Elimination of Definite Fold and Broken Lefschetz Fibrations

Osamu Saeki
Kyushu University

November 16, 2010
§1. Introduction

Singularities
Broken Lefschetz
Fibration
Definite Fold and Cusp
Base Diagrams for Folds
Base Diagrams for Cusps
Excellent map

§2. Elimination of Definite Fold

§3. Lekili’s Moves for BLF

§3. Isotopies
We will work in the **smooth category**.
We will work in the **smooth category**.

Definition 1.1

\(M, \Sigma \): closed connected oriented manifolds

\(\dim M = 4, \dim \Sigma = 2 \)
We will work in the **smooth category**.

Definition 1.1

\(M, \Sigma \): closed connected oriented manifolds
\(\dim M = 4, \dim \Sigma = 2 \)

1. A singularity of a smooth map \(M \to \Sigma \) that has the normal form
\[
(z, w) \mapsto zw
\]
w.r.t. complex coordinates compatible with the orientations,
is called a **Lefschetz singularity**.
We will work in the **smooth category**.

Definition 1.1

\(M, \Sigma: \) closed connected oriented manifolds
\[\dim M = 4, \dim \Sigma = 2 \]

1. A singularity of a smooth map \(M \to \Sigma \) that has the normal form
\[
\begin{pmatrix}
z, w
\end{pmatrix} \mapsto zw
\]
w.r.t. complex coordinates compatible with the orientations, is called a **Lefschetz singularity**.

2. A singularity that has the normal form
\[
\begin{pmatrix}
z, w
\end{pmatrix} \mapsto z\bar{w}
\]
is called an **achiral Lefschetz singularity**.
We will work in the **smooth category**.

Definition 1.1

\(M, \Sigma \): closed connected oriented manifolds
\(\dim M = 4, \dim \Sigma = 2 \)

1. A singularity of a smooth map \(M \rightarrow \Sigma \) that has the normal form
\[
(z, w) \mapsto zw
\]
w.r.t. complex coordinates compatible with the orientations, is called a **Lefschetz singularity**.

2. A singularity that has the normal form
\[
(z, w) \mapsto z\bar{w}
\]
is called an **achiral Lefschetz singularity**.

3. A singularity that has the normal form
\[
(x_1, x_2, x_3, x_4) \mapsto (x_1, x_2^2 + x_3^2 - x_4^2)
\]
is called an **indefinite fold singularity** (or a **round singularity**).
Definition 1.2 (Auroux, Donaldson and Katzarkov 2005, etc.)
Let $f : M \to \Sigma$ be a smooth map.
(1) f is a \textbf{broken Lefschetz fibration} (BLF, for short) if it has at most \underline{Lefschetz} and \underline{indefinite fold} singularities.
Definition 1.2 (Auroux, Donaldson and Katzarkov 2005, etc.)
Let \(f : M \rightarrow \Sigma \) be a smooth map.

(1) \(f \) is a **broken Lefschetz fibration** (BLF, for short) if it has at most Lefschetz and indefinite fold singularities.

(2) \(f \) is an **achiral broken Lefschetz fibration** (ABLF, for short) if it has at most Lefschetz, achiral Lefschetz, and indefinite fold singularities.

Remark 1.3
(1) A usual Lefschetz fibration is a special case of a BLF.
(2) Regular fibers of a BLF (or ABLF) may not be connected. Even if they are connected, their genera may not be constant.

Remark 1.4
Sometimes we impose the condition that \(f \) should be an embedding into (e.g. Gay–Kirby).
Definition 1.2 (Auroux, Donaldson and Katzarkov 2005, etc.)
Let $f : M \to \Sigma$ be a smooth map.
(1) f is a **broken Lefschetz fibration** (BLF, for short) if it has at most **Lefschetz** and **indefinite fold** singularities.
(2) f is an **achiral broken Lefschetz fibration** (ABLF, for short) if it has at most **Lefschetz**, **achiral Lefschetz**, and **indefinite fold** singularities.

In either case, $Z(f)$, the set of indefinite fold singularities of f, is a closed submanifold of M of dimension 1.
Definition 1.2 (Auroux, Donaldson and Katzarkov 2005, etc.)

Let $f : \mathcal{M} \to \Sigma$ be a smooth map.

