Stochastic Differential Equations associateded with Infinite particle systems with long ranged interaction

Hideki Tanemura Chiba univ. (Japan) joint work with Hirofumi Osada (Kyushu Unv.)

8th World Congress in Probability and Statistics (2012 July 13)

Dyson's Brownian motion model [JMP 62] is a one parameter family of the systems of one dimensional Brownian motions with long ranged repulsive interaction, whose strength is represented by a parameter $\beta > 0$. It soves the stochastic differential equation

$$X_{j}(t) = x_{j} + B_{j}(t) + \frac{\beta}{2} \sum_{\substack{k: 1 \le k \le n \\ k \ne j}} \int_{0}^{t} \frac{ds}{X_{j}(s) - X_{k}(s)}, \ 1 \le j \le n$$
(1)

where $B_j(t), j = 1, 2, ..., n$ are independent one dimensional Brownian motions. We consider the case that $\beta = 2$ and call the model in the special case Dyson model.

The Dyson model is realized by the following three processes:

(i) The process of eigenvalues of Hermitian matrix valued diffusion process in the Gaussian unitary ensemble (GUE).

(ii) The system of one-dimensional Brownian motions conditioned never to collide with each other.

(iii) The harmonic transform of the absorbing Brownian motion in a Weyle chamber of type A_{n-1} :

$$\mathbb{W}_n = \Big\{ \mathbf{x} = (x_1, x_2, \cdots, x_n) : x_1 < x_2 < \cdots < x_n \Big\}.$$

with harmonic function given by the Vandermonde determinant:

$$h_n(\mathbf{x}) = \prod_{1 \leq j < k \leq n} (x_k - x_j) = \det_{1 \leq j,k \leq n} \left[x_k^{j-1} \right].$$

 $n \times n$ Hermitian matrix valued process $(n \in \mathbb{N})$

$$M(t) = \left(egin{array}{cccc} M_{11}(t) & M_{12}(t) & \cdots & M_{1n}(t) \ M_{21}(t) & M_{22}(t) & \cdots & M_{2n}(t) \ & & \cdots & \ M_{1}(t) & M_{n2}(t) & \cdots & M_{nn}(t) \end{array}
ight), \quad M_{\ell k}(t) = M_{k \ell}(t)^{\dagger}.$$

8th World Congress in Probability and Statist / 22

 $n \times n$ Hermitian matrix valued process $(n \in \mathbb{N})$

$$M(t) = \left(egin{array}{cccc} M_{11}(t) & M_{12}(t) & \cdots & M_{1n}(t) \ M_{21}(t) & M_{22}(t) & \cdots & M_{2n}(t) \ & & \cdots & \ M_{1}(t) & M_{n2}(t) & \cdots & M_{nn}(t) \end{array}
ight), \quad M_{\ell k}(t) = M_{k \ell}(t)^{\dagger}.$$

(GOE) $B_{k\ell}^{\mathrm{R}}(t)$, $1 \le k \le \ell \le n$: indep. BMs

$$M_{k\ell}(t) = rac{1}{\sqrt{2}} B^{\mathrm{R}}_{k\ell}(t), \ 1 \le k < \ell \le n, \quad M_{kk}(t) = B^{\mathrm{R}}_{kk}(t), \ 1 \le k \le n,$$

 $n \times n$ Hermitian matrix valued process $(n \in \mathbb{N})$

$$M(t) = \begin{pmatrix} M_{11}(t) & M_{12}(t) & \cdots & M_{1n}(t) \\ M_{21}(t) & M_{22}(t) & \cdots & M_{2n}(t) \\ & & \ddots & \\ M_{1}(t) & M_{n2}(t) & \cdots & M_{nn}(t) \end{pmatrix}, \quad M_{\ell k}(t) = M_{k\ell}(t)^{\dagger}.$$

