Higher homotopy normalities in topological groups

蔦谷 充伸 (九州大学)

京都・九州・信州オンライントポロジーセミナー December 10, 2021 This talk is based on the preprint

► Homotopy normalities in topological groups, arXiv:2111.15096.

Contents

- 1. Introduction to crossed module
- 2. Introduction to higher homotopy associativity
- 3. Higher homotopy normality
- 4. H-structure on homotopy quotient
- 5. Higher homotopy normality of $SU(m) \rightarrow SU(n)$

Introduction to crossed module

Crossed module

- ▶ A normal subgroup $H \subset G$ of a topological group G is a subgroup stable under the inner automorphisms in G.
- ightharpoonup Crossed module is an extension of normal subgroup to non-inclusions H
 ightharpoonup G.

Definition (MacLane, J.H.C.Whitehead 1940s)

- ▶ A (topological) crossed module consists of homomorphisms $f: H \to G$ and $\rho: G \to \operatorname{Aut}(H)$ satisfying the conditions
 - $f(\rho(g)(x)) = gf(x)g^{-1}$ for any $x \in H$ and $g \in G$.
 - $ightharpoonup
 ho(f(h))(x) = hxh^{-1} \text{ for any } x, h \in H,$
- ▶ For example, the map $\pi_1(F) \to \pi_1(E)$ induced from the fiber inclusion of a fiber bundle $F \to E \to B$ is naturally a crossed module.

Homotopy quotient

▶ If a compact Lie group *G* acts freely on a manifold *X*, we have the fiber bundle

$$G \to X \to X/G.$$
 (*)

The quotient X/G is considered to be "homotopically good".

- ▶ But if the action is not free, (*) is no longer a fiber bundle. Then the quotient X/G is considered to be "homotopically bad".
- ► Any action of a topological group *G* on a space *X* can be made into a homotopically good action:

$$G \times (EG \times X) \to EG \times X, \quad (g,(u,x)) \mapsto (ug^{-1},gx).$$

EG is a principal *G*-bundle with contractible total space.

▶ $EG \times_G X = (EG \times X)/G$ is called the Borel construction, which is considered to be a "homotopy quotient".

Homotopy quotient of crossed module

- ▶ If $f: H \to G$ is a crossed module, the image $f(H) \subset G$ is a normal subgroup. But the quotient G/f(H) is a "homotopically bad quotient" in general.
- ▶ The homotopy quotient should be the Borel construction $EH \times_H G$ under the action through $f: H \to G$.

Theorem (Farjoun-Segev 2010)

- If $f: H \to G$ is a crossed module, then the Borel construction $EH \times_H G$ (with some good model of EH) is naturally a topological group.
- \blacktriangleright Even if H and G are discrete, EH \times_H G needs not be discrete.

Introduction to higher homotopy

associativity

Projective space

► The classifying space *BG* of a topological group *G* has a natural filtration

$$* = B_0G \subset B_1G \subset \cdots \subset B_nG \subset \cdots \subset B_{\infty}G = BG.$$

- $ightharpoonup B_nG$ is called the *n*-th projective space.
- ▶ $B_{n+1}G$ is the mapping cone of some map $\Sigma^n G^{\wedge n+1} \to B_n G$.

Example

- ► $B_n S^0 = \mathbb{R} P^n \ (S^0 = O(1) = \mathbb{Z}/2\mathbb{Z}).$
- $ightharpoonup B_n S^1 = \mathbb{C} P^n \ (S^1 = U(1) = SO(2)).$
- $\triangleright B_n S^3 = \mathbb{H} P^n \ (S^3 = \mathrm{Sp}(1) = \mathrm{SU}(2)).$

A_n -map

- ▶ Let $f: H \rightarrow G$ be a map between topological groups.
- ▶ If $f(h_1h_2) = f(h_1)f(h_2)$ holds for any h_1, h_2 , then we have $f(h_1 \cdots h_n) = f(h_1) \cdots f(h_n)$ for any $n \ge 1$ and h_1, \dots, h_n .
- ▶ If a homotopy $f_2: [0,1] \times H^2 \to G$ between the maps

$$(h_1,h_2)\mapsto f(h_1h_2)$$
 and $(h_1,h_2)\mapsto f(h_1)f(h_2)$

is given, we can construct the homotopies

$$f(h_1h_2h_3) \sim f(h_1)f(h_2h_3) \sim f(h_1)f(h_2)f(h_3),$$

 $f(h_1h_2h_3) \sim f(h_1h_2)f(h_3) \sim f(h_1)f(h_2)f(h_3).$

These are in general different.

