Topology of
Definite Fold Singularities

Osamu Saeki
(Kyushu University)

November 24, 2011
§1. Special Generic Maps
M^m: compact C^∞ manifold without boundary
Morse function

§1. Special Generic Maps §2. 4-Dimensional Case §3. Broken Lefschetz Fibrations

M^m: compact C^∞ manifold without boundary

Definition 1.1 A **Morse function** $M^m \to \mathbb{R}$ is a C^∞ function with each critical point being of the form

$$(x_1, x_2, \ldots, x_m) \mapsto \pm x_1^2 \pm x_2^2 \pm \cdots \pm x_m^2 + c.$$

Number of negative signs is called the **index** of a critical point.
M^m : compact C^∞ manifold without boundary

Definition 1.1 A **Morse function** $M^m \to \mathbb{R}$ is a C^∞ function with each critical point being of the form

$$(x_1, x_2, \ldots, x_m) \mapsto \pm x_1^2 \pm x_2^2 \pm \cdots \pm x_m^2 + c.$$

Number of negative signs is called the **index** of a critical point.

\[
\begin{aligned}
\text{local minimum} & \iff \text{index } 0 \\
\text{local maximum} & \iff \text{index } m
\end{aligned}
\]
M^m : compact C^∞ manifold without boundary

Definition 1.1 A **Morse function** $M^m \rightarrow \mathbb{R}$ is a C^∞ function with each critical point being of the form

$$(x_1, x_2, \ldots, x_m) \mapsto \pm x_1^2 \pm x_2^2 \pm \cdots \pm x_m^2 + c.$$

Number of negative signs is called the **index** of a critical point.

$$\begin{cases}
\text{local minimum} & \iff \text{index } 0 \\
\text{local maximum} & \iff \text{index } m
\end{cases}$$

They always appear if M^m is compact.
Theorem 1.2 (Reeb, Smale, Cerf et al.)

M^m: compact C^∞ manifold without boundary

\exists Morse function $M^m \to \mathbb{R}$ with only critical points of index 0 or m

\iff

(1) $M^m \cong S^m$ (homeomorphic) ($m \neq 4$)

(2) $M^m \cong S^m$ (diffeomorphic) ($m = 4$)
Theorem 1.2 (Reeb, Smale, Cerf et al.)

\(M^m \): compact \(C^{\infty} \) manifold without boundary

\[\exists \text{Morse function } M^m \rightarrow \mathbb{R} \text{ with only critical points of index 0 or } m \]

\[\iff
\begin{align*}
(1) & \quad M^m \approx S^m \text{ (homeomorphic)} \quad (m \neq 4) \\
(2) & \quad M^m \cong S^m \text{ (diffeomorphic)} \quad (m = 4)
\end{align*} \]

Remark 1.3

Generalized Poincaré conjecture is still open in dimension 4 in the \(C^\infty \) category.
Definition 1.4 A singularity of a C^∞ map $M^m \to N^n$, $m \geq n$, that has the normal form

$$(x_1, x_2, \ldots, x_m) \mapsto (x_1, x_2, \ldots, x_{n-1}, \pm x_n^2 \pm x_{n+1}^2 \pm \cdots \pm x_m^2)$$

is called a fold singularity.
Definition 1.4 A singularity of a C^∞ map $M^m \to N^n$, $m \geq n$, that has the normal form

$$(x_1, x_2, \ldots, x_m) \mapsto (x_1, x_2, \ldots, x_{n-1}, \pm x_n^2 \pm x_{n+1}^2 \pm \cdots \pm x_m^2)$$

is called a fold singularity.

It is a definite fold singularity if all the signs are the same.
Definition 1.4 A singularity of a C^∞ map $M^m \to N^n$, $m \geq n$, that has the normal form

$$(x_1, x_2, \ldots, x_m) \mapsto (x_1, x_2, \ldots, x_{n-1}, \pm x_n^2 \pm x_{n+1}^2 \pm \cdots \pm x_m^2)$$

is called a **fold singularity**.

It is a **definite fold singularity** if all the signs are the same.