(GOE) $B_{k\ell}^{\mathrm{R}}(t)$, $1 \le k \le \ell \le n$: indep. BMs

$$M_{k\ell}(t) = rac{1}{\sqrt{2}} B^{\mathrm{R}}_{k\ell}(t), \ 1 \leq k < \ell \leq n, \quad M_{kk}(t) = B^{\mathrm{R}}_{kk}(t), \ 1 \leq k \leq n,$$

(GUE) $B_{k\ell}^{\mathrm{R}}(t)$, $B_{k\ell}^{\mathrm{I}}(t)$, $1 \le k \le \ell \le n$: indep. BMs

$$egin{aligned} &M_{k\ell}(t) = rac{1}{\sqrt{2}} B^{ ext{R}}_{k\ell}(t) + rac{\sqrt{-1}}{\sqrt{2}} B^{ ext{I}}_{k\ell}(t), & 1 \leq k < \ell \leq n, \ &M_{kk}(t) = B^{ ext{R}}_{kk}(t), & 1 \leq k \leq n, \end{aligned}$$

Hideki Tanemura (Chiba univ.) ()

(GSE) $B_{k\ell}^{\alpha}(t)$, $\alpha = 0, 1, 2, 3, 1 \le k \le \ell \le n$: indep. BMs

$$M^{0}_{k\ell}(t) = rac{1}{\sqrt{2}} B^{0}_{k\ell}(t), \ 1 \leq k < \ell \leq n, \quad M^{0}_{kk}(t) = B^{0}_{kk}(t), \ 1 \leq k \leq n,$$

For $\alpha = 1, 2, 3$.

$$M^{\alpha}_{k\ell}(t)=rac{\sqrt{-1}}{\sqrt{2}}B^{\alpha}_{k\ell}(t),\ 1\leq k<\ell\leq n,\quad M^{\alpha}_{kk}(t)=0,\ 1\leq k\leq n,$$

 $2n \times 2n$ self dual Hermitian matrix valued process

$$M(t)=M^0(t)\otimes I+\sum_{lpha=1}^3 M^lpha(t)\otimes e_lpha$$

Here

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} e_1 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} e_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} e_3 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$
Hideki Tanemura (Chiba univ.) () SDEs related to Soft-Edge scaling limit

In this talk we discuss the following problems:

(i) Conditions that $(X_1(t), X_2(t), \ldots, X_n(t))$ converges to some process, say X(t), as $n \to \infty$.

(ii) Stochastic differential equation that the limit process X(t) solves.

(iii) Invariant distributions of the limit process X(t).

The configuration space of unlabelled particles:

 $\mathfrak{M} = \left\{ \xi : \xi \text{ is a nonnegative integer valued Radon measures in } \mathbb{R} \right\}$ $= \left\{ \xi(\cdot) = \sum_{j \in \mathbb{I}} \delta_{x_j}(\cdot) : \sharp\{j \in \mathbb{I} : x_j \in K\} < \infty, \text{ for any } K \text{ compact} \right\}$

 \mathfrak{M} is a Polish space with the vague topology.

8th World Congress in Probability and Statist

Answer to (i)

For $L > 0, \alpha > 0$ and $\xi \in \mathfrak{M}$ we put

$$M(\xi,L) = \int_{[-L,L]\setminus\{0\}} \frac{\xi(dx)}{x}, \qquad M_{\alpha}(\xi,L) = \left(\int_{[-L,L]\setminus\{0\}} \frac{\xi(dx)}{|x|^{\alpha}}\right)^{1/\alpha}$$

and

$$M(\xi) = \lim_{L \to \infty} M(\xi, L), \qquad M_{\alpha}(\xi) = \lim_{L \to \infty} M_{\alpha}(\xi, L),$$

if the limits exist. We introduce the following two conditions:

(C.1) there exists $C_0 > 0$ such that $|M(\xi)| \le C_0$,

(C.2) there exist $\alpha \in (1,2)$ and $C_1 > 0$ such that $M_{\alpha}(\xi) \leq C_1$, (ii) there exist $\beta > 0$ and $C_2 > 0$ such that

$$M_1(\tau_{-a^2}\xi^{\langle 2 \rangle}) \leq C_2(|a| \vee 1)^{-\beta} \quad \forall a \in \mathrm{supp}\xi.$$

Answer to (i)

Examples. Put

$$\eta^{\kappa} = \sum_{x \in \mathbb{Z}} \delta_{\operatorname{sgn}(x)|x|^{\kappa}}.$$

In case $\kappa > 1/2$, η^{κ} satusfies the conditions (C.1) and (C.2).

