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Background
• DL achieves high performance but has some weakness
• TDA has been proven effective in capturing data 

features that conventional techniques have missed

Deep Learning(DL) is good at
• Precise observation
• Memorising/imitating examples
• Processing huge data
• Accurate operation

Human is good at
• Rough estimation
• Panoramic view
• Discovering rules/invariance

from a small number of  
examples

• Explaining the reason
Deep Learning

(DL)
Data-driven
local

Topological Data Analysis 
(TDA)

Maths-based
global comp

lemen
tary

Deep Learning and Topological Data Analysis



Biases in Deep Learning
Algorithmic biases 
     – image models are locally minded



Convolutional Neural Networks 
are shortsighted

ImageNet-trained CNNs are biased towards texture; increasing shape bias 
improves accuracy and robustness, Geirhos et al. 2019



Explaining and Harnessing Adversarial Examples
Goodfellow et al. 2014

CNNs are too sensitive to local information
Convolution is a local operation

CNNs are easily deceived



They look similar locally,
but we see a clear difference if  we zoom out

c.f. Manifolds are locally all Euclidean and homology distinguishes the global topology of  them.



Biases in Deep Learning
Data biases 
   -- not only labels but also images themselves are biased



Concerns with real image
Huge cost for data collection and annotation
(ImageNet consists of 14M manually-labelled images)
Bias in the annotation and images
(Labels reflect the bias of the labellers. 
 The Image distribution itself is also biased.)

Security issues 
(model inversion attack)
Rights and privacy issues
(ImageNet use ”wild” images on Internet)

Ryan Steed and Aylin Caliskan, 2021
“Image representations learned with unsupervised pre-

training contain human-like biases”

Angwin, J., Larson, J., Mattu, S. & 
Kirchner, L. (2016) ”Machine Bias”



Topological Image Analysis
Observe locally, understand globally



Persistent Homology of an image

Characteristics of PH
• It captures global topological features
• Proved stability against pixel value change
• Isometry invariance (translation, rotation)



Persistent Homology of an image
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2. Related Work

2.1. Persistent homology for image analysis

Topology is a field in mathematics that seeks dis-
criminative features for topological types of shapes.
Since topological types are preserved under continuous
perturbation of the shape, topological features provide
a robust characterisation of data. Topological Data
Analysis (TDA) is a relatively new field that applies
tools from algebraic topology to the study of the shape
of data. Among the tools of TDA, persistent homol-
ogy (PH) has been most intensively studied, and some
of its theoretical studies have been applied to a wide
range of tasks [3]. Being an isometry invariant of a
filtered space, PH has an unusual input and output
when it is seen as a feature extractor. More precisely,
PH takes a series of growing topological spaces and
outputs so-called the persistence diagram, which is a
multiset of intervals of the real numbers (Fig. 1). This
alien output format somewhat deters the use of PH in
the standard machine learning pipeline. Fortunately,
the output can be transformed into a fixed-length vec-
tor using a vectorisation technique such as the persis-
tence image [7], the persistence landscape [8], and the
persistence curves [9].

CNNs tend to be biased towards texture informa-
tion when trained with a classification task of natural
images such as ImageNet [2]. In contrast, human per-
ception relies much on the global shape of the image
content. Therefore, it would be beneficial for a model
to learn global topological features as well as local fea-
tures. In fact, combining PH with other descriptors
increases the performance, for example, in object recog-
nition [10]. This provides supporting evidence that PH
provides a shape feature that is complementary to con-
ventional ones.

There are previous studies to assimilate PH into
deep learning. To deal with PH with neural networks, a
parametric representation of persistence diagram with
learnable parameters is introduced in [11] so that a
task-optimal vectorisation is obtained in a data-driven
manner and PH is utilised as a complementary source
of discriminative information. Dedicated architectures
of CNNs are designed in [12] for computing vectorised
PH from input time-series and point clouds in the
form of the persistence image. The topological autoen-
coder [13] learns a latent space of a point cloud that
preserves the topological structure in terms of persis-
tent homology. Our work goes in a slightly different
direction from the previous works; our objective is to
encourage a neural network to acquire general image
features through learning to approximate PH.

Figure 1. An example of a growing sequence of spaces is
defined by the sublevel sets of a function f on a rectan-
gular grid (an image), whose values are represented by the
numbers in the grid cells. The shaded regions indicate the
sublevel set Xt = {(x, y) | f(x, y) < t}. The degree 0 per-
sistent homology is the set of intervals {[0, 1], [0, 2]}. For
example, the interval [0, 1] corresponds to the connected
component consisting of the single pixel at the bottom-left
corner in the left-most image, which disappears in the cen-
tral image. The degree 1 persistent homology is {[1, 2]}
whose element represents the hole surrounding the two pix-
els with the value 2. This hole disappears in the right-most
image. Since the space is two-dimensional, persistent ho-
mology is non-trivial only at degrees 0 and 1. In this way,
given a growing sequence of spaces indexed by real num-
bers, persistent homology records the topological features
with the indices in which the features emerge and disap-
pear.

2.2. Self-supervised learning

A neural network is nothing but a parametrised
function that learns an approximation of a specific
task, which is specified by an input-output relation.
It generally requires many sample input-output pairs
to learn the task, but obtaining these training pairs are
laborious. Image-related task learning can be divided
into two parts, and we can exploit this factorisation
to reduce the demand for the training pairs. The first
part involves constructing feature vectors from images,
which are used in the second part to produce the final
output for the task at hand. The first part is indepen-
dent of downstream tasks to some extent. This means,
to train a model for a specific image-related task, it is
often quite useful to initialise the weights by another
model that is trained for a different task. This trans-
fer learning technique saves data size and computation
time required for training the model, and it is par-
ticularly helpful when the cost of data collection for
the main task is high. Furthermore, a specifically de-
signed pretraining task can be used to teach and trans-
fer certain qualities that are difficult to acquire from
the downstream task alone.