1. f is a **broken Lefschetz fibration** (BLF, for short) if it has at most Lefschetz and indefinite fold singularities.
2. f is an **achiral broken Lefschetz fibration** (ABLF, for short) if it has at most Lefschetz, achiral Lefschetz, and indefinite fold singularities.

In either case, $Z(f)$, the set of indefinite fold singularities of f, is a closed submanifold of \mathcal{M} of dimension 1.

Remark 1.3
(1) A usual **Lefschetz fibration** is a special case of a BLF.
Definition 1.2 (Auroux, Donaldson and Katzarkov 2005, etc.)
Let \(f : M \to \Sigma \) be a smooth map.

(1) \(f \) is a **broken Lefschetz fibration** (BLF, for short) if it has at most Lefschetz and indefinite fold singularities.

(2) \(f \) is an **achiral broken Lefschetz fibration** (ABLF, for short) if it has at most Lefschetz, achiral Lefschetz, and indefinite fold singularities.

In either case, \(Z(f) \), the set of indefinite fold singularities of \(f \), is a closed submanifold of \(M \) of dimension 1.

Remark 1.3
(1) A usual **Lefschetz fibration** is a special case of a BLF.

(2) Regular fibers of a BLF (or ABLF) may not be connected. Even if they are connected, their genera may not be constant.
Definition 1.2 (Auroux, Donaldson and Katzarkov 2005, etc.)
Let \(f : M \to \Sigma \) be a smooth map.
(1) \(f \) is a **broken Lefschetz fibration** (BLF, for short) if it has at most Lefschetz and indefinite fold singularities.
(2) \(f \) is an **achiral broken Lefschetz fibration** (ABLF, for short) if it has at most Lefschetz, achiral Lefschetz, and indefinite fold singularities.

In either case, \(Z(f) \), the set of indefinite fold singularities of \(f \), is a closed submanifold of \(M \) of dimension 1.

Remark 1.3 (1) A usual **Lefschetz fibration** is a special case of a BLF.
(2) Regular fibers of a BLF (or ABLF) may not be connected. Even if they are connected, their genera may not be constant.

Remark 1.4 Sometimes we impose the condition that \(f|_{Z(f)} \) should be an embedding into \(\Sigma \) (e.g. Gay–Kirby).
Definition 1.5 (1) A singularity that has the normal form

\[(x_1, x_2, x_3, x_4) \mapsto (x_1, x_2^2 + x_3^2 + x_4^2)\]

is called a **definite fold singularity**.
Definition 1.5 (1) A singularity that has the normal form

\[(x_1, x_2, x_3, x_4) \mapsto (x_1, x_2^2 + x_3^2 + x_4^2)\]

is called a **definite fold singularity**.

(2) A singularity that has the normal form

\[(x_1, x_2, x_3, x_4) \mapsto (x_1, x_2^3 - 3x_1 x_2 + x_3^2 \pm x_4^2)\]

is called a **cusp**.
1. Introduction

2. Elimination of Indefinite Fold

3. Lekili's Moves for BLF

3. Isotopies

Figure 1: **Indefinite fold**

![Indefinite fold diagram](image)
1. Introduction

Singularities
Broken Lefschetz
Fibration
Definite Fold and Cusp
Base Diagrams for Folds
Base Diagrams for Cusps
Excellent map

2. Elimination of Definite Fold

3. Lekili's Moves for BLF

3. Isotopies
1. Introduction

Singularities
Broken Lefschetz
Fibration
Definite Fold and Cusp
Base Diagrams for Folds
Base Diagrams for Cusps
Excellent map

2. Elimination of Definite Fold

3. Lekili’s Moves for BLF

3. Isotopies

Figure 3: Indefinite cusp
1. Introduction

§2. Elimination of Definite Fold

§3. Lekili’s Moves for BLF

§3. Isotopies

Base Diagrams for Cusps

Figure 3: Indefinite cusp

Figure 4: Definite cusp
Facts.
Whitney (1955) Every smooth map $M \to \Sigma$ is homotopic to a map with at most definite fold, indefinite fold, and cusp singularities.
Facts.

Whitney (1955) Every smooth map $M \to \Sigma$ is homotopic to a map with at most definite fold, indefinite fold, and cusp singularities. Such a map is called an excellent map.
Facts.