Definition 1.5 $f : M^m \to N^n$ is a **special generic map** (SGM, for short) if it has only definite fold singularities.
Definition 1.4 A singularity of a C^∞ map $M^m \to N^n$, $m \geq n$, that has the normal form

$$(x_1, x_2, \ldots, x_m) \mapsto (x_1, x_2, \ldots, x_{n-1}, \pm x^2_n \pm x^2_{n+1} \pm \cdots \pm x^2_m)$$

is called a **fold singularity**.

It is a **definite fold singularity** if all the signs are the same.

Definition 1.5 $f : M^m \to N^n$ is a **special generic map** (SGM, for short) if it has only **definite fold singularities**.

Example 1.6 A function $f : M^m \to \mathbb{R}$ is a SGM iff it is a Morse function with only critical points of index 0 or m.
Examples of SGMs

§1. Special Generic Maps §2. 4-Dimensional Case §3. Broken Lefschetz Fibrations

Figure 1: Examples of special generic maps
Definition 1.7 M^m: compact

$$S(M^m) = \{ n \in \mathbb{Z} \mid 1 \leq n \leq m, \exists f : M^m \to \mathbb{R}^n \text{ SGM} \}$$
Definition 1.7 M^m: compact

$$S(M^m) = \{n \in \mathbb{Z} | 1 \leq n \leq m, \exists f : M^m \to \mathbb{R}^n \text{ SGM}\}$$

This is a diffeomorphism invariant of M^m.

$$M_0 \cong M_1 \text{ (diffeomorphic)} \implies S(M_0) = S(M_1)$$
Definition 1.7 \(M^m \): compact

\[
S(M^m) = \{ n \in \mathbb{Z} \mid 1 \leq n \leq m, \exists f : M^m \to \mathbb{R}^n \quad \text{SGM} \}
\]

This is a diffeomorphism invariant of \(M^m \).

\[
M_0 \cong M_1 \quad \text{(diffeomorphic)} \implies S(M_0) = S(M_1)
\]

Example 1.8

(1) \(S(S^m) = \{1, 2, \ldots, m\} \)
Definition 1.7 \(M^m \): compact

\[
S(M^m) = \{ n \in \mathbb{Z} \mid 1 \leq n \leq m, \exists f : M^m \to \mathbb{R}^n \text{ SGM} \}
\]

This is a diffeomorphism invariant of \(M^m \).

\[
M_0 \cong M_1 \quad \text{(diffeomorphic)} \quad \implies \quad S(M_0) = S(M_1)
\]

Example 1.8

(1) \(S(S^m) = \{1, 2, \ldots, m\} \)

(2) \(S(S^a \times S^b) = \{a + 1, a + 2, \ldots, a + b\} \quad (a \leq b) \)
Theorem 1.9 (S., 1993)

M^m: compact C^∞ manifold of dimension m

\[S(M^m) = \{ 1, 2, \ldots, m \} \iff M^m \cong S^m \quad \text{(diffeomorphic)} \]
Theorem 1.9 (S., 1993)

\[M^m: \text{compact } C^\infty \text{ manifold of dimension } m \]

\[S(M^m) = \{1, 2, \ldots, m\} \iff M^m \cong S^m \text{ (diffeomorphic)} \]

SGMs can detect the standard differentiable structure on a sphere!
Theorem 1.9 (S., 1993)

\(M^m \): compact \(C^\infty \) manifold of dimension \(m \)

\[S(M^m) = \{1, 2, \ldots, m\} \iff M^m \cong S^m \text{ (diffeomorphic)} \]

SGMs can detect the standard differentiable structure on a sphere!

Example 1.10

\(\Sigma^7 \): Milnor’s exotic 7-sphere
\(\{1, 2, 7\} \subset S(\Sigma^7) \subset \{1, 2, 3, 7\} \)
Definition 1.11 \(f_i : M_i^m \to \mathbb{R}^n \) SGMs, \(i = 0, 1 \), are **cobordant** if
Definition 1.11 \(f_i : M_i^m \rightarrow \mathbb{R}^n \) SGMs, \(i = 0, 1 \), are cobordant if
\[\exists V^{m+1} : \text{compact manifold with } \partial V^{m+1} = M_0^m \cup M_1^m, \]
\[\exists F : V^{m+1} \rightarrow \mathbb{R}^n \times [0, 1] \text{ SGM such that} \]
Definition 1.11 \(f_i : M_i^m \to \mathbb{R}^n \) SGMs, \(i = 0, 1 \), are **cobordant** if

