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My research on
Shape Generation/Analysis

Shape similarity

Shape deformation

Shape interpolation

4D visualisation

Shape generation

Image manipulation



My research on
Topological Data Analysis

Modelling ranking data with 
hyperplane arrangement 

(SIGKDD ‘21)

Representing networks with 
configuration of based balls 

(ICML ‘20)

Image segmentation with 
persistent homology
(J Appl Physiol. 2021)

Pretraining CNN with topology 
without natural images

Configuration of geometric 
objects as representation of data 

in machine learning

Homological image features that are 
complementary to those obtained by 

convolution



Advert

• Fast and easy-to-use software for computing persistent homology of 
images and volume data.

https://github.com/shizuo-kaji/CubicalRipser_3dim

Cubical Ripser (with T. Sudo and K. Ahara)

Tutorial for TDA libraries in Python

• Concrete and simple example task demonstration for various TDA 
packages that runs on Google Colab (no installation needed!)

https://github.com/shizuo-kaji/TutorialTopologicalDataAnalysis
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ロジャー・ペンローズ氏が今年のノーベル物理学賞

を受賞した．その受賞理由とは直接関係はないが，氏

の業績の中では，平面を非周期的に埋め尽くすペンロ

ーズ・タイリング1）が多くの読者にとって馴染み深い

のではないだろうか．ペンローズ・タイリングをはじ

めとする非周期的タイリングは，リクリエーション数

学の一つのトピックとして，ペンローズやコンウェイ

と並んでアマチュア数学者2）の活躍により多くの発見

がなされた．その後，ノーベル化学賞の対象となった

シェヒトマンらによる準結晶の発見によって脚光を浴

びた［2］．実はこれらよりずっと早く，中世イスラム

世界では，統制感を保ちつつも繰り返しのない複雑な

紋様を生み出す手法として建築のモチーフに用いられ

たと言われている3）．そしてこの中世のアイデアは 21

世紀にも，コンピューター・グラフィックスで花畑や

落ち葉で覆われた地面を生成するのに利用されている

［5］．

こうして自然と芸術の双方に現れる非周期的タイリ

ングであるが，最初はパズル的面白さがさまざまな研

究者を惹きつけたことが，その発展に大きく寄与して

いると思われる．何が “役に立つ” か分からないもの

である．今回はそのようなリクリエーション数学から

生まれた形状であるメビウス・カライドサイクルを取

り上げたい．実は過去に『数学セミナー』2019年 6月

号「数理のクロスロード」でも紹介したのであるが，

ここでは以前触れられなかった側面を中心にお話しし

ようと思う．

1．カライドサイクル

図 1（左・中央）はカライドサイクルと呼ばれる，一

枚の紙から作ることができるおもちゃである．百聞は

一見に如かずなのでぜひ動画を検索して欲しいが，イ

ルカのバブルリングのようにくるくる回るというとこ

ろに，普通の折り紙にはない特徴がある．カライドサ

イクルは紙が撓
たわ

むことによって可動性を得ている4）の

ではなく，たとえ鋼で作ったとしても動く，いわゆる

剛体折紙の一種である5）．

カライドサイクルは，リクリエーション数学の古典

的名著である［10］にも “Rotating rings of tetrahedra”

として紹介されている．どうやら多くの人により独立

に発見されているようで，その起源は定かではないが，

最初期のものの一つとしてブリカールが考察した図 1

（右）がある．これはヒンジ（蝶番）で剛体棒が接合され

1） どうやら初出は 1974 年の論文らしいが入手が困難である．

特許［9］も取得されており，こちらはインターネット上で内容が

公開されている．

2） 中でもロバート・アマンは別格で，［2］でも紹介されてい

るエッセイ［11］には一つの興味深い天才像が描かれている．

3） Science 誌に掲載された論文［8］が有名であるがいろいろ

と議論もあるようなので，広範な文献一覧を含む［4］をあげてお

く．

4） デパートなどの紙袋が折り畳めるのは，大方の予想に反

して，紙の柔軟性に依存していることが［3］で示されている．

5） 地図から宇宙パネルまでに応用され，また昆虫の羽や木

の葉にも現れるミウラ織りはその最も有名な例である．最近の

ものでは，“Reconfigurable Materials”というキーワードで検索

して見られるビデオには感嘆する．
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おもちゃのかたち

図 1 （左）四面体 6 つで構成されたカライドサイクル．（中央）

立方体 6 つで構成されたカライドサイクル．（右）ブリカ

ールのリンク機構．これら古典的なもののほかに，天童智

也氏が巧妙なバリエーション作品を数多く発表している．
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Introduction
Configuration of objects in the Euclidean space



Configuration of objects in Rn

Linkage (robot arm)

Fixed-angle chain (protein folding)

Moduli of polygon

Graph embedding

Geometric data representation

a > b > c

a > c > b

b > c > a c > a > b

c > b > a

b > a > c

b

c

a Circle-packing graph
From Harder et al. 2010

hyperplane arrangement and ranking



Video from Youtube

Kaleidocycle

T. Tendo, 2019
The Variety of Kaleidocycles (excerpt)



Variation: Magic Cube

Video from Youtube



Variation: Mobius Kaleidocycle

S. Kaji, J. Schoenke, E. Fried, M. Grunwald, Moebius Kaleidocycle, Patent filed, JP2018-033395, Feb. 2018
The results of the joint patent were later published (without permission) in the following paper:
J. Schoenke , E. Fried, Single degree of freedom everting ring linkages with nonorientable topology, PNAS 116 (1), 2019.



Kaleidocycle plays a role in
Recreational maths

W. W.  Rouse Ball (1939?) 
“Mathematical recreations and essays”
D. Schattschneider and W. M. Walker (1985)
“M. C. Escher Kaleidocycles”

Theory of Polytopes
Rigidity theorems
Bellows theorem
Rigid Origami

Kinematics, Robotics
Bricard 6R linkage mechanism

violating Mobility formula

Bricard’s octahedron



Mathematics： Intersection of topology, geometry, algebraic geometry, integrable system
Engineering：Linkage mechanism with many desirable properties: 1-DoF, constant energy, falling cat 
Outreach：fun and tangible object that convey various levels of mathematics

Today’s topic Mobius Kaleidocycle



Outline

Kinematic Chain (KC)
a maths model of transformable shape

Study of KC through
its Configuration Space

Kaleidocycle: 
a special family of KC

<=>
constant torsional curve

Motion analysis of Kaleidocycle
a flow on its configuration space



Kinematic Chains (KC)



http://dynref.engr.illinois.edu/aml.htmlWiper

Kinematic Chain (linkage mechanism)
A kinematic chain is a collection of rigid bodies (links) connected by joints.
It is used to transfer/transform motion.

