Homotopy theory of A_n -spaces in Lie groups

Mitsunobu Tsutaya (Kyushu Univ.)

Kyoto University June 26, 2019

Outline

- 1. Background A_n -space
- 2. Higher homotopy commutativities
- 3. Full higher homotopy commutativity of Lie groups
- 4. Samelson products in Lie groups

1. Background – A_n -space

Background – A_n -space

- ► *H*-space
- Homotopical associativity
- Higher homotopy associativity

Background - An-space

G: pointed space

 $m: G \times G \to G$ continuous map

Definition

(G, m) is a (homotopy unital) H-space

def $\iff x \mapsto m(*,x)$ and $x \mapsto m(x,*)$ are homotopic to id: $G \to G$.

Example

A topological group is an *H*-space.

Example

X: pointed space

 $\Omega X = \{\ell : [0,1] \to X \mid \ell(0) = \ell(1) = *\}$: based loop space

 $\implies \Omega X$ is an *H*-space with *m*: concatenation of loops.

Homotopical associativity

$$G = (G, m)$$
: H -space

Definition

G is homotopy associative

def

$$\iff$$
 $(x, y, z) \mapsto x(yz)$ and $(x, y, z) \mapsto (xy)z$ are homotopic.

Example

Topological groups and based loop spaces are homotopy associative.

Example

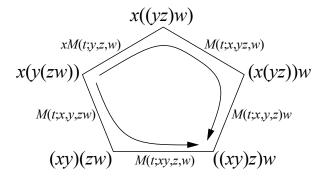
 S^7 admits a structure of an *H*-space (cf. unit vectors in octonions), but no homotopy associative *H*-space.

Higher homotopy associativity

G: homotopy associative H-space

M(t; x, y, z): "associating homotopy" such that

$$M(0; x, y, z) = x(yz),$$
 $M(1; x, y, z) = (xy)z$

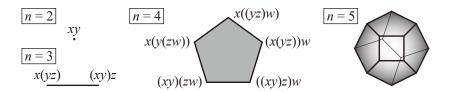


There are two canonical way to associate x(y(zw)) and ((xy)z)w. If these two homotoies are homotopic, we say G is an A_4 -space.

Background – A_n -space

00000

 \rightarrow Generalized to A_n -spaces $(n = 1, 2, ..., \infty)$.



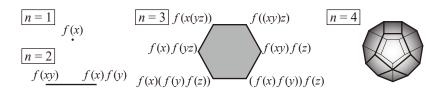
The parameter spaces are called associahedra \mathcal{K}_n (Stasheff, 1963).

Example

Topological groups and based loop spaces are A_{∞} -spaces.

00000

 A_n -maps (morphisms between A_n -spaces) are higher homotopies parametrized by multiplihedra \mathcal{J}_n (Stasheff, Boardman-Vogt, Iwase).



Example

Homomorphisms between topological groups are A_{∞} -maps.

Example

A topological group G and an A_{∞} -space ΩBG are A_{∞} -equivalent (i.e. $\exists G \to \Omega BG$: A_{∞} -map, homotopy equivalence).

2. Higher homotopy commutativities

- Homotopy commutativity
- Higher homotopy commutativities
- ▶ p-localizaton

Background – A_n -space

Homotopy commutativity

G: H-space

Definition

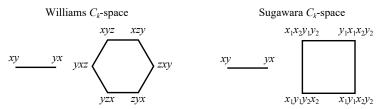
G is homotopy commutative

def

 \iff two maps $(x, y) \mapsto xy$ and $(x, y) \mapsto yx$ are homotopic.

Background - An-space

Higher homotopy commutativities:



The higher homotopies for Williams C_k -space are parametrized by permutohedra P_k (convex hull of $(\sigma(1), \ldots, \sigma(k)) \in \mathbb{R}^k$, σ : permutation).

 $G: A_n$ -space

Definition

G is a Sugawara C_k -space

 $\stackrel{\text{def}}{\Longleftrightarrow} \text{ the binary operation } G \times G \to G \text{ is an } A_k\text{-map.}$

cf. Γ : group, $\Gamma \times \Gamma \to \Gamma$: homomorphism $\Rightarrow \Gamma$: commutative

Background - An-space

Fact:

Sugawara C_2 -space \Leftrightarrow Williams C_2 -space \Leftrightarrow homotopy commutative

Fact:

Sugawara C_k -space \Longrightarrow Williams C_k -space.

