Configuration space of

Moebius Kaleidocycle

HSE International Laboratory of
Algebraic Topology and Its Applications
Seminar, 8 Apr. 2022

Shizuo KA]JI
(Kyushu University)

Articles, simulation codes, paper models,
3D printable models are available at

https://github.com/shizuo-kaji/Kaleidocycle



B e, s i HN WEE RN i S S -

Shape interpolation

My research on
Shape Generation/Analysis

Shape deformation
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My research on
Topological Data Analysis

Modelling ranking data with
hyperplane arrangement

(SIGKDD 21)

Configuration of geometric
objects as representation of data
in machine learning

Homological image features that are
complementary to those obtained by
convolution

Image segmentation with
persistent homology

(J Appl Physiol. 2021)

Representing networks with
configuration of based balls

(ICML °20)

Pretraining CNN with topology
without natural images
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Cubical Ripser (with T. Sudo and K. Ahara)

« Fast and easy-to-use software for computing persistent homology of

images and volume data.

https://github.com/shizuo-kaji/CubicalRipser 3dim

Tutorial for TDA libraries in Python

« Concrete and simple example task demonstration for various TDA
packages that runs on Google Colab (no installation needed!)
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https://github.com/shizuo-kaji/CubicalRipser_3dim
https://github.com/shizuo-kaji/TutorialTopologicalDataAnalysis

Introduction

Configuration of objects in the Euclidean space




Configuration of objects in R"

O Linkage (robot arm)

O Fixed-angle chain (protein folding)

O Moduli of polygon

O Graph embedding

O Geometric data representation
Circle-packing graph




M.C. ESCHER KALEIDOCYCLES

Doris Schattschneider and Wallace Walker

Kaleidocycle

T. Tendo, 2019
The Variety of Kaleidocycles (excerpt)

Video from Youtube




Variation: Magic Cube

Video from Youtube



Variation: Mobius Kaleidocycle

S. Kaji, J. Schoenke, E. Fried, M. Grunwald, Moebius Kaleidocycle, Patent filed, JP2018-033395, Feb. 2018

The results of the joint patent were later published (without permission) in the following paper:
J. Schoenke , E. Fried, Single degree of freedom everting ring linkages with nonorientable topology, PNAS 116 (1), 2019.



Kaleidocycle plays a role in

O Recreational maths
W. W. Rouse Ball (1939?)
“Mathematical recreations and essays”
D. Schattschneider and W. M. Walker (1985)

“M. C. Escher Kaleidocycles” M.C. BSCHER KALEIDOCYCLES

O Theory of Polytopes
Rigidity theorems
Bellows theorem
Rigid Origami

Bricard’s octahedron

O Kinematics, Robotics
Bricard 6R linkage mechanism

violating Mobility formula



Today’s topic Mobius Kaleidocycle

Mathematics : Intersection of topology, geometry, algebraic geometry, integrable system
Engineering : Linkage mechanism with many desirable properties: 1-DoF, constant energy, falling cat

Outreach : fun and tangible object that convey various levels of mathematics




Outline

Kinematic Chain (KC) » Study of KC through

#

a maths model of transformable shape its Configuration Space

Kaleidocycle:
a special family of KC Motion analysis of Kaleidocycle
<=> » a flow on its configuration space

constant torsional curve



Kinematic Chains (KC)




Kinematic Chain (linkage mechanism)

A kinematic chain is a collection of rigid bodies (links) connected by joints.
[t is used to transfer/transform motion.

Oil drilling

A kinematic chain is closed if the underlying graph contains a cycle.

Definition: KC is a realisation of a filtered 1-dim
complex as (the 1-skeleton of) the VR complex.
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Wiper _ Watt's parallel motion | = http://dynref.engr.illinois.edu/aml.html




Pantogprah = Copier in Greek

How a pantograph works @)

The large green and small red triangles are always similar!




