Cobordism of algebraic knots defined by Brieskorn–Pham type polynomials

Osamu Saeki (Kyushu University)

Joint work with Vincent Blanlœil (Université de Strasbourg)

September 16, 2011
§1. Introduction

- Algebraic knot
- Cobordism of knots
- Cobordism vs Isotopy
- Problem

§2. Results

§3. Proofs
Algebraic knot

Let $f \in \mathbb{C}[z_1, z_2, \ldots, z_{n+1}]$ be a polynomial with $f(0) = 0$. We suppose f has an isolated critical point at 0.
Let $f \in \mathbb{C}[z_1, z_2, \ldots, z_{n+1}]$ be a polynomial with $f(0) = 0$. We suppose f has an isolated critical point at 0. For $0 < \varepsilon << 1$, $K_f = f^{-1}(0) \cap S^{2n+1}_\varepsilon$ is the algebraic knot associated with f.
Let \(f \in \mathbb{C}[z_1, z_2, \ldots, z_{n+1}] \) be a polynomial with \(f(0) = 0 \). We suppose \(f \) has an isolated critical point at 0. For \(0 < \varepsilon << 1 \), \(K_f = f^{-1}(0) \cap S_{\varepsilon}^{2n+1} \) is the algebraic knot associated with \(f \).

\(K_f \) is a \((2n - 1)\)-dim. closed manifold embedded in \(S_{\varepsilon}^{2n+1} \).
Algebraic knot

Let $f \in \mathbb{C}[z_1, z_2, \ldots, z_{n+1}]$ be a polynomial with $f(0) = 0$. We suppose f has an isolated critical point at 0. For $0 < \varepsilon << 1$, $K_f = f^{-1}(0) \cap S^{2n+1}_\varepsilon$ is the algebraic knot associated with f.

K_f is a $(2n - 1)$-dim. closed manifold embedded in S^{2n+1}_ε.
Cobordism of knots

Definition 1.1 An m-dimensional knot (m-knot, for short) is a closed oriented m-dim. submanifold of the oriented S^{m+2}.
Cobordism of knots

Definition 1.1 An *m*-dimensional knot (*m*-knot, for short) is a closed oriented *m*-dim. submanifold of the oriented S^{m+2}.

Two *m*-knots K_0 and K_1 in S^{m+2} are *cobordant* if

$\exists X \subset S^{m+2} \times [0, 1]$, a properly embedded oriented $(m + 1)$-dim. submanifold, such that
Cobordism of knots

Definition 1.1 An \(m\)-dimensional knot (\(m\)-knot, for short) is a closed oriented \(m\)-dim. submanifold of the oriented \(S^{m+2}\).

Two \(m\)-knots \(K_0\) and \(K_1\) in \(S^{m+2}\) are **cobordant** if \(\exists X \subseteq S^{m+2} \times [0, 1]\), a properly embedded oriented \((m + 1)\)-dim. submanifold, such that

1. \(X \cong K_0 \times [0, 1]\) (diffeo.), and
Cobordism of knots

Definition 1.1 An \textit{\textbf{m-dimensional knot}} (\textit{m-knot}, for short) is a closed oriented \textit{m}-dim. submanifold of the oriented \(S^{m+2}\).

Two \textit{m}-knots \(K_0\) and \(K_1\) in \(S^{m+2}\) are \textit{cobordant} if \(\exists X \subset S^{m+2} \times [0, 1]\), a properly embedded oriented \((m + 1)\)-dim. submanifold, such that

1. \(X \cong K_0 \times [0, 1]\) (diffeo.), and

2. \(\partial X = (K_0 \times \{0\}) \cup (-K_1 \times \{1\})\).
Cobordism of knots

Definition 1.1 An *m*-dimensional knot (*m*-knot, for short) is a closed oriented *m*-dim. submanifold of the oriented S^{m+2}. Two *m*-knots K_0 and K_1 in S^{m+2} are *cobordant* if there exists $X \subset S^{m+2} \times [0, 1]$, a properly embedded oriented $(m + 1)$-dim. submanifold, such that

1. $X \cong K_0 \times [0, 1]$ (diffeo.), and

2. $\partial X = (K_0 \times \{0\}) \cup (-K_1 \times \{1\})$.

X is called a **cobordism** between K_0 and K_1.
Cobordism vs Isotopy

§1. Introduction
- Algebraic knot
- Cobordism of knots
- Cobordism vs Isotopy
- Problem

§2. Results

§3. Proofs
Cobordism vs Isotopy

\[S^{m+2} \times \{0\} \xrightarrow{X} S^{m+2} \times \{1\} \]

Isotopic

\[K_0 \times \{0\} \xrightarrow{\downarrow} X \xleftarrow{\uparrow} K_1 \times \{1\} \]

Cobordant
If two algebraic knots K_f and K_g are **cobordant**, then the topological types of f and g are mildly related.
Problem

§1. Introduction
• Algebraic knot
• Cobordism of knots
• Cobordism vs Isotopy
• Problem

§2. Results

§3. Proofs

Problem 1.2 Given f and g,
Problem 1.2 Given f and g,

(1) determine whether f and g have the same topological type (i.e. whether K_f and K_g are isotopic),
Problem 1.2 Given f and g,

(1) determine whether f and g have the same topological type (i.e. whether K_f and K_g are isotopic),

(2) determine whether K_f and K_g are cobordant.
Problem

Problem 1.2 Given f and g,

1. determine whether f and g have the same topological type (i.e. whether K_f and K_g are isotopic),

2. determine whether K_f and K_g are cobordant.