Question

What can we say about (higher) homotopy commutativity of Lie groups?

Remark

A connected Lie group G is A_{∞} -equivalent to the maximal compact subgroup K by the inclusion $K \to G$.

G: compact connected Lie group

Theorem (Araki–James–Thomas, 1960)

G is homotopy commutative

 \Rightarrow G is a torus.

Theorem (Bott, 1960)

SU(s) and SU(t) are not homotopy commutative in SU(s + t - 1).

In these examples, there is no difference between the usual commutativity and the homotopy commutativity.

p-localizaton

p: prime number or $0 \in \mathbb{Z}_{\geq 0}$

 $\exists L_p$: Spaces \rightarrow Spaces: p-localizaton functor

 $\exists \eta \colon X \to L_p X$: natural map (We denote $X_{(p)} = L_p X$.)

X: simply connected

$$\Rightarrow \pi_n(X_{(p)}) \cong \pi_n(X)_{(p)} = \pi_n(X) \otimes \mathbb{Z}_{(p)},$$

 $\eta_* \colon \pi_n(X) \to \pi_n(X_{(p)})$ is the canonical homomorphism of the *p*-localization.

Some "obstructions" vanish after localization.

Fact

 $G: A_{\infty}$ -space

 $\Rightarrow G_{(p)}$: A_{∞} -space.

→ What can we say about (higher) homotopy commutativity of *p*-localized Lie groups?

- 3. Full higher commutativity of Lie groups
 - ► Homotopy commutativity of *p*-localized Lie groups
 - Method to prove

Background – A_n -space

G: compact connected simple Lie group,

$$H^*(G;\mathbb{Q}) = \wedge_{\mathbb{Q}}(x_1,\ldots,x_\ell) |x_i| = 2n_i - 1, n_1 \leq \cdots \leq n_\ell$$

Theorem (McGibbon 1984 (C_2), Saumell 1995 (Williams C_k (k > 2), $G \neq G_2$), Hasui–Kishimoto–T 2019 (Sugawara C_k , $G = G_2$))

- 1. If $p > kn_{\ell}$, then $G_{(p)}$ is a Sugawara C_k -space.
- 2. If $p < kn_{\ell}$, then $G_{(p)}$ is not a Williams C_k -space except in the case $(G, p) = (\operatorname{Sp}(2), 3), (G_2, 5)$.
- 3. $\operatorname{Sp}(2)_{(3)}$ $(n_{\ell} = 4)$ is homotopy commutative.
- 4. $(G_2)_{(5)}$ $(n_\ell = 6)$ is homotopy commutative but not a Williams C_3 -space.

 $G: A_{\infty}$ -space

 $\Rightarrow * = B_0G \subset B_1G \subset \cdots \subset BG$

BG: classifying space of G

 B_nG : *n*-th projective space of G

Example

$$G = \mathbb{Z}/2\mathbb{Z}, S^1, S^3 (= SU(2) = Sp(1))$$

$$\Rightarrow B_nG = \mathbb{R}P^n, \mathbb{C}P^n, \mathbb{H}P^n$$

X, Y: pointed spaces

$$X \vee Y = \{(x, y) \in X \times Y \mid x = * \text{ or } y = *\} \subset X \times Y$$

 $X^{\vee n} = \{(x_1, \dots, x_n) \in X^{\times n} \mid \text{ if } x_i \neq *, \text{ then } x_i = * \text{ for } i \neq j\} \subset X^{\times n}$

Fact

G is a Williams C_k -space

$$\Leftrightarrow (B_1G)^{\vee k} \to BG, (*, \dots, x, \dots, *) \mapsto x \text{ extends over } (B_1G)^{\times k}.$$

Fact

G is a Sugawara C_k -space

$$\Leftrightarrow B_kG \vee B_kG \to BG$$
, $(*,x) \mapsto x$, $(x,*) \mapsto x$ extends over $B_kG \times B_kG$.

Extendability follows from the results of homotopy groups of spheres. Non-extendability follows from the computations of certain Steenrod operations and Chern characters.

4. Samelson products in Lie groups

SameIson product

Background $-A_n$ -space

- Samelson products in Lie groups
- Higher Samelson product and another partial higher homotopy commutativity
- A_n-triviality of adjoint bundles

Background – A_n -space

G: topological group

 $\alpha: A \to G, \beta: B \to G$

Definition

 $\langle \alpha, \beta \rangle \colon A \land B \to G, (a, b) \mapsto aba^{-1}b^{-1}$, is called the Samelson product.