Whitney (1955) Every smooth map $M \rightarrow \Sigma$ is homotopic to a map with at most definite fold, indefinite fold, and cusp singularities. Such a map is called an excellent map.

Levine (1965) Every smooth map $M \rightarrow \Sigma$ is homotopic to an excellent map without a cusp if $\chi(M)$ is even, and with exactly one cusp if $\chi(M)$ is odd.
§2. Elimination of Definite Fold

Sketch of Proof
Modifying Excellent Maps
Definite to Indefinite
Existence of BLF

§3. Lekili’s Moves for BLF

§3. Isotopies
Theorem 2.1 (S. 2006) Every smooth map \(g : M \to S^2 \) is homotopic to an excellent map without definite fold singularities, and possibly with a cusp.
Theorem 2.1 (S. 2006) Every smooth map $g : M \to S^2$ is homotopic to an excellent map without definite fold singularities, and possibly with a cusp.

In other words, we can eliminate definite fold singularities by homotopy.
§2. Elimination of Definite Fold

Elimination of Definite Fold

Sketch of Proof

Modifying Excellent Maps

Definite to Indefinite

Existence of BLF

§3. Lekili’s Moves for BLF

§3. Isotopies

In the following, \(S(g) \) denotes the set of singular points, and \(S_0(g) \) denotes the set of definite fold singular points.

Step 1. Arrange \(S_0(g) \) so that it consists of a single “unknotted” component. Use Levine’s cusp elimination technique (S. 1995).

Step 2. Arrange \(g \) so that \(g |_{S_0(g)} \) is an embedding into \(S^2 \). Use Reidemeister-like moves on \(S^2 \) and their “lifts.” This is possible, since the target is the \(S^2 \)-sphere.

For Step 3, we need the following “moves.”
Sketch of Proof

In the following, $S(g) (\subset M)$ denotes the set of singular points, and $S_0(g) (\subset S(g))$ denotes the set of definite fold singular points.
Sketch of Proof

In the following, $S(g) (\subset M)$ denotes the set of singular points, and $S_0(g) (\subset S(g))$ denotes the set of definite fold singular points.

Step 1. Arrange $S_0(g)$ so that it consists of a single “unknotted” component.
Sketch of Proof

In the following, $S(g) (\subset M)$ denotes the set of **singular points**, and $S_0(g) (\subset S(g))$ denotes the set of **definite fold** singular points.

Step 1. Arrange $S_0(g)$ so that it consists of a single “unknotted” component.

Use Levine’s cusp elimination technique (S. 1995).
Sketch of Proof

In the following, \(S(g) (\subset M) \) denotes the set of singular points, and \(S'_0(g) (\subset S(g)) \) denotes the set of definite fold singular points.

Step 1. Arrange \(S'_0(g) \) so that it consists of a single “unknotted” component.

Use Levine’s cusp elimination technique (S. 1995).

Step 2. Arrange \(g \) so that \(g|_{S'_0(g)} \) is an embedding into \(S^2 \).
Sketch of Proof

In the following, $S(g) (\subset M)$ denotes the set of **singular points**, and $S_0(g) (\subset S(g))$ denotes the set of **definite fold** singular points.

Step 1. Arrange $S_0(g)$ so that it consists of a single “unknotted” component.

Use Levine’s cusp elimination technique (S. 1995).

Step 2. Arrange g so that $g|S_0(g)$ is an embedding into S^2.

Use Reidemeister-like moves on S^2 and their “lifts”. This is possible, since the target is the 2-sphere.
Sketch of Proof

In the following, \(S(g) \ (\subset M) \) denotes the set of **singular points**, and \(S_0(g) \ (\subset S(g)) \) denotes the set of **definite fold** singular points.

Step 1. Arrange \(S_0(g) \) so that it consists of a single “unknotted” component.

Use Levine’s cusp elimination technique (S. 1995).

Step 2. Arrange \(g \) so that \(g|_{S_0(g)} \) is an embedding into \(S^2 \).

Use Reidemeister-like moves on \(S^2 \) and their “lifts”. This is possible, since the target is the 2-sphere.