A kinematic chain is closed if  the underlying graph contains a cycle.

Watt’s parallel motion

Oil drilling
Vehicle suspension

Definition: KC is a realisation of a filtered 1-dim 
complex  as (the 1-skeleton of) the VR complex.



The large green and small red triangles are always similar!

How a pantograph works

Pantogprah = Copier in Greek



Closed Kinematic Chains in living creatures

• The significance of closed kinematic chains to biological movement and dynamic stability
Stephen M LevinSusan Lowell de SolórzanoSusan Lowell de SolórzanoGraham ScarrGraham Scarr, 2017

• A mobility-based classification of closed kinematic chains in biomechanics and implications for motor control
A. M. Olsen, 2019

 Figure 2 a) The coupling of multiple CKCs. A fish skull (perch) showing two of the many coupled 4-bar mechanisms that
facilitate mouth opening and sucking in of the prey (Day, 1889); and b) & c) how muscles (large arrows) change the relative
position of individual ‘bars’ (small arrows) and alter the shape of multiple CKCs during feeding.

Figure 3a) The pantograph configuration showing the amplifying (or attenuating) ability of the 4-bar; b) the body of a mantis
shrimp showing how muscle contraction changes the shape of the 4-bar in a similar way and enables the rapid amplification of
force and speed of its raptorial appendage (reproduced with modifications from Claverie et al., 2011, ©John Wiley & Sons).

Figure 4a) Ligaments within the CKC system. A stylized diagram of the human knee joint (lateral view) showing the cruciate

ligaments as part of a conversely-crossed 4-bar system that guides motion of the bones; and b) the ‘Jacob’s ladder’ toy

demonstrating this principle.

Figure 5a - c) Muscles within the CKC system. Schematic diagram of the hind limb of the horse showing: a) the muscle, tendon

and ligament system that guides motion of the more distal joints (re-drawn after Van den Bogert, 2003); b) the gastrocnemius

and (mostly tendinous) peroneus tertius as the bars of two distinct but connected 4-bar systems; c) the resulting ‘higher-order’

CKC that couples the relatively small amounts of movement in the knee and ankle joints. 5d-f) Schematic diagram of the human

lower limb showing: d) the rectus femoris and hamstring muscles as the bars of two distinct but connected 4-bar systems; e) the

higher-order 4-bar that couples flexion and extension of the hip and knee joints; and f) links with the gastrocnemius CKC.

structurally permanent CKCs, and thus may be a motor control
parameter. Other examples of conditional mobility CKCs include
energy-storing systems with locking mechanisms (see Glossary)
such as the mantis shrimp striking appendage (Patek et al., 2007)
or the neurocranium-rotation mechanism of snipefish (Longo
et al., 2018). With passive compliant structures, mobility can only
be controlled indirectly: the neural system can vary mobility by
changing the conformation of the system to place the compliant
element in or out of tension. In contrast, for CKCs with muscular
components, the neural system can directly control mobility by
muscle activation. The concept of ‘freezing’ DoF is used
throughout the motor coordination literature (e.g. Vereijken
et al., 1992; Newell and McDonald, 1994; Scholz et al., 2000;
Todorov and Jordan, 2002; Verrel et al., 2013), usually based on
the observation that motion is reduced or prohibited along a
particular joint axis. Freezing DoF is thought to be advantageous
when a system has more DoF than needed to perform a particular
task (Todorov and Jordan, 2002; Domkin et al., 2005) or during
the early stages of learning a motor task when precise control of all
DoF is not yet possible (Berthouze and Lungarella, 2004). But
such observations do not test whether muscles are activated with
the direct objective of reducing system mobility, raising the
question of whether mobility is itself a motor control parameter or
simply a consequence of other motor control strategies (Daley and
Biewener, 2006; Biewener and Daley, 2007; Daley et al., 2007;
Nishikawa et al., 2007).

Transient CKCs with conditional mobility
The CKC classification in Fig. 1 implies the existence of a fourth
class: a transient CKCwith conditional mobility. Can such a class of
CKCs be found in nature? Feeding systems provide one example, as
they generally consist of an open kinematic chain that ‘closes’
around a compliant food item. Taking the human upper jaw and

mandible as an example, motion at the human temporomandibular
joint appears to occur predominantly along three DoF (Fig. 5A;
Gallo et al., 2006; Iriarte-Díaz et al., 2017; Menegaz et al., 2015):
two rotational DoF (depression–elevation and yaw) and one
translational DoF (protraction–retraction). And if the mandible is
assumed to behave as a single rigid body, a single ‘virtual joint’ can
be used to represent the left and right temporomandibular joints for
the purposes of mobility analysis. However, during food processing,
if a food item is grasped between the upper and lower teeth, it closes
a loop between the upper and lower mandible (Fig. 5B) and forms a
transient CKC (the reader can verify this with the aid of a soft food
item, such as a grape). As long as the food contacts the teeth, the
joint between the food and teeth can be represented as a 3D sliding
joint with five DoF, permitting the food item full rotational DoF and
two translational DoF along the tooth surface (Fig. 5B, inset).
Applying Eqn 1, the resulting CKC has a total of seven DoF, five for
food motion and two for jaw joint motion (Fig. 5B). As long as the
food is simply held and not punctured, the mandible can protrude or
retrude and yaw but not depress or elevate substantially. In forming
(and maintaining) this transient CKC, the mandible has lost a DoF.

For relatively tough foods, the mandible can continue to maintain
this three-DoF system, exerting a force sufficiently strong to hold the
food in place, but not so strong that the teeth begin to puncture the
food item. However, if the force exerted by the teeth on the food
exceeds the puncture force, the system gains additional mobility as
the mandible can now elevate to drive the teeth through the food.
Analogous to the previous examples of intrinsic compliant tissues
(e.g. ligaments, muscles), the compliance of an extrinsic link (i.e.
the food) creates a variable fi in the mobility equation (Eqn 1),
giving this transient CKC conditional mobility; in this case,
conditional on whether the bite force is sufficient to permit motion
of the teeth through the food. A CKC analysis brings an interesting
perspective to the mechanics of feeding. Firstly, the mobility of this

Human mandible open chain Mandible closed chain without food puncture Mandible closed chain with food punctureA B D

