
Diffusions associated with Gaussian analytic functions
2015/4/30/Thu–2015/5/1/Fri Kyushu

Workshop on ”Probabilistic models with determinantal structure”

We construct unlabeled diffusion reversible to random

point fields given by zero points of GAF.

Outline of talk:

• the standard planar GAF and diffusions

• A general theory for ISDEs



The standard planar GAF

The standard planar GAF is the random entire function
with Gaussian coefficients:

f(z) =
∞∑

k=0

ξk√
k!
zk

• {ξk} is i.i.d. standard complex Gaussian.
• The zero points of f are regarded as configuration on C (R2).
• Let µGAF be its distribution. Rotation & translation invariant.

Problem 1.We discuss three problems:
• What is the natural µGAF-reversible diffusion X = {Xt}. Here

Xt =
∞∑
i=1

δXi
t

(unlabeled diffusion)

• How to construct X = {Xt}?
• What is the SDE representation of Xt = (Xi

t)?
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Main theorem: Set Up
• Let S be the configuration space. Let s =

∑
i δsi ∈ S.

• Let D is the standard square field on S:

D[f, g](s) =
1

2

∞∑
i=1

∂f̃

∂si
·
∂g̃

∂si

Here f is a local and smooth function on S, and f̃(s1, . . . , ) is a
symmetric function such that f(s) = f̃(s1, . . . , ).
• Let D0 be the set of local smooth functions. Let

EµGAF(f, g) =

∫
S
D[f, g]dµGAF

on L2(S, µGAF) with domain

DµGAF
0 = {f ∈ L2(µGAF); f ∈ D0, EµGAF(f, f) < ∞}.

Thm 1. (EµGAF,DµGAF
0 ) is closable on L2(µGAF).

• Proof of Thm 1 consists of “Ghosh’s quantitative bound of GAF”
and “a generalization of [O. ’13]”.
• From Thm 1 we obtain L2-Markovian semi-group.
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Main theorem: GAF diffusion

Let (EµGAF,DµGAF) be the closure on L2(µGAF).

Thm 2. (Construction of dynamics)

(1) µGAF-reversible unlabeled diffusions X

Xt =
∞∑
i=1

δXi
t

associated with (EµGAF,DµGAF) on L2(µGAF) exists.

(2) X = (Xi
t)i∈N is a CN-valued diffusion.

(3) Each tagged particle Xi
t does not collide each other.

• Thm 2 follows from a general theory in [O.’96,’04,’10,’13]” and

the closability in Thm 1.

• We have not yet obtained the infinite-dimensional stochastic dif-

ferential equation describing the labeled dynamics X = (Xi
t).

This is a problem to calculate the logarithmic derivative of µGAF.
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A general theory for ISDEs

I have been developing a general theory for interacting

Brownian motions in infinite dimentions, and like to apply

to GAF. I would explain about this.

Outline:

• Examples: Sine, Airy, Bessel & Ginibre

• quasi-Gibbs measures and unlabeled diffusion

and a generalization to GAF

• logarithmic derivative and SDE representation

• Calculation of logarithmic derivatives

• Examples: Ginibre and Airy RPFs
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• We solve ISDEs of the form

dXi
t = dBi

t + b(Xi
t,X

♢i
t )dt (i ∈ N) (1)

Here Xt = (X1
t , . . . , ) ∈ (R2)N-valued, and

X♢i
t = (Xj

t )j∈N\{i}.

The coefficient b(x,y) is symmetric in y = (yi)i∈N for each x ∈ R2.
Bt = (B1

t , . . . , ) is (R2)N-valued standard Brownian motion.
We will construct weak solution (X,B).
Our method can be applied to the case with σ(Xi

t,X
♢i
t )dBi

t.
For simplicity we talk about (1) only.