A_n -map (continued)

▶ These homotopies coincide up to homotopy of homotopies iff there exists a map f_3 : $[0,1]^2 \times H^3 \rightarrow G$ depicted as follows.

$$f(h_1h_2)f(h_3) \qquad f(h_1)f(h_2)f(h_3)$$

$$f(h_1h_2h_3) \qquad f(h_1)f(h_2h_3)$$

▶ This idea is extended to A_n -map $(n = 1, 2, ..., \infty)$. An A_n -map is a map $f: H \to G$ equipped with higher homotopies $\{f_i: [0, 1]^{i-1} \times H^i \to G\}_{i=1}^n$ (Sugawara 1960, Stasheff 1963).

Category of topological groups and A_n -maps

▶ The composition of A_n -maps is defined as follows:

This is unital and associative up to homotopy.

- Let A_n denote the (higher) category of topological groups and A_n -maps.
- ▶ The projective space construction extends to the functor $B_n \colon \mathcal{A}_n \to \mathbf{Top}_*$. This functor gives the one-to-one correspondence

{homotopy classes of
$$A_n$$
-maps $H \to G$ }
 \cong {homotopy classes of pointed maps $B_nH \to BG$ }.

A_n -space

- Associativity of binary operation x(yz) = (xy)z can also be loosened to "associativity up to higher homotopy".
- ▶ An A_n -space $(n=2,3,\ldots,\infty)$ is a space X equipped with a unital binary operation $m_2\colon X\times X\to X$ and higher homotopies $\{m_i\colon \mathcal{K}_i\times X^i\to X\}_{i=2}^n$ parameterized over the associahedra \mathcal{K}_i depicted below (Stasheff 1963).

- ▶ A_n -map between A_n -spaces is also defined (Stasheff 1970, Boardman–Vogt 1973, Iwase 1983).
- ▶ The *i*-th projective space B_iX of an A_n -space X is also defined for $i \le n$.

Higher homotopy normality

Homotopy normal map (James)

▶ In the rest of this talk, let *H* and *G* be topological groups of homotopy types of CW complexes.

Definition (James 1967)

▶ A homomorphism $f: H \to G$ is homotopy normal in the sense of James if the map

$$\gamma \colon G \land H \to G, \quad \gamma(g, x) = gxg^{-1}x^{-1}$$

lifts to H with respect to f up to homotopy.

Homotopy normal map (McCarty)

Definition (McCarty 1964)

- ▶ A homomorphism $f: H \to G$ is homotopy normal in the sense of McCarty if there exists a map $\tilde{\gamma}: G \land H \to H$ satisfying the following conditions:
 - $ightharpoonup \tilde{\gamma}$ is a lift of the map

$$\gamma \colon G \land H \to G, \quad \gamma(g,x) = gxg^{-1}x^{-1}$$

to *H* with respect to *f* up to homotopy,

 $ightharpoonup \tilde{\gamma} \circ (f \wedge id)$ is homotopic to the commutator map

$$H \wedge H \to H, \quad \gamma_H(h, x) = hxh^{-1}x^{-1}.$$

$$H \wedge H \xrightarrow{\gamma_H} H$$

$$f \wedge id \bigg|_{\mathcal{F}} \exists \tilde{\gamma} \qquad \bigg|_{f}$$

$$G \wedge H \xrightarrow{\gamma_F} G$$

$N_1(1)$ -map

Definition (T.)

- ▶ A homomorphism $f: H \to G$ is an $N_1(1)$ -map if there exists a map $\tilde{\gamma}: G \land H \to H$ satisfying the following conditions:
 - $ightharpoonup ilde{\gamma}$ is a lift of the map

$$\gamma \colon G \land H \to G, \quad \gamma(g, x) = gxg^{-1}x^{-1}$$

to H with respect to f up to homotopy,

• $\tilde{\gamma} \circ f$ is homotopic to the commutator map

$$\gamma_H \colon H \wedge H \to H, \quad \gamma_H(h, x) = hxh^{-1}x^{-1}.$$

▶ the composite of these homotopies is homotopic to the stationary homotopy of the map $f \circ \gamma_H = \gamma \circ (f \wedge id)$.

$N_k(\ell)$ -map

- ▶ $A_{\ell}(H, G)$ denotes the space of A_{ℓ} -maps.
- ▶ $\operatorname{conj}_H : H \to \mathcal{A}_{\ell}(H, H)$ denotes the conjugation $\operatorname{conj}_H(h)(x) = hxh^{-1}$.

Definition (T.)