C EFood manipulation with closed chain Food puncture with closed chain

Neurocranium

Mandible

5 3

5

13−6(1)
=7

5 3

1

5

14−6(1)
=8

12
7

6

5

43

12

8

7

6

5
43

Mopen=3

Fig. 5. The human mandible with a food item has a mobility that changes with food contact and manipulation. Without a food item, the mandible is a
single-link three-DoF open chain (A). If a food item is simply held between the teeth without puncture (B), the tooth–food joint acts as a 3D sliding joint with
five DoF (inset), and the system becomes a seven-DoF closed chain (orange arrows). This closed chain decreases mobility at the jaw joint to two DoF, permitting
primarily yaw and protrusion (C). Food puncture adds at least one additional DoF, increasing the mobility to at least eight DoF (D) and restoring three
rotational DoF to the jaw joint, including mandibular elevation (E).
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tension is transmitted through the ligament and not diverted into
lengthening of the ligament.
Similar to a ligamentous link, an isometrically contracting muscle

(a muscle that is actively generating tension but maintains a constant
length) conditionally reduces the mobility of a CKC by one DoF.
However, a difference is that the taut length of a muscle is neurally
controlled. Take, for example, the tibialis anterior and soleus, an
antagonistic muscle pair that is involved in rotating the foot about
the ankle (Fig. 4F). The ankle joint has two DoF – plantarflexion–
dorsiflexion and inversion–eversion – and the soleus acts to
plantarflex the foot whereas the tibialis anterior acts to dorsiflex
and invert the foot. When both muscles are non-isometric, this CKC
has four DoF (two DoF of motion at the ankle joint and two DoF for
‘twisting’ of the soleus and tibialis anterior muscles, which can be
disregarded; Fig. 4G). In this state, one muscle alone cannot control

ankle rotation because the system is underactuated (i.e. a single
muscle controlling a two-DoF joint; Fig. 4H). However, if the soleus
activates isometrically, it reduces the DoF of the system by one,
turning the CKC into a one-DoF system (excluding two DoF of
muscle ‘twisting’; Fig. 4I) and allows the tibialis anterior to control
the remaining single DoF at the ankle joint (Fig. 4J). Additionally,
isometric contraction of both muscles locks both DoF, reducing the
mobility to zero, and allows the CKC to transfer energy from
muscles outside the CKC (Biewener and Daley, 2007; Roberts and
Azizi, 2011). In the case of a CKC containing a muscular link, the
mobility of the system is conditional on the activation of the muscle,
the material properties of the muscle and whether the muscle is in
tension.

The two preceding examples show that mobility can be a
dynamic property of musculoskeletal systems, even for

Bass opercular mechanism and corresponding linkage modelA B DLigament slack condition Ligament taut condition

C EJaw can be depressed independently Operculum driven jaw depression

Human ankle agonist−antagonist muscles and linkage modelF G

H

I

J

Neither muscle isometric condition Soleus isometric condition

Plantarflexion and inversion Only inversion

Suspensorium
Neurocranium

Operculum

Lower jaw

InteroperculumInteroperculo-
mandibular
ligament

11−6(1)=5 3

3

11

3

3

3

3

1

1

2

3

4

5

4

2

3

1

Soleus m. and tendon

Tibia and fibula

Tibialis anterior m.
and tendon (mostly
obscured by tibia)

Foot

Medial view

3

3

1 1

2 3

3

16−6(2)=4 15−6(2)=3

3 3

1

323

Soleus
shortens Tibialis

anterior
lengthens

Tibialis
anterior
shortens

4

2

3

1 2

3

1

Fig. 4. Both the opercular mechanism in fishes and the human ankle joint have dynamic mobilities that depend on the mobilities of the constituent
joints. The four-bar opercular linkage of largemouth bass (A) includes a link composed of ligamentous and bony elements (purple). When the ligament is
slack (B), the linkage has five DoF (orange arrows) and the lower jaw can be depressed independent of opercular rotations (C). If the ligament is taut and in
tension, the mobility decreases to four DoF (D) and opercular elevation can drive lower jaw depression (E). An antagonistic muscle pair at the human ankle
(F) can bemodeled as a multiloop linkage. When both muscles are non-isometric, the system has four DoF (G), including two rotational DoF at the ankle joint (H).
If one muscle contracts isometrically, the mobility decreases to three DoF (I), allowing the other muscle to control the remaining one DoF at the ankle (J).
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Fundamental Questions of KC

1. How many independent ways to change the state? 
2. Is the given state flexible or stiff?
3. Is the motion easy to control? (cf. Miura folding)
4. Is there a continuous transition from the current state to the desired one?

These questions can be formulated and studied through
the topology of the configuration space

consisting of all states of a given KC.



The configuration space of KC
is defined by equations

(0,0)

(%!, &!)

fixed fixed

(%", &")

(1,0)

( )

*

States	are	identified	with	the	
solution	to	a	system	of	equations

4+, + 6+, − 8
, = 0

4, − 1 , + 6,, − <, = 0
4+ − 4, , + 6, − 6+ , − =, = 0

4 variables satisfying 3 equations
We expect 1-dimensional family of solutions

http://dynref.engr.illinois.edu/aml.html



Fundamental example of the configuration space

2h

x2

a b

x1 x3

Consider the linkage below with 3 joints in R3

Let h>0 be a constant and the two ends 

a = (�h, 0, 0), b = (h, 0, 0)
<latexit sha1_base64="+QjSsg+KUy+hArNokSuRb0knQiA="></latexit><latexit sha1_base64="+QjSsg+KUy+hArNokSuRb0knQiA=">AAACc3icbVHLSgMxFL0d3/VVddlNsAoKWmZE0I1Q7MalilWxUySTSW0wjzHJKGWYP3Hrj7jVH/BD3JtOC2r1wg2Hc87lJidRwpmxvv9R8iYmp6ZnZufK8wuLS8uVldVLo1JNaIsorvR1hA3lTNKWZZbT60RTLCJOr6L75kC/eqTaMCUvbD+hHYHvJOsygq2jVKUKGI5gC3ahBzvgF73tTgQv8ACpU2OHo8Lzw3Fbqfl1vyj0FwQjUINRnd6ulDbDWJFUUGkJx8a0g73EdjKsLSOc5uUwNTTB5B7f0baDEgtqOlnxwBxtOiZGXaVdS4sK9udEhoUxfRE5p8C2Z8a1Afmf1k5t97CTMZmklkoyXNRNObIKDdJCMdOUWN53ABPN3F0R6WGNiXWZlkNJn4gSAss4C8/zLBwsiKLsPM9/azff2s241vzWmnnugg3GY/wLLvfqgV8PzvZrjeNRxLNQhXX3SQEcQANO4BRaQOAZXuEN3kufXtVb9zaGVq80mlmDX+XtfgEXcrRu</latexit><latexit sha1_base64="+QjSsg+KUy+hArNokSuRb0knQiA="></latexit><latexit sha1_base64="+QjSsg+KUy+hArNokSuRb0knQiA="></latexit>

are fixed to the wall. Then

Topology changes according to the parameter >



Topology of the configuration space
Topological invariants of the configuration space tells a lot about the mechanics:

here’s a small dictionary

path => motion

fundamental group => non-trivial cyclic motion

topological complexity => minimum number of “if-statements” for motion planning

singular point => bifurcation, locking

number of connected components => number of mutually unreachable configurations

dimension => degree of freedom

The topic has been studied by many mathematicians including
Euler, Sylvester, Thurston, Niemann, Kapovich-Millson…

See Demaine & O’Rourke’s excellent book “Geometric Folding Algorithms”



Configuration space of a bar Linkage

The configuration space Mm(L) is the space of isometric embeddings of L in Rm

modulo the global symmetry.