Closed Kinematic Chains in living creatures

crandil
{rafarenca) o

Bar
nasal bar == -

FEMUR

A Human mandible open chain B Mandible closed chain without food puncture D Mandible closed chain with food puncture
F Human ankle agonist-antagonist muscles and linkage model G Neither muscle isometric condition | Soleus isometric condition

M Neurocranium @WO

= Soleus m. and tendon
) @ 1 @
1 B Tibia and fibula
M Tibialis anterior m.

M Mandible and tendon (mostly . @

obscured by tibia) 15-6(2)=3
C Food manipulation with closed chain E Food puncture with closed chain
H Plantarflexion and inversion J Only inversion

Tibialis
anterior
shortens

b

2 ’ ’ ’ ’ Soleus
) shortens Tibialis
3 — anterior -
lengthens
— —

* The significance of closed kinematic chains to biological movement and dynamic stability
Stephen M LevinSusan Lowell de SolorzanoSusan Lowell de SolérzanoGraham ScarrGraham Scarr, 2017

* A mobility-based classification of closed kinematic chains in biomechanics and implications for motor control

A. M. Olsen, 2019

Medial view



Fundamental Questions of KC

How many independent ways to change the state?
[s the given state flexible or stiff?

[s the motion easy to control? (cf. Miura folding)
[s there a continuous transition from the current state to the desired one?

L.
2.
3.
i

These questions can be formulated and studied through

the topology of the configuration space
consisting of all states of a given KC.




The configuration space of KC

(X1, Y1) (x2,¥2)

is defined by equations

http://dynref.engr.illinois.edu/aml.html

fixed fixed
(0,0) (1,0)

States are identified with the
solution to a system of equations
x? +y2—a® =0
(x, —1)2+y% —b%2 =0
(1 —x2)° + 2 —y1)°—f*=0

Input link length: o =25 cm 4 variables satisfying 3 equations

We expect 1-dimensional family of solutions

Output link length: ; - b =25 cm



Fundamental example of the configuration space

Consider the linkage below with 3 joints in R’

[Let h>0 be a constant and the two ends

a=(—h,0,0), b= (h,0,0)

are fixed to the wall. Then

Topology changes according to the parameter [



Topology of the configuration space

Topological invariants of the configuration space tells a lot about the mechanics:
here’s a small dictionary

path => motion

fundamental group => non-trivial cyclic motion

topological complexity => minimum number of “if-statements” for motion planning
singular point => bifurcation, locking

number of connected components => number of mutually unreachable configurations
dimension => degree of freedom

The topic has been studied by many mathematicians including

Euler, Sylvester, Thurston, Niemann, Kapovich-Millson...
See Demaine & O’Rourke’s excellent book “Geometric Folding Algorithms”




5 A - Caution
COnflgurathn SpﬂC@ Of d bar Llnkagﬁ Self—collisiofl is ignored

A bar linkage L is a finite simple graph (V,E) whose edges are assigned lengths [

The configuration space M, (L) is the space of isometric embeddings of L in R™
modulo the global symmetry.

Har, .. 2} CR™ | |2y, — Ty, | = l(v102)Vv102 € E} /Euclidean(R™)

A state is described by the real solution to a system of quadratic equations

Each connected component corresponds to “motion” of the linkage

- The most notable result on bar linage is

Thm (Kempe's universality theorem, proposed in 19C with a wrong proof, proved in ZIC)
Any bounded plane algebraic curve can be traced by some linkage
(¢ . . . . »
(or “There is a linkage which can sign your name”)




Millennium Prize Problem
phrased in terms of kinematic chain

Even determining if the configuration space is non-empty is already difficult.

In fact, it is so even for 1-dimensional KC.

Can we place this closed KC on a line?

s

This problem is exactly the partition problem, which is NP-complete.
[f you find an efficient solution, you will get $1 million!




Kinematic chains consisting of hinges




Kaleidocycle as KC

[ n: number of tetrahedra ]

R Bricard linkage
-

n hinges

2n joints

more convenient

5n bars to work with
\_

n bars




Hinge joint

Hinge is a special type of joint which restricts the relative motion of
connected rigid bodies to rotation around its axis.