The answers have been given in terms of Seifert forms, which are in general very difficult to compute.
Problem

Problem 1.2 Given \(f \) and \(g \),

\[
\begin{align*}
(1) & \quad \text{determine whether } f \text{ and } g \text{ have the same topological type (i.e. whether } K_f \text{ and } K_g \text{ are isotopic)}, \\
(2) & \quad \text{determine whether } K_f \text{ and } K_g \text{ are cobordant}.
\end{align*}
\]

The answers have been given in terms of Seifert forms, which are in general very difficult to compute. Even if we know the Seifert forms, it is still difficult to check if the corresponding knots are isotopic or cobordant.
Problem 1.2 Given f and g,

(1) determine whether f and g have the same topological type (i.e. whether K_f and K_g are isotopic),

(2) determine whether K_f and K_g are cobordant.

The answers have been given in terms of Seifert forms, which are in general very difficult to compute. Even if we know the Seifert forms, it is still difficult to check if the corresponding knots are isotopic or cobordant.

Today’s Topic: Problem 1.2 (2) for weighted homogeneous polynomials (in particular, Brieskorn–Pham type polynomials).
§1. Introduction

§2. Results
- Two-variable case
- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted homogeneous polynomials
- Criterion for Witt equivalence over \mathbb{R}
- Criterion for isomorphism over \mathbb{R}
- Brieskorn–Pham type polynomials
- Cobordism invariance of exponents
- Cobordism invariance of multiplicities
- Case of two or three variables

§3. Proofs
Two-variable case

Case of $n = 1$ and the polynomials are irreducible at 0.
Case of $n = 1$ and the polynomials are irreducible at 0.

Theorem 2.1 (Lê, 1972)

For algebraic knots K_f and K_g in S^3_ε, the following three are equivalent.

1. K_f and K_g are isotopic.
Two-variable case

Case of \(n = 1 \) and the polynomials are irreducible at 0.

Theorem 2.1 (Lê, 1972)

For algebraic knots \(K_f \) and \(K_g \) in \(S^3_\varepsilon \), the following three are equivalent.

1. \(K_f \) and \(K_g \) are isotopic.
2. \(K_f \) and \(K_g \) are cobordant.
Two-variable case

Case of \(n = 1 \) and the polynomials are irreducible at 0.

Theorem 2.1 (Lê, 1972)

For algebraic knots \(K_f \) and \(K_g \) in \(S^3_\varepsilon \), the following three are equivalent.

1. \(K_f \) and \(K_g \) are isotopic.
2. \(K_f \) and \(K_g \) are cobordant.
3. Alexander polynomials coincide: \(\Delta_f(t) = \Delta_g(t) \).
Higher dimensions

§1. Introduction

§2. Results

• Two-variable case
• Higher dimensions
• Algebraic cobordism
• Witt equivalence
• Weighted homogeneous polynomials
• Criterion for Witt equivalence over \mathbb{R}
• Criterion for isomorphism over \mathbb{R}
• Brieskorn–Pham type polynomials
• Cobordism invariance of exponents
• Cobordism invariance of multiplicities
• Case of two or three variables

§3. Proofs

It has long been conjectured that cobordant algebraic knots would be isotopic.
Higher dimensions

It has long been conjectured that cobordant algebraic knots would be isotopic. This conjecture was negatively answered almost twenty years later.
Higher dimensions

It has long been conjectured that cobordant algebraic knots would be isotopic. This conjecture was negatively answered almost twenty years later.

du Bois–Michel, 1993

Examples of two algebraic (spherical) knots that are cobordant, but are not isotopic.
Algebraic cobordism

Let $L_i : G_i \times G_i \to \mathbb{Z}, i = 0, 1$, be two bilinear forms defined on free \mathbb{Z}-modules of finite ranks.
Algebraic cobordism

Let $L_i : G_i \times G_i \to \mathbb{Z}, i = 0, 1,$ be two bilinear forms defined on free \mathbb{Z}-modules of finite ranks.
Set $G = G_0 \oplus G_1$ and $L = L_0 \oplus (-L_1)$.
Let $L_i : G_i \times G_i \to \mathbb{Z}$, $i = 0, 1$, be two bilinear forms defined on free \mathbb{Z}-modules of finite ranks. Set $G = G_0 \oplus G_1$ and $L = L_0 \oplus (-L_1)$.