\[\exists V^{m+1} : \text{compact manifold with } \partial V^{m+1} = M_0^m \cup M_1^m, \]

\[\exists F : V^{m+1} \to \mathbb{R}^n \times [0, 1] \] SGM such that

\[
\begin{align*}
F|_{M_0} &= f_0 : M_0^m \to \mathbb{R}^n \times \{0\} \\
F|_{M_1} &= f_1 : M_1^m \to \mathbb{R}^n \times \{1\}
\end{align*}
\]
Definition 1.11 \(f_i : M_i^m \to \mathbb{R}^n \) SGMs, \(i = 0, 1 \), are cobordant if
\[\exists V^{m+1} : \text{compact manifold with } \partial V^{m+1} = M_0^m \cup M_1^m, \]
\[\exists F : V^{m+1} \to \mathbb{R}^n \times [0, 1] \] SGM such that
\[
\begin{align*}
F|_{M_0} &= f_0 : M_0^m \to \mathbb{R}^n \times \{0\} \\
F|_{M_1} &= f_1 : M_1^m \to \mathbb{R}^n \times \{1\}
\end{align*}
\]
Set of cobordism classes of all SGMs of m-dim. compact manifolds into \mathbb{R}^n forms an **abelian group**, denoted by $\Gamma(m, n)$.
Set of cobordism classes of all SGMs of m-dim. compact manifolds into \mathbb{R}^n forms an abelian group, denoted by $\Gamma(m, n)$.
Addition \longleftrightarrow Disjoint union
Set of cobordism classes of all SGMs of m-dim. compact manifolds into \mathbb{R}^n forms an abelian group, denoted by $\Gamma(m, n)$.

Addition \leftrightarrow Disjoint union

$\widetilde{\Gamma}(m, n)$: oriented version
Groups of SGMs

Set of cobordism classes of all SGMs of m-dim. compact manifolds into \mathbb{R}^n forms an **abelian group**, denoted by $\Gamma(m, n)$.

Addition \longleftrightarrow Disjoint union

$\tilde{\Gamma}(m, n)$: oriented version

Θ_m : group of differentiable structures on an oriented m-sphere

Addition \longleftrightarrow Connected sum
Groups of SGMs

§1. Special Generic Maps §2. 4-Dimensional Case §3. Broken Lefschetz Fibrations

Set of cobordism classes of all SGMs of m-dim. compact manifolds into \mathbb{R}^n forms an **abelian group**, denoted by $\Gamma(m, n)$. Addition \leftrightarrow Disjoint union

$\tilde{\Gamma}(m, n)$: oriented version

Θ_m: group of differentiable structures on an oriented m-sphere

Addition \leftrightarrow Connected sum

Theorem 1.12 (S., 2002) $m \geq 6$

$\tilde{\Gamma}(m, 1) \cong \Theta_m$

$\Gamma(m, 1) \cong \Theta_m \otimes \mathbb{Z}_2$
Set of cobordism classes of all SGMs of m-dim. compact manifolds into \mathbb{R}^n forms an abelian group, denoted by $\Gamma(m, n)$. Addition \leftrightarrow Disjoint union

$\tilde{\Gamma}(m, n)$: oriented version

Θ_m: group of differentiable structures on an oriented m-sphere
Addition \leftrightarrow Connected sum

Theorem 1.12 (S., 2002) $m \geq 6$

$\tilde{\Gamma}(m, 1) \cong \Theta_m$
$\Gamma(m, 1) \cong \Theta_m \otimes \mathbb{Z}_2$

Special generic maps \uparrow closely related !
Differentiable structures
§2. 4-Dimensional Case
Theorem 2.1 (Sakuma-S., 1990’s)

\[\exists (M^4_1, M^4_2): \text{pair of compact } C^\infty \text{ 4-manifolds such that} \]
\[M^4_1 \approx M^4_2 \quad (\text{homeomorphic}), \]
\[\exists f_1 : M^4_1 \to \mathbb{R}^3 \text{ SGM}, \]
\[\nexists f_2 : M^4_2 \to \mathbb{R}^3 \text{ SGM}. \]

In fact, there are infinitely many such pairs.
Theorem 2.1 (Sakuma-S., 1990’s)

\(\exists (M_1^4, M_2^4): \) pair of compact \(C^\infty \) 4-manifolds such that

\(M_1^4 \cong M_2^4 \) (homeomorphic),

\(\exists f_1 : M_1^4 \rightarrow \mathbb{R}^3 \) SGM,

\(\forall f_2 : M_2^4 \rightarrow \mathbb{R}^3 \) SGM.

