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• Interacting Brownian motions in infinite-dimensions X = (Xi)i∈N
are stochastic dynamics in (Rd)N given by ISDE

dXi
t = dBi

t −
β

2

∑
j∈N, j ̸=i

∇Ψ(Xi
t −X

j
t )dt (i ∈ N)

Here Ψ is an interaction potential and β is inverse temperature.
This ISDE has been studied by Lang, Fritz, Tanemura, and others.
They construct strong solutions.

• So far Ψ is taken to be C3
0(R

d) or exponential decay at infinity.

• Itô scheme (Picard approximation) is used here.
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Intro.

dXi
t = dBi

t −
β

2

∑
j∈N, j ̸=i

∇Ψ(Xi
t −X

j
t )dt (i ∈ N)

• There many interesting potentials Ψ with polynomial decay or

unbounded at infinity:

• These are excluded by the classical approach based on Itô scheme.

• In this talk, we present a new scheme applicable to polynomial

decay or logatithmic potentials:

Ψ(x) = − log |x|.
This appears in random matrix theory and vortex dynamics. If d = 1,

β = 2, and Ψ is as above, then the ISDE is

dXi
t = dBi

t +
∑
j ̸=i

1

Xi
t −X

j
t

dt (i ∈ N).
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Intro.

• Itô scheme uses Lipschitz continuity of coefficients, which does

not hold in infinite dimensions.

• We localize ISDE with increasing sets Hk and exit times τHk
such

that coefficients are Lipschits continuous on each Hk and that

lim
k→∞

τHk
= ∞.

• Since ISDEs like as

dXi
t = dBi

t +
∑
j ̸=i

1

Xi
t −X

j
t

dt (i ∈ N).

are complicated, it is hard to find out such a sequence of subsets

{Hk}. We give an algorithm to find out such sets by Dirichlet form

theory and tail analysis. (In our theoem, exit times do not appear).
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Intro.

• The purpose of the talk is to present a general theory

to
Unique, strong solutions of ISDEs of

interacting Brownian motions in infinite-dimensions.
• Our scheme consists of

Dirichlet form theory

+ Itô scheme for ∞ many finite dim SDEs with consistency

(IFC solutions)

+analysis of tail σ-fields (tail theorems)

• First construct weak solutions by Dirichlet form theory.

• Second, lift them strong solutions thrgouh
”IFC solutions” and ”tail theorems”.
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Examples.

We begin by showing examples which our theorem can apply to:

• • •
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Examples.

We begin by showing examples which our theorem can apply to:

Lennard-Jones 6-12 potential

Let Ψ6,12(x) = β{|x|−12 − |x|−6}, where d = 3 and β > 0 is a inverse

temperature. Ψ6,12 is called the Lennard-Jones 6-12 potential. The

corresponding ISDE is:

dXi
t = dBi

t +
β

2

∞∑
j=1,j ̸=i

{
12(Xi

t −X
j
t )

|Xi
t −X

j
t |14

−
6(Xi

t −X
j
t )

|Xi
t −X

j
t |8

}dt (i ∈ N).

Coulomb like potentials (not Coulomb!)

Let a > d and set Ψa(x) = (β/a)|x|−a, where β > 0.

Then the corresponding ISDE is:

dXi
t = dBi

t +
β

2

∞∑
j=1,j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |a+2

dt (i ∈ N). (1)
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Sine rpf & Ginibre interacting Brownian motions in infinite-dimensions.

Let Ψ be the 2D Coulomb (logarithmic potential):

Ψ(x) = − log |x|.
Sineβ RPF: d = 1, β = 1,2,4

dXi
t = dBi

t +
β

2
lim
r→∞

∞∑
j ̸=i, |Xi

t−X
j
t |<r

1

Xi
t −X

j
t

dt (i ∈ N).

Ginibre RPF: d = 2 and β = 2.

dXi
t = dBi

t + lim
r→∞

∞∑
j ̸=i, |Xi

t−X
j
t |<r

Xi
t −X

j
t

|Xi
t −X

j
t |2

dt (i ∈ N). (2)

We call X = (Xi
t)i∈N the Ginibre interacting Brownian motions (IBMs)

in infinite-dimensions.

