ON THE AUTOMORPHISM GROUPS OF ORDERED SYMMETRIC SPACES OF CAYLEY TYPE

SOJI KANEYUKI

Let $\mathfrak{g} = \mathfrak{g}_{-1} + \mathfrak{g}_0 + \mathfrak{g}_1$ be a simple graded Lie algebra (shortly, GLA) of Hermitian type. To the GLA there correspond an irreducible bounded symmetric domain D of tube type, and a symmetric space M of Cayley type. It is known that there exists a partial order \leq on M arising from the causal structure. In this talk, I determined the relation between the automorphism group $\operatorname{Aut}(M, \leq)$ of the ordered symmetric space (M, \leq) and the holomorphic automorphism group G(D) of D. If dim M > 2, then $\operatorname{Aut}(M, \leq) = G(D) \cdot \mathbb{Z}_2$. If dim M = 2, then $\operatorname{Aut}(M, \leq) = \operatorname{Diffeo}^+(S^1) \cdot \mathbb{Z}_2$, where $\operatorname{Diffeo}^+(S^1)$ is the group of orientation-preserving diffeomorphisms of the circle S^1 .

NIHON INSTITUTE OF TECHNOLOGY