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This talk is based on the preprint

» Homotopy normalities in topological groups, arXiv:2111.15096.
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Introduction to crossed module



Crossed module

» A normal subgroup H C G of a topological group G is a subgroup
stable under the inner automorphisms in G.

» Crossed module is an extension of normal subgroup to non-inclusions
H— G.

Definition (MacLane, J.H.C.Whitehead 1940s)

» A (topological) crossed module consists of homomorphisms
f:H— G and p: G — Aut(H) satisfying the conditions

> f(p(g)(x)) =gf(x)g ' forany x € Hand g € G.
> p(f(h))(x) = hxh™! for any x, h € H,

» For example, the map m1(F) — m1(E) induced from the fiber
inclusion of a fiber bundle F — E — B is naturally a crossed
module.
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Homotopy quotient

» If a compact Lie group G acts freely on a manifold X, we have the
fiber bundle

G—X—X/G. (*)

The quotient X /G is considered to be “homotopically good"”.

> But if the action is not free, (*) is no longer a fiber bundle. Then
the quotient X /G is considered to be “homotopically bad”.

» Any action of a topological group G on a space X can be made into
a homotopically good action:

G x (EG x X) = EGx X, (g,(u,x))— (ug™?,gx).

EG is a principal G-bundle with contractible total space.

» EG x¢ X = (EG x X)/G is called the Borel construction, which is
considered to be a “homotopy quotient”.
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Homotopy quotient of crossed module

» If f: H— G is a crossed module, the image f(H) C G is a normal
subgroup. But the quotient G/f(H) is a “homotopically bad
quotient” in general.

» The homotopy quotient should be the Borel construction EH x4y G
under the action through f: H — G.

Theorem (Farjoun—Segev 2010)

> If f: H— G is a crossed module, then the Borel construction
EH x G (with some good model of EH) is naturally a topological

group.

» Even if H and G are discrete, EH x4 G needs not be discrete.
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Introduction to higher homotopy
associativity



Projective space

» The classifying space BG of a topological group G has a natural
filtration

x=ByGCBGC---CB,GC---CByxG=BG.

» B,G is called the n-th projective space.

» B,,1G is the mapping cone of some map X"G""*! — B,G.

Example
> B,S°=RP" (S°=0(1) = Z/ZZ)
> B,S'=CP" (§' = U(1) = SO(2)).

> B,S® =HP" (S* = Sp(1) = SU(2)).
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» Let f: H— G be a map between topological groups.

» If f(hihy) = f(hy)f(h2) holds for any hq, hy, then we have
f(hy---hy)=f(h)---f(h,) forany n>1and hq,..., h,.

» If a homotopy f: [0,1] x H? — G between the maps

(hl7 h2) —> f(h1h2) and (hl7 h2) —> f(hl)f(hg)
is given, we can construct the homotopies

f(hihohz) ~ f(h1)f(hahs) ~ f(hy)f(h2)f(hs),
f(hihahs) ~ f(hyhy)f(hs) ~ f(hy)f(ha)f(hs).

These are in general different.
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A,-map (continued)

» These homotopies coincide up to homotopy of homotopies iff there
exists a map f3: [0,1]2 x H®> — G depicted as follows.

Sh)fhs) - f)f)fhs)

VE

Sihohs) S hohs)

» This idea is extended to A,-map (n=1,2,...,00). An A,-map is a
map f: H — G equipped with higher homotopies
{£:[0,1]71 x H' — G}"_, (Sugawara 1960, Stasheff 1963).
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Category of topological groups and A,-maps

» The composition of A,-maps is defined as follows:

a0y VD) U)oz

g(fx)
g(f0fy)) gfoofiz) | glfRf)f2)  e(f)g(f)f2)

SN o) s(2) (e

This is unital and associative up to homotopy.

> Let denote the (higher) category of topological groups and
Ap-maps.

» The projective space construction extends to the functor
B,: A, — Top,. This functor gives the one-to-one correspondence
{homotopy classes of A,-maps H — G}
= {homotopy classes of pointed maps B,H — BG}.

10/26



» Associativity of binary operation x(yz) = (xy)z can also be loosened
to “associativity up to higher homotopy”.

» An A,-space (n=2,3,...,00) is a space X equipped with a unital
binary operation my: X x X — X and higher homotopies
{m;: K; x X = X}, parameterized over the associahedra K;
depicted below (Stasheff 1963).