• • •
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Set up: Ginibre interacting Brownian motions in infinite-dimensions.
• This is very complicated SDEs:

dX1
t = dB1

t + lim
r→∞

∞∑
j ̸=1, |X1

t −X
j
t |<r

X1
t −X

j
t

|X1
t −X

j
t |2

dt

dX2
t = dB2

t + lim
r→∞

∞∑
j ̸=2, |X2

t −X
j
t |<r

X2
t −X

j
t

|X2
t −X

j
t |2

dt

dX3
t = dB3

t + lim
r→∞

∞∑
j ̸=3, |X3

t −X
j
t |<r

X3
t −X

j
t

|X3
t −X

j
t |2

dt

dX4
t = dB4

t + lim
r→∞

∞∑
j ̸=4, |X4

t −X
j
t |<r

X4
t −X

j
t

|X4
t −X

j
t |2

dt

• • •
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Weak solutions of ISDEs:

Quasi-Gibbs measures

and

Logarithmic derivative.
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Ψ-Quasi-Gibbs meas.

• S = Rd, Sr = {|x| ≤ r}, S = {s =
∑

i δsi, s(Sr) < ∞(∀r)}
• πr, πc

r :S→S, πr(s) = s(· ∩ Sr), πc
r(s) = s(· ∩ Sc

r)

• • •

• • •
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Ψ-Quasi-Gibbs meas.

• S = Rd, Sr = {|x| ≤ r}, S = {s =
∑

i δsi, s(Sr) < ∞(∀r)}
• πr, πc

r :S→S, πr(s) = s(· ∩ Sr), πc
r(s) = s(· ∩ Sc

r)

• Let µ be a RPF over S.

µmr,ξ(·) = µ(πr ∈ ·|s(Sr) = m,πc
r(s) = πcr(ξ))

• Let Ψ:S→R ∪ {∞} (interaction).

Hr =
∑

si,sj∈Sr,i<j

Ψ(si − sj)

• • •

11



Ψ-Quasi-Gibbs meas.

• S = Rd, Sr = {|x| ≤ r}, S = {s =
∑

i δsi, s(Sr) < ∞(∀r)}
• πr, πc

r :S→S, πr(s) = s(· ∩ Sr), πc
r(s) = s(· ∩ Sc

r)

• Let µ be a RPF over S.

µmr,ξ(·) = µ(πr ∈ ·|s(Sr) = m,πc
r(s) = πcr(ξ))

• Let Ψ:S→R ∪ {∞} (interaction).

Hr =
∑

si,sj∈Sr,i<j

Ψ(si − sj)

Def: µ is Ψ-quasi-Gibbs measure if ∃ cmr,ξ s.t.

cmr,ξ
−1e−HrdΛm

r ≤ µmr,ξ ≤ cmr,ξe
−HrdΛm

r

Here Λm
r = Λ(·|s(Sr) = m) and Λr is the Poisson RPF with 1Srdx.

• Gibbs measures ⇒ Quasi-Gibbs measure .
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Application of quasi-Gibbs property to dynamics

(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ.

(A2)
∑∞

k=1 kµ(S
k
r) < ∞, σkr ∈ L2(Sk

r , dx)

Here Sr = {|x| < r}, Skr = {s(Sr) = k}, σkr is k-density fun on Sr.
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Application of quasi-Gibbs property to dynamics

(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ. ⇒ (closability)

(A2)
∑∞

k=1 kµ(S
k
r) < ∞, σkr ∈ L2(Sk

r , dx) ⇒ (existence of diffusions)

• • •

• • •
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Application of quasi-Gibbs property to dynamics

(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ. ⇒ (closability)

(A2)
∑∞

k=1 kµ(S
k
r) < ∞, σkr ∈ L2(Sk

r , dx) ⇒ (existence of diffusions)

Let D0 be the set of local, smooth functions on S.

Let f̃(s1, . . .) = f(s), where f̃ is symmetric, s =
∑

δsi.

Eµ(f, g) =

∫
S
D[f, g]µ(ds), D[f, g] =

1

2

∑
i

∇if̃ · ∇ig̃

Dµ
0 = {f ∈ D0; Eµ(f, f) < ∞, f ∈ L2(µ)}

• • •
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Application of quasi-Gibbs property to dynamics

(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ. ⇒ (closability)

(A2)
∑∞

k=1 kµ(S
k
r) < ∞, σkr ∈ L2(Sk

r , dx) ⇒ (existence of diffusions)

Let D0 be the set of local, smooth functions on S.

Let f̃(s1, . . .) = f(s), where f̃ is symmetric, s =
∑

δsi.

Eµ(f, g) =

∫
S
D[f, g]µ(ds), D[f, g] =

1

2

∑
i

∇if̃ · ∇ig̃

Dµ
0 = {f ∈ D0; Eµ(f, f) < ∞, f ∈ L2(µ)}

Thm 1. (1) (A1) ⇒ (Eµ,Dµ
0) is closable on L2(µ).

(2) (A1), (A2) ⇒ ∃ diffusion Xt =
∑

i δXi
t
associated with

(Eµ,Dµ
0) on L2(µ).
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General theorems on infinite-dim SDEs

(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ.