THEOREM (Katori-T. CMP '10, Katori-T. arXiv:math.PR 1008.2821) Suppose that $\xi \in \mathfrak{M}_0 \equiv \{\xi \in \mathfrak{M} : \xi(x) \leq 1 \text{ for all } x \in \mathbb{R}\}$ satisfies the conditions (C.1) and (C.2). Then

$$(\Xi(t),\mathbb{P}_{\xi\cap[-L,L]}) o (\Xi(t),\mathbb{P}_{\xi}),\quad L o\infty$$

weakly on $C([0,\infty) \to \mathfrak{M})$. In particular, the process $(\Xi(t), \mathbb{P}_{\xi})$ has a modification which is almost-surely continuous on $[0,\infty)$ with $\Xi(0) = \xi$.

Answer to (ii)

The distribution of eigenvalues of GUE with size $n \times n$ are given by

$$m_2^n(d\mathbf{x}_n) = \frac{1}{Z} \prod_{i < j} |x_i - x_j|^2 \exp\left\{-\frac{1}{2} \sum_{i=1}^n |x_i|^2\right\} d\mathbf{x}_n,$$

on the configuration space \mathbb{W}_{n-1} .

(Bulk scaling limit) For the eigenvalues $\{\lambda_1^n, \ldots, \lambda_n^n\}$

$$\{\sqrt{n}\lambda_1^n,\ldots,\sqrt{n}\lambda_n^n\} \to \mu_{\sin,\beta}, \text{ weakly as } n \to \infty.$$

Answer to (ii)

For $\beta = 2$ (GUE) $\mu_{sin,2}$ is the determinantal point process(DPP), in which any spatial correlation function ρ_m is given by a determinant with the sine kernel

$$\mathcal{K}_{\sin,2}(x,y) = \mathcal{K}_{\sin}(x,y) \equiv rac{\sin\{\pi(y-x)\}}{\pi(y-x)}, \quad x,y \in \mathbb{R}.$$

The moment generating function is given by a Fredholm determinant

$$\int_{\mathfrak{M}} \exp\Big\{\int_{\mathbb{R}} f(x)\xi(dx)\Big\}\mu_{\sin,2}(d\xi) = \operatorname{Det}_{(x,y)\in\mathbb{R}^2}\Big[\delta_x(y) + K_{\sin}(x,y)\chi(y)\Big],$$

for $f \in C_c(\mathbb{R})$, where $\chi(\cdot) = e^{f(\cdot)} - 1$.

Answer to (ii)

THEOREM (Osada[PTRF: online first])

There exists the diffusion process whose reversible probability measure $\mu_{\rm sin,2}$ which solves the SDE

$$dX_j(t) = dB_j(t) + \sum_{\substack{k \in \mathbb{N} \\ k \neq j}} \frac{dt}{X_j(s) - X_k(s)}, \quad j \in \mathbb{N},$$
(2)

where $B_j(t), j \in \mathbb{N}$ are independent one dimensional Brownian motions.

Dirichlet spaces

A function f defined on the configuration space \mathfrak{M} is local if $f(\xi) = f(\xi_K)$ for some compact set K.

A local function f is smooth if $f(\sum_{j=1}^{n} \delta_{x_j}) = \tilde{f}(x_1, x_2, \dots, x_n)$ with some smooth function \tilde{f} on \mathbb{R}^n with compact support. Put

 $\mathcal{D}_0 = \{f : f \text{ is local and smooth}\}.$

Dirichlet spaces

A function f defined on the configuration space \mathfrak{M} is local if $f(\xi) = f(\xi_K)$ for some compact set K.