• Because of the symmetry of b(x,y) in y, we can rewrite

dXi
t = dBi

t + b(Xi
t,X

♢i
t )dt (i ∈ N) (2)

Here we regard b(x, ·) as a function on the configuration space, and

X♢i
t =

∑
j ̸=i

δ
X

j
t
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• Gibbsian examples for suitable α and d: (i ∈ N)

dXi
t = dBi

t +
β

2

∞∑
j=1,j ̸=i

{
12(Xi

t −X
j
t )

|Xi
t −X

j
t |14

−
6(Xi

t −X
j
t )

|Xi
t −X

j
t |8

}dt (LJ 6-12)

dXi
t = dBi

t +
β

2

∞∑
j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |α

dt. (Riesz)

• (LJ 6-12): d = 3 Lennard-Jones 6-12 potential

• (Riesz): α > d+2 Riesz potential (Gibbsian case)
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• We recall the examples: (i ∈ N) and ϱ(x) =
√
−x
π 1(−∞,0](x).

dXi
t = dBi

t +
β

2
lim
r→∞

∑
|Xi

t−X
j
t |<r, j ̸=i

1

Xi
t −X

j
t

dt (Sine)

dXi
t = dBi

t +
β

2
lim
r→∞

{(
∑

j ̸=i, |Xj
t |<r

1

Xi
t −X

j
t

)−
∫
|x|<r

ϱ(x)

−x
dx}dt (Airy)

dXi
t = dBi

t +
a

2Xi
t

dt+
β

2

∞∑
j ̸=i

1

Xi
t −X

j
t

dt (Bessel)

dXi
t = dBi

t + lim
r→∞

∑
|Xi

t−X
j
t |<r

j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

dt (Ginibre)
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Algebraic construction in 1D. Let d = 1 and β = 2.
• Sine, Airy, and Bessel can be constructed by space-time correla-
tion functions. So there are two very different constructions for 1D
system woth β = 2 arising from Random matrix theory.

Thm 3 (O.-Tanemura ’14). Let µ be Sine, Airy or Bessel RPFs.
Stochastic dynamics constructed by stochastic analysis and the space-
time correlation functions are equal.

• The importance is the following. From algebraic construction we
can obtain quantative infomation such as moment bounds of linear
statistics. From analytic construction, we can obtain qualitative
information such as semi-martingale property of tagged particles,
non-collision property, non-explosion property, Itô formula, and so
on.

• At present, such a algebraic construction is restricted d = 1, β =

2 and dynamics coming from Random matrix theory (logarithmic

interactions).
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Algebraic construction in 1D.

As an example, we explain Airy.

• Space-time correlation functions are given by the extended Airy

kernel:

KAi(s, x; t, y) =

{∫∞
0 due−u(t−s)/2Ai(u+ x)Ai(u+ y), t ≥ s

−
∫ 0
−∞ due−u(t−s)/2Ai(u+ x)Ai(u+ y), t < s

.

The unlabeled process Zt =
∑∞

i=1 δZi
t
is given by its moment gener-

ating function (f = (f1, . . . , fM), t = (t1, . . . , tM), ti < ti+1)

Ψt[f] = E[exp{
M∑

m=1

∫
R
fm(x)Ztm(dx)}]

defined as a Fredholm determinant

Ψt[f] = Det(s,t)∈I2, (x,y)∈R2[δstδ(x− y) +KAi(s, x; t, y)χt(y)].

Here I = {t1, . . . , tM} and χtm(y) = efm(y) − 1,
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Ginibre interacting Brownian motions in infinite-dimensions.

• We write Ginibre in non-consice form SDEs:

dX1
t = dB1

t + lim
r→∞

∞∑
j ̸=1, |X1

t −X
j
t |<r

X1
t −X

j
t

|X1
t −X

j
t |2

dt

dX2
t = dB2

t + lim
r→∞

∞∑
j ̸=2, |X2

t −X
j
t |<r

X2
t −X

j
t

|X2
t −X

j
t |2

dt

dX3
t = dB3

t + lim
r→∞

∞∑
j ̸=3, |X3

t −X
j
t |<r

X3
t −X

j
t

|X3
t −X

j
t |2

dt

dX4
t = dB4

t + lim
r→∞

∞∑
j ̸=4, |X4

t −X
j
t |<r

X4
t −X

j
t

|X4
t −X

j
t |2

dt

• • •
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Ginibre interacting Brownian motions in infinite-dimensions.
• Ginibre in non-consice form SDEs in the 2’nd representation:

dX1
t = dB1

t −X1
t dt+ lim

r→∞

∞∑
j ̸=1, |Xj

t |<r

X1
t −X

j
t

|X1
t −X

j
t |2

dt

dX2
t = dB2

t −X2
t dt+ lim

r→∞

∞∑
j ̸=2, |Xj

t |<r

X2
t −X

j
t

|X2
t −X

j
t |2

dt

dX3
t = dB3

t −X3
t dt+ lim

r→∞

∞∑
j ̸=3, |Xj

t |<r

X4
t −X

j
t

|X4
t −X

j
t |2

dt

dX4
t = dB4

t −X4
t dt+ lim

r→∞

∞∑
j ̸=4, |Xj

t |<r

X4
t −X

j
t

|X4
t −X

j
t |2

dt

• • •
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Here is a simulation:



Cofiguration spaces

Set up:

• S = Rd: Space, where particles move,

• Sr = {|x| ≤ r},
• S = {s =

∑
i δsi, s(Sr) < ∞(∀r)}:

Configuration space over S.

