map なので f(∂z) = ∂f(z) = ∂(∂c′) = 0．
f : inj. なので ∂z = 0となり z ∈ Zq−1(C)．

• z′′, c′, zのとりかたによらないこと
[z′′1 ] = [z′′2 ]とすると ∂c′′ = z′′1 − z′′2 , g(c

′
1) = z′′1 , g(c

′
2) = z′′2 , f(z1) = ∂c′1, f(z2) = ∂c′2

となる c′′, c′1, c
′
2, z1, z2がとれる．

g: surj. なので g(c′) = c′′となる c′ ∈ C ′
q+1が存在（下図 (1)）．

g(c′1 − c′2 − ∂c′) = g(c′1)− g(c′2)− ∂g(c′) = z′1 − z′2 − ∂c′′ = 0（下図 (2)）
完全性より f(c) = c′1 − c′2 − ∂c′となる c ∈ Cq が存在（下図 (3)）．
f(∂c) = ∂f(c) = ∂(c′1 − c′2 − ∂c′) = f(z1)− f(z2) = f(z1 − z2)（下図 (4), (5)）
f : inj. なので，∂c = z1 − z2（下図 (6)）となり，[z1] = [z2] in Hq−1(C)．

0 Cq+1 C ′
q+1 C ′′

q+1 0

0 Cq C ′
q C ′′

q 0

0 Cq−1 C ′
q−1 C ′′

q−1 0

c′
(1)

c

z′′1 − z′′2

0
(2)

c1 − c2 − ∂c′c
(3)

(4)

∂(c1 − c2)z1 − z2
(5)

(6)

（上のような図を描きながら考えてもよい (diagram chasing)）
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• ∂∗: hom.となること
[z′′1 ], [z

′′
2 ] ∈ Hq(C

′′)とすると，g(c′1) = z′′1 , g(c
′
2) = z′′2 , f(z1) = ∂c′1, f(z2) = ∂c′2

となる c′1, c
′
2, z1, z2がとれる．

このとき，g(c′1 + c′2) = z′′1 + z′′2，f(z1 + z2) = ∂(c′1 + c′2)なので，
∂∗[z

′′
1 + z′′2 ] = [z1 + z2] = [z1] + [z2] = ∂∗[z

′′
1 ] + ∂∗[z

′′
2 ]

Thm. 6.10 (ホモロジー長完全列). 0 → C
f−→ C ′ g−→ C ′′ → 0: ch. cpx. の短完全列のとき，次は

完全．
· · · ∂∗−→ Hq(C)

f∗−→ Hq(C
′)

g∗−→ Hq(C
′′)

∂∗−→ Hq−1(C)
f∗−→ · · ·

Proof. • Exactness at Hq(C
′):

[z] ∈ Hq(C)に対し g∗(f∗[z]) = [g(f(z))] = [0] = 0となり，im f∗ ⊂ ker g∗．
[z′] ∈ ker g∗(⊂ Hq(C

′))とすると，[g(z′)] = 0より g(z′) = ∂c′′となる c′ ∈ C ′′
q+1が存在．

g: surj. なので g(c′) = c′′となる c′ ∈ C ′
q+1が存在．

g(z′ − ∂c′) = g(z′)− ∂g(c′) = ∂c′′ − ∂c′′ = 0なので
完全性から f(z) = z′ − ∂c′となる z ∈ Cq+1が存在．
f(∂z) = ∂f(z) = ∂(z′ − ∂c′) = 0と f : inj. となることから ∂z = 0となり z ∈ Zq+1(C)．
よって [z] ∈ Hq(C)であり，f∗[z] = [f(z)] = [z′ − ∂c′] = [z′]なので im f∗ ⊃ ker g∗．
以上から im f∗ = ker g∗．

• Exactness at Hq(C):

