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Introduction

Dyson’s Brownian motion model [JMP 62] is a one parameter family of
the systems of one dimensional Brownian motions with long ranged
repulsive interaction, whose strength is represented by a parameter β > 0.
It soves the stochastic differential equation

Xj(t) = xj + Bj(t) +
β

2

∑
k:1≤k≤n

k 6=j

∫ t

0

ds

Xj(s) − Xk(s)
, 1 ≤ j ≤ n (1)

where Bj(t), j = 1, 2, . . . , n are independent one dimensional Brownian
motions.We consider the case that β = 2 and call the model in the special
case Dyson model .
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Introduction

The Dyson model is realized by the following three processes:
(i) The process of eigenvalues of Hermitian matrix valued diffusion process
in the Gaussian unitary ensemble (GUE).
(ii) The system of one-dimensional Brownian motions conditioned never to
collide with each other.
(iii) The harmonic transform of the absorbing Brownian motion in a Weyle
chamber of type An−1:

Wn =
{
x = (x1, x2, · · · , xn) : x1 < x2 < · · · < xn

}
.

with harmonic function given by the Vandermonde determinant:

hn(x) =
∏

1≤j<k≤n

(xk − xj) = det
1≤j ,k≤n

[
x j−1
k

]
.

Hideki Tanemura (Chiba univ.) () SDEs related to Soft-Edge scalng limit
8th World Congress in Probability and Statistics (2012 July 13) 3

/ 22



. . . . . .

Introduction

n × n Hermitian matrix valued process (n ∈ N)

M(t) =


M11(t) M12(t) · · · M1n(t)
M21(t) M22(t) · · · M2n(t)

· · ·
M1(t) Mn2(t) · · · Mnn(t)

 , M`k(t) = Mk`(t)
†.
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· · ·
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†.

(GOE) BR
k`(t), 1 ≤ k ≤ ` ≤ n : indep. BMs

Mk`(t) =
1√
2
BR

k`(t), 1 ≤ k < ` ≤ n, Mkk(t) = BR
kk(t), 1 ≤ k ≤ n,
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M11(t) M12(t) · · · M1n(t)
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· · ·
M1(t) Mn2(t) · · · Mnn(t)

 , M`k(t) = Mk`(t)
†.

(GOE) BR
k`(t), 1 ≤ k ≤ ` ≤ n : indep. BMs

Mk`(t) =
1√
2
BR

k`(t), 1 ≤ k < ` ≤ n, Mkk(t) = BR
kk(t), 1 ≤ k ≤ n,

(GUE) BR
k`(t), BI

k`(t),1 ≤ k ≤ ` ≤ n : indep. BMs

Mk`(t) =
1√
2
BR

k`(t) +

√
−1√
2

BI
k`(t), 1 ≤ k < ` ≤ n,

Mkk(t) = BR
kk(t), 1 ≤ k ≤ n,
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Introduction

(GSE) Bα
k`(t), α = 0, 1, 2, 3, 1 ≤ k ≤ ` ≤ n : indep. BMs

M0
k`(t) =

1√
2
B0

k`(t), 1 ≤ k < ` ≤ n, M0
kk(t) = B0

kk(t), 1 ≤ k ≤ n,

For α = 1, 2, 3,

Mα
k`(t) =

√
−1√
2

Bα
k`(t), 1 ≤ k < ` ≤ n, Mα

kk(t) = 0, 1 ≤ k ≤ n,

2n × 2n self dual Hermitian matrix valued process

M(t) = M0(t) ⊗ I +
3∑

α=1

Mα(t) ⊗ eα

Here

I =

(
1 0
0 1

)
e1 =

(
i 0
0 −i

)
e2 =

(
0 1
−1 0

)
e3 =

(
0 i
i 0

)
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Introduction

In this talk we discuss the following problems:

(i) Conditions that (X1(t), X2(t), . . . , Xn(t)) converges to some process,
say X (t), as n → ∞.

(ii) Stochastic differential equation that the limit process X(t) solves.

(iii) Invariant distributions of the limit process X(t).