In fact, there are infinitely many such pairs.

\[M_1^4 \not\cong M_2^4 \] non-diffeomorphic
Theorem 2.1 (Sakuma-S., 1990’s)

\(\exists (M_1^4, M_2^4) \): pair of compact \(C^\infty \) 4-manifolds such that

\(M_1^4 \cong M_2^4 \) (homeomorphic),

\(\exists f_1 : M_1^4 \to \mathbb{R}^3 \) SGM,

\(\nexists f_2 : M_2^4 \to \mathbb{R}^3 \) SGM.

In fact, there are infinitely many such pairs.

\[M_1^4 \not\cong M_2^4 \] non-diffeomorphic

SGMs can detect distinct differentiable structures on a given topological 4-manifold.
Compact 1-connected 4-manifolds

§1. Special Generic Maps §2. 4-Dimensional Case §3. Broken Lefschetz Fibrations

Theorem 2.2 (S. (1993) + 3-dim. Poincaré Conj.)

\(M^4 \): compact simply connected \(C^\infty \) 4-manifold

\[\exists f : M^4 \to \mathbb{R}^3 \quad \text{special generic map} \]

\[\iff M^4 \cong \#^k (S^2 \times S^2) \text{ or } \#^k (S^2 \tilde{\times} S^2) \] (diffeomorphic)
Theorem 2.2 (S. (1993) + 3-dim. Poincaré Conj.)

\(M^4: \) compact simply connected \(C^\infty \) 4-manifold

\[\exists f : M^4 \rightarrow \mathbb{R}^3 \quad \text{special generic map} \]

\[\iff M^4 \cong \#^k(S^2 \times S^2) \text{ or } \#^k(S^2 \tilde{\times} S^2) \quad \text{(diffeomorphic)} \]

Corollary 2.3

\(M^4: \) \(C^\infty \) 4-manifold

\[M^4 \cong \#^k(S^2 \times S^2) \text{ or } \#^k(S^2 \tilde{\times} S^2) \quad \text{(homeomorphic)} \]

\[\exists f : M^4 \rightarrow \mathbb{R}^3 \quad \text{special generic map} \]

\[\iff M^4 \cong \#^k(S^2 \times S^2) \text{ or } \#^k(S^2 \tilde{\times} S^2) \quad \text{(diffeomorphic)} \]
Remark 2.4 Smooth structures on $\#^k(S^2 \times S^2)$ are not unique. In fact, there are \textit{infinitely many} such structures if k is a sufficiently big odd integer (Jongil Park, 2002).
Remark 2.4 Smooth structures on $\#^k(S^2 \times S^2)$ are not unique. In fact, there are *infinitely many* such structures if k is a sufficiently big odd integer (Jongil Park, 2002).

SGMs can detect the standard differentiable structure.
Remarks

§1. Special Generic Maps §2. 4-Dimensional Case §3. Broken Lefschetz Fibrations

Remark 2.4 Smooth structures on $\#^k(S^2 \times S^2)$ are not unique. In fact, there are \textit{infinitely many} such structures if k is a sufficiently big odd integer (Jongil Park, 2002).

SGMs can detect the standard differentiable structure.

Remark 2.5 M_1^4, M_2^4: compact orientable C^∞ 4-manifolds
If $M_1^4 \simeq M_2^4$ (homeomorphic), then
\[\exists f_1 : M_1^4 \to \mathbb{R}^3 \text{ smooth map with only fold singularities (} = \text{fold map})\]
\[\iff \exists f_2 : M_2^4 \to \mathbb{R}^3 \text{ fold map}\]
Remarks

§1. Special Generic Maps §2. 4-Dimensional Case §3. Broken Lefschetz Fibrations

Remark 2.4 Smooth structures on $\#^k (S^2 \times S^2)$ are not unique. In fact, there are infinitely many such structures if k is a sufficiently big odd integer (Jongil Park, 2002).