A local function f is smooth if $f(\sum_{j=1}^{n} \delta_{x_j}) = \tilde{f}(x_1, x_2, \dots, x_n)$ with some smooth function \tilde{f} on \mathbb{R}^n with compact support. Put

 $\mathcal{D}_0 = \{f : f \text{ is local and smooth}\}.$

We put

$$\mathbb{D}[f,g](\xi) = \frac{1}{2} \sum_{j=1}^{\xi(\mathcal{K})} \frac{\partial \tilde{f}(\mathbf{x})}{\partial x_j} \frac{\partial \tilde{g}(\mathbf{x})}{\partial x_j}$$

and for a probability measure μ we introduce the bilinear form

$$\mathcal{E}^{\mu}(f,g)=\int_{\mathfrak{M}}\mathbb{D}[f,g]d\mu, \quad f,g\in\mathcal{D}_{0}.$$

quasi Gibbs measure

Let Φ be a free potential, Ψ be an interaction potential. For a given sequence $\{b_r\}$ of \mathbb{N} we introduce a Hamiltonian on $I_r = (-b_r, b_r)$:

$$H_r(\xi) = H_r^{\Phi,\Psi}(\xi) = \sum_{x_j \in I_r} \Phi(x_j) + \sum_{x_j, x_k \in I_r, j < k} \Psi(x_j, x_k)$$

quasi Gibbs measure

Let Φ be a free potential, Ψ be an interaction potential. For a given sequence $\{b_r\}$ of \mathbb{N} we introduce a Hamiltonian on $I_r = (-b_r, b_r)$:

$$H_r(\xi) = H_r^{\Phi,\Psi}(\xi) = \sum_{x_j \in I_r} \Phi(x_j) + \sum_{x_j, x_k \in I_r, j < k} \Psi(x_j, x_k)$$

Definition A probability measure μ is said to be a (Φ, Ψ) -quasi Gibbs measure if there exists an increasing sequence $\{b_r\}$ of \mathbb{N} and measures $\{\mu_{r,k}^m\}$ such that for each $r, m \in \mathbb{N}$ satisfying

$$\mu^m_{r,k} \leq \mu^m_{r,k+1}, \quad k \in \mathbb{N}, \quad \lim_{k \to \infty} \mu^m_{r,k} = \mu(\cdot \cap \{\xi(I_r) = m\}),$$
 weekly

and that for all $r,m,k\in\mathbb{N}$ and for $\mu^m_{r,k} ext{-a.s.}$ $\xi\in\mathfrak{M}$

$$c^{-1}e^{-H_r(\xi)}\mathbf{1}_{\{\xi(I_r)=m\}}\Lambda(d\zeta) \leq \mu_{r,k}^m(\pi_{I_r} \in d\zeta|\xi_{I_r^c}) \leq ce^{-H_r(\xi)}\mathbf{1}_{\{\xi(I_r)=m\}}\Lambda(d\zeta)$$

Here Λ is the Poisson random measure with intensity measure dx.

Hideki Tanemura (Chiba univ.) ()

quasi regular Dirichlet space

Theorem (Bulk) [Osada:to appear in AOP]

Let $\beta = 1, 2, 4$.

(1) The probability measure $\mu_{\sin,\beta}$ is a quasi Gibbs measure with $\Phi(x) = 0$ and $\Psi(x) = -\beta \log |x - y|$.

(2) The closure of $(\mathcal{E}^{\mu_{\sin,\beta}}, \mathcal{D}_0, L^2(\mathfrak{M}, \mu_{\sin,\beta}))$ is a quasi Dirichlet space, and there exists a μ_{\sin} -reversible diffusion process $(\Xi^{\sin,\beta}(t), P)$ associated with the Diriclet space.