((v2)w)
xy
’ x(y(zw)) (x(z)w
02 2 (y)w) ()2)w

> A,-map between A,-spaces is also defined (Stasheff 1970,
Boardman—Vogt 1973, lwase 1983).

» The i-th projective space B;X of an A,-space X is also defined for
i <n.
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Higher homotopy normality




Homotopy normal map (James)

» In the rest of this talk, let H and G be topological groups of
homotopy types of CW complexes.

Definition (James 1967)

» A homomorphism f: H — G is homotopy normal in the sense of
James if the map

v:GAH—= G, ~(gx)=g@g 'x?

lifts to H with respect to f up to homotopy.

H
'
G

G/\H—>
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Homotopy normal map (McCarty)

Definition (McCarty 1964)

» A homomorphism f: H — G is homotopy normal in the sense of
McCarty if there exists a map 7: G A H — H satisfying the following
conditions:

> 7 is a lift of the map
v:GAH =G, v(g,x)=gxg 'x !

to H with respect to f up to homotopy,
> 5o (f Aid) is homotopic to the commutator map

HAH— H, ~u(h,x)=hxh"'x"".

HAH- s H

3y 7
fAid ‘ f

GANH——G
¥
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Ni(1)-map

Definition (T.)

» A homomorphism f: H — G is an /N;(1)-map if there exists a map
4: G N H — H satisfying the following conditions:

> s a lift of the map

v:GAH— G, 7(g,x)=gxg 'x !

to H with respect to f up to homotopy,
» 5o f is homotopic to the commutator map

yu: HAH = H, ~u(h,x) = hxh 'x"".

» the composite of these homotopies is homotopic to the stationary
homotopy of the map f o yy =y o (f Aid).

HAH- s H

3y 7
fAid ‘ f

GANH——G
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» A,(H, G) denotes the space of As;-maps.

» conjy: H— A;(H, H) denotes the conjugation
conjy(h)(x) = hxh~t.

Definition (T.)

» A homomorphism f: H — G is an Ny(/)-map if an Ag-map
p: G — Ay(H, H) is given and the following conditions hold:

» pof is homotopic to conj, as an A¢,-map,

» the map x — A¢(H, G), x — f is Ar-equivariant with respect to the
action of G,

» the composite of the previous Ax-equivariant map and f is
homotopic to the trivial Ag-equivariant map * — f with respect to
the action of H (this is H-equivariant in the usual sense).

» If fis an Ny (¢')-map for k' > k and ¢’ > ¢, then f is an Ni(¢)-map.
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Fiberwise topological group

» A map E — B is said to be fiberwise topological group if each fiber
is a topological group and the multiplication E xg E — E , the unit
B — E and the inversion E — E are continuous.

» The fiberwise classifying space Z8E and the n-th projective space
HB,E are similarly defined.

» Fiberwise A,-space is similarly defined.
Example

» The conjugation action of G on itself defines the fiberwise

topological group ExG x¢ G — B G, where E,G is the pullback of
EG by the inclusion B,G — BG.
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Equivariant and fiberwise homotopy theory

» The Borel construction defines the correspondence
a G-space X +— a fiberwise space EG x¢c X — BG.

This provides an “equivalence” between the equivariant homotopy
theory and the fiberwise homotopy theory in an appropriate sense.

» The following main theorem is based on this equivalence.
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Theorem (T.)

> Let f: H— G be a homomorphism and F: BkH xy H — BxG xc G
denote the induced map of . Then f is an Ni(¢)-map if and only if
there exists a fiberwise Aj-space E — B, G and fiberwise A,-maps

d)ZEkHXHH—>(ka)*E and wE—>EkG XGG

such that the following conditions hold:
> ¢ is a fiberwise As-equivalence,
> the restriction of ¢ o ¢ to the fiber over the basepoint is homotopic
to f as an Ag-map,
> the composite ¥ o ¢ is homotopic to F as a map covering
ka: BkH — BkG.

» The key to the proof is observing the classifying maps of fiberwise
Ag-spaces (Crabb—Sutherland 2000, T. 2012).
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H-structure on homotopy
quotient




» An H-space is nothing but an Ay-space (i.e. the space with

continuous unital binary operation).

Theorem (T.)

>

The homomorphism H — * is an Ni(¢)-map if and only if H is a
C(k, ¢)-space.

C(k.l)-space is some higher homotopy commutativity
(Kishimoto—Kono 2010). In particular, H is an C(o0, 00)-space iff
BH is an H-space.

This theorem immediately follows from the main theorem.