[z′′] ∈ Hq+1(C
′′)に対し g(c′) = z′′となる c′ ∈ C ′

q+1と f(z) = ∂c′となる z ∈ Zq(C)をとる．
このとき，f∗(∂∗[z

′′]) = f∗[z] = [f(z)] = [∂c′] = 0となり，im ∂∗ ⊂ ker f∗．
[z] ∈ ker f∗(⊂ Hq(C))とすると，[f(z)] = 0より f(z) = ∂c′となる c′ ∈ C ′

q+1が存在．
z′′ = g(c′) ∈ C ′′

q+1とおくと，∂z′′ = ∂g(c′) = g(∂c′) = g(f(z)) = 0より z′′ ∈ Zq+1(C
′′)．

いま g(c′) = z′′, f(z) = ∂c′なので ∂∗[z
′′] = [z]となり，im ∂∗ ⊃ ker f∗．

以上から im ∂∗ = ker f∗．

• Exactness at Hq(C
′′): exercise!
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7 Mayer–Vietoris完全列
• simp. cpx. に付随する ch. cpx. は巨大になることが多く，ホモロジーの計算は一般に大変だが，
Mayer–Vietoris完全列を使うと計算が楽になることがある．

• K: simp. cpx., L1, L2 ⊂ K: subcpx., K = L1 ∪ L2とし，
ik : L1 ∩ L2 → Lk, jk : Lk → K (k = 1, 2)を incl.とする．

Lem. 7.1. 次は exact.

0 → C∗(L1 ∩ L2)
I−→ C∗(L1)⊕ C∗(L2)

J−→ C∗(K) → 0

ここで I(c) = ((i1)♯c, (i2)♯c), J(c1, c2) = (j1)♯c1 − (j2)♯c2.

Proof. • I: inj.は略（easy）．

• im I ⊂ ker J :

c ∈ Cq(L1 ∩ L2)に対し

J(I(c)) = J((i1)♯c, (i2)♯c) = (j1)♯((i1)♯c)− (j2)♯((i2)♯c) = (j1 ◦ i1)♯c− (j2 ◦ i2)♯c = 0

ここで j1 ◦ i1 = j2 ◦ i2 (= incl. L1 ∩ L2 → K)であることを用いた．
よって im I ⊂ im J となる．

• im I ⊃ ker J :

(L1)q, (L2)q: それぞれの q-simp.の集合とする．

c1 =
∑

σ∈(L1)q

aσσ, c2 =
∑

σ∈(L2)q

bσσ, J(c1, c2) = 0

とすると

0 = J(c1, c2) =
∑

σ∈(L1)q∩(L2)q

(aσ − bσ)σ +
∑

σ∈(L1)q\(L2)q

aσσ −
∑

σ∈(L2)q\(L1)q

bσσ

これより，σ ∈ (L1)q \ (L2)q のとき aσ = 0，σ ∈ (L2)q \ (L1)q，のとき bσ = 0．
よって c1 =

∑
σ∈(L1)q∩(L2)q

aσσ =
∑

σ∈(L1)q∩(L2)q

bσσ = c2 なので，

c = c1 = c2 ∈ C1(L1 ∩ L2)とおけば I(c) = (c1, c2)．従って im I ⊃ ker J．

• J : surj.:

c =
∑
σ∈Kq

aσσ に対し，c1 =
∑

σ∈(L1)q

aσσ , c2 =
∑

σ∈(L2)q\

(−aσ)σ とおくと，J(c1, c2) = c．

よって J : surj.
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Thm. 7.2 (Mayer–Vietoris完全列). K: simp. cpx., L1, L2 ⊂ K: subcpx., K = L1 ∪ L2,

ik : L1 ∩ L2 → Lk, jk : Lk → K (k = 1, 2)を incl.とする．
このとき，ある（自然な）hom. ∆∗ : Hq(K) → Hq−1(L1 ∩ L2) (q ∈ Z)が存在して次は exact.