Definition 2.2 Suppose $m = \text{rank } G$ is even. A direct summand $M \subset G$ is called a *metabolizer* if $\text{rank } M = m/2$ and L vanishes on M.
Let $L_i : G_i \times G_i \to \mathbb{Z}, i = 0, 1$, be two bilinear forms defined on free \mathbb{Z}-modules of finite ranks. Set $G = G_0 \oplus G_1$ and $L = L_0 \oplus (-L_1)$.

Definition 2.2 Suppose $m = \text{rank } G$ is even. A direct summand $M \subset G$ is called a *metabolizer* if $\text{rank } M = m/2$ and L vanishes on M.

L_0 is *algebraically cobordant* to L_1 if there exists a metabolizer satisfying additional properties about $S = L \pm L^T$.
Algebraic cobordism

Let \(L_i : G_i \times G_i \to \mathbb{Z}, \ i = 0, 1, \) be two bilinear forms defined on free \(\mathbb{Z} \)-modules of finite ranks.
Set \(G = G_0 \oplus G_1 \) and \(L = L_0 \oplus (-L_1) \).

Definition 2.2 Suppose \(m = \text{rank} \ G \) is even.
A direct summand \(M \subset G \) is called a *metabolizer* if \(\text{rank} \ M = m/2 \) and \(L \) vanishes on \(M \).

\(L_0 \) is **algebraically cobordant** to \(L_1 \) if there exists a metabolizer satisfying additional properties about \(S = L \pm L^T \).

Theorem 2.3 (Blanlœil–Michel, 1997) For \(n \geq 3 \),
two algebraic knots \(K_f \) and \(K_g \) are cobordant
\(\iff \) Seifert forms \(L_f \) and \(L_g \) are algebraically cobordant.
Witt equivalence

Remark 2.4 At present, there is no efficient criterion for algebraic cobordism. It is usually very difficult to determine whether given two forms are algebraically cobordant or not.
Witt equivalence

Remark 2.4 At present, there is no efficient criterion for algebraic cobordism. It is usually very difficult to determine whether given two forms are algebraically cobordant or not.

Two forms L_0 and L_1 are *Witt equivalent over \mathbb{R}* if there exists a metabolizer over \mathbb{R} for $L_0 \otimes \mathbb{R}$ and $L_1 \otimes \mathbb{R}$.
Remark 2.4 At present, there is no efficient criterion for algebraic cobordism. It is usually very difficult to determine whether given two forms are algebraically cobordant or not.

Two forms L_0 and L_1 are **Witt equivalent over \mathbb{R}** if there exists a metabolizer over \mathbb{R} for $L_0 \otimes \mathbb{R}$ and $L_1 \otimes \mathbb{R}$.

Lemma 2.5 If two algebraic knots K_f and K_g are cobordant, then their Seifert forms L_f and L_g are Witt equivalent over \mathbb{R}.
Weighted homogeneous polynomials

§1. Introduction

§2. Results
- Two-variable case
- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- **Weighted homogeneous polynomials**
- Criterion for Witt equivalence over \mathbb{R}
- Criterion for isomorphism over \mathbb{R}
- Brieskorn–Pham type polynomials
- Cobordism invariance of exponents
- Cobordism invariance of multiplicities
- Case of two or three variables

§3. Proofs

Let f be a *weighted homogeneous polynomial* in \mathbb{C}^{n+1},
Weighted homogeneous polynomials

Let f be a **weighted homogeneous polynomial** in \mathbb{C}^{n+1}, i.e. $\exists (w_1, w_2, \ldots, w_{n+1}) \in \mathbb{Q}^{n+1}_{> 0}$, called **weights**, such that for each monomial $cz_1^{k_1} z_2^{k_2} \cdots z_{n+1}^{k_{n+1}}$, $c \neq 0$, of f, we have

$$\sum_{j=1}^{n+1} \frac{k_j}{w_j} = 1.$$
Weighted homogeneous polynomials

Let \(f \) be a \textit{weighted homogeneous polynomial} in \(\mathbb{C}^{n+1} \), i.e. \(\exists (w_1, w_2, \ldots, w_{n+1}) \in \mathbb{Q}^{n+1}_{>0} \), called \textit{weights}, such that for each monomial \(c z_1^{k_1} z_2^{k_2} \cdots z_{n+1}^{k_{n+1}} \), \(c \neq 0 \), of \(f \), we have

\[
\sum_{j=1}^{n+1} \frac{k_j}{w_j} = 1.
\]

\(f \) is \textit{non-degenerate} if it has an isolated critical point at 0.
Weighted homogeneous polynomials

Let f be a **weighted homogeneous polynomial** in \mathbb{C}^{n+1}, i.e. $\exists (w_1, w_2, \ldots, w_{n+1}) \in \mathbb{Q}_{>0}^{n+1}$, called **weights**, such that for each monomial $cz_1^{k_1}z_2^{k_2}\cdots z_{n+1}^{k_{n+1}}$, $c \neq 0$, of f, we have

$$\sum_{j=1}^{n+1} \frac{k_j}{w_j} = 1.$$

f is **non-degenerate** if it has an isolated critical point at 0.