For Step 3, we need the following “moves”.
§1. Introduction

§2. Elimination of Definite Fold

- Elimination of Definite Fold
- Sketch of Proof
- Modifying Excellent Maps
- Definite to Indefinite
- Existence of BLF

§3. Lekili's Moves for BLF

§3. Isotopies

Figure 5: Birth

\[\emptyset \]
1. Introduction

2. Elimination of Definite Fold

 Sketch of Proof
 Modifying Excellent Maps
 Definite to Indefinite
 Existence of BLF

3. Lekili’s Moves for BLF

3. Isotopies

Figure 5: Birth

Figure 6: Merge
Step 3. Change the definite fold circle into an indefinite one (Williams 2010).
Step 3. Change the definite fold circle into an indefinite one (Williams 2010).
Corollary 2.2 (Baykur 2008) \(\) Every closed oriented 4-manifold admits a BLF over \(S^2\).
Corollary 2.2 (Baykur 2008) Every closed oriented 4-manifold admits a BLF over S^2.

Figure 7: Sinking and Unsinking (Lekili 2009)
Corollary 2.2 (Baykur 2008) Every closed oriented 4-manifold admits a BLF over S^2.

Figure 7: Sinking and Unsinking (Lekili 2009)

Remark 2.3 For the existence of BLF (or ABLF), several proofs have been known (Auroux–Donaldson–Katzarkov, Gay–Kirby, Baykur, Lekili, Akbulut–Karakurt).
§3. Lekili’s Moves for BLF
1. Introduction

2. Elimination of Definite Fold

3. Lekili’s Moves for BLF
 - Birth and Merge
 - Flip and Wrinkle
 - Example
 - William’s Theorem
 - Williams’ Idea
 - Final Step

3. Isotopies

Figure 8: Birth
Birth and Merge

§1. Introduction

§2. Elimination of
Definite Fold

§3. Lekili’s Moves for
BLF

Birth and Merge
Flip and Wrinkle
Example
William’s Theorem
Williams’ Idea
Final Step

§3. Isotopies

Birth and Merge

Flip and Wrinkle
Example

Figure 8: Birth

Figure 9: Merge
Flip and Wrinkle

1. Introduction

2. Elimination of Definite Fold

3. Lekili’s Moves for BLF

Birth and Merge
Flip and Wrinkle
Example
Williams’ Theorem
Williams’ Idea
Final Step

3. Isotopies

Figure 10: Flip

Figure 11: Wrinkle
§1. Introduction

§2. Elimination of Definite Fold

§3. Lekili's Moves for BLF

Birth and Merge
Flip and Wrinkle
Example
William's Theorem
Williams' Idea
Final Step

§3. Isotopies

Figure 10: Flip

Figure 11: Wrinkle
One can convert each achiral Lefschetz singularity to one circle of indefinite fold and three Lefschetz singularities (Lekili 2009).

![Diagram showing the transformation of an achiral Lefschetz singularity to a circle of indefinite fold and Lefschetz singularities.]

Figure 12: Removing an achiral Lefschetz singularity.
Theorem 3.1 (Williams 2010) If two BLFs $M \to \Sigma$ are homotopic, then one is obtained from the other by a finite sequence of Birth, Merge, Flip, Wrinkle, and Sink operations (and their inverses), together with “Isotopies”.

Remark 3.2 During the moves, indefinite cusps may appear. However, these cusps can be turned into Lefschetz singularities by “unsinking.”

Idea of Proof of Theorem 3.1 Each BLF can be homotoped to an excellent map without definite fold (by Wrinkle moves). By singularity theory, the two excellent maps can be connected by a generic 1-parameter family f_t of smooth maps.
Theorem 3.1 (Williams 2010) If two BLFs $M \to \Sigma$ are homotopic, then one is obtained from the other by a finite sequence of Birth, Merge, Flip, Wrinkle, and Sink operations (and their inverses), together with “Isotopies”.

Remark 3.2 During the moves, indefinite cusps may appear. However, these cusps can be turned into Lefschetz singularities by “unsinking”.

[William’s Theorem]
Theorem 3.1 (Williams 2010) If two BLFs \(M \to \Sigma \) are homotopic, then one is obtained from the other by a finite sequence of Birth, Merge, Flip, Wrinkle, and Sink operations (and their inverses), together with “Isotopies”.

Remark 3.2 During the moves, indefinite cusps may appear. However, these cusps can be turned into Lefschetz singularities by “unsinking”.