SGMs can detect the standard differentiable structure.

Remark 2.5 M^4_1, M^4_2: compact orientable C^∞ 4-manifolds
If $M^4_1 \approx M^4_2$ (homeomorphic), then
$\exists f_1 : M^4_1 \rightarrow \mathbb{R}^3$ smooth map with only fold singularities (= fold map)
$\iff \exists f_2 : M^4_2 \rightarrow \mathbb{R}^3$ fold map

Fold maps cannot detect distinct differentiable structures.
Theorem 2.6 (S., 2010)

\(M^4\): open simply connected \(C^\infty\) 4-manifold of “finite type”

\(\exists f : M^4 \to N^3\) proper special generic map

for some 3-manifold \(N^3\) with \(S(f) \neq \emptyset\)

\(\iff\) \(M^4\) is diffeomorphic to the connected sum

of a finite number of copies of the following manifolds:

- \(R^4(= S^4 \setminus \{\text{point}\})\),
- \(\text{Int} \left(\bigvee^k (S^2 \times D^2) \right) = S^4 \setminus (\bigvee^k S^1)\),
- \(S^2 \times S^2\),
- \(S^2 \tilde{\times} S^2\),
- \(R^2\)-bundle over \(S^2\)
Corollary 2.7

\(M^4 : C^\infty \) 4-manifold with \(M^4 \cong \mathbb{R}^4 \) (homeomorphic)

\(\exists f : M^4 \to \mathbb{R}^p \) proper SGM with \(S(f) \neq \emptyset \) for \(1 \leq \exists p \leq 3 \)

\(\iff M^4 \cong \mathbb{R}^4 \) (diffeomorphic)
Corollary 2.7

\(M^4 : C^\infty 4\text{-manifold with } M^4 \cong \mathbb{R}^4 \) (homeomorphic)

\(\exists f : M^4 \to \mathbb{R}^p \) proper SGM with \(S(f) \neq \emptyset \) for \(1 \leq p \leq 3 \)

\(\iff M^4 \cong \mathbb{R}^4 \) (diffeomorphic)

Remark 2.8

It is known that \(\mathbb{R}^n, n \neq 4, \) has a unique differentiable structure (Munkres, Stallings, \(\sim 60'\text{s} \)).
Corollary 2.7

\(M^4 : C^\infty 4\text{-manifold with } M^4 \approx \mathbb{R}^4 \) (homeomorphic)

\(\exists f : M^4 \to \mathbb{R}^p \) proper SGM with \(S(f) \neq \emptyset \) for \(1 \leq \exists p \leq 3 \)

\(\iff M^4 \cong \mathbb{R}^4 \) (diffeomorphic)

Remark 2.8

It is known that \(\mathbb{R}^n, n \neq 4 \), has a unique differentiable structure (Munkres, Stallings, \(\sim 60\text{’s} \)).

However, \(\mathbb{R}^4 \) admits uncountably many differentiable structures (Donaldson, Freedman, Taubes, \(\sim 80\text{’s} \)).
Remark 2.9 Every 4-manifold as in Theorem 2.6 admits infinitely many (or uncountably many) distinct differentiable structures.
Remark 2.9 Every 4-manifold as in Theorem 2.6 admits infinitely many (or uncountably many) distinct differentiable structures.

Theorem 2.6 implies that among them there is exactly one structure that allows the existence of a proper SGM into a 3-manifold.
Remark 2.9 Every 4-manifold as in Theorem 2.6 admits infinitely many (or uncountably many) distinct differentiable structures.

Theorem 2.6 implies that among them there is exactly one structure that allows the existence of a proper SGM into a 3-manifold.

Conjecture 2.10

M^4: topological 4-manifold

\longrightarrow There exists at most one differentiable structure on M^4 that allows the existence of a proper SGM into \mathbb{R}^3.
§3. Broken Lefschetz Fibrations
M, Σ: compact connected oriented C^∞ manifolds
\dim M = 4, \dim \Sigma = 2
\(M, \Sigma \): compact connected oriented \(C^\infty \) manifolds
\(\dim M = 4, \dim \Sigma = 2 \)

Definition 3.1
A singularity of a smooth map \(M \to \Sigma \) that has the normal form

\[
(z, w) \mapsto zw
\]

w.r.t. complex coordinates compatible with the orientations, is called a **Lefschetz singularity**.
M, Σ: compact connected oriented C^∞ manifolds
dim $M = 4$, dim $\Sigma = 2$

Definition 3.1
A singularity of a smooth map $M \to \Sigma$ that has the normal form

$$(z, w) \mapsto zw$$

w.r.t. complex coordinates compatible with the orientations, is called a **Lefschetz singularity**.

