Higher homotopy normalities in topological groups

Mitsunobu Tsutaya (Kyushu University)

Classifying spaces in homotopy theory: in honour of Ran Levi's 60th Birthday 6 September 2022

Contents

- 1. Higher homotopy associativity and commutativity
- 2. Higher homotopy normality
- 3. Results

1. Higher homotopy associativity and commutativity

3 / 23

H-map

▶ A map $f: H \rightarrow G$ between topological groups is said to be an H-map if

$$f \circ \mu \simeq \mu \circ (f \times f).$$

▶ H-map is much far from homomorphism. There exists an H-map $f: H \to G$ not H-equivalent to a homomorphisms as in the following diagram:

 \triangleright So, what is the obstruction to a map being a homomorphism up to H-equivalence?

A_{∞} -map

- ▶ Sugawara (1960) (with Milnor's result) answered this question.
 - ▶ An H-map $f: H \to G$ is homotopy equivalent to a homomorphism if and only if it admits an A_{∞} -form $\{f_i: I^{i-1} \times H^i \to G\}_{i \ge 1}$ which describes how the associativity is preserved through f.
 - f_2 is the homotopy between $f \circ \mu$ and $\mu \circ (f \times f)$.
 - $f_3: [0,1]^2 \times H^3 \to G$ is depicted as follows.

▶ An H-map equipped with an A_{∞} -form is called an A_{∞} -map.

Projective space and A_n -map

- ▶ The previous result actually follows from the following result:
 - A pointed map $f: H \to G$ admits an A_{∞} -form if and only if the suspension $\Sigma f: \Sigma H \to \Sigma G$ extends to a map between the classifying space $BH \to BG$:

- ► Stasheff (1963) generalized this result.
 - ▶ The classfying space has the natural filtration:

$$* = B_0G \subset \Sigma G = B_1G \subset B_2G \subset \cdots \subset B_nG \subset \cdots \subset BG.$$

- ▶ B_nG is called the *n*-th projective space of G.
- ▶ He proved that $\Sigma f : \Sigma H \to \Sigma G$ extends to $B_n H \to BG$ if and only if f admits an A_n -form $\{f_i : I^{i-1} \times H^i \to G\}_{1 \le i \le n}$.
- ► This result is basic in the present work.

Homotopy commutativity

▶ A topological group *G* is said to be homotopy commutative if the Samelson product

$$G \wedge G \rightarrow G$$
, $(x,y) \mapsto xyx^{-1}y^{-1}$

is null-homotopic.

▶ Through the isomorphism

$$[G \wedge G, G] \cong [G \wedge G, \Omega BG] \cong [\Sigma G \wedge G, BG],$$

the Samelson product corresponds to the Whitehead product $[\iota, \iota]$ of the inclusion $\iota \colon \Sigma G \to BG$.

▶ So, G is homotopy commutative if and only if $[\iota, \iota] = 0$.

Higher homotopy commutativity

- ▶ C_n -space in the sense of Williams is defined by some higher homotopy condition using permutohedra P_n .
- ▶ An equivalent condition is as follows: the wedge sum of the inclusion

$$(\Sigma G)^{\vee n} \to BG$$

extends over the product

$$(\Sigma G)^{\times n} \to BG$$
.

▶ This is just the vanishing of the higher Whitehead products.

Higher homotopy commutativity (continued)

▶ The higher homotopy commutativity of Lie groups and their *p*-localizations is well studied. Here is a typical argument to show the non-commutativity.

Example

Let $G = SU(2) = S^3$ and p an odd prime. Suppose the wedge sum of the inclusion

$$(S^4)^{\vee \frac{p+1}{2}} \to B\operatorname{SU}(2) = \mathbb{H}P^{\infty}$$

extends to a map

$$f: (S^4)^{\times \frac{p+1}{2}} \to B \operatorname{SU}(2).$$

We know $\mathcal{P}^1c_2=ac_2^{\frac{p+1}{2}}$ with $a\neq 0$ in $H^{2p+2}(B\,\mathrm{SU}(2);\mathbb{F}_p)$. Then $f^*\mathcal{P}^1c_2\neq 0$. But \mathcal{P}^1 must be trivial in $H^*((S^4)^{\times\frac{p+1}{2}};\mathbb{F}_p)$ by the Cartan formula. This contradicts to $f^*c_2\neq 0$. Therefore, $\mathrm{SU}(2)$ is not p-locally a $C_{\frac{p+1}{2}}$ -space.