Log derivative

Let $\mu_{\mathbf{x}}$ be the Palm measure conditioned at $\mathbf{x} = (x_1, \dots, x_k \in \mathbb{R}^k)$

$$\mu_{\mathbf{x}} = \mu \bigg(\cdot - \sum_{j=1}^{k} \delta_{x_j} \bigg| \xi(x_j) \ge 1 \text{ for } j = 1, 2, \dots, k \bigg).$$

Let μ^k be the Campbell measure of μ :

$$\mu^k(A imes B) = \int_A \mu_{\mathbf{x}}(B)
ho^k(\mathbf{x}) d\mathbf{x}, \quad A \in \mathcal{B}(\mathbb{R}^k), B \in \mathcal{B}(\mathfrak{M}).$$

We call $\mathbf{d}^{\mu} \in L^1_{loc}(\mathbb{R} imes \mathfrak{M}, \mu^1)$ the log derivative of μ if \mathbf{d}^{μ} satisfies

$$\int_{\mathbb{R}\times\mathfrak{M}} \mathbf{d}^{\mu}(x,\eta) f(x,\eta) d\mu^{1}(x,\eta) = -\int_{\mathbb{R}\times\mathfrak{M}} \nabla_{x} f(x,\eta) d\mu^{1}(x,\eta),$$

ISDE

Theorem [Osada, PTRF (on line first)] Assume that there exists a log derivative \mathbf{d}^{μ} (and some conditions). There exists $\mathfrak{M}_0 \subset \mathfrak{M}$ such that $\mu(\mathfrak{M}_0) = 1$, and for any $\xi = \sum_{j \in \mathbb{N}} \delta_{x_j} \in \mathfrak{M}_0$, there exists $\mathbb{R}^{\mathbb{N}}$ -valued continuous process $\mathbf{X}(t) = (X_j(t))_{j=1}^{\infty}$ satisfying $\mathbf{X}(0) = \mathbf{x} = (x_j)_{j=1}^{\infty}$ and

$$dX_j(t) = dB_j(t) + rac{1}{2} \mathbf{d}^{\mu} igg(X_j(t), \sum_{k:k
eq j} \delta_{X_k(t)} igg) dt, \quad j \in \mathbb{N}.$$

ISDE

Theorem [Osada, PTRF (on line first)] Assume that there exists a log derivative \mathbf{d}^{μ} (and some conditions). There exists $\mathfrak{M}_0 \subset \mathfrak{M}$ such that $\mu(\mathfrak{M}_0) = 1$, and for any $\xi = \sum_{j \in \mathbb{N}} \delta_{x_j} \in \mathfrak{M}_0$, there exists $\mathbb{R}^{\mathbb{N}}$ -valued continuous process $\mathbf{X}(t) = (X_j(t))_{j=1}^{\infty}$ satisfying $\mathbf{X}(0) = \mathbf{x} = (x_j)_{j=1}^{\infty}$ and

$$dX_j(t) = dB_j(t) + rac{1}{2} \mathbf{d}^{\mu} igg(X_j(t), \sum_{k:k
eq j} \delta_{X_k(t)} igg) dt, \quad j \in \mathbb{N}.$$

Lemma (Bulk) [Osada, PTRF online first] Let $\beta = 1, 2, 4$. For $x \in \mathbb{R}$ and $\eta = \sum_{j \in \mathbb{N}} \delta_{y_j}$ with $\eta(\{x\}) = 0$,

$$\mathbf{d}^{\mu_{\sin,\beta}}(x,\eta) = \beta \lim_{L \to \infty} \sum_{j: |x-y_j| \le L} \frac{1}{|x-y_j|}$$

Key lemma

The key part in the proof of Theorem 2 is to determine the log derivative of μ .

Key lemma (tacnode) Let $\beta = 1, 2, 4$. For $x \in \mathbb{R}$ and $\eta = \sum_{j \in \mathbb{N}} \delta_{y_j}$ with $\eta(\{x\}) = 0$,

$$\mathbf{d}^{\mu_{\mathrm{Ai},eta}}\left(x,\eta
ight)=eta\lim_{L o\infty}\left\{\sum_{j:|x-y_j|\leq L}rac{1}{x-y_j}
ight\}.$$

Key lemma

The key part in the proof of Theorem 2 is to determine the log derivative of μ .