According to Saito, if f is non-degenerate, then by an analytic change of coordinates, f can be transformed to a weighted homogeneous polynomial with all weights ≥ 2.

Weighted homogeneous polynomials

Let f be a **weighted homogeneous polynomial** in \mathbb{C}^{n+1}, i.e. $\exists (w_1, w_2, \ldots, w_{n+1}) \in \mathbb{Q}_{>0}^{n+1}$, called **weights**, such that for each monomial $c z_1^{k_1} z_2^{k_2} \cdots z_{n+1}^{k_{n+1}}$, $c \neq 0$, of f, we have

$$\sum_{j=1}^{n+1} \frac{k_j}{w_j} = 1.$$

f is **non-degenerate** if it has an isolated critical point at 0.

According to Saito, if f is non-degenerate, then by an analytic change of coordinates, f can be transformed to a weighted homogeneous polynomial with all weights ≥ 2. Furthermore, then the weights ≥ 2 are **analytic invariants** of the polynomial.
Weighted homogeneous polynomials

Let f be a *weighted homogeneous polynomial* in \mathbb{C}^{n+1}, i.e. $\exists (w_1, w_2, \ldots, w_{n+1}) \in \mathbb{Q}^{n+1}_{>0}$, called *weights*, such that for each monomial $cz_1^{k_1}z_2^{k_2} \cdots z_{n+1}^{k_{n+1}}$, $c \neq 0$, of f, we have

$$\sum_{j=1}^{n+1} \frac{k_j}{w_j} = 1.$$

f is *non-degenerate* if it has an isolated critical point at 0.

According to Saito, if f is non-degenerate, then by an analytic change of coordinates, f can be transformed to a weighted homogeneous polynomial with all weights ≥ 2. Furthermore, then the weights ≥ 2 are *analytic invariants* of the polynomial.

In the following, we will always assume \forall weights ≥ 2.
Criterion for Witt equivalence over \mathbb{R}

Set

$$P_f(t) = \prod_{j=1}^{n+1} \frac{t - t^{1/w_j}}{t^{1/w_j} - 1}.$$

$P_f(t)$ is a polynomial in $t^{1/m}$ over \mathbb{Z} for some integer $m > 0$.
Criterion for Witt equivalence over \mathbb{R}

Set

$$P_f(t) = \prod_{j=1}^{n+1} \frac{t - t^{1/w_j}}{t^{1/w_j} - 1}.$$

$P_f(t)$ is a polynomial in $t^{1/m}$ over \mathbb{Z} for some integer $m > 0$. Two non-degenerate weighted homogeneous polynomials f and g have the same weights if and only if $P_f(t) = P_g(t)$.

Criterion for Witt equivalence over \mathbb{R}

Set

$$P_f(t) = \prod_{j=1}^{n+1} \frac{t - t^{1/w_j}}{t^{1/w_j} - 1}.$$

$P_f(t)$ is a polynomial in $t^{1/m}$ over \mathbb{Z} for some integer $m > 0$.

Two non-degenerate weighted homogeneous polynomials f and g have the same weights if and only if $P_f(t) = P_g(t)$.

Theorem 2.6 Let f and g be non-degenerate weighted homogeneous polynomials in \mathbb{C}^{n+1}. Then, their Seifert forms L_f and L_g are Witt equivalent over \mathbb{R} iff

$$P_f(t) \equiv P_g(t) \mod t + 1.$$
Criterion for isomorphism over \mathbb{R}

The above theorem should be compared with the following.

Remark 2.7 The Seifert forms L_f and L_g associated with non-degenerate weighted homogeneous polynomials f and g are isomorphic over \mathbb{R} iff

$$P_f(t) \equiv P_g(t) \mod t^2 - 1.$$
Brieskorn–Pham type polynomials

§1. Introduction

§2. Results

• Two-variable case
• Higher dimensions
• Algebraic cobordism
• Witt equivalence
• Weighted homogeneous polynomials
• Criterion for Witt equivalence over \mathbb{R}
• Criterion for isomorphism over \mathbb{R}
• Brieskorn–Pham type polynomials
• Cobordism invariance of exponents
• Cobordism invariance of multiplicities
• Case of two or three variables

§3. Proofs

Proposition 2.8 Let

$$f(z) = \sum_{j=1}^{n+1} z_j^{a_j} \quad \text{and} \quad g(z) = \sum_{j=1}^{n+1} z_j^{b_j}$$

be Brieskorn–Pham type polynomials.
Brieskorn–Pham type polynomials

§ 1. Introduction

§ 2. Results

- Two-variable case
- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted homogeneous polynomials
- Criterion for Witt equivalence over \mathbb{R}
- Criterion for isomorphism over \mathbb{R}
- Brieskorn–Pham type polynomials
- Cobordism invariance of exponents
- Cobordism invariance of multiplicities
- Case of two or three variables