Definition 3.2 (Auroux–Donaldson–Katzarkov 2005, etc.)
Let $f : M \to \Sigma$ be a C^∞ map. f is a **broken Lefschetz fibration** (**BLF**, for short) if it has at most **Lefschetz** and **indefinite** fold singularities.
Fibers of a BLF

§1. Special Generic Maps §2. 4-Dimensional Case §3. Broken Lefschetz Fibrations

Image of indefinite fold singularities

Image of a Lefschetz critical point
Remark 3.3
Regular fibers of a BLF may not be connected. Even if they are connected, their genera may not be constant.
Remark 3.3
Regular fibers of a BLF may not be connected. Even if they are connected, their genera may not be constant.

Figure 2: Regular fibers near indefinite fold
Remark 3.3
Regular fibers of a BLF may not be connected.
Even if they are connected, their genera may not be constant.

For a BLF \(f : M^4 \to \Sigma^2 \), we denote by \(S_I(f) (\subset M^4) \) the **oriented** 1-dimensional submanifold of \(M^4 \) consisting of the indefinite fold singularities.
A usual Lefschetz fibration is a special case of a BLF.
A usual **Lefschetz fibration** is a special case of a BLF.

Donaldson, Gompf, 1990’s

Lefschetz fibrations ↔ **symplectic structures** (up to blow-up)
A usual \textbf{Lefschetz fibration} is a special case of a BLF.

\textbf{Donaldson, Gompf, 1990's}

\textbf{Lefschetz fibrations} \iff \textbf{symplectic structures} (up to blow-up)

\textbf{Auroux–Donaldson–Katzarkov, 2005}

\textbf{broken Lefschetz fibrations} \iff \textbf{near-symplectic structures}

$(S_I(f) \iff 1\text{-dim. sing. locus})$
A usual Lefschetz fibration is a special case of a BLF.

Donaldson, Gompf, 1990’s
Lefschetz fibrations \iff symplectic structures (up to blow-up)

Auroux–Donaldson–Katzarkov, 2005
broken Lefschetz fibrations \iff near-symplectic structures
$(S_I(f) \iff 1$-dim. sing. locus$)$

Symplectic structure: $\omega \in \Omega^2(M^4)$, $d\omega = 0$, non-degenerate ($\omega^2 > 0$)
A usual Lefschetz fibration is a special case of a BLF.

Donaldson, Gompf, 1990’s
Lefschetz fibrations \iff symplectic structures (up to blow-up)

Auroux–Donaldson–Katzarkov, 2005
broken Lefschetz fibrations \iff near-symplectic structures
$(S_I(f) \iff 1$-dim. sing. locus$)$

Symplectic structure: $\omega \in \Omega^2(M^4)$, $d\omega = 0$, non-degenerate ($\omega^2 > 0$)

Kähler \implies symplectic \implies almost complex
A usual Lefschetz fibration is a special case of a BLF.

Donaldson, Gompf, 1990’s

Lefschetz fibrations \iff symplectic structures (up to blow-up)

Auroux–Donaldson–Katzarkov, 2005

broken Lefschetz fibrations \iff near-symplectic structures

$(S_I(f) \iff 1\text{-dim. sing. locus})$

Symplectic structure: $\omega \in \Omega^2(M^4)$, $d\omega = 0$, non-degenerate ($\omega^2 > 0$)

Kähler \implies symplectic \implies almost complex

\[\Downarrow\]

Gauge theoretic invariants can be defined.
Remark 3.4
Not every 4-manifold admits a symplectic structure.
(e.g. $\#^n \mathbb{C}P^2$, $n \geq 2$, etc.)
Remark 3.4
Not every 4-manifold admits a symplectic structure.
(e.g. $\#^n \mathbb{C}P^2$, $n \geq 2$, etc.)

