Finite propagation operators and Hilbert bundles with end

蔦谷 充伸 (九州大学)

京都大学微分トポロジーセミナー 2021 年 12 月 21 日 この講演は加藤毅氏(京都大)と岸本大祐氏(京都大)との共同研究による以下の3編の論文に基づく.

- ► Homotopy type of the space of finite propagation unitary operators on Z (arXiv:2007.06787),
- ► Homotopy type of the unitary group of the uniform Roe algebra on Zⁿ (arXiv:2102.00606, accepted by J. Topol. Anal.),
- Hilbert bundles with ends (arXiv:2105.02981, accepted by J. Topol. Anal.).
- 私(蔦谷)の紹介
 - ▶ 主に空間の A_∞-構造などの高次ホモトピー構造に興味があります.
 - ▶ 他にも代数トポロジーを使う問題を中心にいろいろ研究しています.

- 1. Hilbert bundle with end
- 2. Examples
- 3. Homotopy type of $\mathcal{BU}_{\mathrm{fp}}(\mathbb{Z})$
- 4. Characteristic classes
- 5. Further problems

Hilbert bundle with end

Notation

02

• Let (I, d) be a countable metric space (with discrete topology).

$$\ell^{2}(I) = \{(v_{i})_{i \in I} \mid v_{i} \in \mathbb{C}, \sum_{i \in I} |v_{i}|^{2} < \infty\}$$

- Let B(H) denote the space of bounded operators on a Hilbert space H.
- ▶ For $T \in B(\ell^2(I))$, the matrix representation $T = (T_{ij})_{i,j \in I}$ with respect to the standard orthonormal basis.

Finite propagation operator

Definition

▶ For
$$T \in B(\ell^2(I))$$
, define prop $T \in \mathbb{Z}_{\geq 0}$ by

```
prop T = \sup\{d(i,j) \mid T_{ij} \neq 0\}.
```

T is a finite propagation operator if prop $T < \infty$.

Example

- When I is bounded, all operators in B(l²(I)) are of finite propagation.
- When $I = \mathbb{Z}$, the matrix of a finite propagation operator looks like:

$\blacktriangleright \ \mathcal{U}_L(I) \subset B(\ell^2(I))$

the finite propagation unitary operators of prop $\leq L$. $U_L(I)$ is equipped with the norm topology.

Let

$$\mathcal{U}_{\mathrm{fp}}(I) = igcup_{L\geq 0} \mathcal{U}_L(I)$$

with the inductive limit topology of the norm topology. As a set, $U_{\rm fp}(I)$ consists of the finite propagation operators on $\ell^2(I)$.

Let ${\mathcal H}$ be a Hilbert space.

Definition (KKT)

- Two isometries φ, φ': H → l²(I) are said to be equivalent if the composite φ' ∘ φ⁻¹: l²(I) → l²(I) has finite propagation.
- An end of *H* modeled on *I* is an equivalence class of isomteries *H* → *ℓ*²(*I*). We say an operator in the equivalence class is of finite propagation.

Example

- When I is bounded, then the end of a Hilbert space \mathcal{H} is unique.
- ▶ When *I* is not bounded, there are many non-equivalent ends.

Hilbert bundles in our work are as follows.

Definition

Let π: E → X be a continuous map and each fiber π⁻¹(x) be equipped with a structure of Hilbert space.
 We say E is a Hilbert bundle if it admits a local trivialization π⁻¹(U) ≅ U × H around each point x ∈ X.

Definition (KKT)

- An end of a Hilbert bundle π: E → X is the data consisting of local trivializations {π⁻¹(U_λ) ≅ U_λ × ℓ²(I)}_λ over an open covering {U_λ}_λ of X satisfying the following conditions
 - the transition functions have values in $\mathcal{U}_{\mathrm{fp}}(I)$,
 - ▶ the transition functions $U_{\lambda} \cap U_{\lambda'} \to U_{fp}(I)$ are continuous (with respect to the inductive limit of norm topology).

- We assume the transition functions U_λ ∩ U_{λ'} → U_{fp}(I) are continuous with respect to the inductive limit of norm topology.
- This assumption could be too restrictive. But we still have some interesting examples.
- ► By Kuiper's theorem, which states that U₁(B(ℓ²(I))) is contractible, any Hilbert bundle is trivial. Assigning an end makes a Hilbert bundle non-trivial.
- ► Choosing an end of a Hilbert bundle is equivalent to taking a reduction of the structure group from U₁(B(ℓ²(I))) to U_{fp}(I).