This theorem is analogous to the fact that H — x* is a crossed
module iff H is commutative.
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H-structure on homotopy quotient

» Due to the previous theorem, we cannot expect that the homotopy
quotient of an Ny (¢)-map naturally inherits any H-structure with
higher homotopy associativity in cotrast to the result of
Farjoun—Segev.

Theorem (T.)
> Let f: H— G be a homomorphism. Then the Borel construction
X = EH x G is an H-space if f is an Ny (k)-map and cat X < k.
Example

» (Even the rationalization of) the inclusion SO(2n) — SO(2n+1) is
not an Ny(1)-map since $2" = SO(2n + 1)/ SO(2n) is not an
H-space. But one can see that it is rationally homotopy normal in
the sense of McCarty.
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Higher homotopy normality of
SU(m) — SU(n)




Preceding results

» There have been many non-normality results.

> (James 1967)

The inclusion U(m) — U(n) is not (2-locally) homotopy normal in
the sense of James for 1 < m < n. Similar results hold for
O(m) — O(n) (2 < m < n) and Sp(m) — Sp(n) for 1 < m < n.

» Other results include: McCarty (1964), James (1971), Kachi (1982),
Furukawa (1985), Furukawa (1987), Furukawa (1995),
Kudou—Yagita (1998), Kudou—Yagita (2003), Kono—Nishimura
(2003), Nishimura (2006), Kishimoto—T. (2018).

» These results suggest that H — G tends to fail to be p-locally
homotopy normal for small prime p.
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Higher homotopy commutativity and normality

» In contrast to the fact that any subgroup of an abelian group is
normal, homotopy commutativity does not imply homotopy
normality in general (e.g. the rationalization of
SO(2n) — SO(2n + 1)).

Theorem (T.)

> Let f: H— G be a homomorphism between semisimple compact
connected Lie groups. Suppose that the mod p cohomologies are

H*(H;Fp) = N(x1, .-y xm), H(G;Fp) =Ay1,.--,¥n)

with m < nand f*(y;) = x; fori =1,....,m. If p> kn+{m, then f
is p-locally an N(¢)-map.

» This result says that H — G tends to be a p-local N(¢)-map
trivially for large prime p.
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Higher homotopy normality of SU(m) — SU(n)

Theorem (T.)

» If max{kn—2,(k—1)n+2} < p < kn+2(¢ — 1) for some n > 3
and k, ¢ > 1, then the inclusion SU(2) — SU(n) is not a p-local
Ny (£)-map.

> If max{kn — m,(k —1)n+ 2} < p < kn+ (¢ — 2)m for some
2 < m< nand k,¢>1, then the inclusion SU(m) — SU(n) is not a
p-local Ny (¢)-map.

» This result is not very sharp. For example, the normality is

undetermined for kn+ (£ —2)m < p < kn+ {m.
» A similar result is obtained for SO(2m + 1) — SO(2n + 1).
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Proof of the theorem

>

>

To illustrate the proof with the easiest case, we see that the
inclusion SU(2) — SU(3) is not 3-locally an N;(1)-map.

Suppose that it is 3-locally an Ny(1)-map. Then there exist a
fiberwise pointed space & — By SU(3) = £ SU(3) and fiberwise
pointed maps

$: E SU(2) Xsu(2) ZSU(Z) — 5|zsu(2),
V. &= K SU(3) Xsu(3) BSU(3)

such that ® is a homotopy equivalence and W o @ is fiberwise
pointed homotopic to the inclusion (functoriality of fiberwise

projective spaces).
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Proof of the theorem (continued)

» We have the mod p cohomologies

H* (B SU3) xsugs) BSU()) = (Bu{cf, f} & S) @ Fylef, cf],
H* (&) = (Fp{cf, Cas} ®S) ®FP{C2F}

for some 1-dimensional submodule S.
» We find W*(cf) = cf since W is fiberwise pointed.

» Applying the Steenrod operation P!, we have

VH(PLE) = U (£ch cf ) = £ F,

P (cf) = Plef = £ cf.

These computations contradict each other, completing the proof.
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> Ny (¢)-map is a higher homotopical analogue of crossed module.

» N;(1)-map = McCarty's homotopy normal map = James'
homotopy normal map.

» An Ni(¢)-map is characterized by fiberwise A;-maps over the k-th
projective spaces.

» The homotopy quotient EH x 1 G of an Ni(k)-map is an H-space if
cat EH x4 G < k holds.

» Fiberwise pointed maps between fiberwise projective spaces is
applied to detect obstructions to being N (¢)-maps.

Thank you!
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