On the other hand, it is known that every closed oriented 4-manifold M^4 with $b_2^+(M^4) > 0$ admits a near-symplectic structure.
Remark 3.4
Not every 4-manifold admits a symplectic structure.
(e.g. $\#^n CP^2$, $n \geq 2$, etc.)

On the other hand, it is known that every closed oriented 4-manifold M^4 with $b_2^+(M^4) > 0$ admits a near-symplectic structure.

In fact, there are a variety of such structures on a given 4-manifold M^4.
Definition 3.5 A singularity that has the normal form

\[(x_1, x_2, x_3, x_4) \mapsto (x_1, x_2^3 - 3x_1 x_2 + x_3^2 \pm x_4^2)\]

is called a cusp.
Definition 3.5 A singularity that has the normal form

\[(x_1, x_2, x_3, x_4) \mapsto (x_1, x_2^3 - 3x_1x_2 + x_3^2 \pm x_4^2) \]

is called a **cusp**.

![Indefinite cusp](image)

Figure 3: Indefinite cusp
Definition 3.5 A singularity that has the normal form

\[(x_1, x_2, x_3, x_4) \mapsto (x_1, x_2^3 - 3x_1x_2 + x_3^2 \pm x_4^2)\]

is called a cusp.

Figure 3: Indefinite cusp Figure 4: Definite cusp
Facts.

Whitney (1955)

Every smooth map $M \to \Sigma$ is homotopic to a map with at most definite fold, indefinite fold, and cusp singularities.
Facts.

Whitney (1955)

Every smooth map $M \rightarrow \Sigma$ is homotopic to a map with at most definite fold, indefinite fold, and cusp singularities. Such a map is called an excellent map.
Facts.

Whitney (1955)
Every smooth map $M \rightarrow \Sigma$ is homotopic to a map with at most definite fold, indefinite fold, and cusp singularities. Such a map is called an **excellent map**.

Levine (1965)
Every smooth map $M \rightarrow \Sigma$ is homotopic to an excellent map without a cusp if $\chi(M)$ is even, and with exactly one cusp if $\chi(M)$ is odd.
Theorem 3.6 (S., 2006)

Every smooth map \(g : M \rightarrow S^2 \) is homotopic to an excellent map without definite fold singularities, and possibly with a cusp.
Theorem 3.6 (S., 2006)

Every smooth map $g : M \to S^2$ is homotopic to an excellent map without definite fold singularities, and possibly with a cusp.

In other words, we can eliminate definite fold singularities by homotopy.
Corollary 3.7 (Baykur, 2008)

Every closed oriented 4-manifold admits a BLF over S^2.

Corollary 3.7 (Baykur, 2008)

Every closed oriented 4-manifold admits a BLF over S^2.

Figure 5: Sinking and Unsinking (Lekili 2009)
We can also prove the following (cf. Lekili, 2009).
We can also prove the following (cf. Lekili, 2009).

Theorem 3.8 \(g : M^4 \rightarrow S^2 \) a \(C^\infty \) map
\(L \subset M^4 \): a non-empty closed oriented 1-dim. submanifold
\(\exists f : M^4 \rightarrow S^2 \) BLF homotopic to \(g \) s.t. \(S_1(f) = L \)
\(\iff [L] = 0 \) in \(H_1(M^4; \mathbb{Z}) \)
We can also prove the following (cf. Lekili, 2009).

Theorem 3.8 \(g : M^4 \to S^2 \) a \(C^\infty \) map

\(L \subset M^4 \): a non-empty closed oriented 1-dim. submanifold

\(\exists f : M^4 \to S^2 \) BLF homotopic to \(g \) s.t. \(S_1(f) = L \)

\(\iff [L] = 0 \) in \(H_1(M^4; \mathbb{Z}) \)

Using similar techniques in the context of near-symplectic structures (Perutz, 2006; Lekili, 2009), we can prove the following.
We can also prove the following (cf. Lekili, 2009).

Theorem 3.8 \(g : M^4 \to S^2 \) a \(C^\infty \) map

\(L \subset M^4 : \) a non-empty closed oriented 1-dim. submanifold

\(\exists f : M^4 \to S^2 \) BLF homotopic to \(g \) s.t. \(S_1(f) = L \)

\(\iff [L] = 0 \text{ in } H_1(M^4; \mathbb{Z}) \)

Using similar techniques in the context of near-symplectic structures (Perutz, 2006; Lekili, 2009), we can prove the following.