A bar linkage L is a finite simple graph (V,E) whose edges are assigned lengths >

The most notable result on bar linage is
Thm (Kempe's universality theorem, proposed in 19C with a wrong proof, proved in 21C)

Any bounded plane algebraic curve can be traced by some linkage
(or “There is a linkage which can sign your name”)

Each connected component corresponds to “motion” of the linkage

Caution
Self-collision is ignored

A state is described by the real solution to a system of quadratic equations



Millennium Prize Problem 
phrased in terms of kinematic chain

Even determining if the configuration space is non-empty is already difficult.

In fact, it is so even for 1-dimensional KC.

Can we place this closed KC on a line?

This problem is exactly the partition problem, which is NP-complete.
If you find an efficient solution, you will get $1 million!



Kinematic chains consisting of hinges



Kaleidocycle as KC

Kaleidocycle

2n joints
5n bars

Bricard linkage
n hinges
n barsmore convenient 

to work with

n: number of tetrahedra



Hinge joint
Hinge is a special type of joint which restricts the relative motion of 
connected rigid bodies to rotation around its axis.

Sarrus linkage with 4 hingesNote: 2D bar linkages are 3D hinged 
linkages with parallel hinges.

Remark: various joints (including high-dimensional ones) can be 
specified by their invariant/fixed subspace.



Our definition of Kaleidocycle

An n-Kaleidocycle (Kn) is a KC consisting of n identical equifacial
tetrahedra connected by hinges.

Shape of bodies does not matter (we are ignoring self-collision)
Relation between hinges is essential.



Adapted framed curve
A framed curve is a space curve
with an orthonomal frame assigned at each point.

A framed curve is said to be adapted if
the first vector is tangent to the curve. 

Given a curve, there are canonical ways to 
assign framings such as 

Frenet framing and Bishop framing.

Recap: theory of smooth curves



Frenet frame of a discrete curve
Polyline

Tangent

Hinge = Binormal

?-.+ ≔
A- − A-.+
|A- − A-.+|

s.t. !! ⋅ #! = !! ⋅ #!"# = 0

!-/,

!-/+

!-
!-.+

"-
"-/+

ℓ-
ℓ-/+

$-
−$-/+

−& Frenet frame 
(in mathematics)

= 
Danavit-Hartenberg

parameter 
(in mechanics)



Kaleidocycleó closed discrete curve
"spine”

of tetrahedra

hinge

Kaleidocycle
(congruence of tetrahedra)

polygonal curve

binormal 
(up to sign)

constant torsion

A geometric model of the configuration space

* Fixed-angle chain <=> constant curvature



An algebraic model of the configuration space

ℓ!"#
ℓ! ℓ!$#

"!$#"!"# "

an arrangement of lines (hinges) in 3-space

a sub-variety of the product of the Grassmanians
G(4,2)

an arrangement of planes in 4D projective space

Think of a Kaleidocycle as

#! ≔
!!×!!$#
|!!×!!$#|

Binormals (hinges) 
reproduce the whole shape



Binormals determine a Kaleidocycle up to scaling. They satisfy the following equations

!! ∈ *% 0 ≤ , ≤ - } #! ≔ &!×&!"#
|&!×&!"#|

<0 = C
<1 (EFGHI?HJ)

−<1 (IEI EFGHI?HJ)

(the centre polygon should be closed)

(the angles between adjacent hinges are constant)

The configuration space of Kaleidocycles

The moduli #$(%) (resp. #"(n)) of (resp. non) oriented n-Kaleidocycles
is defined to be the space of the real solutions to the above quadratic equations

modulo the global symmetry (' 3 ↷ {+!})

Note: we ignore the possibility of self-collision, as we can always avoid self-collision by considering thin tetrahedra
(by setting the hinge length enough small compared to the length of the centre curve)

n: number 
of hingesL

-20

1.+
?- = L

-20

1.+
<-×<-/+ = 0

(for all -)



Configurations of a Kaleidocycle
Denote by #± %; / (⊂ #± % ) the subset of solutions 

with a fixed +!"# ⋅ +! = / ∈ ℝ (cosine of the angle between adjacent hinges).

It corresponds to the space of all states of a particular Kaleidocycle.

elements of N/ 7;−0.29
= motion of 7-Kaleidocycles

an element ofN. 6; 0
= a single state of 6-Kaleidocycle



Immobility of Panel-hinge body
Kaleidocycles are a special type of panel-hinge body studied in combinatorics and chemistry

Panel-hinge Frameworks 
� бெ(panel)ầἤὅἊ(hinge)੗ӳẰủẺನᡯཋ 

 
 

 
� Panel-hinge framework:�ሺܩǡ ݄ሻ   

� ܩ ൌ ሺܸǡ  ሻǣ�ἂἻἧύ݄ǣ�ǲ�����-coplanarityǳử฼ẺẴἤὅἊᣐፗܧ
� ᪬ໜ ֞ ἣ἟Ἵ = Rdϋỉ᩿࠯ 

� ᡀ ֞ ἤὅἊ = Rdϋỉ(d-2)ഏΨዴ࢟ᢿЎᆰ᧓Ểǲ�����-coplanarityǳ
ử฼ẺẴờỉ 

 
� ǲ�����-coplanarityǳவˑỊཎഷễܖ˴࠹ႎவˑώTay-Whiteleyỉbody-

barྸܭỊᢘဇỂẨễẟ!! 

Images taken from S. Tanigawa’s slides

Molecular conjecture (stated in Tay-Whiteley1984, solved in Kato-Tanigawas2011)
provides a combinatorial characterisation for a generic panel-hinge body to be rigid

(that is, the configuration space is 0-dimensional)



Dimension for a generic Kaleidocycle
For a generic c, let us count the dimension of M(n;c) by 

Fix two hinges to kill the global symmetry.