The configuration space of unlabelled particles:

M =
{

ξ : ξ is a nonnegative integer valued Radon measures in R
}

=
{

ξ(·) =
∑
j∈I

δxj (·) : ]{j ∈ I : xj ∈ K} < ∞, for any K compact
}

M is a Polish space with the vague topology.
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Answer to (i)

For L > 0, α > 0 and ξ ∈ M we put

M(ξ, L) =

∫
[−L,L]\{0}

ξ(dx)

x
, Mα(ξ, L) =

(∫
[−L,L]\{0}

ξ(dx)

|x |α

)1/α

and
M(ξ) = lim

L→∞
M(ξ, L), Mα(ξ) = lim

L→∞
Mα(ξ, L),

if the limits exist. We introduce the following two conditions:

(C.1) there exists C0 > 0 such that |M(ξ)| ≤ C0,

(C.2) there exist α ∈ (1, 2) and C1 > 0 such that Mα(ξ) ≤ C1,
(ii) there exist β > 0 and C2 > 0 such that

M1(τ−a2ξ〈2〉) ≤ C2(|a| ∨ 1)−β ∀a ∈ suppξ.
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Answer to (i)

Examples. Put

ηκ =
∑
x∈Z

δsgn(x)|x |κ .

In case κ > 1/2, ηκ satusfies the conditions (C.1) and (C.2).

THEOREM (Katori-T. CMP ’10, Katori-T. arXiv:math.PR 1008.2821)
Suppose that ξ ∈ M0 ≡ {ξ ∈ M : ξ(x) ≤ 1 for all x ∈ R} satisfies the
conditions (C.1) and (C.2). Then

(Ξ(t), Pξ∩[−L,L]) → (Ξ(t), Pξ), L → ∞

weakly on C([0,∞) → M). In particular, the process (Ξ(t), Pξ) has a
modification which is almost-surely continuous on [0,∞) with Ξ(0) = ξ.
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Answer to (ii)

The distribution of eigenvalues of GUE with size n × n are given by

mn
2(dxn) =

1

Z

∏
i<j

|xi − xj |2 exp

{
−1

2

n∑
i=1

|xi |2
}

dxn,

on the configuration space Wn−1.

(Bulk scaling limit) For the eigenvalues {λn
1, . . . , λ

n
n}

{
√

nλn
1, . . . ,

√
nλn

n} → µsin,β , weakly as n → ∞.
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Answer to (ii)

For β = 2 (GUE) µsin,2 is the determinantal point process(DPP) , in which
any spatial correlation function ρm is given by a determinant with the sine
kernel

Ksin,2(x , y) = Ksin(x , y) ≡ sin{π(y − x)}
π(y − x)

, x , y ∈ R.

The moment generating function is given by a Fredholm determinant∫
M

exp
{∫

R
f (x)ξ(dx)

}
µsin,2(dξ) = Det

(x ,y)∈R2

[
δx(y) + Ksin(x , y)χ(y)

]
,

for f ∈ Cc(R), where χ(·) = ef (·) − 1.
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Answer to (ii)

THEOREM (Osada[PTRF: online first] )
There exists the diffusion process whose reversible probability measure
µsin,2 which solves the SDE

dXj(t) = dBj(t) +
∑
k∈N
k 6=j

dt

Xj(s) − Xk(s)
, j ∈ N, (2)

where Bj(t), j ∈ N are independent one dimensional Brownian motions.
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Dirichlet spaces

A function f defined on the configuration space M is local if f (ξ) = f (ξK )
for some compact set K .
A local function f is smooth if f (

∑n
j=1 δxj ) = f̃ (x1, x2, . . . , xn) with some

smooth function f̃ on Rn with compact support. Put

D0 = {f : f is local and smooth}.
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A function f defined on the configuration space M is local if f (ξ) = f (ξK )
for some compact set K .
A local function f is smooth if f (

∑n
j=1 δxj ) = f̃ (x1, x2, . . . , xn) with some

smooth function f̃ on Rn with compact support. Put

D0 = {f : f is local and smooth}.

We put

D[f , g ](ξ) =
1

2

ξ(K)∑
j=1

∂ f̃ (x)

∂xj

∂g̃(x)

∂xj

and for a probability measure µ we introduce the bilinear form

Eµ(f , g) =

∫
M

D[f , g ]dµ, f , g ∈ D0.
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quasi Gibbs measure

Let Φ be a free potential, Ψ be an interaction potential. For a given
sequence {br} of N we introduce a Hamiltonian on Ir = (−br , br ):

Hr (ξ) = HΦ,Ψ
r (ξ) =

∑
xj∈Ir

Φ(xj) +
∑

xj ,xk∈Ir ,j<k

Ψ(xj , xk)
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quasi Gibbs measure