Polish space with vague topology.

The space of unlabeled particles.

• SN is the space of labeled particles.

• s =
∑

i δsi denotes unlabeled particles.

s = (si) ∈ SN denotes labeled particles.

• Since SN is too large, we use S instead.

• Bt =
∑∞

i=1 δBi
t
is S-valued Brownian motion.

• Bt = (Bi
t)i∈N is SN-valued Brownian motion.
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Canonical square field
For a fun f on S let f(s) =: f̃(s1, . . .), where f̃ is symmetric, s =

∑
δsi.

Let D0 be the set of bounded, local, smooth functions f on S.
i.e. f is σ[πr]-measurable for some r < ∞, f̃ is smooth.

Let D be the canonical square field on S:

D[f, g](s) =
1

2

∑
i

∇if̃ · ∇ig̃.

Here ∇i = ( ∂
∂si1

, . . . , ∂
∂sid

).

The rhs is independent of particular choice of label.

• For a RPF µ we set

Eµ(f, g) =

∫
S
D[f, g]µ(ds),

Dµ
0 = {f ∈ D0; Eµ(f, f) < ∞, f ∈ L2(µ)}

• If we take µ = Λ, Poisson RPF with Lebesgue intensiy, then the
bilinear form associates Brownian motion Bt =

∑
i δBi

t
.

In this sense D is the canonical square field.
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From RPF to unlabeled diffusion

Outline of the proof:

µ ⇒(Eµ,Dµ
0, L

2(µ)) ⇒Xt =
∞∑
i=1

δXi
t
⇒X = (Xi

t)i∈N ⇒ ISDE

• The first arrow is automatic. For a given RPF µ, we can associated

a positive bilinear form through the square field D.

• If (Eµ,Dµ
0, L

2(µ)) is closable and its closue is quasi-regular, then by

Dirichlet form theory an associated µ-reversible diffusion Xt exists.

• For this we introduce a notion of quasi-Gibbs measure.

If µ is quasi-Gibbs with upper semi-continuous potential Ψ, then the

bilinear form id closable. In addition, µ satisies a marginal condition

(local boundedness of correlation functions, say), then the form be-

comes quasi-regular. Hence by the general theory of Dirichlet form

there exists the associated unlabeled diffusion Xt.
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Ψ-Quasi-Gibbs meas.

Quasi-Gibbs measures:
• πr, πc

r :S→S: projections

πr(s) = s(· ∩ Sr), πc
r(s) = s(· ∩ Sc

r)

• For a RPF µ we set

µmr,ξ(·) = µ(πr ∈ ·|s(Sr) = m,πc
r(s) = πc

r(ξ))

• Let Ψ:S→R ∪ {∞} (interaction).

Hr =
∑

si,sj∈Sr,i<j

Ψ(si − sj)

• • •
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Ψ-Quasi-Gibbs meas.

µmr,ξ(·) = µ(πr ∈ ·|s(Sr) = m,πc
r(s) = πc

r(ξ)) (QG)

Hr =
∑

si,sj∈Sr,i<j

Ψ(si − sj) (3)

Def: µ is Ψ-quasi-Gibbs measure if ∃ cmr,ξ s.t.

cmr,ξ
−1e−HrdΛm

r ≤ µmr,ξ ≤ cmr,ξe
−HrdΛm

r

Here Λm
r = Λ(·|s(Sr) = m) and Λr is the Poisson RPF with 1Srdx.

• The above definition is a simplified version.
• Gibbs measures ⇒ Quasi-Gibbs measures: If µ satisfies DLA eq.