We have degree two freedom for each
and there the angle constraints                                   which contributes –(n–1)

and the closing constraints                                         which contributes –3 

b2, b3, . . . , bn�1 2 S2
<latexit sha1_base64="MLROl0nxt4kHDMXznI3hG55Gngg="></latexit><latexit sha1_base64="MLROl0nxt4kHDMXznI3hG55Gngg="></latexit><latexit sha1_base64="MLROl0nxt4kHDMXznI3hG55Gngg="></latexit><latexit sha1_base64="MLROl0nxt4kHDMXznI3hG55Gngg="></latexit>

bi · bi+1 = c
<latexit sha1_base64="tXRDgFp6zsoyUo3JR7qieR5UoFw="></latexit><latexit sha1_base64="tXRDgFp6zsoyUo3JR7qieR5UoFw="></latexit><latexit sha1_base64="tXRDgFp6zsoyUo3JR7qieR5UoFw="></latexit><latexit sha1_base64="tXRDgFp6zsoyUo3JR7qieR5UoFw="></latexit>X
bi ⇥ bi+1 = 0

<latexit sha1_base64="JGjii3mdRg4Oy/kHlttqCupN2Vs=">AAACVXicbZBdSwJBFIZnNzOzD7Vugm6GRAgC2ZWgbgLJmy5NUkNXZHYcdXBmdpmZLWTZfk239XeiHxM0foCpHRh4eZ9zOGdeP2RUacf5tuyd1G56L7OfPTg8Os7lCyctFUQSkyYOWCCffaQIo4I0NdWMPIeSIO4z0vYntRlvvxCpaCCe9DQkPY5Ggg4pRtpY/fyZpyIO/T71NOVEGRXTKze5c/r5olN25gW3hbsURbCser9glbxBgCNOhMYMKdV1K6HuxUhqihlJsl6kSIjwBI1I10iBzL5ePP9CAkvGGcBhIM0TGs7dvxMx4kpNuW86OdJjtclm5n+sG+nhbS+mIow0EXixaBgxqAM4ywMOqCRYs6kRCEtqboV4jCTC2qSW9QR5xQHnSAxir5HE3myB78eNJFlnnRXrbLLaitWSxATrbsa4LVqVsuuU3cfrYvV+GXEGnIMLcAlccAOq4AHUQRNg8AbewQf4tL6sHztlpxettrWcOQVrZed+AVRCtcg=</latexit><latexit sha1_base64="JGjii3mdRg4Oy/kHlttqCupN2Vs="></latexit><latexit sha1_base64="JGjii3mdRg4Oy/kHlttqCupN2Vs="></latexit><latexit sha1_base64="JGjii3mdRg4Oy/kHlttqCupN2Vs="></latexit>

In total, the dimension should be 

2(n–2) – (n–1) – 3 = n–6 An n-Kaleidocycle has in general 
n-6 degrees of freedom

Dim of solutions = # of variables – # of equations



Wait! 6-Kaleidocycle is mobile!

Because the equations are redundant due to its high symmetry

Such a system is said to be over-constrained

Fowler-Guest2005 gives a method to analyse over-constrained 
systems using representation theory

Simple example of over-constrained system
Adding the blue bar (one quadratic equation)

has no impact on the configuration space
(which is a point)



configuration space of all non-
orientable n-Kaleidocycles

solutions	to	
∑/!×/!"# = 0

/! ⋅ /!"# = 4 45678
/! ⋅ /! = 1
/$ = −/%

subspace corresponding to 
the Mobius Kaleidocycle

<- ⋅ <-/+ = V1

map c

1

-1inverse image

cn: maximum

The space of the shape of tetrahedron
(determined by the twisting angle acos(c))

a point = a state of a Kaleidocycle
a path = motion of a Kaleidocycle

Im(c)

Mobius Kaleidocycle
= Kaleidocycle with a min/max twist angle



Conjecture (K-Schoenke, patented in 2018)

There is cn > 0 for each n≧7 such that
/$ -; 1 is non-empty iff −1) ≤ 1 ≤ 1 (n:odd)
/" -; 1 is non-empty iff −1 ≤ 1 ≤ 1) (n:odd)
/" -; 1 is non-empty iff −1) ≤ 1 ≤ 1) (n:even)
Moreover, 

/± -;±1) ≃ 6# (when ±1) is the boundary value)

Degree of Freedom of Mobius Kaleidocycles

for each point, it is numerically checked that 
the ε-ball intersects exactly at two points

It is very rare for a linkage to have a degenerate but non-trivial configuration space

this S1 is the characteristic “everting” motion

Mobius Kaleidocycles have a single degree-of-freedom regardless of n

Open problem



Under-constrained system
They are under-constrained system: the dimension of solutions is less than 
expected. This is peculiar to real solutions.
(as opposed to over-constrained systems, which exist for complex solutions as well)

Under-constrained linkages have not been studied well.
In fact, (to the best of my knowledge) Mobius Kaleidocycles are the only example 
which are under-constrained and have a non-trivial configuration space.



A flow on the configuration space that 
Governs the Motion of Kaleidocycles



The “everting” motion of Kaleidocycles
Goal: describe this motion as a 1-dim path in the configuration space

It looks like a soliton of some kind…



Idea: construct a flow on the moduli space 
that generates the everting motion

• Classically, the modified KdV equation 
is known to generate an isoperimetric 
deformation of smooth space curves.

• We consider a semi-discrete version of
(discrete space & continuous time)

Physics Department of the University of Burgundy
Vidéo by Julien FATOME, Stéphane PITOIS et Guy MILLOT

A solution of KdV

KdV: 7+ + 677, + 7,,, = 0
mKdV: 7+ + 67-7, + 7,,, = 0



Motion = Curve deformation

CKC closed discrete curve

Kaleidocycle constant torsion and speed

motion path in configuration space

infinitesimal motion flow on the conf. sp.

We construct a flow by some (semi-discrete) integrable equations.