Self-supervised learning (SSL) tasks are designed to
learn image features without manually-defined labels,
covering the first part of the learning using only in-

2

A real-valued function f: X -> R defined over a 
topological space X (in our case, the square) 
defines an increase sequence of subspaces

𝑋! ≔ 𝑥 ∈ 𝑋 𝑓 𝑥 < 𝑡}
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deep learning. To deal with PH with neural networks, a
parametric representation of persistence diagram with
learnable parameters is introduced in [11] so that a
task-optimal vectorisation is obtained in a data-driven
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of discriminative information. Dedicated architectures
of CNNs are designed in [12] for computing vectorised
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coder [13] learns a latent space of a point cloud that
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mology is non-trivial only at degrees 0 and 1. In this way,
given a growing sequence of spaces indexed by real num-
bers, persistent homology records the topological features
with the indices in which the features emerge and disap-
pear.

2.2. Self-supervised learning

A neural network is nothing but a parametrised
function that learns an approximation of a specific
task, which is specified by an input-output relation.
It generally requires many sample input-output pairs
to learn the task, but obtaining these training pairs are
laborious. Image-related task learning can be divided
into two parts, and we can exploit this factorisation
to reduce the demand for the training pairs. The first
part involves constructing feature vectors from images,
which are used in the second part to produce the final
output for the task at hand. The first part is indepen-
dent of downstream tasks to some extent. This means,
to train a model for a specific image-related task, it is
often quite useful to initialise the weights by another
model that is trained for a different task. This trans-
fer learning technique saves data size and computation
time required for training the model, and it is par-
ticularly helpful when the cost of data collection for
the main task is high. Furthermore, a specifically de-
signed pretraining task can be used to teach and trans-
fer certain qualities that are difficult to acquire from
the downstream task alone.

Self-supervised learning (SSL) tasks are designed to
learn image features without manually-defined labels,
covering the first part of the learning using only in-
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PH records the birth and death thresholds of
 connected components (PH0) and holes (PH1)

in the form [birth,death].

Ex. PH0 = {[0,1],[0,2]}: two connected components 
born at t=0

PH1 = {[1,2]}: a hole born at t=1 and filled at t=2.



healthy COPD IPF

Images from Wikipedia

COPD: Chronic obstructive pulmonary disease is the third leading cause of death (WHO 2019)
IPF: Idiopathic pulmonary fibrosis is a progressive and irreversible disease

EX. MEDICAL IMAGE SEGMENTATION



Doctor Persistent 
Homology

Deep Learning
(Unet)

Number of parameters: 5 (PH) vs over 5 million (DL)

Moreover, the 5 parameters have physiological interpretations

1) Explainable feature (vs blackbox DL)
2) Robust and easily transferable (vs DL needs re-training)

3) 3D analysis (vs conventional 2D slice-based analysis)

With N. Tanabe et al. (Kyoto University Hospital), 2021



EX. IMAGE CLASSIFICATION
WITH CNN+PH

The MNIST Dataset
60k(train)+10k(test) images

10 classes (0,1,…,9)
28x28 black-and-white images

Accuracy of SoTA is over 99.8%

Reduced MNIST
Only 10 training images
(one image per class;
one-shot learning)

Too easy as a benchmark
Difficult!



REDUCED MNIST 
CLASSIFICATION RESULTS

(RED: ORIGINAL BLUE: +HOMOLOGY)

per class accuracy total accuracy
Adding homological information improves the performance 

With Sudo and Ahara, 2020



Teaching Topology to 
Neural Networks with 
Persistent Homology
(1) Synthetic image generation

(2) Label generation



Training Convolutional Neural Networks without using natural images
• No need for data collection
• No need for manual labelling

• Acquires robust image features based on topology

Topology helps to eliminate manual labour and 
fairness concerns in data preparation!

Goal
Transfer learning based on pretrained CNNs has some problems 
• Huge labelled images are necessary for pretraining (e.g., ImageNet) 

• Privacy and bias issues in the training dataset
• The learned model is biased towards texture

Solution: Pretraining with synthetic images with a mathematical task



Transfer learning

Dataset A (big)

Development of biologically appropriate encoding 
model for visual object recognition:
Deep Convolutional Neural Networks
with log-polar retinal input (Cottrell@UCSD) and 
recurrent lateral interaction (de Sa@UCSD)

Neural recording 
from monkey visual cortex

(Hayashi@AIST)
Image input

Decoded image
Encoder Network

Decoder Network

Sensing Edge Node

Middle Edge Node

Python/C Compiler for Neural Network Accelerator
(Seto@Univ. of Tokyo City)
Neural Network Accelerator in Edge hardware
(O’uchi@AIST)

Proposal full title：Biologically-inspired Visual Neural Networks for Edge-computing BCI 

Future Communication 
using edge-computing BCI

Internet
Fully Homomorphic Based Encryption 
for secured communication with remote sites

Attribution Based Encryption

Security Node for Edge & Cloud sides (Ikeda & Fujita@Univ. of Tokyo)

Output interface

Advisor for application
and hardware 
implementation of BCI 
(Cheng@UCSD)

Predictor

Figure 1: Overall view of our proposed research and collaborative connections. The bottom right corner shows

the long-term vision beyond this proposal.