2. Higher homotopy normality

Crossed module

- ▶ In the rest of this talk, let *H* and *G* be topological groups of homotopy types of CW complexes.
- ▶ A normal subgroup $H \subset G$ is a subgroup stable under the inner automorphisms.
- ▶ Crossed module is a generalization of normal subgroup to non-inclusions.

Definition (MacLane, J.H.C.Whitehead 1940s)

A (topological) crossed module consists of homomorphisms $f: H \to G$ and $\rho: G \to \operatorname{Aut}(H)$ satisfying the conditions

- $\rho(f(h))(x) = hxh^{-1} \text{ for any } x, h \in H,$
- $f(\rho(g)(x)) = gf(x)g^{-1}$ for any $x \in H$ and $g \in G$.
- ▶ Farjoun and Segev (2010) proved that the Borel construction $EH \times_H G$ of a crossed module $f: H \to G$ naturally inherits a group structure. This should be considered as "the homotopy quotient group of a homotopically normal subgroup".

$N_k(\ell)$ -map

- ▶ $A_{\ell}(H, G)$ denotes the space of A_{ℓ} -maps.
- ▶ $conj_H$: $H \to A_\ell(H, H)$ denotes the conjugation $conj_H(h)(x) = hxh^{-1}$.

Definition (T.)

A homomorphism $f: H \to G$ is an $N_k(\ell)$ -map if an A_k -map $\rho: G \to \mathcal{A}_{\ell}(H, H)$ is given and the following conditions hold:

- ▶ $\rho \circ f$ is homotopic to conj_H as an A_{ℓ} -map,
- ▶ the map $* \to A_{\ell}(H, G)$, $* \mapsto f$ is A_k -equivariant with respect to the action of G,
- \triangleright the higher homotopy in the second condition coincides with the first condition on H.
- ▶ This is a higher homotopy analogue of crossed module.
- \triangleright $N_1(1)$ -map is equivalent to homotopy normal map introduced by McCarty (1964).
- ▶ James (1967) defined another homotopy normality which is slightly weaker than McCarty's.

$N_1(1)$ -map

Definition (McCarty 1964)

A homomorphism $f: H \to G$ is homotopy normal (an $N_1(1)$ -map) if there exists a map $\tilde{\gamma}: G \wedge H \to H$ making the diagram

$$\begin{array}{c|c}
H \wedge H \xrightarrow{\gamma_H} H \\
f \wedge \mathrm{id} \downarrow & \exists \tilde{\gamma} & \downarrow f \\
G \wedge H \xrightarrow{\gamma} G
\end{array}$$

commute up to homotopy and the homotopies comapatible with the stationary homotopy of the outer square.

Immediate consequences

- ▶ If $f: H \to G$ is an $N_k(\ell)$ -map and $k \ge k'$ and $\ell \ge \ell'$, then f is an $N_{k'}(\ell')$ -map.
- ▶ If $f: H \to G$ is a crossed module, then f is an $N_{\infty}(\infty)$ -map.
- ▶ The homomorphism $f: H \to *$ is an $N_k(\ell)$ -map if and only if $\operatorname{conj}_H: H \to \mathcal{A}_\ell(H, H)$ is homotopic to the constant map as an A_k -map.
 - ▶ The latter condition is equivalent to being a $C(k, \ell)$ -space (T. 2016), which is a higher homotopy commutativity introduced by Kishimoto and Kono (2010).
 - ▶ $C(\infty,\infty)$ -space and Sugawara C_∞ -space are known to be equivalent. Then we conclude that $H \to *$ is an $N_\infty(\infty)$ -map if and only if BH is an H-space.
 - ▶ This is analogous to the fact that $H \to *$ is a crossed module if and only if H is commutative.

3. Results

15 / 23

Equivariant and fiberwise homotopy theory

▶ The Borel construction defines the correspondence

a *G*-space
$$X \mapsto a$$
 fiberwise space $EG \times_G X \to BG$.

This provides an "equivalence" between the equivariant homotopy theory and the fiberwise homotopy theory in an appropriate sense.

▶ The idea of the main theorem is based on this equivalence.

Main theorem

Theorem (T.)