Curve deformation and Kaleidocycle’s motion
1. arc length and torsion are preserved (ó bars are rigid)

2. velocity at each vertex lies in the osculating plane (è writhe is preserved)

3. equidistant (ó speed of motion is uniform at all vertices)

Theorem (K-Kajiwara-Park)
1. To meet the above assumptions, W- = cos ∠?-?-.+ should satisfy the following

2. In an appropriate limit, they yield the potential mKdV and the sine-Gordon equations   

i
i
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and

Tn�1 ⇥ Ṫn = �n

2
666666664

cos n
� sin n

0

3
777777775 ⇥

1
⇢
�n

2
666666664

0
� (1 + cos ⌫) sin wn

sin ⌫ sin wn

3
777777775

=
1
⇢
�n

2
666666664

� sin ⌫ sin n sin wn

� sin ⌫ cos n sin wn

� (1 + cos ⌫) cos n sin wn

3
777777775 , (4.17)

we get from (4.13) and (4.14)

ḃn =
1
⇢
�n

2
666666664

� sin ⌫ sin wn

sin ⌫ cos wn

0

3
777777775 . (4.18)

We immediately obtain ḟNn from (4.9) and (4.14) as

ėN = ḃn ⇥ Tn + bn ⇥ Ṫn =
1
⇢
�n

2
666666664

(1 + cos ⌫) sin wn

0
� sin ⌫ cos wn

3
777777775 . (4.19)

Then we have (4.8) from (4.9), (4.14) and (4.19), which proves the third statement. Finally, di↵er-
entiating cos ⌫ = hbn, bn�1i with respect to t, it follows from (4.18) and (4.2) that

�⌫̇ sin ⌫ = hḃn, bn�1i + hbn, ḃn�1i = �
sin2 ⌫

⇢

�
cos (n + wn) � cos wn�1

�
= 0,

which implies ⌫̇ = 0. This completes the proof of the first statement. ⇤

Remark 2. The condition (4.3) suggests the potential function ✓n in Proposition 1 as

n =
✓n+1 � ✓n�1

2
, wn =

✓n � ✓n+1

2
, (4.20)

Then (4.5) is rewritten as
d
dt

(✓n+1 + ✓n) = 2↵ sin
✓✓n+1 � ✓n

2

◆
. (4.21)

To the best of the authors’ knowledge, this is a novel form of the semi-discrete potential mKdV
equation. In fact, the continuum limit ↵ = 2

✏ , X = ✏n+ t, T = ✏
2

12 t, ✏ ! 0 yields the potential mKdV
equation

✓T +
1
2

(✓X)3 + ✓XXX = 0. (4.22)

Similarly, introducing the potential function ✓n in Proposition 2 such that

n =
✓n+1 � ✓n�1

2
, wn = �

✓n+1 + ✓n
2

. (4.23)

suggested by (4.4), (4.7) is rewritten as

d
dt

(✓n+1 � ✓n) = 2↵ sin
✓✓n+1 + ✓n

2

◆
, (4.24)

which is nothing but the semi-discrete sine-Gordon equation [3, 39, 40].

15

:./ − sin : = 0. The 1-DoF motion of a Mobius 
Kaleidocycle is generated by this flow.An explicit solution was constructed recently by Shigetomi



"! #!

An orbit in !! 9; 0.58



Motion of a Mobius Kaleidocycle
The semi-discrete mKdV equation generates a 1-dim orbit in 
#$ %; / when n is odd and #" %; / when n is even for any c,
where dim(#± %; / ) = % − 6 for a generic c.

Similarly, the semi-discrete sine-Gordon equation generates a 1-dim 
orbit in #" %; / for any n and c.

If the 1-DoF conjecture is true, 
these orbits match the whole configuration space :#

Note the duality defined by <- ↦ −1 -<-
N. 2[ + 1, V ≃ N/ 2[ + 1,−V
N. 2[, V ≃ N. 2[,−V



Conservation laws

Corollary to Theorem

For the deformation governed by the sine-Gordon equation, we have

Integrable systems have conserved quantities

for an oriented extreme Kaleidocycles,
the value itself seems to be zero



Conservation laws: Bending energy
The bending (elastic) energy

can be discretised in many different ways but consider
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Analyzing the Stability
Properties of Kaleidocycles
Kaleidocycles are continuously rotating n-jointed linkages. We consider a certain class
of six-jointed kaleidocycles which have a spring at each joint. For this class of kaleido-
cycles, stored energy varies throughout the rotation process in a nonconstant, cyclic
pattern. The purpose of this paper is to model and provide an analysis of the stored
energy of a kaleidocycle throughout its motion. In particular, we will solve analytically
for the number of stable equilibrium states for any kaleidocycle in this class.
[DOI: 10.1115/1.4032572]

Keywords: kaleidocycle, stable states, energy minima, compliant mechanisms,
Bricard 6R

1 Introduction

Kaleidocycles represent a class of mechanisms which have
potential in applications of engineering design due to their unique
combination of characteristics: they are continuously rotatable
mechanisms, they have the ability to possess multiple stable equi-
librium states with a variety of characteristics, and they can be
designed as compliant mechanisms. An understanding of kaleido-
cycle behavior, especially the ability to characterize their stable
equilibrium properties, has the potential of leading to new com-
pact devices not previously possible. This can be particularly use-
ful in applications, such as switches, relays, and autonomous
sensors. They also show promise as a way of improving durability
in applications where detents are currently used to achieve multi-
ple stable states. Figures 1 and 2 show six-jointed kaleidocycles.

In this paper, we develop analytical solutions for finding the
number of stable states of six-jointed kaleidocycles with respect
to a range of geometric parameters. Associated theorems and their
proofs are presented to support the analysis, and potential engi-
neering applications are listed. The work is inspired by prelimi-
nary work that numerically approximated the solutions [1].

The popularization of the kaleidocycle is attributed to artist
Wallace Walker and mathematician Schattschneider who
published the book M. C. Escher Kaleidocycles in 1977 [2].
Kaleidocycles have been an object of fascination ever since, as
their continuous rotation without articulating hinges is accom-
plished in a visually complex pattern.

We consider six-jointed kaleidocycles consisting of a ring of
tetrahedra for which the tetrahedra are all congruent. We also
require that each tetrahedron be joined along one edge to a con-
gruent edge of another tetrahedron. Having a single degree-of-
freedom, the position of a kaleidocycle through its rotation can be
measured by the angle between each consecutive pair of tetrahe-
dra. The symmetry of the kaleidocycles causes each of the six
angles to have one of just two mutually dependent values. These
values alternate as we move around the kaleidocycle. This

Fig. 1 A compliant-mechanism kaleidocycle that uses polypro-
pylene “surrogate folds” to create the function of the rotating
joints and the torsion springs

Fig. 2 An n 5 6 kaleidocycle
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Safsten et al. 2016 analysed the 
potential energy of K6 whose hinges 
are attached torsional springs.

Theorem (K-Kajiwara-Park-Shigetomi)
Ebend is constant under the deformation by the sine-Gordon (mKdV) equation.

?&0)1 =@
!
log 1 + tan- F!

2

Global quantities are mysteriously preserved!



Variational problem of bending energy

Bending energy is determined by the curvature alone.

