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1. Higher homotopy associativity and commutativity
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» A map f: H— G between topological groups is said to be an H-map if
fou=~pol(fxf).

» H-map is much far from homomorphism. There exists an H-map f: H — G not
H-equivalent to a homomorphisms as in the following diagram:
_r H

| -

/ H'
a homomorphism

f

» So, what is the obstruction to a map being a homomorphism up to H-equivalence?
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» Sugawara (1960) (with Milnor's result) answered this question.

» An H-map f: H -G is homotopy equivalent to a homomorphism if and only if it admits an
Aco-form {f;: =1 x H — G}i>1 which describes how the associativity is preserved through

f

> f, is the homotopy between f oy and po (f X f).
» f3:[0,1]2 x H® — G is depicted as follows.

Sh)fhs) - fEh) )

Ve

SUhohs) S)fhohs)

» An H-map equipped with an A,-form is called an A,.-map.
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Projective space and A,-map

» The previous result actually follows from the following result:
» A pointed map f: H — G admits an A,-form if and only if the suspension ¥f: YXH — ¥ G
extends to a map between the classifying space BH — BG:

TH— 56
BH = > BG

» Stasheff (1963) generalized this result.
» The classfying space has the natural filtration:

x=BGCcXxG=BGCcBGC---CB,GC---C BG.

» B,G is called the n-th projective space of G.

» He proved that £f: Y H — ¥ G extends to B,H — BG if and only if f admits an A,-form
{f; I=1x H = G}lg,‘gn.

» This result is basic in the present work.
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Homotopy commutativity

» A topological group G is said to be homotopy commutative if the Samelson product

GAG— G, (x,y) — xyx " ty~1

is null-homotopic.

» Through the isomorphism
[GAG,G]=Z[GAG,QBG]=[XG A G,BG|,

the Samelson product corresponds to the Whitehead product [¢, ¢] of the inclusion
t: G — BG.

» So, G is homotopy commutative if and only if [¢,¢] = 0.
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Higher homotopy commutativity

» C,-space in the sense of Williams is defined by some higher homotopy condition using
permutohedra P,.

» An equivalent condition is as follows: the wedge sum of the inclusion
(XG)"" — BG

extends over the product
(ZG)*" — BG.

» This is just the vanishing of the higher Whitehead products.
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Higher homotopy commutativity (continued)

> The higher homotopy commutativity of Lie groups and their p-localizations is well
studied. Here is a typical argument to show the non-commutativity.

Example
Let G = SU(2) = S® and p an odd prime. Suppose the wedge sum of the inclusion

V2:as

(V% = BSU(2) = HP™

extends to a map
pt+

F:(S4% = BSU(2).

p+1l

We know Plc; = ac,? with a # 0 in H*P*2(BSU(2);Fp). Then f*Plc, # 0. But P! must
be trivial in H*((54)Xp En F,) by the Cartan formula. This contradicts to f*c, # 0. Therefore,
SU(2) is not p-locally a C,il -space.

2

» What about “higher homotopy normality” ?
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2. Higher homotopy normality
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Crossed module

> In the rest of this talk, let H and G be topological groups of homotopy types of CW
complexes.

» A normal subgroup H C G is a subgroup stable under the inner automorphisms.
» Crossed module is a generalization of normal subgroup to non-inclusions.

Definition (MacLane, J.H.C.Whitehead 1940s)

A (topological) crossed module consists of homomorphisms f: H — G and p: G — Aut(H)
satisfying the conditions

> p(f(h))(x) = hxh~! for any x, h € H,
» f(p(g)(x)) = gf(x)g~! forany x € H and g € G.

» Farjoun and Segev (2010) proved that the Borel construction EH x y G of a crossed
module f: H — G naturally inherits a group structure. This should be considered as “the
homotopy quotient group of a homotopically normal subgroup”.
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Nk (€)-map

» Ay(H, G) denotes the space of As-maps.
» conjy: H — Ay(H, H) denotes the conjugation conj(h)(x) = hxh~L.

Definition (T.)
A homomorphism f: H — G is an Ny (¢)-map if an Ag-map p: G — Ay(H, H) is given and
the following conditions hold:

» pof is homotopic to conjy as an As-map,

» the map x — Ay(H, G), * — f is Ag-equivariant with respect to the action of G,

» the higher homotopy in the second condition coincides with the first condition on H.

» This is a higher homotopy analogue of crossed module.
» Ni(1)-map is equivalent to homotopy normal map introduced by McCarty (1964).