Idea of Proof of Theorem 3.1
Each BLF can be homotoped to an excellent map without definite fold (by Wrinkle moves).
Theorem 3.1 (Williams 2010) If two BLFs $M \to \Sigma$ are homotopic, then one is obtained from the other by a finite sequence of Birth, Merge, Flip, Wrinkle, and Sink operations (and their inverses), together with “Isotopies”.

Remark 3.2 During the moves, indefinite cusps may appear. However, these cusps can be turned into Lefschetz singularities by “unsinking”.

Idea of Proof of Theorem 3.1
Each BLF can be homotoped to an excellent map without definite fold (by Wrinkle moves). By singularity theory, the two excellent maps can be connected by a generic 1-parameter family $\{f_t\}$ of smooth maps.
§1. Introduction

§2. Elimination of Definite Fold

§3. Lekili’s Moves for BLF
- Birth and Merge
- Flip and Wrinkle
- Example
- William’s Theorem

William’s Idea
- Final Step

§3. Isotopies

The generic 1-parameter family \(\{f_t\} \) satisfies the following.
The generic 1-parameter family \(\{ f_t \} \) satisfies the following.

- Every \(f_t : M \to \sum \) is an excellent map, except for a finite number of values of \(t \), say \(t_1, t_2, \ldots, t_k \).
- For each bifurcation value \(t_i \), the difference between \(f_{t_i \pm \varepsilon} \) is “well-understood”.

The generic homotopy \(\dot{F} : M \times [0; 1] \to \sum \) defined by

\[
F(t; t) = (f_t(x); t)
\]

has folds, cusps, and swallowtails.

Note. The BLFs \(f_0 \) and \(f_1 \) do not have definite folds, while for \(0 < t < 1 \), \(f_t : M \to \sum \) may have definite folds.
The generic 1-parameter family \(\{ f_t \} \) satisfies the following.

- Every \(f_t : M \to \Sigma \) is an excellent map, except for a finite number of values of \(t \), say \(t_1, t_2, \ldots, t_k \).

- For each bifurcation value \(t_i \), the difference between \(f_{t_i\pm\varepsilon} \) is “well-understood”.

The generic homotopy \(F : M \times [0, 1] \to \Sigma \times [0, 1] \) defined by \(F(\ast, t) = (f_t(\ast), t) \) has **folds**, **cusps** and **swallowtails**.
The generic 1-parameter family \(\{f_t\} \) satisfies the following.

- Every \(f_t : M \to \Sigma \) is an excellent map, except for a finite number of values of \(t \), say \(t_1, t_2, \ldots, t_k \).
- For each bifurcation value \(t_i \), the difference between \(f_{t_i \pm \varepsilon} \) is “well-understood”.

The generic homotopy \(F : M \times [0, 1] \to \Sigma \times [0, 1] \) defined by \(F(\ast, t) = (f_t(\ast), t) \) has folds, cusps and swallowtails.

Note. The BLFs \(f_0 \) and \(f_1 \) do not have definite folds, while for \(0 < t < 1 \), \(f_t : M \to \Sigma \) may have definite folds.
The generic 1-parameter family \(\{ f_t \} \) satisfies the following.

- Every \(f_t : M \rightarrow \Sigma \) is an excellent map, except for a finite number of values of \(t \), say \(t_1, t_2, \ldots, t_k \).
- For each bifurcation value \(t_i \), the difference between \(f_{t_i \pm \varepsilon} \) is “well-understood”.

The generic homotopy \(F : M \times [0, 1] \rightarrow \Sigma \times [0, 1] \) defined by \(F(\ast, t) = (f_t(\ast), t) \) has \textbf{folds}, \textbf{cusps} and \textbf{swallowtails}.

\textbf{Note.} The BLFs \(f_0 \) and \(f_1 \) \textbf{do not have definite folds}, while for \(0 < t < 1 \), \(f_t : M \rightarrow \Sigma \) \textbf{may have definite folds}.

We need to \textbf{eliminate the definite folds} appearing in the generic homotopy \(F \).
Williams’ Idea

The generic 1-parameter family \(\{ f_t \} \) satisfies the following.

- Every \(f_t : M \rightarrow \Sigma \) is an excellent map, except for a finite number of values of \(t \), say \(t_1, t_2, \ldots, t_k \).
- For each bifurcation value \(t_i \), the difference between \(f_{t_i \pm \varepsilon} \) is “well-understood”.