Axis

|

[ ol

Body1  Anchor Body 2 :

Note: 2D bar linkages are 3D hinged
linkages with parallel hinges.

Sarrus linkage with 4 hinges

Remark: various joints (including high-dimensional ones) can be
specified by their invariant/fixed subspace.




Our definition of Kaleidocycle

An n-Kaleidocycle (Kn) is a KC consisting of n identical equifacial
tetrahedra connected by hinges.

Shape of bodies does not matter (we are ignoring self-collision)

Relation between hinges is essential.



Recap: theory of smooth curves

Adapted framed curve

O A framed curve is a space curve
with an orthonomal frame assigned at each point.

O A framed curve is said to be adapted if
the first vector is tangent to the curve.

Given a curve, there are canonical ways to ‘
assign framings such as
Frenet framing and Bishop framing.




Frenet frame of a discrete curve

| 1 )
Polyline (’}/(), i o ,")/n) '.-’f,'. ' -1
-2 |

Yi = Vi1 '
h/i _ yi—ll '.‘_I_,.-‘ Y
Hinge = Binormal bz = SQ (O <7 < Z) \,

Tangent ti_q =

Frenet frame

(in mathematics)

DanavitHartenberg

parameter
(in mechanics)




A geometric model of the configuration space

Kaleidocycle closed discrete curve

1
“[ polygonal curve J

|

“{ binormal J
(up to sign) —

L

g " ; )
spine
of tetrahedra )
<
hinge
y
2
Kaleidocycle

congruence of tetrahedra)

ﬁ[constant torsion J

* Fixed-angle chain <=> constant curvature



An algebraic model of the configuration space

Binormals (hinges) Think of a Kaleidocycle as

reproduce the whole shape
b;Xb; 1 an arrangement of lines (hinges) in 3-space

ti e—
|DiXbj44] ‘
an arrangement of planes in 4D projective space

a sub-variety of the product of the Grassmanians



Note: we ignore the possibility of self-collision, as we can always avoid self-collision by considering thin tetrahedra

(by setting the hinge length enough small compared to the length of the centre curve)

The configuration space of Kaleidocycles

Binormals determine a Kaleidocycle up to scaling. They satisfy the following equations

. b:Xb; ,
{biER3|OSlSn} t; = iX0it1 o={ by, (oriented)

|biXbjyq| —by, (non orie@

O (the centre polygon should be closed) ;-1 o n: number
2 t; = Z b;xb;11 =0 of hinges
=0 =0

O (the angles between adjacent hinges are constant)

bz’ : bz’—l—l -2 bi—l . bia bz 2 bz — (for all i)

The moduli M*(n) (resp. M~ (n)) of (resp. non) oriented n-Kaleidocycles

is defined to be the space of the real solutions to the above quadratic equations

modulo the global symmetry (0(3) ™~ {b;})




Configurations of a Kaleidocycle

Denote by M (n; ¢) (€ M*(n)) the subset of solutions

with a fixed b;_; - b; = ¢ € R (cosine of the angle between adjacent hinges).

[t corresponds to the space of all states of a particular Kaleidocycle.
0 1)1 () A

=0 Dot v

e gl o o o

an element of M~ (6; 0) elements of M*(7; —0.29)

= motion of 7-Kaleidocycles

= a single state of 6-Kaleidocycle



Immobility of Panel-hinge body

Kaleidocycles are a special type of panel-hinge body studied in combinatorics and chemistry

Images taken from S. Tanigawa’s slides

Molecular conjecture (stated in Tay-Whiteley1984, solved in Kato-Tanigawas2011)

provides a combinatorial characterisation for a generic panel-hinge body to be rigid

(that is, the configuration space is O-dimensional)




Dimension for a generic Kaleidocycle

For a generic c, let us count the dimension of M(n;c) by

[ Dim of solutions = # of variables - # of equations ]

Fix two hinges to kill the global symmetry.