§ 3. Proofs

Proposition 2.8 Let

$$f(z) = \sum_{j=1}^{n+1} z_j^{a_j} \quad \text{and} \quad g(z) = \sum_{j=1}^{n+1} z_j^{b_j}$$

be Brieskorn–Pham type polynomials. Then, their Seifert forms are Witt equivalent over \mathbb{R} iff

$$\prod_{j=1}^{n+1} \cot \frac{\pi \ell}{2a_j} = \prod_{j=1}^{n+1} \cot \frac{\pi \ell}{2b_j}$$

holds for all odd integers ℓ.
Cobordism invariance of exponents

Theorem 2.9 Suppose that for each of the Brieskorn–Pham type polynomials

\[f(z) = \sum_{j=1}^{n+1} z_j^{a_j} \quad \text{and} \quad g(z) = \sum_{j=1}^{n+1} z_j^{b_j}, \]

no exponent is a multiple of another one.
Cobordism invariance of exponents

§1. Introduction

§2. Results

- Two-variable case
- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted homogeneous polynomials
- Criterion for Witt equivalence over \mathbb{R}
- Criterion for isomorphism over \mathbb{R}
- Brieskorn–Pham type polynomials
- Cobordism invariance of exponents
- Cobordism invariance of multiplicities
- Case of two or three variables

§3. Proofs

Theorem 2.9 Suppose that for each of the Brieskorn–Pham type polynomials

$$f(z) = \sum_{j=1}^{n+1} z_j^{a_j} \quad \text{and} \quad g(z) = \sum_{j=1}^{n+1} z_j^{b_j},$$

no exponent is a multiple of another one. Then, the knots K_f and K_g are cobordant iff

$$a_j = b_j, \quad j = 1, 2, \ldots, n + 1,$$

up to order.
Cobordism invariance of multiplicities

The smallest degree of a polynomial is called its **multiplicity**.
The smallest degree of a polynomial is called its **multiplicity**.

Zariski Conjecture

The multiplicity is a topological invariant of a complex hypersurface singularity.
Cobordism invariance of multiplicities

The smallest degree of a polynomial is called its multiplicity.

Zariski Conjecture
The multiplicity is a topological invariant of a complex hypersurface singularity.

Proposition 2.10 Suppose that for each of the Brieskorn–Pham type polynomials

\[f(z) = \sum_{j=1}^{n+1} z^{a_j} \quad \text{and} \quad g(z) = \sum_{j=1}^{n+1} z^{b_j} \]

the exponents are pairwise distinct.
Cobordism invariance of multiplicities

The smallest degree of a polynomial is called its **multiplicity**.

Zariski Conjecture

The multiplicity is a topological invariant of a complex hypersurface singularity.

Proposition 2.10 *Suppose that for each of the Brieskorn–Pham type polynomials*

\[
f(z) = \sum_{j=1}^{n+1} z_j^{a_j} \quad \text{and} \quad g(z) = \sum_{j=1}^{n+1} z_j^{b_j}
\]

the exponents are pairwise distinct.

If \(K_f \) and \(K_g \) are **cobordant**, then the **multiplicities** of \(f \) and \(g \) coincide.
Case of two or three variables

Proposition 2.11 Let f and g be weighted homogeneous polynomials of two variables with weights (w_1, w_2) and (w'_1, w'_2), respectively, with $w_j, w'_j \geq 2$. If their Seifert forms are Witt equivalent over \mathbb{R}, then $w_j = w'_j$, $j = 1, 2$, up to order.
Case of two or three variables

Proposition 2.11 Let f and g be weighted homogeneous polynomials of two variables with weights (w_1, w_2) and (w'_1, w'_2), respectively, with $w_j, w'_j \geq 2$. If their Seifert forms are Witt equivalent over \mathbb{R}, then $w_j = w'_j$, $j = 1, 2$, up to order.

Proposition 2.12 Let $f(z) = z_1^{a_1} + z_2^{a_2} + z_3^{a_3}$ and $g(z) = z_1^{b_1} + z_2^{b_2} + z_3^{b_3}$ be Brieskorn–Pham type polynomials of three variables. If the Seifert forms L_f and L_g are Witt equivalent over \mathbb{R}, then $a_j = b_j$, $j = 1, 2, 3$, up to order.
§3. Proofs

- Proof of Theorem 2.6
- Proof of Theorem 2.6 (Continued)
- Proof of Proposition 2.8
- Proof of Proposition 2.8 (Continued)
- Proof of Theorem 2.9
- Open problem
- Cobordism and isotopy for Brieskorn–Pham type polynomials
Proof of Theorem 2.6