The generic homotopy \(F : M \times [0, 1] \rightarrow \Sigma \times [0, 1] \) defined by \(F(\ast, t) = (f_t(\ast), t) \) has folds, cusps and swallowtails.

Note. The BLFs \(f_0 \) and \(f_1 \) **do not have definite folds**, while for \(0 < t < 1 \), \(f_t : M \rightarrow \Sigma \) may **have definite folds**.

We need to **eliminate the definite folds** appearing in the generic homotopy \(F \).

Williams’ idea: Remove the definite folds of the homotopy \(F \) by modifying it by “surgery” (not by homotopy).
Suppose that the generic homotopy F has no definite folds. Then, Lekili has shown that his moves (together with isotopies) generate F, by essentially using singularity theory.
Bifurcations during Isotopies

“Isotopies” are generated by the following moves.
“Isotopies” are generated by the following moves.

\[\text{Figure 13: Moves involving isotopies} \]
Y.K.S. Furuya, Sobre aplicações genéricas $M^4 \rightarrow \mathbb{R}^2$

She studies the “essential” changes of global base diagrams during the three moves.

She studies the “essential” changes of global base diagrams during the three moves. More precisely, she studies the case where the corresponding vanishing cycles lie on the same component of a fiber.

She studies the “essential” changes of global base diagrams during the three moves. More precisely, she studies the case where the corresponding vanishing cycles lie on the same component of a fiber. Otherwise, the change is easy to describe: only the combination of the connected components changes.

She studies the “essential” changes of **global base diagrams** during the three moves.

More precisely, she studies the case where the corresponding vanishing cycles lie on the same component of a fiber.

Otherwise, the change is easy to describe: only the combination of the connected components changes.

Number of essential change types
- II: 8 types
- III: 13 types
- C: 6 types
The integers indicate the genus of the corresponding fiber component.

Figure 14: A type III move
Example of Furuya’s Move (2)

Figure 15: A type C move
Remark 4.1 To a BLF is associated a deformation class of near-symplectic forms (Lekili).
Remark 4.1 To a BLF is associated a deformation class of **near-symplectic forms** (Lekili).
Lekili gives one-parameter families of near-symplectic forms for the deformations corresponding to his moves.
Remark 4.1 To a BLF is associated a deformation class of near-symplectic forms (Lekili). Lekili gives one-parameter families of near-symplectic forms for the deformations corresponding to his moves.

Remark 4.2 Perutz (2007) defines Lagrangian matching invariants for BLFs.
Remark 4.1 To a BLF is associated a deformation class of near-symplectic forms (Lekili). Lekili gives one-parameter families of near-symplectic forms for the deformations corresponding to his moves.

Remark 4.2 Perutz (2007) defines Lagrangian matching invariants for BLFs. We do not know if they are invariant under Lekili’s moves (or under isotopies).
Remark 4.1 To a BLF is associated a deformation class of near-symplectic forms (Lekili). Lekili gives one-parameter families of near-symplectic forms for the deformations corresponding to his moves.

Remark 4.2 Perutz (2007) defines Lagrangian matching invariants for BLFs. We do not know if they are invariant under Lekili’s moves (or under isotopies). It is conjectured that Lagrangian matching invariants equal the Seiberg–Witten invariants.
Problem 4.3 (Baykur)

Find a sufficient sequence of moves that guarantees to stay within the class of fibrations without null-homologous fiber components.
Problem 4.3 (Baykur)

Find a sufficient sequence of moves that guarantees to stay within the class of fibrations without null-homologous fiber components.

How about the class of fibrations with connected fibers?
Problem 4.3 (Baykur)

Find a sufficient sequence of moves that guarantees to stay within the class of fibrations without null-homologous fiber components.

How about the class of fibrations with connected fibers?

Note.

These guarantee that if we start with a near-symplectic BLF, then we can perform the moves within the subclass of near-symplectic BLFs.
§1. Introduction

§2. Elimination of Definite Fold

§3. Lekili’s Moves for BLF

§3. Isotopies
 Bifurcations during Isotopies
 Furuya’s Result
 Example of Furuya’s Move (1)
 Example of Furuya’s Move (2)
 Concluding Remarks
 Open Problem

Thank you!
Thank you!