2
We have degree two freedom for each bon b3, s, by RETE
and there the angle constraints b, - bi+1 — C  which contributes -(n-1)

and the closing constraints E b; X bi+1 =0  which contributes -3

In total, the dimension should be

e (= Fa=sifn 6 An n-Kaleidocycle has in general

n-6 degrees of freedom



Wait! 6-Kaleidocycle is mobile!

O Because the equations are redundant due to its high symmetry
O Such a system is said to be over-constrained

O Fowler-Guest2005 gives a method to analyse over-constrained
systems using representation theory

Simple example of over-constrained system
Adding the blue bar (one quadratic equation)
has no impact on the configuration space

(which is a point)




MObiUS KaleidOCyCIe The space of the shape of tetrahedron

= Kaleidocycle with a min / max twist angle (determined by the twisting angle acos(c))

configuration space of all non-
orientable n-Kaleidocycles

solutions to subspace corresponding to
2bixbiy1 =0

b; - bl + L =c (const) the Mobius Kaleidocycle

a point = a state of a Kaleidocycle
a path = motion of a Kaleidocycle Iverse 1mage




Degree of Freedom of Mobius Kaleidocycles

Mobius Kaleidocycles have a single degree-of-freedom regardless of n

@onjecture (K-Schoenke, patented in 2018)

There is ¢, > O for each n=7 such that
M™(n; ¢) is non-empty iff —¢c,, < ¢ < 1 (n:0dd)
M~ (n; c) is non-empty iff —1 < ¢ < ¢,; (n:0dd)
M~ (n; ¢) is non-empty iff —¢,; < ¢ < ¢, (n:even)
Moreover,

\ M*(n; +c,) = St (when +c,, is the boundary Value)j

for each point, it is numerically checked that
the e-ball intersects exactly at two points

this S! is the characteristic “everting” motion

[It is very rare for a linkage to have a degenerate but non-trivial configuration space




Under-constrained system

O They are under-constrained system: the dimension of solutions is less than
expected. This is peculiar to real solutions.

(as opposed to over-constrained systems, which exist for complex solutions as well)

O Under-constrained linkages have not been studied well.

In fact, (to the best of my knowledge) Mobius Kaleidocycles are the only example
which are under-constrained and have a non-trivial configuration space.

4 )
St (I>h
Ms(L)y=49x (I=h
O (I<h)




A flow on the configuration space that- - ~ = ,
Governs the Motion of Kaleidocycles .-




.

The “everting” motion of Kaleidocycles

Goal: describe this motion as a 1-dim path in the configuration space

[t looks like a soliton of some kind...



[dea: construct a flow on the moduli space

that generates the everting motion

'_ p— A solution of KdV

Classically, the modified KdV equation
is known to generate an isoperimetric
deformation of smooth space curves.
We consider a semi-discrete version of

(discrete space & continuous time)

KdV: uy + 6uu, + sy = 0
mKdV: u, + 6u?u, + Uy, = 0

Physics Department of the University of Burgundy
Vidéo by Julien FATOME, Stéphane PITOIS et Guy MILLOT



Motion = Curve deformation

) (
CKC closed discrete curve
J \_
) 4
Kaleidocycle constant torsion and speed
J \_
) 4
motion path in configuration space
J \_
) e
infinitesimal motion flow on the conf. sp.

We construct a flow by some (semi-discrete) integrable equations.




Curve deformation and Kaleidocycle’s motion

1. arc length and torsion are preserved (& bars are rigid)

2. velocity at each vertex lies in the osculating plane (=2 writhe is preserved) -

3. equidistant (& speed of motion is uniform at all vertices) -
i e . i e HH"‘"‘-,\__RH
Theorem (K-Kajiwara-Park) i S A -

1. To meet the above assumptions, k; = cos(£t;t;_;) should satisfy the following

1 d . (01 £0;
Ri = 5((91'4—1 — (9@'—1) %((97;4_1 + ‘9@) = ('sin ( +12 )

2. In an appropriate limit, they yield the potential mKdV and the sine-Gordon equations

1
Or + E(HX)3 + Oxxx = 0.

HXT — Sll’l(@) = (. The 1-DoF motion of a Mobius
Kaleidocycle is generated by this flow.