Theorem 2.6 Let f and g be non-degenerate weighted homogeneous polynomials in \mathbb{C}^{n+1}. Then, their Seifert forms L_f and L_g are **Witt equivalent over** \mathbb{R} iff

$$P_f(t) \equiv P_g(t) \mod t + 1.$$
Proof of Theorem 2.6

Theorem 2.6 Let f and g be non-degenerate weighted homogeneous polynomials in \mathbb{C}^{n+1}. Then, their Seifert forms L_f and L_g are Witt equivalent over \mathbb{R} iff

$$P_f(t) \equiv P_g(t) \mod t + 1.$$

Proof. For simplicity, we consider the case of n even.
Proof of Theorem 2.6

Theorem 2.6 Let \(f \) and \(g \) be non-degenerate weighted homogeneous polynomials in \(\mathbb{C}^{n+1} \). Then, their Seifert forms \(L_f \) and \(L_g \) are **Witt equivalent over** \(\mathbb{R} \) iff

\[
P_f(t) \equiv P_g(t) \mod t + 1.
\]

Proof. For simplicity, we consider the case of \(n \) even.

Let \(\Delta_f(t) \) be the **characteristic polynomial of the monodromy**

\[
h_* : H_n(\text{Int} F_f; \mathbb{C}) \to H_f(\text{Int} F_f; \mathbb{C}),
\]

where \(h : \text{Int} F_f \to \text{Int} F_f \) is the characteristic diffeomorphism of the Milnor fibration \(\varphi_f : S_{\varepsilon}^{2n+1} \setminus K_f \to S^1. \)
Proof of Theorem 2.6 (Continued)

We have

\[H^n(F_f; \mathbb{C}) = \bigoplus \lambda H^n(F_f; \mathbb{C})_\lambda, \]

where \(\lambda \) runs over all the roots of \(\Delta_f(t) \), and \(H^n(F_f; \mathbb{C})_\lambda \) is the eigenspace of \(h_* \) corresponding to the eigenvalue \(\lambda \).
Proof of Theorem 2.6 (Continued)

We have

\[H^n(F_f; \mathbb{C}) = \bigoplus \lambda H^n(F_f; \mathbb{C})_\lambda, \]

where \(\lambda \) runs over all the roots of \(\Delta_f(t) \), and \(H^n(F_f; \mathbb{C})_\lambda \) is the eigenspace of \(h_* \) corresponding to the eigenvalue \(\lambda \).

The **intersection form** \(S_f = L_f + L^T_f \) of \(F_f \) on \(H^n(F_f; \mathbb{C}) \) decomposes as the orthogonal direct sum of \((S_f)|_{H^n(F_f; \mathbb{C})_\lambda} \).
Proof of Theorem 2.6 (Continued)

We have

\[H^n(F_f; C) = \bigoplus \lambda H^n(F_f; C)_\lambda, \]

where \(\lambda \) runs over all the roots of \(\Delta_f(t) \), and \(H^n(F_f; C)_\lambda \) is the eigenspace of \(h_* \) corresponding to the eigenvalue \(\lambda \).

The intersection form \(S_f = L_f + L_f^T \) of \(F_f \) on \(H^n(F_f; C) \) decomposes as the orthogonal direct sum of \((S_f)|_{H^n(F_f; C)_\lambda} \).

Let \(\mu(f)_+^\lambda \) (resp. \(\mu(f)_-^\lambda \)) denote the number of positive (resp. negative) eigenvalues of \((S_f)|_{H^n(F_f; C)_\lambda} \).
Proof of Theorem 2.6 (Continued)

We have

\[H^n(F_f; \mathbb{C}) = \bigoplus_\lambda H^n(F_f; \mathbb{C})_\lambda, \]

where \(\lambda \) runs over all the roots of \(\Delta_f(t) \), and \(H^n(F_f; \mathbb{C})_\lambda \) is the eigenspace of \(h_* \) corresponding to the eigenvalue \(\lambda \).

The **intersection form** \(S_f = L_f + L^T_f \) of \(F_f \) on \(H^n(F_f; \mathbb{C}) \) decomposes as the orthogonal direct sum of \((S_f|_{H^n(F_f; \mathbb{C})_\lambda}) \).

Let \(\mu(f)^+_\lambda \) (resp. \(\mu(f)^-_\lambda \)) denote the number of positive (resp. negative) eigenvalues of \((S_f|_{H^n(F_f; \mathbb{C})_\lambda}) \).

