2019 年度幾何学 II 演習問題 **10** 2019 年 12 月 18 日

K を頂点集合 V 上の抽象単体複体とする.部分集合 $K' \subset K$ が部分複体 (subcomplex) であるとは,K' がある部分集合 $V' \subset V$ 上の抽象単体複体となっていること.このとき,包含写像 $V' \to V$ は単体写像 $K' \to K$ を与える.

 $K_1 \subset K$ を頂点集合が $V_1 \subset V$ である部分単体複体, $K_2 \subset K$ を頂点集合が $V_2 \subset V$ である部分複体ととする.すると, $K_{12} = K_1 \cap K_2$ は頂点集合が $V_{12} = V_1 \cap V_2$ である部分複体となる.さらに $K = K_1 \cup K_2$ と仮定する.このとき,次の R-準同型が定義される.

$$\alpha: C_p(K_{12}; R) \to C_p(K_1; R) \oplus C_p(K_2; R), \quad \alpha(c) = ((i_1)_{\sharp}(c), -(i_2)_{\sharp}(c)).$$

ただし、 $i_1: K_{12} \to K_1$ 、 $i_2: K_{12} \to K_2$ は包含写像.

$$\beta: C_n(K_1; R) \oplus C_n(K_2; R) \to C_n(K; R), \quad \beta(c_1, c_2) = (j_1)_{\sharp}(c_1) + (j_2)_{\sharp}(c_2).$$

ただし、 $j_1: K_1 \to K$ 、 $j_2: K_2 \to K$ は包含写像.

これらはホモロジー群の間の準同型写像を誘導することが確認できる.

$$\alpha_* \colon H_p(K_{12}; R) \to H_p(K_1; R) \oplus H_p(K_2; R), \qquad \alpha_*(u) = ((i_1)_*(u), -(i_2)_*(u)),$$

$$\beta_* \colon H_p(K_1; R) \oplus H_p(K_2; R) \to H_p(K; R), \qquad \beta(u_1, u_2) = (j_1)_*(u_1) + (j_2)_*(u_2).$$

このとき、次のR-準同型写像の列は完全となる。

$$0 \to C_n(K_{12}; R) \xrightarrow{\alpha} C_n(K_1; R) \oplus C_n(K_2; R) \xrightarrow{\beta} C_n(K; R) \to 0$$

つまり、 α は単射、 $\ker \beta = \alpha(C_p(K_{12}; R))$ 、 β は全射.

問 1. 上のように K_1 , K_2 をとると $K_{12}=K_1\cap K_2$ は実際に $V_{12}=V_1\cap V_2$ 上の抽象単体複体となっていることを示せ、つまり、次を確認せよ、

- (1) $\emptyset \notin K_{12}$.
- (2) 任意の $v \in V_{12}$ に対し、 $\{v\} \in K_{12}$.
- (3) $\sigma \in K_{12}$, $\emptyset \neq \tau \subset \sigma \Leftrightarrow K_{12}$, $\tau \in K_{12}$.

問 2.

$$0 \to C_p(K_{12}; R) \xrightarrow{\alpha} C_p(K_1; R) \oplus C_p(K_2; R) \xrightarrow{\beta} C_p(K; R) \to 0$$

実際に α は単射, $\ker \beta = \alpha(C_p(K_{12};R))$, β は全射となっていることを確認せよ.(ヒント:任意の $c \in C_p(K;R)$ は $c = \sum_{\sigma} a_{\sigma} \sigma$ と書けることを使う.ただし σ はK のp-辺単体全体を走るものとする.また,R-準同型f が単射となることと $\ker f = 0$ となることが同値であることにも注意.)

表と同じ抽象単体複体 K, K_1, K_2, K_{12} をとる. このとき, R-準同型写像

$$\Delta \colon H_p(K;R) \to H_{p-1}(K_{12};R)$$

が以下の手順で与えられる(次数がずれていることに注意!).

- (1) $[z] \in H_p(K;R)$ をとる.
- (2) β : $C_p(K_1;R) \oplus C_p(K_2;R) \to C_p(K;R)$ は全射なので、 $\beta(c_1,c_2) = z$ なる $c_1 \in C_p(K_1;R)$ と $c_2 \in C_p(K_2;R)$ が存在する(c_i は $\partial_p c_i = 0$ をみたすとは限らないのでホモロジー類を代表するとは限らないことに注意).このような (c_1,c_2) を任意に取る(取り方は一意ではない).

(3)

$$\beta(\partial_p c_1, \partial_p c_2) = (j_1)_{\sharp} (\partial_p c_1) - (j_2)_{\sharp} (\partial_p c_2)$$
$$= \partial_p (j_1)_{\sharp} (c_1) - \partial_p (j_2)_{\sharp} (c_2)$$
$$= \partial_p \beta(c_1, c_2) = \partial_p z = 0$$

なので $(\partial_p c_1, \partial_p c_2) \in \ker \beta = \alpha(C_{p-1}(K_{12}; R))$ となる。これより $\alpha(y) = ((i_1)_\sharp(y), -(i_2)_\sharp(y)) = (\partial_p c_1, \partial_p c_2)$ なる $y \in C_{p-1}(K_{12}; R)$ が存在する。

(4)

$$\begin{split} \alpha(\partial_{p-1}y) &= ((i_1)_{\sharp}(\partial_{p-1}y), -(i_2)_{\sharp}(\partial_{p-1}y)) \\ &= (\partial_{p-1}(i_1)_{\sharp}(y), -\partial_{p-1}(i_2)_{\sharp}(y)) \\ &= (\partial_{p-1}\partial_{p}c_1, -\partial_{p-1}\partial_{p}c_2) = (0, 0) \end{split}$$

と α が単射であることから、 $\partial_{p-1}y=0$.

(5) $\Delta([z]) = [y]$ と定める.

すると次のような R-準同型写像の列が得られる.

$$\cdots \to H_p(K_{12};R) \xrightarrow{\alpha_*} H_p(K_1;R) \oplus H_p(K_2;R) \xrightarrow{\beta_*} H_p(K;R) \xrightarrow{\Delta} H_{p-1}(K_{12};R) \to \cdots$$

この列は完全列となることが知られている。これを Mayer-Vietoris 完全列という。一般に単体 複体が大きくなるとホモロジー群を手計算するのが大変になるが(∂_p を表す巨大な行列に掃き出し法をしないといけない),Mayer-Vietoris 完全列を使えば計算が容易になることも多い。

問 3. (★) Δ : $H_p(K;R) \to H_{p-1}(K_{12};R)$ が well-defined であることを確認せよ.つまり,[z]=[z'] なる任意の z' に対して任意に $\beta(c_1',c_2')=z'$ なる (c_1',c_2') をとり, $\alpha(y')=(\partial_p c_1,\partial_p c_2)$ なる y' をとったとき, $H_{p-1}(K_{12};R)$ の元として [y]=[y'] となることを示せ.