Let $f: H \to G$ be a homomorphism and $F: E_k H \times_H H \to E_k G \times_G G$ denote the induced map of f. Then f is an $N_k(\ell)$ -map if and only if there exists a fiberwise A_ℓ -space $\mathcal{E} \to B_k G$ and F factors as

$$E_kH\times_HH\stackrel{\phi}{\to}\mathcal{E}\stackrel{\psi}{\to}E_kG\times_GG$$

up to homotopy over $B_k f: B_k H \to B_k G$ such that the following conditions hold:

- ϕ covers $B_k f$ and ψ covers the identity on $B_k G$,
- ϕ and ψ restrict to A_{ℓ} -maps on each fiber,
- $ightharpoonup \phi$ is a weak homotopy equivalence on each fiber,
- ▶ the restriction of $\psi \circ \phi$ to the fiber over the basepoint is homotopic to f as an A_{ℓ} -map.
- ▶ The last for conditions correspond to the compatibility required in the definition of $N_k(\ell)$ -map.

Remark on main theorem

▶ Roughly, this theorem states that $f: H \to G$ is an $N_k(\ell)$ -map if and only if the following "unusual" factorization of $F: E_k H \times_H H \to E_k G \times_G G$ exists:

Remark on main theorem (continued)

► The "usual" factorization is as follows. The middle column is induced from the conjugation action of *H* on *G* through *f*.

▶ This factorization is possible for any homomorphism *f* .

H-structure on Borel construction

Theorem (T.)

▶ Let $f: H \to G$ be a homomorphism. Then the Borel construction $X = EH \times_H G$ is an H-space if f is an $N_k(k)$ -map and cat $X \le k$.

Example

▶ Let $H = K(\mathbb{Q}, 2n - 1)$ and $G = K(\mathbb{Q}, 4n - 1)$. Consider the homomorphism $f: H \to G$ with classifying map $Bf: K(\mathbb{Q}, 2n) \to K(\mathbb{Q}, 4n)$ corresponding to $u^2 \in H^{4n}(K(\mathbb{Q}, 2n); \mathbb{Q})$. Then the Borel construction is

$$EH \times_H G \simeq \text{hofib}(Bf) \simeq S_{(0)}^{2n}$$
.

Since $S_{(0)}^{2n}$ does not admit an H-structure and cat $S_{(0)}^{2n}=1$, f is not an $N_1(1)$ -map.

Preceding results on examples

- ▶ There have been many results on homotopy normality of Lie groups.
- ► (James 1967) The inclusion $U(m) \to U(n)$ is not (2-locally) homotopy normal in the sense of James for $1 \le m < n$. Similar results hold for $O(m) \to O(n)$ ($2 \le m < n$) and $Sp(m) \to Sp(n)$ for $1 \le m < n$.
- ▶ Other results include: McCarty (1964), James (1971), Kachi (1982), Furukawa (1985), Furukawa (1987), Furukawa (1995), Kudou–Yagita (1998), Kudou–Yagita (2003), Kono–Nishimura (2003), Nishimura (2006), Kishimoto–T. (2018).
- ▶ These results suggest that $H \to G$ tends to fail to be p-locally homotopy normal for small prime p.

Higher homotopy normality of $SU(m) \rightarrow SU(n)$

- Main theorem provides an obstruction theory for $N_k(\ell)$ -map applying the fiberwise projective space functor.
- ► Then, by a typical argument using Steenrod operations as mentioned before, we can obtain the following result.

Theorem (T.)

- ▶ If $\max\{kn-2,(k-1)n+2\} for some <math>n \ge 3$ and $k,\ell \ge 1$, then the inclusion $SU(2) \to SU(n)$ is not a p-local $N_k(\ell)$ -map.
- ▶ If $\max\{kn-m, (k-1)n+2\} for some <math>2 \le m < n$ and $k, \ell \ge 1$, then the inclusion $SU(m) \to SU(n)$ is not a p-local $N_k(\ell)$ -map.
- ▶ This result is not very sharp. For example, the normality is not determined when $kn + (\ell 2)m .$
- ▶ A similar result is obtained for $SO(2m+1) \rightarrow SO(2n+1)$.

Summary

- ▶ $N_k(\ell)$ -map is a higher homotopical analogue of crossed module.
- ▶ $N_k(\ell)$ -map is characterized by fiberwise A_ℓ -maps over the k-th projective spaces.
- ▶ The Borel construction $EH \times_H G$ of an $N_k(k)$ -map $f: H \to G$ is an H-space if cat $EH \times_H G \leq k$ holds.
- ightharpoonup Fiberwise projective space provides a method to detect obstructions to being $N_k(\ell)$ -maps.

Thank you!