2 Relationship to Present State of Knowledge
2.1 Towards Visual BCIs
Prior work has investigated the decoding of visual stimuli from invasive recordings from the macaque ventral
cortex. Bashivan et. al [2] train CNNs to model the visual encoding in the macaque ventral stream and use
these models to construct stimuli that stretch the activity of certain target neurons beyond their standard
firing rate. [98] uses CNN models trained to predict the response of face selective neurons in the macaque
IT cortex for constructing adversarial perturbations that biased macaque face perception. Besides the
macaque cortex, [87] proposed a technique to generate Most Exciting Images that enhance the spiking
of select neurons in the mouse primary visual cortex. Different from these works which primarily propose
to do image-based gradient ascent through discriminative models, we propose to develop an end-to-end
trainable encoder-decoder architecture that learns latent codes matching macaque visual representations
and a generative model of input images conditioned on these latent representations.

It should be noted that previous work purported to classify viewed images from EEG [78], but that work
was flawed by the method of data collection which involved collecting all images of the same class one
after the other with large gaps between classes meaning that what was called object classification could
not be distinguished from ”time” classification. We explored the data and found that the confusion matrix
of classifications revealed a clear temporal structure meaning that classes presented closer in time were
confused more often than those farther in time. These classes did not have any obvious semantic or

2

pretraining Task A
(general)

Dataset B (small)

training Task B
(your task)

copy weights

Usually, we do not do the 
pretraining by ourselves but use 

some off-the-shelf pretrained model



Self-supervised learning

A. Jaiswal et al. 2021

SSL is a method to train models 
without manual labels.

SSL has been very successful in NLP.

A popular scheme, 
contrastive learning, 

uses the metric in the 
representation space
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Real images
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2 Relationship to Present State of Knowledge
2.1 Towards Visual BCIs
Prior work has investigated the decoding of visual stimuli from invasive recordings from the macaque ventral
cortex. Bashivan et. al [2] train CNNs to model the visual encoding in the macaque ventral stream and use
these models to construct stimuli that stretch the activity of certain target neurons beyond their standard
firing rate. [98] uses CNN models trained to predict the response of face selective neurons in the macaque
IT cortex for constructing adversarial perturbations that biased macaque face perception. Besides the
macaque cortex, [87] proposed a technique to generate Most Exciting Images that enhance the spiking
of select neurons in the mouse primary visual cortex. Different from these works which primarily propose
to do image-based gradient ascent through discriminative models, we propose to develop an end-to-end
trainable encoder-decoder architecture that learns latent codes matching macaque visual representations
and a generative model of input images conditioned on these latent representations.

It should be noted that previous work purported to classify viewed images from EEG [78], but that work
was flawed by the method of data collection which involved collecting all images of the same class one
after the other with large gaps between classes meaning that what was called object classification could
not be distinguished from ”time” classification. We explored the data and found that the confusion matrix
of classifications revealed a clear temporal structure meaning that classes presented closer in time were
confused more often than those farther in time. These classes did not have any obvious semantic or

2

Pretraining

transfer

Downstream tasks

with manual or self-supervised labels

This can be problematic



Pretraining with artificial data
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2 Relationship to Present State of Knowledge
2.1 Towards Visual BCIs
Prior work has investigated the decoding of visual stimuli from invasive recordings from the macaque ventral
cortex. Bashivan et. al [2] train CNNs to model the visual encoding in the macaque ventral stream and use
these models to construct stimuli that stretch the activity of certain target neurons beyond their standard
firing rate. [98] uses CNN models trained to predict the response of face selective neurons in the macaque
IT cortex for constructing adversarial perturbations that biased macaque face perception. Besides the
macaque cortex, [87] proposed a technique to generate Most Exciting Images that enhance the spiking
of select neurons in the mouse primary visual cortex. Different from these works which primarily propose
to do image-based gradient ascent through discriminative models, we propose to develop an end-to-end
trainable encoder-decoder architecture that learns latent codes matching macaque visual representations
and a generative model of input images conditioned on these latent representations.

It should be noted that previous work purported to classify viewed images from EEG [78], but that work
was flawed by the method of data collection which involved collecting all images of the same class one
after the other with large gaps between classes meaning that what was called object classification could
not be distinguished from ”time” classification. We explored the data and found that the confusion matrix
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pretraining
by SSL

transfer

Downstream tasks
with mathematically computed labels



Synthetic image generation
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gives the same labelling for images that are rotated
and reflected, and similar labelling1 for images with
certain types of pixel values alteration. Therefore, the
regression of PH encourages the model to learn those
invariances. Furthermore, when a certain transforma-
tion of the image which changes its PH is applied, the
model is asked to learn the change in the label; per-
sistent homology is functorial so that it associates not
only output to input but also a morphism between in-
puts to one between outputs. That is, the transfor-
mation in the input is systematically reflected by the
transformation in the output, and the model is asked
to learn this higher relation as well when trained with
data augmentation such as by affine transformations.

(3) This property allows us to use any images includ-
ing randomly generated ones. Note that with random
images, we cannot rely on semantics meaningful for hu-
man eyes to design the pretext task. Computation of
PH for an image of size 256 × 256 takes less than ten
milliseconds on a PC so that it does not increase overall
pretraining time substantially.