The integer

\[\sigma_\lambda(f) = \mu(f)^+_\lambda - \mu(f)^-_\lambda \]

is called the **equivariant signature** of \(f \) with respect to \(\lambda \).
Proof of Theorem 2.6 (Continued)

Lemma 3.1 (Steenbrink, 1977)

Set \(P_f(t) = \sum c_\alpha t^\alpha \). Then we have

\[
\sigma_\lambda(f) = \sum_{\lambda = \exp(-2\pi i \alpha)} c_\alpha - \sum_{\lambda = \exp(-2\pi i \alpha), \lfloor \alpha \rfloor: \text{odd}} c_\alpha
\]

for \(\lambda \neq 1 \), where \(i = \sqrt{-1} \), and \(\lfloor \alpha \rfloor \) is the largest integer not exceeding \(\alpha \).
Proof of Theorem 2.6 (Continued)

Lemma 3.1 (Steenbrink, 1977)

Set \(P_f(t) = \sum c_\alpha t^\alpha \). Then we have

\[
\sigma_\lambda(f) = \sum_{\lambda = \exp(-2\pi i \alpha), \lfloor \alpha \rfloor \text{: even}} c_\alpha - \sum_{\lambda = \exp(-2\pi i \alpha), \lfloor \alpha \rfloor \text{: odd}} c_\alpha
\]

for \(\lambda \neq 1 \), where \(i = \sqrt{-1} \), and \(\lfloor \alpha \rfloor \) is the largest integer not exceeding \(\alpha \).

Remark 3.2 The equivariant signature for \(\lambda = 1 \) is always equal to zero.
Proof of Theorem 2.6 (Continued)

Seifert forms L_f and L_g are Witt equivalent over \mathbb{R}.

$$\Rightarrow \quad \sigma_{\lambda}(f) = \sigma_{\lambda}(g) \quad \text{for all } \lambda.$$
Proof of Theorem 2.6 (Continued)

Seifert forms L_f and L_g are Witt equivalent over \mathbb{R}.

$$\sigma_\lambda(f) = \sigma_\lambda(g)$$

for all λ.

Set

$$P_f(t) = P_f^0(t) + P_f^1(t), \quad \text{where}$$

$$P_f^0(t) = \sum_{[\alpha] \equiv 0 \pmod{2}} c_\alpha t^\alpha,$$

$$P_f^1(t) = \sum_{[\alpha] \equiv 1 \pmod{2}} c_\alpha t^\alpha.$$

We define $P_g^0(t)$ and $P_g^1(t)$ similarly.
Proof of Theorem 2.6 (Continued)

Seifert forms L_f and L_g are Witt equivalent over \mathbb{R}.

$$\Rightarrow \quad \sigma_\lambda(f) = \sigma_\lambda(g) \quad \text{for all } \lambda.$$

Set

$$P_f(t) = P^0_f(t) + P^1_f(t), \quad \text{where}$$

$$P^0_f(t) = \sum_{[\alpha] \equiv 0 \pmod{2}} c_\alpha t^\alpha,$$

$$P^1_f(t) = \sum_{[\alpha] \equiv 1 \pmod{2}} c_\alpha t^\alpha.$$

We define $P^0_g(t)$ and $P^1_g(t)$ similarly.

Since the equivariant signatures of f and g coincide, we have

$$tP^0_f(t) - P_f(t) \equiv tP^0_g(t) - P_g(t) \pmod{t^2 - 1},$$

$$tP^1_f(t) - P^0_f(t) \equiv tP^1_g(t) - P^0_g(t) \pmod{t^2 - 1}.$$
Adding up these two congruences we have

\[(t - 1)P_f(t) \equiv (t - 1)P_g(t) \mod t^2 - 1, \quad (1)\]
Proof of Theorem 2.6 (Continued)

Adding up these two congruences we have

\[(t - 1)P_f(t) \equiv (t - 1)P_g(t) \mod t^2 - 1,\] \hspace{1cm} (1)

which implies

\[P_f(t) \equiv P_g(t) \mod t + 1.\] \hspace{1cm} (2)
Proof of Theorem 2.6 (Continued)

Adding up these two congruences we have

\[(t - 1)P_f(t) \equiv (t - 1)P_g(t) \mod t^2 - 1,\]

(1)

which implies

\[P_f(t) \equiv P_g(t) \mod t + 1.\]

(2)

Conversely, suppose that (2) holds.

\[\implies (1) \text{ holds.}\]

\[\implies f \text{ and } g \text{ have the same equivariant signatures.}\]
Proof of Theorem 2.6 (Continued)

Adding up these two congruences we have

\[(t - 1)P_f(t) \equiv (t - 1)P_g(t) \mod t^2 - 1, \quad (1)\]

which implies

\[P_f(t) \equiv P_g(t) \mod t + 1. \quad (2)\]

Conversely, suppose that (2) holds.

\[\implies (1) \text{ holds.} \]

\[\implies f \text{ and } g \text{ have the same equivariant signatures.} \]

Then, we can prove that they are Witt equivalent over \(\mathbb{R}\).

This completes the proof.
Proposition 2.8 Let

\[f(z) = \sum_{j=1}^{n+1} z_j^{a_j} \quad \text{and} \quad g(z) = \sum_{j=1}^{n+1} z_j^{b_j} \]

be Brieskorn–Pham type polynomials. Then, their Seifert forms are Witt equivalent over \(\mathbb{R} \) iff

\[\prod_{j=1}^{n+1} \cot \frac{\pi \ell}{2a_j} = \prod_{j=1}^{n+1} \cot \frac{\pi \ell}{2b_j} \]

holds for all odd integers \(\ell \).
Proof of Proposition 2.8 (Continued)

Proof.