Definition

► Two Hilbert bundles E, E' → X with end modeled on I are isomorphic if there exists an isomorphism of Hilbert bundles E → E' which takes continuous values in U_{fp}(I) through local trivializations.

Proposition

► The following map is bijective:

 $[X, B\mathcal{U}_{\mathrm{fp}}(I)] \to \{\text{isom. classes of Hilb. bdl.s with ends modeled on } I\}$ $[f] \mapsto f^* \tilde{E},$

where [X, X'] denotes the homotopy classes of maps $X \to X'$ and \tilde{E} is the universal bundle over the classifying space $B\mathcal{U}_{\rm fp}(I)$.

- ► Give natural examples of Hilbert bundles with ends.
- Determine the cohomology groups of $BU_{\rm fp}(I)$.
 - \rightarrow "characteristic classes"

Examples

Let X be a metric space.

Definition

- A uniform vector bundle (of finite rank) is the pair (E, {φ_λ}_λ) as follows:
 - $\pi: E \to X$ is a vector bundle of rank r,
 - {φ_λ: π⁻¹(U_λ) → U_λ × C^r}_λ is local trivializations over an open covering {U_λ}_λ such that the transition functions U_λ ∩ U_{λ'} → U_r(C) are uniformly equicontinuous.

Remark

A sequence of functions {f_μ}_μ is uniformly equicontinuous if for any ϵ > 0, there exists δ > 0 such that for any μ and x, y with d(x, y) < δ, the estimate |f_μ(x) - f_μ(y)| < ϵ holds.</p> Let X be a compact metric space.

Example

- Suppose $p: Y \to X$ is a covering space and a local isometry. Then the pullback p^*E of a vector bundle $E \to X$ is uniform.
- ▶ Let S be a finite set of isomorphism classes of vector bundles of rank r over X and $\{E_i\}_{i \in I}$ be a sequence of vector bundles with $E_i \in S$. Then

$$\coprod_{i\in I} E_i \to I \times X$$

is a uniform vector bundle. If \mathcal{S} is not finite, then the resulting vector bundle is not uniform in general.

Let $p: Y \to X$ be a covering space and a local isometry to a compact connected+ metric space X.

Proposition (KKT)

► For a uniform vector bundle E of rank r over Y, let p_{*}E denote the fiberwise completion of

$$\coprod_{x\in X}\bigoplus_{y\in p^{-1}(x)}E_y\to X$$

equipped with an appropriate topology is a Hilbert bundle with end modelled on $p^{-1}(x_0) \times \{1, 2, ..., r\}$ for some $x_0 \in X$.

 p_*E is called the pushforward.

Example

 \blacktriangleright By the identification on $[0,1]\times [0,1]\times \mathbb{C}$ generated by

$$(0, x, z) \sim (1, x, x^n z)$$
 and $(w, 0, z) \sim (w, 1, z)$,

we obtain a line bundle $L_n \rightarrow Y = S^1 \times S^1$.

Let p: Y → S¹ be the first projection. Then applying the Fourier transform on each fiber of the bundle

$$E_n = \coprod_{w \in S^1} L^2(p^{-1}(w)) \to S^1,$$

we obtain a Hilbert bundle with end modeled on $\ensuremath{\mathbb{Z}}.$

▶ This can be obtained by the identification on $[0,1] imes \ell^2(\mathbb{Z})$ by

$$(w, (v_i)_i) \sim (w, (v_{i+n})_i).$$

Homotopy type of $\mathcal{BU}_{\mathrm{fp}}(\mathbb{Z})$

Uniform Roe algebra

Let $U_1(A)$ denote the group of unitary elements in A. To determine the homotopy type of $\mathcal{BU}_{\mathrm{fp}}(\mathbb{Z})$, it is sufficient to determine the homotopy type of $\mathcal{B} U_1(C^*_u(|\mathbb{Z}|))$ by the following theorem.

Theorem (KKT)

▶ The inclusion $\mathcal{U}_{\mathrm{fp}}(\mathbb{Z}) \to \mathsf{U}_1(\mathcal{C}^*_u(|\mathbb{Z}|))$ is a homotopy equivalence.

Let *I* be a countable metric space (with discrete topology).

Definition

• The uniform Roe algebra $C_u^*(I)$ is the norm closure of finite propagation operators in $B(\ell^2(I))$.

Suppose $I = |\Gamma|$ is the underlying metric space of a finitely generated discrete group Γ .