Let Φ be a free potential, Ψ be an interaction potential. For a given
sequence {br} of N we introduce a Hamiltonian on Ir = (−br , br ):

Hr (ξ) = HΦ,Ψ
r (ξ) =

∑
xj∈Ir

Φ(xj) +
∑

xj ,xk∈Ir ,j<k

Ψ(xj , xk)

Definition A probability measure µ is said to be a (Φ, Ψ)-quasi Gibbs
measure if there exists an increasing sequence {br} of N and measures
{µm

r ,k} such that for each r , m ∈ N satisfying

µm
r ,k ≤ µm

r ,k+1, k ∈ N, lim
k→∞

µm
r ,k = µ(· ∩ {ξ(Ir ) = m}), weekly

and that for all r , m, k ∈ N and for µm
r ,k -a.s. ξ ∈ M

c−1e−Hr (ξ)1{ξ(Ir )=m}Λ(dζ) ≤ µm
r ,k(πIr ∈ dζ|ξI c

r
) ≤ ce−Hr (ξ)1{ξ(Ir )=m}Λ(dζ)

Here Λ is the Poisson random measure with intensity measure dx .
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quasi regular Dirichlet space

Theorem (Bulk) [Osada:to appear in AOP]
Let β = 1, 2, 4.
(1) The probability measure µsin,β is a quasi Gibbs measure with
Φ(x) = 0 and Ψ(x) = −β log |x − y |.
(2) The closure of (Eµsin,β ,D0, L

2(M, µsin,β)) is a quasi Dirichlet space,
and there exists a µsin-reversible diffusion process (Ξsin,β(t),P) associated
with the Diriclet space.
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Log derivative

Let µx be the Palm measure conditioned at x = (x1, . . . , xk ∈ Rk

µx = µ

(
· −

k∑
j=1

δxj

∣∣∣∣∣ξ(xj) ≥ 1 for j = 1, 2, . . . , k

)
.

Let µk be the Campbell measure of µ:

µk(A × B) =

∫
A

µx(B)ρk(x)dx, A ∈ B(Rk), B ∈ B(M).

We call dµ ∈ L1
loc(R × M, µ1) the log derivative of µ if dµ satisfies∫

R×M
dµ(x , η)f (x , η)dµ1(x , η) = −

∫
R×M

∇x f (x , η)dµ1(x , η),

f ∈ C∞
c (R) ⊗D0.

Hideki Tanemura (Chiba univ.) () SDEs related to Soft-Edge scalng limit
8th World Congress in Probability and Statistics (2012 July 13) 15

/ 22



. . . . . .

ISDE

Theorem [Osada, PTRF (on line first)]
Assume that there exists a log derivative dµ (and some conditions). There
exists M0 ⊂ M such that µ(M0) = 1, and for any ξ =

∑
j∈N δxj ∈ M0,

there exists RN-valued continuous process X(t) = (Xj(t))
∞
j=1 satisfying

X(0) = x = (xj)
∞
j=1 and

dXj(t) = dBj(t) +
1

2
dµ

(
Xj(t),

∑
k:k 6=j

δXk (t)

)
dt, j ∈ N.
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Assume that there exists a log derivative dµ (and some conditions). There
exists M0 ⊂ M such that µ(M0) = 1, and for any ξ =

∑
j∈N δxj ∈ M0,

there exists RN-valued continuous process X(t) = (Xj(t))
∞
j=1 satisfying

X(0) = x = (xj)
∞
j=1 and

dXj(t) = dBj(t) +
1

2
dµ

(
Xj(t),

∑
k:k 6=j

δXk (t)

)
dt, j ∈ N.

Lemma (Bulk) [Osada, PTRF online first] Let β = 1, 2, 4. For x ∈ R and

η =
∑
j∈N

δyj with η({x}) = 0,

dµsin,β (x , η) = β lim
L→∞

∑
j :|x−yj |≤L

1

x − yj
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Key lemma

The key part in the proof of Theorem 2 is to determine the log derivative
of µ.

Key lemma (tacnode) Let β = 1, 2, 4. For x ∈ R and η =
∑
j∈N

δyj

with η({x}) = 0,

dµAi,β (x , η) = β lim
L→∞

 ∑
j :|x−yj |≤L

1

x − yj

 .
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Key lemma

The key part in the proof of Theorem 2 is to determine the log derivative
of µ.