G is homotopy commutative

⇔ all Samelson products are trivial.

 $\epsilon_r \in \pi_{2r+1}(\mathrm{SU}(n)) \cong \mathbb{Z}$: generator $(r=1,2,\ldots,n-1)$

Theorem (Bott, 1960)

If r+s=n+1, then the order of $\langle \epsilon_r,\epsilon_s\rangle\in\pi_{2n}(\mathrm{SU}(n))\cong\mathbb{Z}/n!\mathbb{Z}$ is $\frac{n!}{r!s!}$.

Determined: The Samelson products of free parts of homotopy groups in $G_{(p)}$ for a compact connected simple Lie group G for $p > n_\ell$ and "quasi-p-regular" case (Bott, Mahowald, Hamanaka–Kono, Hasui–Kishimoto–Ohsita, Kishimoto–T, Hasui–Kishimoto–Miyauchi–Ohsita).

For $p > n_{\ell}$, all such Samelson products are detected by the Steenrod operation \mathcal{P}^1 in $BG_{(p)}$ (Kishimoto–T, 2018).

Samelson products in Lie groups

$$\alpha: S^{n-1} \to G$$

 $\langle \alpha, id_G \rangle$ appears as ∂ in the evaluation fiber sequence

$$\mathcal{G}(P_{\alpha}) \to G \xrightarrow{\partial} \mathrm{Map}_{*}(S^{n}, BG)_{\alpha} \to \mathrm{Map}(S^{n}, BG)_{\alpha} \to BG.$$

 $\mathcal{G}(P_{\alpha})$: the gauge group of the principal G-bundle over S^n classified by α .

 \rightarrow The homotopy type of $\mathcal{G}(P_{\alpha})$ is determined by $\langle \alpha, id_G \rangle$. Such Samelson products are studied in many cases.

Higher Samelson product and another partial higher homotopy commutativity

∃ higher versions of Samelson product. Little is known about higher Samelson products in Lie groups....

Remark

All Samelson products of order k in G are trivial

 $\Leftrightarrow G$ is a Williams C_k -space.

Another kind of "partial higher homotopy commutativity": for $\alpha: S^n \to BG$, does the map

$$(\alpha, \text{incl}): S^n \vee B_k G \rightarrow BG$$

extend over $S^n \times B_k G$? (cf. T_k^{α} -space by Iwase–Mimura–Oda–Yoon)

Remark

G is a Sugawara C_k -space \Rightarrow it extends.

 A_n -triviality of adjoint bundles

Background - An-space

 P_{α} : principal G-bundle over S^n classified by $\alpha: S^n \to BG$ \Longrightarrow ad $P_{\alpha} = P_{\alpha} \times_G G \quad ((ug, x) \sim (u, gxg^{-1}))$: group bundle $\Gamma(\operatorname{ad} P_{\alpha}) \cong \mathcal{G}(P_{\alpha})$ as topological groups

Proposition

 $(\alpha, \text{incl}): S^n \vee B_k G \to BG \text{ extends over } S^n \times B_k G$

 \Leftrightarrow ad P_{α} is trivial as a fiberwise A_k -space.

$$G = \mathrm{SU}(2)$$

 $\pi_4(B\,\mathrm{SU}(2)) \cong \pi_3(\mathrm{SU}(2)) \cong \mathbb{Z}$
 a_k : characterized by the following condition:
 $\mathrm{ad}\,P_\ell$ and $\mathrm{ad}\,P_{\ell'}$ are equivalent as fiberwise A_k -spaces if and only if $(a_k,\ell) = (a_k,\ell')$.

Theorem

$$a_1 = 12 = 2^2 3^1$$
, $a_2 = 180 = 2^2 3^2 5^1$ (Crabb–Sutherland, 2000), $a_3 = 15120 = 2^4 3^3 5^1 7^1$ (T, 2018), $v_3(a_k) = k$ (T, 2012).

The growth of the number of the fiberwise A_k -equivalence classes of ad P_{ℓ} ($\ell \in \pi_4(B \operatorname{SU}(2))$) is at least $e^{\frac{k}{\log k}}$ (T, 2012).