· · · ∆∗−−→ Hq(L1 ∩ L2)
I∗−→ Hq(L1)⊕Hq(L2)

J∗−→ Hq(K)
∆∗−−→ Hq−1(L1 ∩ L2)

I∗−→ · · ·

ここで I∗x = ((i1)∗x, (i2)∗x), J∗x = (j1)∗x− (j2)∗x．

Proof. 上の Lem.と前回の Thm.から従う．

Rem. 7.3. • conn. hom. ∆∗は具体的にわからなくてもよいことが多い．

• H∗(K),H∗(L1),H∗(L2),H∗(L1 ∩ L2)のうち 3つがわかっているときに残りの 1つを求める，
という使い方が多い（必ず求められるわけではない）．

Thm. 7.4. n ≥ 1のとき

Hq(∂∆
n+1) ∼=

Z (q = 0, n)

0 (otherwise)

Rem. 7.5. n = 0のとき ∂∆1 = {{0}, {1}}（2点集合）なので次のようになる．

Hq(∂∆
1) ∼=

Z2 (q = 0)

0 (q ̸= 0)

Proof. • ∂∆n+1 = ∆n+1 \ {0, 1, . . . , n+ 1}であった．
Λn+1 = ∂∆n+1 \ {{0, 1, . . . , n}}（hornという）は ∂∆n+1の subcpx.

∆n ∪ Λn+1 = ∂∆n+1, ∆n ∩ Λn+1 = ∂∆nが成り立つ．

2

0 1
∆1

Λ2

• ∆n ∼= C∆n−1, Λn+1 ∼= C(∂∆n) (cone) である．
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Proof.

∆n−1 ∗ {{n}} = ∆n−1 ⊔ {{n}} ⊔ {S ⊔ {n} | ∅ ̸= S ∈ ∆n−1} = ∆n

∂∆n ∗ {n+ 1}

= (∆n \ {{0, 1, . . . , n}}) ⊔ {{n+ 1}} ⊔ {S ⊔ {n+ 1} | S ∈ ∆n \ {{0, 1, . . . , n}}}

= ∆n+1 \ {{0, 1, . . . , n}, {0, 1, . . . , n+ 1}} = Λn+1

よって

Hq(∆
n) ∼= Hq(Λ

n+1) ∼=

Z (q = 0)

0 (q ̸= 0)

• n = 1のとき，∂∆2 = ∆1 ∪ Λ2に関するMayer–Vietoris完全列は次のようになる．

0 → H1(∂∆
2)

∆∗−−→ H0(∂∆
1)

I∗−→ H0(∆
1)⊕H0(Λ

2)
J∗−→ H0(∂∆

2) → 0

∂∆2は連結なので，H0(∂∆
2) ∼= Z．

H0(∂∆
1) = Z{[⟨0⟩], [⟨1⟩]}であり，∆1,Λ2は連結なので

I∗[⟨1⟩] = ([⟨1⟩], [⟨1⟩]) = ([⟨0⟩], [⟨0⟩]) = I∗([⟨0⟩]) ̸= 0

よってH1(∂∆
2) ∼= im∆∗ = ker I∗ ∼= Zとなる．

• n ≥ 2のとき n− 1で定理が成り立つとすると ∂∆n+1 = ∆n ∪Λn+1に関するMayer–Vietoris

完全列から

0 → H1(∂∆
n+1)

∆∗−−→ H0(∂∆
n)

I∗−→ H0(∆
n)⊕H0(Λ

n+1)
J∗−→ H0(∂∆

n+1) → 0 (1)

0 → Hq(∂∆
n+1) → Hq−1(∂∆

n) → 0 (2)

は完全．ただし q ≥ 2．
まず ∂∆n+1は連結なのでH0(∂∆

n+1) ∼= Z．
完全列 (1)においてH0(∂∆

n) = Z{[⟨0⟩]}であり
I∗[⟨0⟩] = ([⟨0⟩], [⟨0⟩]) ̸= 0 in H0(∆

n)⊕H0(Λ
n+1) ∼= Z2なので I∗は inj.

これより∆∗は 0写像かつ inj.となりH1(∂∆
n+1) = 0．

さらに，完全列 (2)より q ≥ 2のときHq(∂∆
n+1) ∼= Hq−1(∂∆

n)．
以上から定理が成り立つ．
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