During the pretraining, the model is expected to
learn relevant image features which are required for ap-
proximating PH. Intuitively, the procedure is described
as follows. The teacher knows topology and gives prob-
lems to the student with the answer computed mathe-
matically. The student tries to guess how the teacher’s
answer is computed and search for clues in the image.
So it is not guaranteed that the student learns how to
compute PH in the way it is defined mathematically,
but the student collects image features that are helpful
to approximate PH, and those features are necessarily
global and topological, as so is PH.

How successfully the model learns topology is eval-
uated by a simple image classification task, where the
pretrained model is finetuned and the performance in
terms of the convergence of the classification accuracy
for the validation dataset is measured. At the begin-
ning of finetuning, we replace the final fully-connected
layer with a randomly initialised one. We remark that
the topological features encoded by persistent homol-
ogy alone are insufficient for image classification tasks,
and they are meant to complement local features such
as texture. For this reason, the weights of all layers are
updated during finetuning.

The experiments are conducted with our codes pub-
licly available at https://XXX (the URL is removed
temporarily for the double-blind review. The codes
are found in supplemental materials.).

1Recall that our labels are vectors so they come with the Eu-
clidean metric.

Figure 2. Example of synthesised images

3.1. Image generation
We use the following frequency-based random image

generation method to create a dataset for pretraining.
We choose this image generation model simply because
it is computationally inexpensive and produces images
with various frequency profiles. In particular, the re-
sulting images (see Fig. 2) contain patterns at different
scales, and hence, have rich topological information.

1. Create an image of dimension 256×256, where the
value of each pixel is drawn independently from
the uniform distribution on [0, 1]. We regard the
image as a function f : {0, 1, 2, . . . , 255}2 → [0, 1].

2. For a frequency parameter β drawn from the uni-
form distribution on [1, 2], set

g(x, y) = Re
(
iFFT

(
FFT (f)(x, y)

((x+ 1)2 + (y + 1)2)β

))
,

(1)
where FFT is the 2D Fourier transform and iFFT
is its inverse, and Re denotes the real part of a
complex number.

3. With a probability of p, which we set to 0.5, bina-
rise g by Otsu’s thresholding [26].

4. Repeat the process three times independently to
create a colour image with RGB channels.

5. Convert the image into greyscale with a probabil-
ity q = 0.5.

The random parameter β controls how fast the high-
frequency components decay. The effect of the choices
for the hyper-parameters p, q and the range of β does
not seem to be large and we haven’t done a comprehen-
sive search. We have only checked that setting p = 0.5
and q = 0.5 is better2 than p = 0, 1 or q = 0, 1.

We note that the fractal model used in Formula-
driven Supervised Learning [20] requires tremendous
computational power and their datasets are prepared
on a computing cluster. Our dataset with 400,000 im-
ages is generated in less than twenty minutes on a per-
sonal computer, and is generated on the fly during the
first epoch of training.

2The difference is at most 1.0 in Tab. 1.
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gives the same labelling for images that are rotated
and reflected, and similar labelling1 for images with
certain types of pixel values alteration. Therefore, the
regression of PH encourages the model to learn those
invariances. Furthermore, when a certain transforma-
tion of the image which changes its PH is applied, the
model is asked to learn the change in the label; per-
sistent homology is functorial so that it associates not
only output to input but also a morphism between in-
puts to one between outputs. That is, the transfor-
mation in the input is systematically reflected by the
transformation in the output, and the model is asked
to learn this higher relation as well when trained with
data augmentation such as by affine transformations.

(3) This property allows us to use any images includ-
ing randomly generated ones. Note that with random
images, we cannot rely on semantics meaningful for hu-
man eyes to design the pretext task. Computation of
PH for an image of size 256 × 256 takes less than ten
milliseconds on a PC so that it does not increase overall
pretraining time substantially.

During the pretraining, the model is expected to
learn relevant image features which are required for ap-
proximating PH. Intuitively, the procedure is described
as follows. The teacher knows topology and gives prob-
lems to the student with the answer computed mathe-
matically. The student tries to guess how the teacher’s
answer is computed and search for clues in the image.
So it is not guaranteed that the student learns how to
compute PH in the way it is defined mathematically,
but the student collects image features that are helpful
to approximate PH, and those features are necessarily
global and topological, as so is PH.

How successfully the model learns topology is eval-
uated by a simple image classification task, where the
pretrained model is finetuned and the performance in
terms of the convergence of the classification accuracy
for the validation dataset is measured. At the begin-
ning of finetuning, we replace the final fully-connected
layer with a randomly initialised one. We remark that
the topological features encoded by persistent homol-
ogy alone are insufficient for image classification tasks,
and they are meant to complement local features such
as texture. For this reason, the weights of all layers are
updated during finetuning.

The experiments are conducted with our codes pub-
licly available at https://XXX (the URL is removed
temporarily for the double-blind review. The codes
are found in supplemental materials.).

1Recall that our labels are vectors so they come with the Eu-
clidean metric.

Figure 2. Example of synthesised images

3.1. Image generation
We use the following frequency-based random image

generation method to create a dataset for pretraining.
We choose this image generation model simply because
it is computationally inexpensive and produces images
with various frequency profiles. In particular, the re-
sulting images (see Fig. 2) contain patterns at different
scales, and hence, have rich topological information.

1. Create an image of dimension 256×256, where the
value of each pixel is drawn independently from
the uniform distribution on [0, 1]. We regard the
image as a function f : {0, 1, 2, . . . , 255}2 → [0, 1].