Theorem 3.9 \(M^4 : \) closed oriented 4-manifold with \(b_2^+(M^4) > 0 \)

\(L \subset M^4 : \) a non-empty closed oriented 1-dim. submanifold

\(\exists \textbf{near-symplectic structure } \omega \) whose zero locus coincides with \(L \)

\(\iff [L] = 0 \text{ in } H_1(M^4; \mathbb{Z}) \)
Remark 3.10 For the existence of a BLF, several proofs have been known (Auroux–Donaldson–Katzarkov, Gay–Kirby, Baykur, Lekili, Akbulut–Karakurt).
Remark 3.10 For the existence of a BLF, several proofs have been known (Auroux–Donaldson–Katzarkov, Gay–Kirby, Baykur, Lekili, Akbulut–Karakurt).

Not every 4-manifold admits a Lefschetz fibration.
Remark 3.10 For the existence of a BLF, several proofs have been known (Auroux–Donaldson–Katzarkov, Gay–Kirby, Baykur, Lekili, Akbulut–Karakurt).

Not every 4-manifold admits a Lefschetz fibration. However, every 4-manifold admits a BLF!
Remark 3.10 For the existence of a BLF, several proofs have been known (Auroux–Donaldson–Katzarkov, Gay–Kirby, Baykur, Lekili, Akbulut–Karakurt).

Not every 4-manifold admits a Lefschetz fibration. However, every 4-manifold admits a BLF!

Furthermore, there are plenty of BLFs on a given 4-manifold. Several moves for BLFs have been invented. (Lekili, 2009; Williams, 2010; Gay–Kirby, 2011).
Remark 3.10 For the existence of a BLF, several proofs have been known (Auroux–Donaldson–Katzarkov, Gay–Kirby, Baykur, Lekili, Akbulut–Karakurt).

Not every 4-manifold admits a Lefschetz fibration. However, every 4-manifold admits a BLF!

Furthermore, there are plenty of BLFs on a given 4-manifold. Several moves for BLFs have been invented.

(Lekili, 2009; Williams, 2010; Gay–Kirby, 2011).

Two BLFs on a given 4-manifold are homotopic iff one can be obtained from the other by a finite iteration of Likili’s moves.
Remark 3.10 For the existence of a BLF, several proofs have been known (Auroux–Donaldson–Katzarkov, Gay–Kirby, Baykur, Lekili, Akbulut–Karakurt).

Not every 4-manifold admits a Lefschetz fibration. However, every 4-manifold admits a BLF!

Furthermore, there are plenty of BLFs on a given 4-manifold. Several moves for BLFs have been invented. (Lekili, 2009; Williams, 2010; Gay–Kirby, 2011).

Two BLFs on a given 4-manifold are homotopic iff one can be obtained from the other by a finite iteration of Likili’s moves.

Elimination of definite fold for generic homotopy is possible.
Lekili’s moves

§1. Special Generic Maps §2. 4-Dimensional Case §3. Broken Lefschetz Fibrations

Figure 6: Lekili’s moves
Remark 3.11 To a BLF is associated a deformation class of near-symplectic forms (Lekili).
Remark 3.11 To a BLF is associated a deformation class of near-symplectic forms (Lekili).

Perutz (2007) defines Lagrangian matching invariants for BLFs.
Remark 3.11 To a BLF is associated a deformation class of near-symplectic forms (Lekili).

Perutz (2007) defines Lagrangian matching invariants for BLFs. We do not know if they are invariant under Lekili’s moves.
Remark 3.11 To a BLF is associated a deformation class of near-symplectic forms (Lekili).

Perutz (2007) defines Lagrangian matching invariants for BLFs. We do not know if they are invariant under Lekili’s moves.

It is conjectured that Lagrangian matching invariants equal the Seiberg–Witten invariants.
Remark 3.11 To a BLF is associated a deformation class of near-symplectic forms (Lekili).

Perutz (2007) defines Lagrangian matching invariants for BLFs. We do not know if they are invariant under Lekili’s moves.

It is conjectured that Lagrangian matching invariants equal the Seiberg–Witten invariants.

Singularities of C^∞ maps are closely related to differentiable structures of manifolds!
Thank you!