- A homomorphism $f: H \to G$ is an $N_k(\ell)$ -map if an A_k -map $\rho: G \to A_\ell(H, H)$ is given and the following conditions hold:
 - ▶ $\rho \circ f$ is homotopic to conj_H as an A_{ℓ} -map,
 - ▶ the map $* \to A_{\ell}(H, G)$, $* \mapsto f$ is A_k -equivariant with respect to the action of G,
 - ▶ the composite of the previous A_k -equivariant map and f is homotopic to the trivial A_k -equivariant map $* \mapsto f$ with respect to the action of H (this is H-equivariant in the usual sense).
- ▶ If f is an $N_{k'}(\ell')$ -map for $k' \ge k$ and $\ell' \ge \ell$, then f is an $N_k(\ell)$ -map.

Fiberwise topological group

- ▶ A map $E \to B$ is said to be fiberwise topological group if each fiber is a topological group and the multiplication $E \times_B E \to E$, the unit $B \to E$ and the inversion $E \to E$ are continuous.
- ► The fiberwise classifying space $\mathscr{B}E$ and the *n*-th projective space \mathscr{B}_nE are similarly defined.
- ightharpoonup Fiberwise A_n -space is similarly defined.

Example

▶ The conjugation action of G on itself defines the fiberwise topological group $E_kG \times_G G \to B_kG$, where E_kG is the pullback of EG by the inclusion $B_kG \to BG$.

Equivariant and fiberwise homotopy theory

► The Borel construction defines the correspondence

a *G*-space
$$X \mapsto \text{a fiberwise space } EG \times_G X \to BG$$
.

This provides an "equivalence" between the equivariant homotopy theory and the fiberwise homotopy theory in an appropriate sense.

► The following main theorem is based on this equivalence.

Main theorem

Theorem (T.)

▶ Let $f: H \to G$ be a homomorphism and $F: B_k H \times_H H \to B_k G \times_G G$ denote the induced map of f. Then f is an $N_k(\ell)$ -map if and only if there exists a fiberwise A_ℓ -space $E \to B_k G$ and fiberwise A_n -maps

$$\phi \colon E_k H \times_H H \to (B_k f)^* E$$
 and $\psi \colon E \to E_k G \times_G G$

such that the following conditions hold:

- \triangleright ϕ is a fiberwise A_{ℓ} -equivalence.
- ▶ the restriction of $\psi \circ \phi$ to the fiber over the basepoint is homotopic to f as an A_{ℓ} -map,
- ▶ the composite $\psi \circ \phi$ is homotopic to F as a map covering $B_k f: B_k H \to B_k G$.
- ▶ The key to the proof is observing the classifying maps of fiberwise A_{ℓ} -spaces (Crabb–Sutherland 2000, T. 2012).

H-structure on homotopy

quotient

H-space

▶ An H-space is nothing but an A_2 -space (i.e. the space with continuous unital binary operation).

Theorem (T.)

- ▶ The homomorphism $H \to *$ is an $N_k(\ell)$ -map if and only if H is a $C(k,\ell)$ -space.
- ▶ $C(k, \ell)$ -space is some higher homotopy commutativity (Kishimoto–Kono 2010). In particular, H is an $C(\infty, \infty)$ -space iff BH is an H-space.
- ▶ This theorem immediately follows from the main theorem.
- ▶ This theorem is analogous to the fact that $H \rightarrow *$ is a crossed module iff H is commutative.

H-structure on homotopy quotient

▶ Due to the previous theorem, we cannot expect that the homotopy quotient of an $N_k(\ell)$ -map naturally inherits any H-structure with higher homotopy associativity in cotrast to the result of Farjoun–Segev.

Theorem (T.)

▶ Let $f: H \to G$ be a homomorphism. Then the Borel construction $X = EH \times_H G$ is an H-space if f is an $N_k(k)$ -map and cat $X \le k$.

Example

▶ (Even the rationalization of) the inclusion $SO(2n) \rightarrow SO(2n+1)$ is not an $N_1(1)$ -map since $S^{2n} = SO(2n+1)/SO(2n)$ is not an H-space. But one can see that it is rationally homotopy normal in the sense of McCarty.

Higher homotopy normality of

 $SU(m) \rightarrow SU(n)$

Preceding results

- ► There have been many non-normality results.
- ► (James 1967)
 The inclusion $U(m) \to U(n)$ is not (2-locally) homotopy normal in the sense of James for $1 \le m < n$. Similar results hold for $O(m) \to O(n)$ ($2 \le m < n$) and $Sp(m) \to Sp(n)$ for $1 \le m < n$.
- ▶ Other results include: McCarty (1964), James (1971), Kachi (1982), Furukawa (1985), Furukawa (1987), Furukawa (1995), Kudou-Yagita (1998), Kudou-Yagita (2003), Kono-Nishimura (2003), Nishimura (2006), Kishimoto-T. (2018).
- ▶ These results suggest that $H \rightarrow G$ tends to fail to be p-locally homotopy normal for small prime p.