2. For a frequency parameter β drawn from the uni-
form distribution on [1, 2], set

g(x, y) = Re
(
iFFT

(
FFT (f)(x, y)

((x+ 1)2 + (y + 1)2)β

))
,

(1)
where FFT is the 2D Fourier transform and iFFT
is its inverse, and Re denotes the real part of a
complex number.

3. With a probability of p, which we set to 0.5, bina-
rise g by Otsu’s thresholding [26].

4. Repeat the process three times independently to
create a colour image with RGB channels.

5. Convert the image into greyscale with a probabil-
ity q = 0.5.

The random parameter β controls how fast the high-
frequency components decay. The effect of the choices
for the hyper-parameters p, q and the range of β does
not seem to be large and we haven’t done a comprehen-
sive search. We have only checked that setting p = 0.5
and q = 0.5 is better2 than p = 0, 1 or q = 0, 1.

We note that the fractal model used in Formula-
driven Supervised Learning [20] requires tremendous
computational power and their datasets are prepared
on a computing cluster. Our dataset with 400,000 im-
ages is generated in less than twenty minutes on a per-
sonal computer, and is generated on the fly during the
first epoch of training.

2The difference is at most 1.0 in Tab. 1.
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Each channel of the image is generated by the following formula
where f is an image with uniform random pixel values, 

and β is uniformly drawn from [1,2].

Each channel was binarized with a probability of 0.5.
The final image was converted to greyscale with a probability of 0.5.

𝛽 controls the decay of high-frequency components



Mathematical labelling of an image

We think of an image as a function
 defined over the square grid.

Any mathematical invariant of the function
can be used as the label of the image
Through the regression task of the label, the 

model learns the maths! 



Labelling by Persistent Homology

Remark: although we use synthetic images here, 
any image dataset can be used.

input binarise Signed 
distance

PH vector



input

binarised Signed distance vectrised PH

Development of biologically appropriate encoding 
model for visual object recognition:
Deep Convolutional Neural Networks
with log-polar retinal input (Cottrell@UCSD) and 
recurrent lateral interaction (de Sa@UCSD)

Neural recording 
from monkey visual cortex

(Hayashi@AIST)
Image input

Decoded image
Encoder Network

Decoder Network

Sensing Edge Node

Middle Edge Node

Python/C Compiler for Neural Network Accelerator
(Seto@Univ. of Tokyo City)
Neural Network Accelerator in Edge hardware
(O’uchi@AIST)

Proposal full title：Biologically-inspired Visual Neural Networks for Edge-computing BCI 

Future Communication 
using edge-computing BCI

Internet
Fully Homomorphic Based Encryption 
for secured communication with remote sites

Attribution Based Encryption

Security Node for Edge & Cloud sides (Ikeda & Fujita@Univ. of Tokyo)

Output interface

Advisor for application
and hardware 
implementation of BCI 
(Cheng@UCSD)

Predictor

Figure 1: Overall view of our proposed research and collaborative connections. The bottom right corner shows

the long-term vision beyond this proposal.

2 Relationship to Present State of Knowledge
2.1 Towards Visual BCIs
Prior work has investigated the decoding of visual stimuli from invasive recordings from the macaque ventral
cortex. Bashivan et. al [2] train CNNs to model the visual encoding in the macaque ventral stream and use
these models to construct stimuli that stretch the activity of certain target neurons beyond their standard
firing rate. [98] uses CNN models trained to predict the response of face selective neurons in the macaque
IT cortex for constructing adversarial perturbations that biased macaque face perception. Besides the
macaque cortex, [87] proposed a technique to generate Most Exciting Images that enhance the spiking
of select neurons in the mouse primary visual cortex. Different from these works which primarily propose
to do image-based gradient ascent through discriminative models, we propose to develop an end-to-end
trainable encoder-decoder architecture that learns latent codes matching macaque visual representations
and a generative model of input images conditioned on these latent representations.

It should be noted that previous work purported to classify viewed images from EEG [78], but that work
was flawed by the method of data collection which involved collecting all images of the same class one
after the other with large gaps between classes meaning that what was called object classification could
not be distinguished from ”time” classification. We explored the data and found that the confusion matrix
of classifications revealed a clear temporal structure meaning that classes presented closer in time were
confused more often than those farther in time. These classes did not have any obvious semantic or

2

regression

loss



Benchmark results



CIFAR100
100-category
Natural Image 
classification

The performance is behind an ImageNet trained model,
but better than training from scratch

Train accuracy Validation accuracy

from top to 
bottom

ImageNet

FractalDB-10k
PH-PI

Label
Scratch



Animal
20-category

animal silhouette 
classification

pretraining
IMN: ImageNet
FDB: FractalDB

Scratch: no pretraining
class: class label



Noised CIFAR100

The classification is
very hard for human eyes.
How is topology robust 

against noise?



Covid-19 CT classification

Our model shows better performance than the ImageNet pretrained model.
Perhaps because ImageNet does not contain medical images.

2-class covid vs non-covid classification (COVID-CT dataset)
Various scanning conditions and non-uniform images
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Scratch Label PH-PI PH-LS PH-BC PH-HS FDB-1k FDB-10k ImageNet
CIFAR100 69.6 70.3 78.4 78.1 76.6 77.9 75.3 78.1 85.0
Animal 80.7 80.1 91.0 90.1 89.1 90.6 84.6 85.2 93.3

Table 1. Classification accuracy of models pretrained with various methods.

pretrained model starts a little behind of Label in
terms of the training accuracy, and quickly surpasses
all other models in terms of both training and vali-
dation accuracy. The convergence behaviour of PH-PI
and FractalDB-10k models are quite similar, sitting be-
tween Scratch and ImageNet.