An explicit solution was constructed recently by Shigetomi



An orbit in M~ (9; 0.58)

'-.....-..-




Motion of a Mobius Kaleidocycle

The semi-discrete mKdV equation generates a 1-dim orbit in
M™ (n; ¢) when n is odd and M~ (n; ¢) when n is even for any c,
where dim(M*(n; ¢)) = n — 6 for a generic c.

Similarly, the semi-discrete sine-Gordon equation generates a 1-dim

orbit in M~ (n; c¢) for any n and c. -

M~ 2m+1,¢c) =M*(2m+1,—c)
M~(2m,c) = M~ (2m, —c)

N\

)
Note the duality defined by b; » (—1)'b;

J

[f the 1-DoF conjecture is true,
these orbits match the whole configuration space S?!



Conservation laws

Integrable systems have conserved quantities

-

Corollary to Theorem

For the deformation governed by the sine-Gordon equation, we have

\_

% Z COS Hiﬂz_ i =0 % ; K

=0

(mextreme Kaleidocycles,

L the value itself seems to be zero

|




Deflected —\
surrogate fold

Conservation laws: Bending energy ™
The bending (elastic) energy / Kk*ds
v

can be discretised in many different ways but consider

potential energy of K6 whose hinges
are attached torsional springs.

K i )) Safsten et al. 2016 analysed the

Ebend = zlog 1 +tan (2

>
Theorem (K-Kajiwara-Park-Shigetomi)
\Ebend is constant under the deformation by the sine-Gordon (mKdV) equation.

Global quantities are mysteriously preserved!




Variational problem of bending energy

-

Conjecture
When non-oriented or odd n,

the minimisers of E, 4 attain the extremum of the torsion.

\_

Bending energy is determined by the curvature alone.

So the mysterious 1-DoF Kaleidocycles are characterised in two different ways;
one by the curvature and the other by the torsion.



Coulomb & dipole energies

Imagine the centres y of hinges are electrically charged. The potential of the system is

1 Note that these
Eetmp = Z | o a € R depend on the
i<j h/?' = | global shape of

the curve

Imagine the hinges are dipoles. The potential of the system is

A Z‘ R ) (G — 7))

i< %‘3 |%’—Vj‘5

[ :
E mp and Ey; ) are almost constant under deformation

Problem: What is the correct discritisation of the these energies

. that are strictly conserved? )




Topology makes it interesting!

Topological constraint has a large impact on the algebraic sygrem -

defining the Kaleidocycles. -



Topological invariants of a smooth curve

We assume the arc length of the strip is 2.

There are two conformal invariants called twist and the writhe: 4 - o

These invariants are also studied in
“Topological Fluid Mechanics”.
1L See, for exameple,

27
B = / |T(S)‘d8, T(S) - %b(S) : (7(3) X b(S)) Scheeler et al, “Complete measurement of
0

helicity and its dynamics in vortex tubes"

Science 357, 2017

1 27 27 W A .
W o— L (9(s1) x ¥(s2)) (W(Sl)g 01G2)) PN,
am Jo  Jo [5(s1) —¥(s2)]
Calugareanu-White’s theorem | This type of results have been
#half twists := Z(TWISt + Writhe) studied mainly in the context
of DNA supercoiling

is an integer and an isotopy invariant




& o 'I-l: =
. . . ~ i
Twist and writhe for a discrete curve ot 2%
<P g,
TR N 7
! ~ &
Tw = B E arccos(b;_1 - b;) L ._.fﬁj*'f.‘ !
1=1 Kaleidocycle with a large Tw
Y
1 T X t:. T: — 1. g For a Kaleidocycle in motion
() R J
Wr .= 4_ 3 Tw remains unchanged by definition
n i ‘tz i tj ‘ so Wr should remain unchanged as well