So the mysterious 1-DoF Kaleidocycles are characterised in two different ways;
one by the curvature and the other by the torsion.

Conjecture
When non-oriented or odd n, 
the minimisers of Ebend attain the extremum of the torsion. 

Open problem



Coulomb & dipole energies

Imagine the hinges are dipoles. The potential of the system is

Imagine the centres γ of hinges are electrically charged. The potential of the system is

Eclmb and Edipl are almost constant under deformation
Problem: What is the correct discritisation of the these energies

that are strictly conserved?

Note that these 
depend on the 
global shape of 

the curve

Open problem



Topology makes it interesting!
Topological constraint has a large impact on the algebraic system
defining the Kaleidocycles.



Topological invariants of a smooth curve
We assume the arc length of the strip is 2π.

There are two conformal invariants called twist and the writhe:

Calugareanu-White’s theorem
#half twists := 2(Twist + Writhe)

is an integer and an isotopy invariant

This type of results have been 
studied mainly in the context 

of DNA supercoiling

These invariants are also studied in 
“Topological Fluid Mechanics”.

See, for exameple,
Scheeler et al, “Complete measurement of 
helicity and its dynamics in vortex tubes"

Science 357, 2017



Twist and writhe for a discrete curve

Calugareanu-White’s theorem
#half-twists := 2(Tw + Wr)

is an integer and an isotopy invariant

This puts a very strong topological constraint for a curve to be closed

For a Kaleidocycle in motion
Tw remains unchanged by definition

so Wr should remain unchanged as well

Kaleidocycle with a large Tw



Computing Wr and Tw

The integration formula for Writhe and Tw are understood by the pictures below: Think of the 
angles with which one sees an intersection for a pair of infinitesimal curve portions.

d!(r1, r2) " #d!*(r1, r2), if the crossing is left-
handed (w12 " #1):

d!$r1, r2% ! w12d!*$r1, r2% !
$dr2 " dr1%r12

r123
(5)

If we divide Eq. (5) by the value of the full solid
angle, 4#, then the obtained quantity, d!(r1, r2)/4#,
can be treated as half the total weight of the apparent
crossings between the vectors dr1 and dr2 averaged
over all possible directions. Hence, the linking num-
ber of two closed curves C1 and C2 is

Lk !
1
4# !

C1

!
C2

d!$r1, r2%, (6)

where d!(r1, r2) is defined by Eq. (5), r1 and r2 pass
along the curves C1 and C2, respectively. The writhe
of a curve C is

Wr !
1
4# !

C

!
C

d!$r1, r2% (7)

in full agreement with Eq. (1). Note that in Eq. (7) the
factor before the integration sign is still 1/4#, as in
Eq. (6), although the writhe is defined as the average

total weight of the self-crossings not divided by two.
The additional factor 1/2 in Eq. (7) is due to the fact
that in double integration over the same curve C every
pair of vectors dr1 and dr2 is taken into account twice.
For our further purposes, we also need an integral

representation of the twist. We assume that the space
curve of the DNA axis is parameterized by the dis-
tance t traveled along its contour: r " r(t), 0 $ t
$ L, r(0)" r(L), L being the total DNA length. Then
one of the strands can be represented in the form
s " s(t) " r(t) & %a(t), where a(t) is a unit vector
perpendicular to the axis r(t), a(0) " a(L), and % has
the meaning of the DNA radius. As the twist does not
depend on %, we can formally pass to the limit %3 0,
so that the curves r(t) and s(t) almost coincide. In the
expression for the twist,

Tw ! Lk & Wr !
1
4# !

t"0

L !
q"0

L

'd!$s$t%, r$q%%

& d!$r$t%, r$q%%( (8)

the difference between the terms d!(s(t), r(q)) and
d!(r(t), r(q)) is essential only when q ) t. Hence,
we can define a small interval (t # ', t & ') in such
a way that only the q values belonging to this interval
contribute to the integral in Eq. (8). Note that '
depends on % and ' ( %. It is possible, however, to
choose such a small value of % that ' is also small
enough, so that we can treat the axis at the distances
comparable to ' as a straight line. The straight line
does not form any self-crossings, therefore d!(r(t),
r(q)) " 0, if t # ' * q * p & ', and

Tw ! !
t"0

L 1
4# !

q"t#'

t&'

d!$s$t%, r$q%% (9)

Here the quantity

dTw !
1
4# !

q"t#'

t&'

d!$s$t%, r$q%% (10)

is practically independent of ', if ' ( %, and can be
easily calculated analytically.14 It can also be inter-
preted as half the average total weight of apparent
crossings between the vector ds(t) and the tangent
line to the axis at the point r(t). As shown in Figure
6, dTw(t) " d)(t)/ 2#, where d)(t) is the angle of
rotation of the vector a(t) about the axis in the interval
(t, t & dt). As a(t) is a unit vector, the absolute value

FIGURE 5 The view on the two infinitesimal vectors dr1
and dr2 in the direction close to that of the vector r12. The
vectors dr1 and dr2 appear as their projections dr1! and dr2!.
By slight variations of the view direction, one can still see
the crossing, if the relative position of the point r1 with
respect to the point r2 lies within the parallelogram shown
by the dashed line. The parallelogram area is "dr1!" ! "dr2!" !
sin *, where * is the angle between the vectors dr1! and
dr2!.
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of d!(t) is equal to !da(t)!. The positive direction is
defined by the unit vector (dr(t)/dt) ! a(t). Conse-
quently,

d! " "drdt # a#da (11)

The angle d! is positive, if the rotation of the vector
a around the axis forms a right-handed helix, and
negative otherwise. The resulting expression for the
twist is

Tw "
1
2$ $

t"0

L "drdt # a# dadt dt (12)

The form of Eq. (12) implies that the twist is additive,
i.e., the total twist of a molecule is equal to the sum of
the twists of its constituent parts.
Note that in a closed chain the fractional part of Tw

does not depend on a(t), as follows from Eq. (3).
The strict mathematical theory involving the link-

ing number, the twist, and the writhe was developed
by Călugăreanu15 and White.16 Fuller17 was the first
to apply the theory to a supercoiled DNA. A simpli-
fied introduction to the theory adapted for physicists

can be found in Ref. 14 and that adapted for biologists
can be found in Ref. 18.

METHODS OF COMPUTATION OF
THE WRITHE

In computer simulations a DNA molecule is usually
modeled by a polymer chain consisting of straight
segments. In this section, we present four methods
allowing the calculation of the writhe for such chains.