Figure 6. Transition of the accuracy for training (left)
and validation (right) in the finetuning of the CIFAR100
dataset.

To see the effect of various parameters and the na-
ture of our method, we conduct a few more experi-
ments. We fix the vectorisation method to the per-
sistence image. Unless otherwise stated, the output
dimension is fixed to 200 and the size of the synthetic
image dataset is fixed to 200,000.

The impact of the choice of the vectorisation dimen-
sion of PH is assessed by varying the value among
{100, 200, 400, 800}. As we observe in Tab. 2, the
choice affects the performance and the optimal value, in
this case, is about 200. However, we guess the optimal
value depends on the complexity and the dimension of
the synthesised images as the vectorisation dimension
controls the resolution of the discretisation of PH.

The impact of the size of the pretraining dataset is
assessed by varying the size of the synthesised dataset
(Sec. 3.1) among {50, 000, 200, 000, 400, 000, 800, 000}.
As is observed in Tab. 3, the performance increases as
the size gets larger. At the size of 50,000, which is the
same as that of the CIFAR100 training dataset, the
PH-PI model performs better than Label in Tab. 1,
which is pretrained with the same number of images
and iterations with the same learning rates.

Our pretraining scheme also works with real images
in place of synthetic ones. In the next experiment,
we pretrain the model with the training split of the
CIFAR100 dataset (and the animal dataset) using the
PH-regression task, and then finetune the model using
the class label of the dataset. The result is shown in

dimension 100 200 400 800
CIFAR100 76.8 77.7 77.4 75.0
Animal 87.4 89.9 90.5 87.5

Table 2. Classification accuracy of PH-PI models pre-
trained with different dimensions of the PH vectorisation
(the dimension of the vector of the regression target).

dataset size 50k 200k 400k 800k
CIFAR100 76.1 77.7 78.4 78.8
Animal 88.6 89.9 91.0 91.6

Table 3. Classification accuracy of PH-PI models pre-
trained with the synthesised dataset of different sizes. The
values for 400k are reproduced from Tab. 1.

Tab. 4. In this example, the setting of Label and PH-
C (PH-A, respectively) for the CIFAR100 dataset (the
animal dataset, respectively) is the same except for the
label used for the pretraining; Label uses the class
label while PH-C uses the label computed with the
persistence image. Pretraining with PH improves the
performance, indicating the benefit of learning not only
from the class labels but also with topology. Compar-
ing with the entry for 50k in Tab. 3, we see our syn-
thetic dataset offers slightly better materials for learn-
ing topology than the CIFAR100 dataset, which con-
sists of the same number of 50k natural images. This
could be attributed to the design of the image gener-
ation model that produces patterns at various scales.
In the case of the animal dataset, pretraining with PH
does not lead to a large performance gain. This may
be due to the small number of training images (1,600)
and the variety is quite limited. The observation agrees
with the result in Tab. 3 that indicates the necessity of
a certain amount of data for learning topological fea-
tures.

Scratch Label PH-C PH-A
CIFAR100 69.6 70.3 75.3 72.4
Animal 80.7 80.1 86.5 83.2

Table 4. Classification accuracy of PH-PI models pre-
trained with with the CIFAR100 (PH-C) and the animal
(PH-A) datasets. The values for Scratch and Label are
reproduced from Tab. 1.
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Scratch Label PH-PI PH-LS PH-BC PH-HS FDB-1k FDB-10k ImageNet
CIFAR100 69.6 70.3 78.4 78.1 76.6 77.9 75.3 78.1 85.0
Animal 80.7 80.1 91.0 90.1 89.1 90.6 84.6 85.2 93.3

Table 1. Classification accuracy of models pretrained with various methods.

pretrained model starts a little behind of Label in
terms of the training accuracy, and quickly surpasses
all other models in terms of both training and vali-
dation accuracy. The convergence behaviour of PH-PI
and FractalDB-10k models are quite similar, sitting be-
tween Scratch and ImageNet.

Figure 6. Transition of the accuracy for training (left)
and validation (right) in the finetuning of the CIFAR100
dataset.

To see the effect of various parameters and the na-
ture of our method, we conduct a few more experi-
ments. We fix the vectorisation method to the per-
sistence image. Unless otherwise stated, the output
dimension is fixed to 200 and the size of the synthetic
image dataset is fixed to 200,000.

The impact of the choice of the vectorisation dimen-
sion of PH is assessed by varying the value among
{100, 200, 400, 800}. As we observe in Tab. 2, the
choice affects the performance and the optimal value, in
this case, is about 200. However, we guess the optimal
value depends on the complexity and the dimension of
the synthesised images as the vectorisation dimension
controls the resolution of the discretisation of PH.

The impact of the size of the pretraining dataset is
assessed by varying the size of the synthesised dataset
(Sec. 3.1) among {50, 000, 200, 000, 400, 000, 800, 000}.
As is observed in Tab. 3, the performance increases as
the size gets larger. At the size of 50,000, which is the
same as that of the CIFAR100 training dataset, the
PH-PI model performs better than Label in Tab. 1,
which is pretrained with the same number of images
and iterations with the same learning rates.