µmr,ξ = cmr,ξe
−Hr−

∑
xi∈Sr,ξj∈Scr Ψ(xi,ξj)

dΛm
r , (DLA)

then µ is a canonical Gibbs m. (DLA) does not make sense for

Ψ(x, y) = − log |x− y|
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Application of quasi-Gibbs property to dynamics

µ ⇒(Eµ,Dµ
0, L

2(µ)) ⇒Xt =
∞∑
i=1

δXi
t
⇒X = (Xi

t)i∈N ⇒ ISDE

Unlabeled diffusions

(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont

Thm 4 (O.’96 (CMP) (closability)).

(A1) ⇒ (Eµ,Dµ
0) is closable on L2(µ).

• Thm implies the existence of the associated L2 Markovian semi-

group.
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Thm 1 (A1) ⇒ (Eµ,Dµ
0) is closable on L2(µ).

Proof. Outline of (1): • Let

Eµmr,ξ(f, g) =

∫
S
D[f, g]dµmr,ξ (reflecting BC).

Then (Eµmr,ξ,D
µmr,ξ
0 ) is closable on L2(µmr,ξ) by (A1).

• Recall the disintegration: µ(·) =
∑∞

m=1 µ
m
r,ξ(·)µ(dξ).

Then (Êµ
r ,Dµ

0) are closable on L2(µ). Here

Êµ
r (f, g) =

∫
S

∞∑
m=1

Eµmr,ξ(f, g)dµ (reflecting BC).

• By the monotone convergence theorem of closable forms we see

Êµ(f, f) = lim
r→∞

Êµ
r (f, f), D̂0 = {f ; lim

r→∞
Êµ
r (f, f) < ∞}

is closable. Hence (Eµ,Dµ
0) is closable.
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Application of quasi-Gibbs property to dynamics: existence of diffusions

(A2)
∑∞

k=1 kµ(S
k
r) < ∞, σkr ∈ L2(Sk

r , dx)
Here Skr = {s(Sr) = k}, σkr is k-density fun on Sk

r .

Thm 5 (O.’96 (CMP) (existence of diffusions)).
Assume (A2). Assume that (Eµ,Dµ

0) is closable on L2(µ).
Then ∃ diffusion Xt =

∑
i δXi

t
associated with the closure

(Eµ,Dµ) of (Eµ,Dµ
0) on L2(µ).

Proof. This follows from a concrete construction of cut off function,
which yields the quasi-regularity of Dirichlet forms. The general
theory gives the diffusion.

Remark 1. • In general, the closures of the limit Dirichlet forms

(Êµ, D̂) and (Eµ,Dµ)

are not equal. We will prove the coincidence of these by using the
strong uniqueness of the solutions of the associated ISDEs.
• Lang’s dynamics (’79) are given by the Dirichlet form (Êµ, D̂).
O’s (’96) dynamics are given by (Eµ,Dµ). O.-Tanemura prove these
are the same if tagged particles have no explosions.
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Let Ψ2(x, y) = − log |x− y| be the 2-dim Coulomb potential.

Thm 6 (O. AOP ’13, O.-Honda ’14, O.-Tanemura ’14).
(1) Ginibre RPF is a 2Ψ2-quasi Gibbs measure.
(2) Sineβ RPF are βΨ2-quasi Gibbs m for β = 1,2,4.
(3) Bessela2 RPF is a 2Ψ2-quasi Gibbs m.
(4) Airyβ RPF are βΨ2-quasi Gibbs m for β = 1,2,4.

• GAF is not quasi-Gibbsian. Indeed, Ghosh proved:
Thm 7 (Ghosh ’12). Let µ = µGAF. Then there exists constant cmr,ξ
such that

1

cmr,ξ
e−HrdΛm

r [Ce(ξ)] ≤ µmr,ξ ≤ cmr,ξe
−HrdΛm

r [Ce(ξ)]

for µ-a.s. ξ. Here Ce is πc
r-measurable, and

Λm
r [M ] = Λm

r (·|
m∑

i=1

si = M).
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Proof of the Main Th (Closability of GAF bilinear form).

Let γm = 1√
m
(1, . . . ,1) be the unit vector on the diagonal.

∂

∂si
−

1
√
m

∂

∂γm

Let Sr = {|s| < r} and Smr = {s(Sr) = m}. Set s =
∑

i δsi and

DGAF
r [f, g] =

1

2

∞∑
m=1

1Smr (s)
∑
si∈Sr

(
∂

∂si
−

1
√
m

∂

∂γm
)f̌ · (

∂

∂si
−

1
√
m

∂

∂γm
)ǧ.