• Then
$$C^*_u(|\Gamma|) \cong \ell^\infty(\Gamma) \rtimes \Gamma$$
 as C^* -algebras.

Theorem (KKT)

▶ Let $\ell^{\infty}(\mathbb{Z},\mathbb{Z})$ denote the \mathbb{Z} -valued bounded sequences over \mathbb{Z} and $\ell^{\infty}(\mathbb{Z},\mathbb{Z})_S = \ell^{\infty}(\mathbb{Z},\mathbb{Z})/\{a - Sa \mid a \in \ell^{\infty}(\mathbb{Z},\mathbb{Z})\}$ where S is the shift. Then

$$\pi_n(\mathsf{U}_1(C^*_u(|\mathbb{Z}|))) \cong \mathcal{K}_{n+1}(C^*_u(|\mathbb{Z}|)) \cong \begin{cases} \ell^\infty(\mathbb{Z},\mathbb{Z})_5 & n \text{ is odd,} \\ \mathbb{Z} & n \text{ is even.} \end{cases}$$

► The inclusion induces the homotopy equivalence $B \cup_1(C^*_u(|\mathbb{Z}|)) \simeq B \cup_1(C^*_u(|\mathbb{Z}| \times \{1, ..., r\})).$

Proof.

- The stability follows from the stability for $A \rtimes \mathbb{Z}$ [Rieffel, 1987].
- Then it is sufficient to compute $K_n(C_u^*(|\mathbb{Z}|))$.
- The first statement follows from the Pimsner–Voiculescu exact sequence

and

$$\mathcal{K}_n(\ell^\infty(\mathbb{Z}))\cong egin{cases} \ell^\infty(\mathbb{Z},\mathbb{Z}) & n ext{ is even,} \ 0 & n ext{ is odd.} \end{cases}$$

The second statement is just the stability.

Proposition (KKT)

• The abelian group $\ell^{\infty}(\mathbb{Z},\mathbb{Z})_S$ is a Q-vector space.

The proof is straightforward.

Example

- If (a_i)_i has finite support, then [(a_i)_i] = 0 in ℓ[∞](ℤ, ℤ)_S.
 → ℓ[∞](ℤ, ℤ)_S captures "asymptotic behavior".
- An embedding $\iota \colon \mathbb{Q} \to \ell^{\infty}(\mathbb{Z}, \mathbb{Z})_S$ is given by

$$\iota(1) = [\ldots, 1, 1, 1, \ldots].$$

Then we have $\iota(m) = [\ldots, m, m, m, \ldots]$ $(m \in \mathbb{Z})$,

$$\iota\left(\frac{1}{2}\right) = [\dots, 1, 0, 1, 0, \dots], \quad \iota\left(\frac{1}{3}\right) = [\dots, 1, 0, 0, 1, 0, 0, \dots].$$

Roe algebra:

 $C^*(|\Gamma|) \cong \ell^\infty(\Gamma, \mathfrak{K}) \rtimes \Gamma,$

where $\mathfrak K$ denotes the compact operators.

Theorem (KKT)

▶ The following (weak) homotopy equivalence holds:

$$B \operatorname{U}_1(C^*_u(|\mathbb{Z}|)) \simeq \operatorname{U}_\infty(\mathbb{C}) \times \prod_{n=1}^\infty K(\ell^\infty(\mathbb{Z},\mathbb{Z})_S,2n),$$

where K(V, n) denotes the Eilenberg–MacLane space of type (V, n).

Proof.

► We can see

$$K_n(C^*(|\mathbb{Z}|)) \cong \begin{cases} 0 & i \text{ is even,} \\ \mathbb{Z} & i \text{ is odd.} \end{cases}$$

and $K_1(C^*_u(|\mathbb{Z}|)) o K_1(C^*(|\mathbb{Z}|))$ is surjective.

This implies the homotopy fibration

$$F o B \operatorname{U}_\infty(C^*_u(|\mathbb{Z}|)) o B \operatorname{U}_\infty(C^*(|\mathbb{Z}|))$$

admits a homotopy section. Thus

 $B \operatorname{U}_1(C^*_u(|\mathbb{Z}|)) \simeq B \operatorname{U}_\infty(C^*_u(|\mathbb{Z}|)) \simeq B \operatorname{U}_\infty(C^*(|\mathbb{Z}|)) \times F.$

▶ Note that $B \cup_{\infty} (C^*(|\mathbb{Z}|)) \simeq \cup_{\infty} (\mathbb{C})$ and the homotopy groups

$$\pi_n(F) \cong \begin{cases} \ell^\infty(\mathbb{Z},\mathbb{Z})_S & n \text{ is even,} \\ 0 & n \text{ is odd,} \end{cases}$$

are $\mathbb Q\text{-vector}$ spaces. Then the theorem follows.