Our pretraining scheme also works with real images
in place of synthetic ones. In the next experiment,
we pretrain the model with the training split of the
CIFAR100 dataset (and the animal dataset) using the
PH-regression task, and then finetune the model using
the class label of the dataset. The result is shown in

dimension 100 200 400 800
CIFAR100 76.8 77.7 77.4 75.0
Animal 87.4 89.9 90.5 87.5

Table 2. Classification accuracy of PH-PI models pre-
trained with different dimensions of the PH vectorisation
(the dimension of the vector of the regression target).

dataset size 50k 200k 400k 800k
CIFAR100 76.1 77.7 78.4 78.8
Animal 88.6 89.9 91.0 91.6

Table 3. Classification accuracy of PH-PI models pre-
trained with the synthesised dataset of different sizes. The
values for 400k are reproduced from Tab. 1.

Tab. 4. In this example, the setting of Label and PH-
C (PH-A, respectively) for the CIFAR100 dataset (the
animal dataset, respectively) is the same except for the
label used for the pretraining; Label uses the class
label while PH-C uses the label computed with the
persistence image. Pretraining with PH improves the
performance, indicating the benefit of learning not only
from the class labels but also with topology. Compar-
ing with the entry for 50k in Tab. 3, we see our syn-
thetic dataset offers slightly better materials for learn-
ing topology than the CIFAR100 dataset, which con-
sists of the same number of 50k natural images. This
could be attributed to the design of the image gener-
ation model that produces patterns at various scales.
In the case of the animal dataset, pretraining with PH
does not lead to a large performance gain. This may
be due to the small number of training images (1,600)
and the variety is quite limited. The observation agrees
with the result in Tab. 3 that indicates the necessity of
a certain amount of data for learning topological fea-
tures.

Scratch Label PH-C PH-A
CIFAR100 69.6 70.3 75.3 72.4
Animal 80.7 80.1 86.5 83.2

Table 4. Classification accuracy of PH-PI models pre-
trained with with the CIFAR100 (PH-C) and the animal
(PH-A) datasets. The values for Scratch and Label are
reproduced from Tab. 1.
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Table 1. Classification accuracy of models pretrained with various methods.

pretrained model starts a little behind of Label in
terms of the training accuracy, and quickly surpasses
all other models in terms of both training and vali-
dation accuracy. The convergence behaviour of PH-PI
and FractalDB-10k models are quite similar, sitting be-
tween Scratch and ImageNet.

Figure 6. Transition of the accuracy for training (left)
and validation (right) in the finetuning of the CIFAR100
dataset.

To see the effect of various parameters and the na-
ture of our method, we conduct a few more experi-
ments. We fix the vectorisation method to the per-
sistence image. Unless otherwise stated, the output
dimension is fixed to 200 and the size of the synthetic
image dataset is fixed to 200,000.

The impact of the choice of the vectorisation dimen-
sion of PH is assessed by varying the value among
{100, 200, 400, 800}. As we observe in Tab. 2, the
choice affects the performance and the optimal value, in
this case, is about 200. However, we guess the optimal
value depends on the complexity and the dimension of
the synthesised images as the vectorisation dimension
controls the resolution of the discretisation of PH.

The impact of the size of the pretraining dataset is
assessed by varying the size of the synthesised dataset
(Sec. 3.1) among {50, 000, 200, 000, 400, 000, 800, 000}.
As is observed in Tab. 3, the performance increases as
the size gets larger. At the size of 50,000, which is the
same as that of the CIFAR100 training dataset, the
PH-PI model performs better than Label in Tab. 1,
which is pretrained with the same number of images
and iterations with the same learning rates.

Our pretraining scheme also works with real images
in place of synthetic ones. In the next experiment,
we pretrain the model with the training split of the
CIFAR100 dataset (and the animal dataset) using the
PH-regression task, and then finetune the model using
the class label of the dataset. The result is shown in

dimension 100 200 400 800
CIFAR100 76.8 77.7 77.4 75.0
Animal 87.4 89.9 90.5 87.5

Table 2. Classification accuracy of PH-PI models pre-
trained with different dimensions of the PH vectorisation
(the dimension of the vector of the regression target).

dataset size 50k 200k 400k 800k
CIFAR100 76.1 77.7 78.4 78.8
Animal 88.6 89.9 91.0 91.6

Table 3. Classification accuracy of PH-PI models pre-
trained with the synthesised dataset of different sizes. The
values for 400k are reproduced from Tab. 1.

Tab. 4. In this example, the setting of Label and PH-
C (PH-A, respectively) for the CIFAR100 dataset (the
animal dataset, respectively) is the same except for the
label used for the pretraining; Label uses the class
label while PH-C uses the label computed with the
persistence image. Pretraining with PH improves the
performance, indicating the benefit of learning not only
from the class labels but also with topology. Compar-
ing with the entry for 50k in Tab. 3, we see our syn-
thetic dataset offers slightly better materials for learn-
ing topology than the CIFAR100 dataset, which con-
sists of the same number of 50k natural images. This
could be attributed to the design of the image gener-
ation model that produces patterns at various scales.
In the case of the animal dataset, pretraining with PH
does not lead to a large performance gain. This may
be due to the small number of training images (1,600)
and the variety is quite limited. The observation agrees
with the result in Tab. 3 that indicates the necessity of
a certain amount of data for learning topological fea-
tures.

Scratch Label PH-C PH-A
CIFAR100 69.6 70.3 75.3 72.4
Animal 80.7 80.1 86.5 83.2

Table 4. Classification accuracy of PH-PI models pre-
trained with with the CIFAR100 (PH-C) and the animal
(PH-A) datasets. The values for Scratch and Label are
reproduced from Tab. 1.
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Table 1. Classification accuracy of models pretrained with various methods.

pretrained model starts a little behind of Label in
terms of the training accuracy, and quickly surpasses
all other models in terms of both training and vali-
dation accuracy. The convergence behaviour of PH-PI
and FractalDB-10k models are quite similar, sitting be-
tween Scratch and ImageNet.