Then for any f ∈ D0

DGAF
r [f, f ] ↑ D[f, f ] (1)

Let EGAF
r (f, g) =

∫
SD

GAF
r [f, g]dµGAF. Then by (1)

EGAF
r (f, f) ↑ EGAF(f, f) (1)

By quantitative bound (EGAF
r ,D0) is closable. Hence (EGAF,D0) is

closable from (2).
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• We can generalize the notion of quasi-Gibbsian for general sub-

manifolds. GAF is a special case and only an example.



General theorems on infinite-dim SDEs

µ ⇒(Eµ,Dµ
0, L

2(µ)) ⇒Xt =
∞∑
i=1

δXi
t
⇒X = (Xi

t)i∈N ⇒ ISDE

Labeled dynamics
(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ.
(A2)

∑∞
k=1 kµ(S

k
r) < ∞, σkr ∈ L2(Sk

r , dx)
(A3) {Xi

t} do not collide each other (non-collision)
(A4) each tagged particle Xi

t never explode (non-explosion)
By (A3) and (A4) the labeled dynamics

Xt = (X1
t , X

2
t , . . .)

can be constructed from the unlabeled dynamics

Xt =
∑
i∈N

δXi
t
.

Indeed, the particles keep the initial label forever.
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Sufficient condition of (A3) & (A4)
Let Ss,i = Ss ∩ Si:

Ss = {s ∈ S ; s({x}) = 0 for all x ∈ S}, Si = {s ∈ S ; s(S) = ∞}.
• (A3) is equaivalent to

Capµ(Scs,i) = 0. (4)

Let ρn be a n-correlation function of µ.
Lem 1. Suppose µ is quasi-Gibbs with Ψ. Let ρ2 be 2-correlation
function of µ. Suppose one of the following holds. Then (A3) holds.
(1) d ≥ 2 and ρ2 are locally bounded.
(2) d = 1 and

ρ2(x, y) ≤ Ch(|x− y|) locally near {x = y}.
Here h(t) such that ∫ 1

0+

1

h(t)
dt = ∞.

Corollary 1.Sineβ, Airyβ, Besselβ (β ≥ 1), Ginibre RPFs satsfy (A2).
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General theorems on infinite-dim SDEs

• By (A3) we represent one-labeled process (X1
t ,

∑∞
j=2 δXj

t
) by the

Dirichlet space

(Eµ[1],Dµ[1], L2(µ[1])).

Applying Takeda criteria based on Lyons-Zheng decomposition we

deduce (A4) from ∃T > 0

lim inf
r→∞

{
∫
|x|≤r+R

ρ1(x)dx}{
∫

r√
(r+R)T

g(u)du} = 0 for all T. (5)

Lem 2. (A4) follows from (5).
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SDE representation

µ ⇒(Eµ,Dµ
0, L

2(µ)) ⇒Xt =
∞∑
i=1

δXi
t
⇒X = (Xi

t)i∈N ⇒ ISDE

ISDE representation
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Log derivative of µ: precise correspondence between RPFs & potentials

• Let µx be the (reduced) Palm m. of µ conditioned at x

µx(·) = µ(· − δx|s(x) ≥ 1)

• Let µ1 be the 1-Campbell measure on Rd×S:

µ1(A×B) =

∫
A
ρ1(x)µx(B)dx

• dµ ∈ L1
loc(R

d×S, µ1) is called the log derivative of µ if∫
Rd×S

∇xfdµ
1 = −

∫
Rd×S

fdµdµ1 ∀f ∈ C∞
0 (Rd)⊗D0

Here ∇x is the nabla on Rd.

• Very informally

dµ = ∇x logµ1
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• A caluculation of log derivative of Gibbs measures are trivial.

Indeed, it is immediate from DLR equation.

• This is not the case for RPFs appearing in RMT.

We will give a sufficient condition later.



Log derivative
A very informal calculation shows:

• If µ1(dxds) = m(x, s1, . . .)dx
∏

i dsi, then

−
∫

∇xf(x, s1, . . .)µ
1(dxds1 · · · )

=−
∫

∇xf(x, s1, . . .)m(x, s1, . . .)dx
∏
i

dsi

=

∫
f(x, s1, . . .)∇xm(x, s1, . . .)dx

∏
i

dsi

=

∫
f(x, s1, . . .)