(A2)
∑∞

k=1 kµ(S
k
r) < ∞, σkr ∈ L2(Sk

r , dx)

(A3) {Xi
t} do not collide each other (non-collision)

(A4) each tagged particle Xi
t never explode (non-explosion)

By (A3) and (A4) the labeled dynamics

Xt = (X1
t , X

2
t , . . .)

can be constructed from the unlabeled dynamics

Xt =
∑
i∈N

δXi
t
.

Indeed, the particles keep the initial label forever.

• • •
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General theorems on infinite-dim SDEs

(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ.

(A2)
∑∞

k=1 kµ(S
k
r) < ∞, σkr ∈ L2(Sk

r , dx)

(A3) {Xi
t} do not collide each other (non-collision)

(A4) each tagged particle Xi
t never explode (non-explosion)

By (A3) and (A4) the labeled dynamics

Xt = (X1
t , X

2
t , . . .)

can be constructed from the unlabeled dynamics

Xt =
∑
i∈N

δXi
t
.

Indeed, the particles keep the initial label forever.

To represent Xt by ISDEs, we introduce the log derivative of µ.
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Log derivative of µ: precise correspondence between RPFs & potentials

• Let µx be the (reduced) Palm m. of µ conditioned at x
µx(·) = µ(· − δx|s(x) ≥ 1)

• Let µ1 be the 1-Campbell measure on Rd×S:

µ1(A×B) =

∫
A
ρ1(x)µx(B)dx

• dµ ∈ L1
loc(R

d×S, µ1) is called the log derivative of µ if∫
Rd×S

∇xfdµ
1 = −

∫
Rd×S

fdµdµ1 ∀f ∈ C∞
0 (Rd)⊗D◦

Here ∇x is the nabla on Rd, D◦ is the space of bounded,
local smooth functions on S.
• Very informally

dµ = ∇x logµ1
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Log derivative
• If µ1(dxds) = m(x, s1, . . .)dx

∏
i dsi, then

−
∫

∇xf(x, s1, . . .)µ
1(dxds1 · · · )

=−
∫

∇xf(x, s1, . . .)m(x, s1, . . .)dx
∏
i

dsi

=

∫
f(x, s1, . . .)∇xm(x, s1, . . .)dx

∏
i

dsi

=

∫
f(x, s1, . . .)

∇xm(x, s1, . . .)

m(x, s1, . . .)
m(x, s1, . . .)dx

∏
i

dsi.

Hence

dµ =
∇xm(x, s1, . . .)

m(x, s1, . . .)
= ∇x logm(x, s1, . . .).

This is very informal calculation.
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General theorems on infinite-dim SDEs

(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ.

(A2)
∑∞

k=1 kµ(S
k
r) < ∞, σkr ∈ L2(Sk

r , dx)

(A3) {Xi
t} do not collide each other

(A4) each tagged particle Xi
t never explode

(A5) The log derivative dµ ∈ L1
loc(µ

1) exists ⇒(SDE representation)
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General theorems on infinite-dim SDEs

(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ.

(A2)
∑∞

k=1 kµ(S
k
r) < ∞, σkr ∈ L2(Sk

r , dx)

(A3) {Xi
t} do not collide each other

(A4) each tagged particle Xi
t never explode

(A5) The log derivative dµ ∈ L1
loc(µ

1) exists ⇒(SDE representation)

Thm 2. (O.12(PTRF)) (A1)–(A5) ⇒ ∃S0 ⊂ S such that

µ(S0) = 1,

and that, for ∀s ∈ u−1(S0), ∃u−1(S0)-valued pr. (Xi
t)i∈N and ∃SN-

valued Brownian m. (Bi
t)i∈N satisfying

dXi
t = dBi

t +
1

2
dµ(Xi

t,
∑
j ̸=i

δ
X

j
t
)dt, (Xi

0)i∈N = s

Here u :SN→S such that u((si)) =
∑

i δsi.
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General theorems on infinite-dim SDEs

(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ. ⇒ (closability)

(A2)
∑∞

k=1 kµ(S
k
r) < ∞, σkr ∈ L2(Sk

r , dx) ⇒ (existence of diffusions)

Here Sr = {|x| < r}, Skr = {s(Sr) = k}, σkr is k-density fun on Sr.