Key lemma (tacnode) Let $\beta = 1, 2, 4$. For $x \in \mathbb{R}$ and $\eta = \sum_{j \in \mathbb{N}} \delta_{y_j}$ with $\eta(\{x\}) = 0$,

$$\mathbf{d}^{\mu_{\mathrm{Ai},\beta}}\left(x,\eta\right) = \beta \lim_{L \to \infty} \left\{ \sum_{j:|x-y_j| \le L} \frac{1}{x-y_j} \right\}$$

Lemma (Bulk) [Osada, PTRF online first] For $x \in \mathbb{R}$ and $\eta = \sum_{j \in \mathbb{N}} \delta_{y_j}$ with $\eta(\{x\}) = 0$.

$$\mathbf{d}^{\mu_{\sin,\beta}}(x,\eta) = 2\lim_{L\to\infty} \left\{ \sum_{j:|x-y_j|\leq L} \frac{1}{|x-y_j|} - \int_{|u|\leq L} \frac{\rho}{-u} du \right\}.$$

To prove the key lemma, we use *n* particle sysytem:

$$m_{\beta}^{n}(d\mathbf{u}_{n}) = \frac{1}{Z}\prod_{i< j}|u_{i}-u_{j}|^{\beta}\exp\bigg\{-\frac{\beta}{4}\sum_{i=1}^{n}|u_{i}|^{2}\bigg\}d\mathbf{u}_{n},$$

We put $u_j = 2\sqrt{n} + rac{x_j}{n^{1/6}}$ and intrduce the measure defined by

$$\mu_{\mathcal{A},\beta}^{n}(d\mathbf{x}_{n}) = \frac{1}{Z} \prod_{i < j} |x_{i} - x_{j}|^{\beta} \exp\left\{-\frac{\beta}{4} \sum_{i=1}^{n} |2\sqrt{n} + n^{-1/6}x_{i}|^{2}\right\} d\mathbf{x}_{n},$$

The log derivative \mathbf{d}^n of the measure $\mu^n_{\mathcal{A},\beta}$ is given by

$$\mathbf{d}^{n}(x,\eta) = \mathbf{d}^{n}\left(x,\sum_{j=1}^{n-1}\delta_{y_{j}}\right) = \beta \bigg\{\sum_{j=1}^{n-1}\frac{1}{x-y_{j}} - n^{1/3} - \frac{n^{-1/3}}{2}x\bigg\}.$$

Hideki Tanemura (Chiba univ.) ()

Lemma 3 is derived from the fact that

$$\mathbf{d}^{\mu^{\mathrm{Ai}}}(x,\eta) = \lim_{n \to \infty} \mathbf{d}^{n}(x,\eta) = \beta \lim_{L \to \infty} \left\{ \sum_{|x-y_{j}| < L} \frac{1}{x-y_{j}} - \int_{|u| \leq L} \frac{\widehat{\rho}(y)}{-y} du \right\}$$
(3)

Lemma 3 is derived from the fact that

$$\mathbf{d}^{\mu^{\mathrm{Ai}}}(x,\eta) = \lim_{n \to \infty} \mathbf{d}^{n}(x,\eta) = \beta \lim_{L \to \infty} \left\{ \sum_{|x-y_{j}| < L} \frac{1}{x-y_{j}} - \int_{|u| \leq L} \frac{\widehat{\rho}(y)}{-y} du \right\}$$
(3)