∇xm(x, s1, . . .)

m(x, s1, . . .)
m(x, s1, . . .)dx

∏
i

dsi.

Hence

dµ =
∇xm(x, s1, . . .)

m(x, s1, . . .)
= ∇x logm(x, s1, . . .).
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General theorems on infinite-dim SDEs

(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ.

(A2)
∑∞

k=1 kµ(S
k
r) < ∞, σkr ∈ L2(Sk

r , dx)

(A3) {Xi
t} do not collide each other

(A4) each tagged particle Xi
t never explode

(A5) The log derivative dµ ∈ L1
loc(µ

1) exists ⇒(SDE representation)
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General theorems on infinite-dim SDEs
(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ.
(A2)

∑∞
k=1 kµ(S

k
r) < ∞, σkr ∈ L2(Sk

r , dx)
(A3) {Xi

t} do not collide each other
(A4) each tagged particle Xi

t never explode
(A5) The log derivative dµ ∈ L1

loc(µ
1) exists ⇒(SDE representation)

Thm 8. (O.12(PTRF)) (A1)–(A5) ⇒ ∃S0 ⊂ S such that µ(S0) = 1,
and that, for ∀s ∈ u−1(S0), there exists a solution (X,B) satisfying

dXi
t = dBi

t +
1

2
dµ(Xi

t,
∑
j ̸=i

δ
X

j
t
)dt, (Xi

0)i∈N = s

Xt ∈ u−1(S0) for all t

Here u :SN→S such that u((si)) =
∑

i δsi.
Corollary 2.Suppose that there exists a RPF µ satisfying (A1)–(A4)
and

∇x logµ[1](x, s) = 2b(x, s).

Then ISDE (1) has a weak solution.
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General theorems on infinite-dim SDEs
Proof:
• SN does not have good measures ⇒ no Dirichlet forms on SN ⇒
Introduce a sequence of spaces with Campbel measures µ[M ]:

SM×S, dµ[M ] = ρM(xM)µxm(ds)dxM

Here ρM is a M-correlation function of µ and µxm is the reduced
Palm measure conditioned at xM .

Let D[M ] be the natural square field of SM×S. Let

E[M ](f, g) =

∫
SM×S

D[M ][f, g]dµ[M ],

L2(µ[M ]), C∞
0 (SM)⊗D◦.

Lem 3. These bilinear forms are closable, and their closures are
quasi-regular Dirichlet forms. Hence associated diffusion (XM

t ,XM∗
t )

exists:

(XM
t ,XM∗

t ) = (XM,1
t , . . . , X

M,M
t ,

∞∑
i=M+1

δ
X

M,i
t

)
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Coupling of Dirichlet forms:
• Let fix a label ℓ. Let

Xt =
∞∑
i=1

δXi
t

be the unlabeld diffusion associated with the original unlabeled Dirich-
let form

(Eµ,Dµ, L2(µ)).

Thm 9.Associated diffusions have consistency

(XM,1
t , . . . , X

M,M
t , X

M,M+1
t , . . .) = (X1

t , . . . , X
M
t , XM+1

t , . . .) in law

or equivalently

(XM
t ,XM∗

t ) = (X1
t , . . . , X

M
t ,

∞∑
i=M+1

δXi
t
) in law

From this coupling and Fukushima decomposition (Itô formula) we

prove that (Xi
t) satisfies the ISDE. We use the M-labeled process

(XM
t ,XM∗

t ), to apply Itô formula to coordinate functions x1, . . . , xM .
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Coupling of Dirichlet forms:

• The key point here is that, instead of large space

SN

we use a system of countably infinite good infinite dimensional sapce

S1×S, S2×S, S3×S, S4×S, S5×S, S6×S, S7×S, · · ·
• By the diffusion X on the original unlabeled space

S,

we construct a coupling of diffusions (XM ,XM∗) on these inifinite

many spaces SM×S.

• From this coupling, we have the ISDE representation. Indeed, we

can apply Itoô formula to each coordinate functions f(x) = xk. We

use E[M ](f, g) for 1 ≤ k ≤ M .
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Log derivative of µ: precise correspondence between RPFs & potentials

• The log derivative gives the precise correspondence

between RPFs µ and potentials (Φ,Ψ).

• We next give examples of logarithmic derivatives
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dµ = ∇x logµ1

Thm 10 (O. PTRF 12).