Higher homotopy commutativity and normality

▶ In contrast to the fact that any subgroup of an abelian group is normal, homotopy commutativity does not imply homotopy normality in general (e.g. the rationalization of $SO(2n) \rightarrow SO(2n+1)$).

Theorem (T.)

Let $f: H \to G$ be a homomorphism between semisimple compact connected Lie groups. Suppose that the mod p cohomologies are

$$H^*(H; \mathbb{F}_p) = \Lambda(x_1, \dots, x_m), \quad H^*(G; \mathbb{F}_p) = \Lambda(y_1, \dots, y_n)$$

with $m \le n$ and $f^*(y_i) = x_i$ for i = 1, ..., m. If $p \ge kn + \ell m$, then f is p-locally an $N_k(\ell)$ -map.

▶ This result says that $H \to G$ tends to be a p-local $N_k(\ell)$ -map trivially for large prime p.

Higher homotopy normality of $SU(m) \rightarrow SU(n)$

Theorem (T.)

- ▶ If $\max\{kn-2,(k-1)n+2\} for some <math>n \ge 3$ and $k,\ell \ge 1$, then the inclusion $SU(2) \to SU(n)$ is not a p-local $N_k(\ell)$ -map.
- ▶ If $\max\{kn-m,(k-1)n+2\} for some <math>2 \le m < n$ and $k,\ell \ge 1$, then the inclusion $\mathsf{SU}(m) \to \mathsf{SU}(n)$ is not a p-local $N_k(\ell)$ -map.
- ▶ This result is not very sharp. For example, the normality is undetermined for $kn + (\ell 2)m .$
- ▶ A similar result is obtained for $SO(2m+1) \rightarrow SO(2n+1)$.

Proof of the theorem

- ▶ To illustrate the proof with the easiest case, we see that the inclusion $SU(2) \rightarrow SU(3)$ is not 3-locally an $N_1(1)$ -map.
- ▶ Suppose that it is 3-locally an $N_1(1)$ -map. Then there exist a fiberwise pointed space $\mathcal{E} \to B_1 \, \mathrm{SU}(3) = \Sigma \, \mathrm{SU}(3)$ and fiberwise pointed maps

$$\begin{split} \Phi \colon & E_1 \, \mathsf{SU}(2) \times_{\mathsf{SU}(2)} \Sigma \, \mathsf{SU}(2) \to \mathcal{E}|_{\Sigma \, \mathsf{SU}(2)}, \\ \Psi \colon & \mathcal{E} \to E_1 \, \mathsf{SU}(3) \times_{\mathsf{SU}(3)} \mathcal{B} \, \mathsf{SU}(3) \end{split}$$

such that Φ is a homotopy equivalence and $\Psi \circ \Phi$ is fiberwise pointed homotopic to the inclusion (functoriality of fiberwise projective spaces).

Proof of the theorem (continued)

▶ We have the mod *p* cohomologies

$$\begin{split} H^*(E_1\,\mathsf{SU}(3)\times_{\mathsf{SU}(3)}B\,\mathsf{SU}(3)) &= (\mathbb{F}_\rho\{c_2^B,c_3^B\}\oplus S)\otimes \mathbb{F}_\rho[c_2^F,c_3^F],\\ H^*(\mathcal{E}) &= (\mathbb{F}_\rho\{c_2^B,c_3^B\}\oplus S)\otimes \mathbb{F}_\rho\{c_2^F\} \end{split}$$

for some 1-dimensional submodule S.

- We find $\Psi^*(c_3^F) = c_3^B$ since Ψ is fiberwise pointed.
- ightharpoonup Applying the Steenrod operation \mathcal{P}^1 , we have

$$\begin{split} \Psi^*(\mathcal{P}^1 c_3^F) &= \Psi^*(\pm c_2^F c_3^F) = \pm c_2^F c_3^B, \\ \mathcal{P}^1 \Psi^*(c_3^F) &= \mathcal{P}^1 c_3^B = \pm c_2^B c_3^B. \end{split}$$

These computations contradict each other, completing the proof.

Summary

- $ightharpoonup N_k(\ell)$ -map is a higher homotopical analogue of crossed module.
- ▶ $N_1(1)$ -map \Rightarrow McCarty's homotopy normal map \Rightarrow James' homotopy normal map.
- ▶ An $N_k(\ell)$ -map is characterized by fiberwise A_ℓ -maps over the k-th projective spaces.
- ▶ The homotopy quotient $EH \times_H G$ of an $N_k(k)$ -map is an H-space if cat $EH \times_H G \le k$ holds.
- ▶ Fiberwise pointed maps between fiberwise projective spaces is applied to detect obstructions to being $N_k(\ell)$ -maps.

Thank you!