Key lemma (tacnode) Let β = 1, 2, 4. For x ∈ R and η =
∑
j∈N

δyj

with η({x}) = 0,

dµAi,β (x , η) = β lim
L→∞

 ∑
j :|x−yj |≤L

1

x − yj

 .

Lemma (Bulk) [Osada, PTRF online first] For x ∈ R and η =
∑
j∈N

δyj

with η({x}) = 0,

dµsin,β (x , η) = 2 lim
L→∞

 ∑
j :|x−yj |≤L

1

x − yj
−
∫
|u|≤L

ρ

−u
du

 .
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Proof

To prove the key lemma, we use n particle sysytem:

mn
β(dun) =

1

Z

∏
i<j

|ui − uj |β exp

{
− β

4

n∑
i=1

|ui |2
}

dun,

We put uj = 2
√

n +
xj

n1/6 and intrduce the measure defined by

µn
A,β(dxn) =

1

Z

∏
i<j

|xi − xj |β exp

{
−β

4

n∑
i=1

|2
√

n + n−1/6xi |2
}

dxn,

The log derivative dn of the measure µn
A,β is given by

dn(x , η) = dn

x ,
n−1∑
j=1

δyj

 = β

{ n−1∑
j=1

1

x − yj
− n1/3 − n−1/3

2
x

}
.
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Proof

Lemma 3 is derived from the fact that

dµAi
(x , η) = lim

n→∞
dn(x , η) = β lim

L→∞

 ∑
|x−yj |<L

1

x − yj
−
∫
|u|≤L

ρ̂(y)

−y
du


(3)
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Proof

Lemma 3 is derived from the fact that

dµAi
(x , η) = lim

n→∞
dn(x , η) = β lim

L→∞

 ∑
|x−yj |<L

1

x − yj
−
∫
|u|≤L

ρ̂(y)

−y
du


(3)

To check (3) we divide dn/β into three parts:

gn
L(x , η) =

∑
|x−yj |<L

1

x − yj
−
∫
|x−u|<L

ρn
A,β,x(u)

x − u
du,

wn
L (x , η) =

∑
|x−yj |≥L

1

x − yj
−
∫
|x−u|≥L

ρn
A,β,x(u)

x − u
du,

un(x) =

∫
R

ρn
A,β,x(u)

x − u
du − n1/3 − n−1/3

2
x .
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Proof

The fact (3) is obtained if the following conditions hold:

lim
n→∞

gn
L(x , η) = gL(x , η), in Lp̂(µ1

Ai,β) for any L > 0, (4)

lim
L→∞

lim sup
n→∞

∫
[−r ,r ]×M

|wn
L (x , y)|p̂dµn,1

A (dxdη) = 0, (5)

lim
n→∞

un(x) = u(x), in Lp̂
loc(R, dx) , (6)

with

gL(x , η) =
∑

|x−yj |<L

1

x − yj
−
∫
|x−u|<L

ρAi,β,x(u)

x − u
du,

and

u(x) = lim
L→∞

{∫
|u|≤L

ρAi,β,x(u)

x − u
du −

∫
|u|≤L

ρ̂(u)

−u
du

}
∈ Lp̂

loc(R, dx).
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Proof

In the case β = 2, µn
A is the DPP with the correlation kernel

Kn
A(x , y) = n1/3 Ψn(x)Ψn−1(y) − Ψn−1(x)Ψn(y)

x − y

where Ψn(x) = n1/12ϕn

(√
2n + x√

2n1/6

)
, and ϕk(x) is the normalized

orthogonal functions on R comprising the Hermite polynomials Hk(x).
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Proof

In the case β = 2, µn
A is the DPP with the correlation kernel

Kn
A(x , y) = n1/3 Ψn(x)Ψn−1(y) − Ψn−1(x)Ψn(y)

x − y

where Ψn(x) = n1/12ϕn

(√
2n + x√

2n1/6

)
, and ϕk(x) is the normalized

orthogonal functions on R comprising the Hermite polynomials Hk(x).
We also use the function

ρ̂n(u) =
1

π

√
−u

(
1 +

u

4n2/3

)
, −4n2/3 ≤ u ≤ 0

and the facts ∫
R

ρ̂n(u)

−u
du = n1/3, lim

n→∞
ρ̂n(u) → ρ̂(u).
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Thanks

Thank you for your attention!
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