Figure 6. Transition of the accuracy for training (left)
and validation (right) in the finetuning of the CIFAR100
dataset.

To see the effect of various parameters and the na-
ture of our method, we conduct a few more experi-
ments. We fix the vectorisation method to the per-
sistence image. Unless otherwise stated, the output
dimension is fixed to 200 and the size of the synthetic
image dataset is fixed to 200,000.

The impact of the choice of the vectorisation dimen-
sion of PH is assessed by varying the value among
{100, 200, 400, 800}. As we observe in Tab. 2, the
choice affects the performance and the optimal value, in
this case, is about 200. However, we guess the optimal
value depends on the complexity and the dimension of
the synthesised images as the vectorisation dimension
controls the resolution of the discretisation of PH.

The impact of the size of the pretraining dataset is
assessed by varying the size of the synthesised dataset
(Sec. 3.1) among {50, 000, 200, 000, 400, 000, 800, 000}.
As is observed in Tab. 3, the performance increases as
the size gets larger. At the size of 50,000, which is the
same as that of the CIFAR100 training dataset, the
PH-PI model performs better than Label in Tab. 1,
which is pretrained with the same number of images
and iterations with the same learning rates.

Our pretraining scheme also works with real images
in place of synthetic ones. In the next experiment,
we pretrain the model with the training split of the
CIFAR100 dataset (and the animal dataset) using the
PH-regression task, and then finetune the model using
the class label of the dataset. The result is shown in

dimension 100 200 400 800
CIFAR100 76.8 77.7 77.4 75.0
Animal 87.4 89.9 90.5 87.5

Table 2. Classification accuracy of PH-PI models pre-
trained with different dimensions of the PH vectorisation
(the dimension of the vector of the regression target).

dataset size 50k 200k 400k 800k
CIFAR100 76.1 77.7 78.4 78.8
Animal 88.6 89.9 91.0 91.6

Table 3. Classification accuracy of PH-PI models pre-
trained with the synthesised dataset of different sizes. The
values for 400k are reproduced from Tab. 1.

Tab. 4. In this example, the setting of Label and PH-
C (PH-A, respectively) for the CIFAR100 dataset (the
animal dataset, respectively) is the same except for the
label used for the pretraining; Label uses the class
label while PH-C uses the label computed with the
persistence image. Pretraining with PH improves the
performance, indicating the benefit of learning not only
from the class labels but also with topology. Compar-
ing with the entry for 50k in Tab. 3, we see our syn-
thetic dataset offers slightly better materials for learn-
ing topology than the CIFAR100 dataset, which con-
sists of the same number of 50k natural images. This
could be attributed to the design of the image gener-
ation model that produces patterns at various scales.
In the case of the animal dataset, pretraining with PH
does not lead to a large performance gain. This may
be due to the small number of training images (1,600)
and the variety is quite limited. The observation agrees
with the result in Tab. 3 that indicates the necessity of
a certain amount of data for learning topological fea-
tures.

Scratch Label PH-C PH-A
CIFAR100 69.6 70.3 75.3 72.4
Animal 80.7 80.1 86.5 83.2

Table 4. Classification accuracy of PH-PI models pre-
trained with with the CIFAR100 (PH-C) and the animal
(PH-A) datasets. The values for Scratch and Label are
reproduced from Tab. 1.
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PH-A: animal dataset
PH-C: CIFAR100 dataset

Labels are not used but computed by PH-PI

Persistence Image (PH-PI)
Persistence Landscape (PH-LS)
Betti curve (PH-BC)
Birth-Life histogram (PH-HS)



Interpretation



PH-PI FractalDB-10k ImageNet

What features are learned?

First convolution kernels of pretrained models



IMN

PH

What the model focuses on?

Task: counting the number of connected components.
Visualisation: GradCAM++

IMN focuses more on edges?



IMN: ○ PH-PI: x IMN: x  PH-PI: ○

bottle

lizard

bear snake shrew girl road plate

beaver

skunk

lion

lizardotter

man

whale

boy

woman

lizard

mountain

skyscraper

rocket

snail

clock

boy

What kind of mistakes the model makes?

PH-PI seems to focus more on shape than texture



MATERIALS
• Codes

https://github.com/shizuo-kaji/PretrainCNNwithNoData

• PH computation
https://github.com/shizuo-kaji/CubicalRipser_3dim
S Kaji, T Sudo, K Ahara, Cubical Ripser: Software for 
computing persistent homology of image and volume data

• TDA Tutorial with Google Colab
https://github.com/shizuo-kaji/TutorialTopologicalDataAnalysis
Interactive demo on various techniques of Topological Data 
Analysis including Cubical Ripser

https://github.com/shizuo-kaji/PretrainCNNwithNoData
https://github.com/shizuo-kaji/CubicalRipser_3dim
https://github.com/shizuo-kaji/TutorialTopologicalDataAnalysis


SUMMARY
• Topology (persistent homology) provides a way to extract 

image features that are not easy to obtain by conventional 
method.

• CNNs can be pretrained with synthetic images, requiring no 
data collection nor manual labelling 

• Making CNNs learn global features encoded by topology 
leads to a performance gain

FUTURE WORK
• Tolerance test against adversarial attacks
• Applicability for other tasks than classification
• Theoretical analysis Thank you!