$P_f(t)$ and $P_g(t)$ are polynomials in $s = t^{1/m}$ for some m. Put $Q_f(s) = P_f(t)$ and $Q_g(s) = P_g(t)$.

Then, $P_f(t) \equiv P_g(t) \mod t + 1$ holds

$\iff Q_f(\xi) = Q_g(\xi)$ for all ξ with $\xi^m = -1$.
Proof of Proposition 2.8 (Continued)

Proof.

$P_f(t)$ and $P_g(t)$ are polynomials in $s = t^{1/m}$ for some m. Put $Q_f(s) = P_f(t)$ and $Q_g(s) = P_g(t)$.

Then, $P_f(t) \equiv P_g(t) \mod t + 1$ holds

$\iff Q_f(\xi) = Q_g(\xi)$ for all ξ with $\xi^m = -1$.

Note that ξ is of the form

$$\exp\left(\pi\sqrt{-1}\ell/m\right)$$

with ℓ odd and that

$$\frac{-1 - \exp\left(\pi\sqrt{-1}\ell/a_j\right)}{\exp\left(\pi\sqrt{-1}\ell/a_j\right) - 1} = \sqrt{-1} \cot \frac{\pi \ell}{2a_j}.$$

Then, we immediately get Proposition 2.8.
Proof of Theorem 2.9

Theorem 2.9 Suppose that for each of the Brieskorn–Pham type polynomials

\[f(z) = \sum_{j=1}^{n+1} z^{a_j} \quad \text{and} \quad g(z) = \sum_{j=1}^{n+1} z^{b_j}, \]

no exponent is a multiple of another one.

Then, the knots \(K_f \) and \(K_g \) are \textbf{cobordant} iff

\[a_j = b_j, \quad j = 1, 2, \ldots, n + 1, \]

up to order.
Proof of Theorem 2.9

Theorem 2.9 Suppose that for each of the Brieskorn–Pham type polynomials

\[f(z) = \sum_{j=1}^{n+1} z_j^{a_j} \quad \text{and} \quad g(z) = \sum_{j=1}^{n+1} z_j^{b_j}, \]

no exponent is a multiple of another one. Then, the knots \(K_f \) and \(K_g \) are cobordant iff

\[a_j = b_j, \quad j = 1, 2, \ldots, n+1, \]

up to order.

This is a consequence of the “Fox–Milnor type relation” for the Alexander polynomials of cobordant algebraic knots.
Open problem

Problem 3.3 Are the exponents cobordism invariants for Brieskorn–Pham type polynomials?
Open problem

Problem 3.3 *Are the exponents cobordism invariants for Brieskorn–Pham type polynomials?*

Proposition 2.8 reduces the above problem to a number theoretical problem involving cotangents.
Open problem

Problem 3.3 Are the exponents cobordism invariants for Brieskorn–Pham type polynomials?

Proposition 2.8 reduces the above problem to a number theoretical problem involving cotangents.

\[
\prod_{j=1}^{n+1} \cot \frac{\pi \ell}{2a_j} = \prod_{j=1}^{n+1} \cot \frac{\pi \ell}{2b_j} \quad \forall \text{odd integers } \ell
\]

\[\implies a_j = b_j \quad \text{up to order?}\]
Remark 3.4 Theorem 2.9 implies that two algebraic knots K_f and K_g associated with certain Brieskorn–Pham type polynomials are isotopic if and only of they are cobordant.
Cobordism and isotopy for Brieskorn–Pham type polynomials

Remark 3.4 Theorem 2.9 implies that two algebraic knots K_f and K_g associated with certain Brieskorn–Pham type polynomials are **isotopic** if and only if they are **cobordant**.

According to **Yoshinaga–Suzuki**, two algebraic knots associated with Brieskorn–Pham type polynomials in general are isotopic if and only if they have the same set of exponents.
Remark 3.4 Theorem 2.9 implies that two algebraic knots K_f and K_g associated with certain Brieskorn–Pham type polynomials are isotopic if and only if they are cobordant.

According to Yoshinaga–Suzuki, two algebraic knots associated with Brieskorn–Pham type polynomials in general are isotopic if and only if they have the same set of exponents.

In fact, they showed that the characteristic polynomials coincide if and only if the Brieskorn–Pham type polynomials have the same set of exponents.
§1. Introduction

§2. Results

§3. Proofs
- Proof of Theorem 2.6
- Proof of Theorem 2.6 (Continued)
- Proof of Proposition 2.8
- Proof of Proposition 2.8 (Continued)
- Proof of Theorem 2.9
- Open problem
- Cobordism and isotopy for Brieskorn–Pham type polynomials

Thank you!