To check (3) we divide \mathbf{d}^n/β into three parts:

$$g_{L}^{n}(x,\eta) = \sum_{|x-y_{j}| < L} \frac{1}{|x-y_{j}|} - \int_{|x-u| < L} \frac{\rho_{\mathcal{A},\beta,x}^{n}(u)}{|x-u|} du,$$
$$w_{L}^{n}(x,\eta) = \sum_{|x-y_{j}| \ge L} \frac{1}{|x-y_{j}|} - \int_{|x-u| \ge L} \frac{\rho_{\mathcal{A},\beta,x}^{n}(u)}{|x-u|} du,$$
$$u^{n}(x) = \int_{\mathbb{R}} \frac{\rho_{\mathcal{A},\beta,x}^{n}(u)}{|x-u|} du - n^{1/3} - \frac{n^{-1/3}}{2}x.$$

Hideki Tanemura (Chiba univ.) ()

The fact (3) is obtained if the following conditions hold:

$$\lim_{n\to\infty} g_L^n(x,\eta) = g_L(x,\eta), \quad \text{ in } L^{\hat{p}}(\mu^1_{\mathrm{Ai},\beta}) \text{ for any } L > 0, \qquad (4)$$

$$\lim_{L \to \infty} \limsup_{n \to \infty} \int_{[-r,r] \times \mathfrak{M}} |w_L^n(x,y)|^{\hat{p}} d\mu_{\mathcal{A}}^{n,1}(dxd\eta) = 0,$$
(5)
$$\lim_{n \to \infty} u^n(x) = u(x), \quad \text{in } L^{\hat{p}}_{loc}(\mathbb{R}, dx) ,$$
(6)

with

$$g_L(x,\eta) = \sum_{|x-y_j| < L} \frac{1}{x-y_j} - \int_{|x-u| < L} \frac{\rho_{\mathrm{Ai},\beta,x}(u)}{x-u} du,$$

and

$$u(x) = \lim_{L\to\infty} \left\{ \int_{|u|\leq L} \frac{\rho_{\mathrm{Ai},\beta,x}(u)}{x-u} du - \int_{|u|\leq L} \frac{\widehat{\rho}(u)}{-u} du \right\} \in L^{\widehat{\rho}}_{loc}(\mathbb{R}, dx).$$

In the case $\beta = 2$, $\mu_{\mathcal{A}}^{n}$ is the DPP with the correlation kernel

$$\mathcal{K}_{\mathcal{A}}^{n}(x,y) = n^{1/3} \frac{\Psi_{n}(x)\Psi_{n-1}(y) - \Psi_{n-1}(x)\Psi_{n}(y)}{x-y}$$

where $\Psi_n(x) = n^{1/12} \varphi_n \left(\sqrt{2n} + \frac{x}{\sqrt{2n^{1/6}}} \right)$, and $\varphi_k(x)$ is the normalized orthogonal functions on \mathbb{R} comprising the Hermite polynomials $H_k(x)$.

In the case $\beta = 2$, $\mu_{\mathcal{A}}^{n}$ is the DPP with the correlation kernel

$$K_{\mathcal{A}}^{n}(x,y) = n^{1/3} \frac{\Psi_{n}(x)\Psi_{n-1}(y) - \Psi_{n-1}(x)\Psi_{n}(y)}{x-y}$$

where $\Psi_n(x) = n^{1/12} \varphi_n \left(\sqrt{2n} + \frac{x}{\sqrt{2n^{1/6}}} \right)$, and $\varphi_k(x)$ is the normalized orthogonal functions on \mathbb{R} comprising the Hermite polynomials $H_k(x)$. We also use the function

$$\widehat{\rho}^{n}(u) = \frac{1}{\pi} \sqrt{-u \left(1 + \frac{u}{4n^{2/3}}\right)}, \quad -4n^{2/3} \le u \le 0$$

and the facts

$$\int_{\mathbb{R}} \frac{\widehat{\rho}^n(u)}{-u} du = n^{1/3}, \quad \lim_{n \to \infty} \widehat{\rho}^n(u) \to \widehat{\rho}(u).$$

Thank you for your attention!

Hideki Tanemura (Chiba univ.) () SDEs related to Soft-Edge scalng limit

8th World Congress in Probability and Statist / 22