Characteristic classes

Let $V = \ell^{\infty}(\mathbb{Z},\mathbb{Z})_S$ and

 $V^{\vee} = \mathsf{Hom}(V, \mathbb{Q}) = \{ \mathsf{shift invariant homomorphisms } \ell^{\infty}(\mathbb{Z}, \mathbb{Z}) \to \mathbb{Q} \}.$

Take a basis \mathcal{B} of V^{\vee} .

Theorem (KKT)

►
$$H^*(\mathcal{BU}_{\mathrm{fp}}(\mathbb{Z});\mathbb{Q}) \cong \mathbb{Q}[\alpha_n(b) \mid b \in \mathcal{B}, n \ge 1] \otimes \Lambda_{\mathbb{Q}}(\beta_n \mid n \ge 1),$$

where $\alpha_n(b) \in H^{2n}$ and $\beta_n \in H^{2n-1}$.

This immediately follows from the previous theorem.

Definition (KKT)

For a Hilbert bundle with end E over X classified by f: X → BU_{fp}(Z), let

$$\alpha_n(E; b) = f^* \alpha_n(b)$$
 and $\beta_n(E) = f^* \beta_n$.

► Let $\{E_i\}_{i \in \mathbb{Z}}$ be vector bundles of rank *n* over S^{2n} with the Chern number $a_i = c_n(E_i)[S^{2n}]$ such that

 $\sup\{|a_i|\mid i\in\mathbb{Z}\}<\infty.$

• Consider the pushforward p_*E of

$$E = \coprod_{i \in I} E_i \to I \times S^{2n}$$

along the trivial covering $I \times S^{2n} \to S^{2n}$.

Proposition

• The equality $\alpha_n(p_*E; b)[S^{2n}] = b((a_i)_i)$ holds for any $b \in \mathcal{B}$.

• Let *L* be the trivial bundle $\mathbb{R} \times \mathbb{C}$ over \mathbb{R} .

The pushforward p_{*}L along the universal covering ℝ → S¹ is a Hilbert bundle with end modeled on Z.

Proposition

• The equality $\beta_1(p_*L)[S^1] = 1$ holds.

Proof.

Let $\{e_i\}_{i\in\mathbb{Z}}$ be the standard basis of $\ell^2(\mathbb{Z})$. One can observe that e_i is mapped to e_{i+1} by the circular parallel transport.

The non-triviality of β₁ can be extended to any non-trivial Z-covering since Z-coverings are classified by H¹(X; Z). ► We constructed the Hilbert bundle with end

$$E_n = \coprod_{w \in S^1} L^2(p^{-1}(x)) \to S^1,$$

which is also obtained by the identification on $[0,1]\times\ell^2(\mathbb{Z})$ generated by

$$(w, (v_i)_i) \sim (w, (v_{i+n})_i).$$

Proposition

• The equality $\beta_1(L_n)[S^1] = n$ holds.

Further problems

Other choices of /

 In general, it seems difficult to compute the cohomology groups of BU_{fp}(1).

Theorem (KKT)

The following (weak) homotopy equivalence holds:

 $B \cup_1 (C_u^*(|\mathbb{Z}^2|))$ $\simeq \mathbb{Z} \times B \cup_\infty (\mathbb{C}) \times V_0 \times \prod_{n=1}^\infty (K(V_0, 2n) \times K(V_1, 2n-1))$

for some (huge) \mathbb{Q} -vector spaces V_0 and V_1 .

- In fact, the inclusion U₁(C^{*}_u(|Zⁿ|)) → C^{*}(|Zⁿ|) admits a homotopy section.
- ► What about for other infinite *I*...?

Tensor product of Hilbert bundles with ends modeled on *I*₁ and *I*₂ coincides with the operation

$$C^*_u(I_1)\otimes C^*_u(I_2) \rightarrow C^*_u(I_1 \times I_2).$$

How does it work on cohomologies?

- What does the geometric meaning of the characteristic class β_n ∈ H²ⁿ⁻¹(BU_{fp}(ℤ); ℚ) (n ≥ 2)?
- Are there any good applications of our bundles and their characteristic classes?

Thank you!