» James (1967) defined another homotopy normality which is slightly weaker than
McCarty's.
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Ni(1)-map

Definition (McCarty 1964)

A homomorphism f: H — G is homotopy normal (an Ny(1)-map) if there exists a map
4: G AN H— H making the diagram

HAH-o H

35 7
f/\idl 7 lf

commute up to homotopy and the homotopies comapatible with the stationary homotopy of
the outer square.
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Immediate consequences

» If f: H— G is an Ni(¢)-map and k > k' and ¢ > ¢, then f is an Ny/(¢')-map.
» If f: H— G is a crossed module, then f is an N (oc)-map.
» The homomorphism f: H — x is an Ni(¢)-map if and only if conjy: H — Ay(H, H) is
homotopic to the constant map as an Ai-map.
» The latter condition is equivalent to being a C(k, ¢)-space (T. 2016), which is a higher
homotopy commutativity introduced by Kishimoto and Kono (2010).
» C(00,00)-space and Sugawara Cy.-space are known to be equivalent. Then we conclude that

H — = is an Ny, (00)-map if and only if BH is an H-space.
» This is analogous to the fact that H — * is a crossed module if and only if H is commutative.
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3. Results
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Equivariant and fiberwise homotopy theory

» The Borel construction defines the correspondence
a G-space X +— a fiberwise space EG xg X — BG.

This provides an “equivalence” between the equivariant homotopy theory and the
fiberwise homotopy theory in an appropriate sense.

» The idea of the main theorem is based on this equivalence.
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Theorem (T.)

Let f: H— G be a homomorphism and F: ExH xy H — ExG x ¢ G denote the induced map

of f. Then f is an Ni(¢)-map if and only if there exists a fiberwise As-space &€ — BxG and F
factors as

EHxyHSED EGxeG
up to homotopy over Bif: BxH — By G such that the following conditions hold:
¢ covers Bif and v covers the identity on B, G,
¢ and 1) restrict to Ay,-maps on each fiber,

v

v

v

¢ is a weak homotopy equivalence on each fiber,

v

the restriction of ¥ o ¢ to the fiber over the basepoint is homotopic to f as an A;-map.

v

The last for conditions correspond to the compatibility required in the definition of
Ni(£)-map.
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Remark on main theorem

» Roughly, this theorem states that : H — G is an Ni(¢)-map if and only if the following
“unusual” factorization of F: ExH xy H — E G x¢ G exists:

He————H f G
ExH xy H £ ExG x6 G
BiH —p—— BiG ——=BG
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Remark on main theorem (continued)

» The “usual” factorization is as follows. The middle column is induced from the
conjugation action of H on G through f.

H f CG——=6G

| | |

EkHXHHHEkHXHGHEkGXGG

| l |

BiH =—=—— BkHT) BxG

» This factorization is possible for any homomorphism f.
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H-structure on Borel construction

Theorem (T.)

» Let f: H— G be a homomorphism. Then the Borel construction X = EH x4 G is an
H-space if f is an Ny(k)-map and cat X < k.

Example

» Let H=K(Q,2n—1) and G = K(Q,4n — 1). Consider the homomorphism f: H — G
with classifying map Bf: K(Q,2n) — K(Q,4n) corresponding to u? € H*"(K(Q, 2n); Q).
Then the Borel construction is

EH x} G =~ hofib(Bf) ~ S27.

Since 5(20”) does not admit an H-structure and cat 5(0) =1, f is not an Ny(1)-map.
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Preceding results on examples

» There have been many results on homotopy normality of Lie groups.

» (James 1967)
The inclusion U(m) — U(n) is not (2-locally) homotopy normal in the sense of James for
1 < m < n. Similar results hold for O(m) — O(n) (2 < m < n) and Sp(m) — Sp(n) for
1<m<n.

» Other results include: McCarty (1964), James (1971), Kachi (1982), Furukawa (1985),
Furukawa (1987), Furukawa (1995), Kudou—Yagita (1998), Kudou—Yagita (2003),
Kono—Nishimura (2003), Nishimura (2006), Kishimoto—T. (2018).

» These results suggest that H — G tends to fail to be p-locally homotopy normal for small
prime p.
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Higher homotopy normality of SU(m) — SU(n)

» Main theorem provides an obstruction theory for N (¢)-map applying the fiberwise
projective space functor.

» Then, by a typical argument using Steenrod operations as mentioned before, we can
obtain the following result.

Theorem (T.)
> If max{kn —2,(k—1)n+2} < p < kn+2(¢ — 1) for some n > 3 and k,¢ > 1, then the
inclusion SU(2) — SU(n) is not a p-local Ng(¢)-map.
> If max{kn —m,(k —1)n+2} < p < kn+ (¢ —2)m for some 2 < m < n and k,{ > 1,
then the inclusion SU(m) — SU(n) is not a p-local N (¢)-map.

» This result is not very sharp. For example, the normality is not determined when
kn+ (£ —2)m < p < kn+{m.
» A similar result is obtained for SO(2m + 1) — SO(2n + 1).
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N (€)-map is a higher homotopical analogue of crossed module.

Ni(£)-map is characterized by fiberwise Aj-maps over the k-th projective spaces.

The Borel construction EH Xy G of an Ni(k)-map f: H — G is an H-space if

cat EH xy G < k holds.

Fiberwise projective space provides a method to detect obstructions to being N (¢)-maps.

v

v

v

v

Thank you!
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