(1) Let µgin be the Ginibre RPF. Then

dµgin(x, s) = lim
r→∞

2
∑

|x−si|<r

x− si
|x− si|2

dµgin(x, s) = −2x+ lim
r→∞

2
∑

|si|<r

x− si
|x− si|2

(2) Let µsin,β be the Sineβ RPF. Suppose β = 1,2,4. Then

dµsin,β(x, s) = lim
r→∞

β
∑

|x−si|<r

1

x− si

Thm 11 (O.-Honda). Let µabes,2 be the Bessela2 RPF. Then

d
µabes,2(x, s) =

a

x
+2

∑
|x−si|<r

1

x− si
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Thm 12 (O.-Tanemura). [ Airy RPFs: µAi,β ]

Let β = 1,2,4. Then the log derivative dµAi,β is

dµAi,β(x, s) = β lim
r→∞

{(
∑

|x−si|<r

1

x− si
)−

∫
|x|<r

ϱ(x)

−x
dx}

Here

ϱ(x) =

√
−x

π
1(−∞,0)(x)

• The significant problem is:

To solve what is the log derivative dGAF ?

To obtain the representation of dGAF.



Calculation of logarithmic derivative

• Assume that n-point cor funs {ρN,n} satisfy for each r, n ∈ N

lim
N→∞

ρN,n(x) = ρn(x) uniformly on Sn
r , (6)

sup
N∈N

sup
x∈Sn

r

ρN,n(x) ≤ C−n
1 nC2n, 0 < C < ∞,0 < C2 < 1, . (7)
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Calculation of logarithmic derivative

• We assume that µN have log derivative dN such that

dN(x, y) = uN(x) + gNs (x, y) + wN
s (x, y) (8)

Here g, gN , v, vN :S2→Rd and w :S→Rd and set (y =
∑

i δyi)

gs(x, y) =

∫
|x−y|<s

v(x, y)dy +
∑

|x−yi|<s

g(x, yi),

gNs (x, y) =

∫
|x−y|<s

vN(x, y)dy +
∑

|x−yi|<s

gN(x, yi),

wN
s (x, y) =

∫
s≤|x−y|

vN(x, y)dy +
∑

s≤|x−yi|
gN(x, yi) ∈ L

p̂
loc(µ

1).
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Calculation of logarithmic derivative

• Let 1 < p < p̂ < ∞. Assume that

lim sup
N→∞

∫
Sr×S

|dN − uN |p̂dµN,1 < ∞ for all r ∈ N (9)

lim
N→∞

uN = u in L
p̂
loc(S, dx) (10)

lim
N→∞

gNs = gs in L
p̂
loc(µ

1) for all s, (11)

lim
s→∞

lim sup
N→∞

∫
Sr×S

|wN
s (x, y)− w(x)|p̂dµN,1 = 0. (12)

Recall that

gs(x, y) =

∫
|x−y|<s

v(x, y)dy +
∑

|x−yi|<s

g(x, yi)

Thm 13.Assume (6)–(12). Then dµ exists in L
p
loc(µ

1) given by

dµ(x, y) = u(x) + lim
s→∞

gs(x, y) + w(x). (13)
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Calculation of logarithmic derivative

Recall that

gs(x, y) =

∫
|x−y|<s

v(x, y)dy +
∑

|x−yi|<s

g(x, yi)

Thm 13 The log derivative dµ exists in L
p
loc(µ

1) and is given by

dµ(x, y) = u(x) + lim
s→∞

gs(x, y) + w(x). (14)

Example 1. In the case of Ginibre RPF, we take

uN(x) = u(x) = −2x, w(x) = 2x,

vN(x, y) = v(x, y) = 0,

gN(x, y) = g(x, y) =
2(x− y)

|x− y|2
.
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Calculation of logarithmic derivative

Example 2. In the case of Airy RPF, we take

uN(x) = β{
∫
R

ρ
N,1
β,x (y)

x− y
dy} −N1/3 −

N−1/3

2
x

u(x) = β lim
s→∞

{
∫
|s|<s

ρ1β,x(y)

x− y
dy −

∫
|y|<s

ϱ(y)

−y
dy}

w(x) = 0

vN(x, y) = −β
ρ
N,1
β,x (y)

x− y

v(x, y) = −β
ρ1β,x(y)

x− y

gN(x, y) = g(x, y) =
β

x− y
.
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