Calugareanu-White’s theorem

#half-twists := 2(Tw + Wr)

is an integer and an isotopy invariant

[ This puts a very strong topological constraint for a curve to be closed ]




Computing Wr and Tw

S e Twist is the average of «— over all projections
— _/\: [t is the difference of b(21) and

b(0) parallel transported along the curve

% Writhe is the average of «— over all projections.
[t depends only on the centre curve
+1 il

The integration formula for Writhe and Tw are understood by the pictures below: Think of the

angles with which one sees an intersection for a pair of infinitesimal curve portions.
M

K

+3

BN [ =

s(1+dr)

do
~ a(r+dt)

- ds()

) ™

2¢
Klenin-Langowski2000 %/

0




Twist and Writhe

e Twist is the difference between b(21) and
b(0) parallel-transported along the curve.
[t measures how the strip revolves around its centre curve.

e  Writhe is the number of self-intersections of the projected centre curve averaged
over all the projections.

[t depends only on the centre curve and measures how the curve winds around
itself.

« None of them is an isotopy invariant but the sum is.
The sum is the number of half-twists of the strip.
[f the number is odd, the strip is topologically a Mobius strip.

« Mobius Kaleidocycles have the minimum Tw, so the maximum Wr
among Kaleidocycles with positive half-twists

Conjecture
the number of half-twists of a Kaleidocycle takes values between 3 and n-3.
| (In particular, there is no Kaleidocycle with a single half-twist)




Open problem

Falling cat

The global orientation seems to evolve
without any external force

(that is, keeping zero angular momentum)
Possible application to space antenna

c.f. Montgomery, Gauge theory of the falling cat

Knot

Kaleidocycles can be made knotted.
Which knot types are realizable with
what Tw and Wr!

c.f. Naokawa, Extrinsically flat Mobius strips on given
knots in 3-dimensional spaceform



Summary

-

\_

Kaleidocycle provides links among
linkage, algebraic geometry (systems with geometric constraints),
discrete differential geometry, and integrable systems.

~N

J

closed hinged linkage

discrete closed
framed curve

: length and torsion
motion

everting motion of flow on the configuration space defined

Kaleidocycle by a semi-discrete integrable systems

for closed curves, topology
preserving deformation poses strong constraints



Applied Applied Maths

Configuration space of a linkage

Discovery of a linkage with 1 DoF

1 DoF is very important in —

engineering.
Everting motion

Physically interesting properties

Pure maths and application on two sides of the same band, cycling together

make an ideal feedback loop

(Topology of a real algebraic

variety

* l-dimensional singular fibre

* A topological constraint

N\ - (linking number) forces 1

DoF.

* Orbit governed by a semi-

discrete integrable system

\Conservation law
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Many open problem:s!

Prove that Mobius Kaleidocycles have a single-degree-of-freedom
>  This is a problem in real algebraic geometry: the dimension of the real algebraic set

»  Techniques in symbolic algebra such as quantifier elimination and Groebner basis are not feasible due to the large number of
variables (currently, only works for n=5)
>  Homotopy continuation would be helpful but it does not give a solution for general n

Find conserved quantities during the eversion

Find an analytic expression for Kaleidocycles
>  Recently, a partial answer was given by S. Shigetomi (a PhD candidate at Kyushu University)

Characterise Mobius Kaleidocycles in terms of a variational problem of Kirchhoff rod (Langer-Singer’s theory)
Symplectic structure on the moduli space! (c.f. Kapovich-Millson’s form on the moduli of polygons)

What is the limit of n—>o0?

Generalise Mobius Kaleidocycles to find a wider family of under-constrained linkage systems

Prove there exists no Kaleidocycle with a half twist (Mobius Kaleidocycles have 3-half twists)

(Stiefel) Realisation problem of persistent homology: find a Euclidean realisation of a complex which has the
specified persistent homology.

Find a (Mobius) Kaleidocycle in nature