The Writhe as the Gauss Integral
The Gauss double integral [Eq. (7)] along a polygon
of N segments can be expressed as the double sum,

Wr " 2 %
i"2

N %
j#i

$ij

4$
(13)

where $ij/4$ is the Gauss integral along the seg-
ments i, j ($ji " $ij, $i,i%1 " $ii " 0). Our goal
now is to obtain an analytical expression for the
quantity $ij for a pair of segments arbitrary oriented
in the space.

Method 1a. One possibility is to apply a pure geo-
metrical approach. Let the points 1 and 2 be the
beginning and the end of the first segment, r12, and the
points 3 and 4 be the beginning and the end of the
second segment, r34 (Figure 7). In this case, the ab-
solute value of the Gauss integral multiplied by 4$ is
the solid angle $* formed by all those view directions
in which the vectors r12 and r34 apparently cross, with
the vector r12 being the nearest to the viewpoint [see
Eqs. (4), (5), and (7)]. As shown in Figure 7, the solid
angle $* is bounded by the four planes: (134), (124),
(234), and (123). In other words, the $* value is the
area of the quadrangle on a unit sphere with the
apexes formed by the intersections of the sphere with
the rays originating at the center of the sphere and
parallel to the lines (31), (41), (42), and (32). The area
of a quadrangle on a unit sphere is

$* " % & ' & ( & ) * 2$ (14)

where %, ', (, and ) are the angles of the quadrangle,
which can be found in the following way. Let

n1 "
r13 # r14

!r13 # r14!
, n2 "

r14 # r24
!r14 # r24!

,

n3 "
r24 # r23

!r24 # r23!
, n4 "

r23 # r13
!r23 # r13!

(15)

FIGURE 6 Geometrical interpretation of the differential
dTw(t), Eq. (10). The vector ds(t) and the straight line r(q)
form an apparent crossing, if the view direction lies within
the sector d! (or the sector opposite to it); d! is the angle
of rotation of the vector a(t) about the axis in the interval (t,
t % dt). The angle between the view direction and the axis
is of no importance. The solid angle corresponding to the
sector d! is 2d!. Hence, half the average total weight of
apparent crossings between the vector ds(t) and the line
r(q) is dTw(t) " d!/ 2$.
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3 帯とその絡み数
この節では、帯について定義をし、性質についてみていく。また、帯の絡み数
とその帯のふち同士または、中心線とふちの絡み数についてどのような関係があ
るのかをみていく。

定義 3.1. 中心線が結び目である帯のうち、表と裏の 2つの面をもつものをリボン
といい、そうでないものをメビウスの帯という。

中心線は正則の位置にあるとしてよいし、帯はいくつかのねじれの部分を除い
てほぼ水平になっているといってよい。また、リボンにはねじれが偶数個あり、メ
ビウスの帯にはねじれが奇数個ある。

定義 3.2. 帯Xにおいて、ねじれの部分に図 1の規則によって、+1
2 と−1

2 を対応
させる。
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帯Xに、+1
2のねじれがα個、−1
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を帯Xのねじれ数という。
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　　図 2
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を帯Xのライズ (writhe)という。

ねじれ数 n(X)は、リボンの場合は整数、メビウスの帯の場合は分数になるこ
とに注意する。また、帯のねじれ数やライズは帯の向きの付け方によらないで決
まる。
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Writhe is the average of ← over all projections.
It depends only on the centre curve



Twist and Writhe
• Twist is the difference between b(2π) and 

b(0) parallel-transported along the curve.
It measures how the strip revolves around its centre curve.

• Writhe is the number of self-intersections of the projected centre curve averaged 
over all the projections.
It depends only on the centre curve and measures how the curve winds around 
itself.

• None of them is an isotopy invariant but the sum is.
The sum is the number of half-twists of the strip.
If the number is odd, the strip is topologically a Mobius strip.

• Mobius Kaleidocycles have the minimum Tw, so the maximum Wr
among Kaleidocycles with positive half-twists

Conjecture
the number of half-twists of a Kaleidocycle takes values between 3 and n-3.

(In particular, there is no Kaleidocycle with a single half-twist)

Open problem



Falling cat
The global orientation seems to evolve 
without any external force
(that is, keeping zero angular momentum)
Possible application to space antenna

Open problem

c.f. Montgomery, Gauge theory of the falling cat

Knot

c.f. Naokawa, Extrinsically flat Möbius strips on given 
knots in 3-dimensional spaceform

Kaleidocycles can be made knotted.
Which knot types are realizable with 
what Tw and Wr?



Summary

closed hinged linkage
discrete closed 
framed curve

motion
length and torsion 

preserving deformation

everting motion of 
Kaleidocycle

flow on the configuration space defined 
by a semi-discrete integrable systems

for closed curves, topology 
poses strong constraints

Kaleidocycle provides links among
linkage, algebraic geometry (systems with geometric constraints), 

discrete differential geometry, and integrable systems.



Applied Applied Maths

• Configuration space of a linkage

• Discovery of a linkage with 1 DoF

• 1 DoF is very important in 

engineering. 

• Everting motion

• Physically interesting properties

• Topology of a real algebraic 

variety

• 1-dimensional singular fibre

• A topological constraint 

(linking number) forces 1 

DoF.

• Orbit governed by a semi-

discrete integrable system

• Conservation law

Engineering
Maths.

Pure maths and application on two sides of the same band, cycling together
make an ideal feedback loop

From “pure” vs “applied”
to “pure” + “applied”



Many open problems!
Ø Prove that Mobius Kaleidocycles have a single-degree-of-freedom

Ø This is a problem in real algebraic geometry: the dimension of the real algebraic set
Ø Techniques in symbolic algebra such as quantifier elimination and Groebner basis are not feasible due to the large number of 

variables (currently, only works for n≦5)
Ø Homotopy continuation would be helpful but it does not give a solution for general n

Ø Find conserved quantities during the eversion

Ø Find an analytic expression for Kaleidocycles
Ø Recently, a partial answer was given by S. Shigetomi (a PhD candidate at Kyushu University)

Ø Characterise Mobius Kaleidocycles in terms of a variational problem of Kirchhoff rod (Langer-Singer’s theory)

Ø Symplectic structure on the moduli space? (c.f. Kapovich-Millson’s form on the moduli of polygons)

Ø What is the limit of nà∞ ?

Ø Generalise Mobius Kaleidocycles to find a wider family of under-constrained linkage systems

Ø Prove there exists no Kaleidocycle with a half twist (Mobius Kaleidocycles have 3-half twists)

Ø (Stiefel) Realisation problem of persistent homology: find a Euclidean realisation of a complex which has the 
specified persistent homology.

Ø Find a (Mobius) Kaleidocycle in nature

Open problem