(A3) {Xi
t} do not collide each other ⇒ (non-collision)

(A4) each tagged particle Xi
t never explode ⇒ (non-explosion)

(A5) The log derivative dµ ∈ L1
loc(µ

1) exists ⇒(SDE representation)
Thm 2 (O.12(PTRF)) (A1)–(A5) ⇒ ∃S0 ⊂ S such that

µ(S0) = 1,

and that, for ∀s ∈ u−1(S0), ∃u−1(S0)-valued pr. (Xi
t)i∈N and ∃SN-

valued Brownian m. (Bi
t)i∈N satisfying

dXi
t = dBi

t +
1

2
dµ(Xi

t,
∑
j ̸=i

δ
X

j
t
)dt, (Xi

0)i∈N = s

The solution (X,B) is not a strong solution.

We next construct a strong solution from a weak solution.
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existence of strong solution

Strong solutions
• To construct strong solutions

we have two important geometric properties of RPFs.

Tail triviality & Tail decomposition
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Tail triviality of determinantal RPFs & Tail decomp of quasi-Gibbs m

Let T = T (S) be the tail σ field of S:

T (S) = ∩∞
r=1σ[π

c
r] (πc

r(s) = s(· ∩ Sc
r)).

Lem 1.Let µ be a det RPF. Then T (S) is µ-trivial.

• Lem 1 is a generalization of that for the discrete determinantal

RPFs due to Russel Lyons, Shirai-Takahashi.

• • •
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Tail triviality of determinantal RPFs & Tail decomp of quasi-Gibbs m

Let T = T (S) be the tail σ field of S:

T (S) = ∩∞
r=1σ[π

c
r] (πc

r(s) = s(· ∩ Sc
r)).

Lem 1 Let µ be a det RPF. Then T (S) is µ-trivial.

Lem 2.Let µ be a quasi-Gibbs measure. Let µ(·|T ) be

the regular conditional probability. Then

µ(·) =

∫
S
µ(·|T )(ξ)µ(dξ)

and, for µ-a.s. ξ,

µ(A|T )(ξ) = 1A(ξ) for any A ∈ T .

• Lem 2 is a generalization of that for the discrete Gibbs m due to

Georgii.
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existence of strong solution

dXi
t = dBi

t +
1

2
dµ(Xi

t,
∑
j̸=i

δ
X

j
t
)dt, (Xi

0)i∈N = s

We consider a condition such that the drifts dµ(x, s) are locally

Lipschitz continuous in x.

Let Sr = {|x| < r} and

H(r, n) = {s =
∑
i

δsi; |∇xd
µ(si, s− δsi)| < n for ∀i s.t. si ∈ Sr},

H =
∞∩

r=1

∞∪
n=1

H(r, n).

(A6) Capµ(Hc) = 0.
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existence of strong solution

(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ.

(A2)
∑∞

k=1 kµ(S
k
r) < ∞, σkr ∈ L2(Sk

r , dx)

(A3) {Xi
t} do not collide each other

(A4) each tagged particle Xi
t never explode

(A5) The log derivative dµ ∈ L1
loc(µ

1) exists

(A6) Capµ(Hc) = 0.

Thm 3 (O.-Tanemura). (A1)–(A6). ⇒ (1) The ISDE

dXi
t = dBi

t +
1

2
dµ(Xi

t,
∑
j̸=i

δ
X

j
t
)dt, (Xi

0)i∈N = s

has a strong solution for s = (si) ∈ SN s.t.
∑

i δsi ∈ H.

• • •
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existence of strong solution
(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ.
(A2)

∑∞
k=1 kµ(S

k
r) < ∞, σkr ∈ L2(Sk

r , dx)
(A3) {Xi

t} do not collide each other
(A4) each tagged particle Xi

t never explode
(A5) The log derivative dµ ∈ L1

loc(µ
1) exists

(A6) Capµ(Hc) = 0.

Thm 3[O.-Tanemura] (A1)–(A6). ⇒ (1) The ISDE

dXi
t = dBi

t +
1

2
dµ(Xi

t,
∑
j̸=i

δ
X

j
t
)dt, (Xi

0)i∈N = s

has a strong solution for s = (si) ∈ SN s.t.
∑

i δsi ∈ H.

(2) The ass unlabeled diffusion X =
∑

i δXi satisfies

Pµξ ◦ X−1
t ≺ µξ (∀t) for µ-a.s. ξ

Here µξ = µ(·|T (S))(ξ) in Lem 2.
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existence of strong solution

By construction µ(·|ξ)(A) are T -measurable functions

in a for each A ∈ B(S). By Lem 2 one can take a version

of µ(·|ξ) such that, for µ-a.s. a ∈ S,

µ(·|ξ)(A) = 1A(a) for all A ∈ T . (3)

Let ∼T be the equivalence relation such that if and only

if

a ∼T b ⇔ 1A(a) = 1A(b) for all A ∈ T . (4)

From (3) we deduce that the set H in Thm 3 can be

decomposed as a disjoint sum

H =
∑

[a]∈H/∼T

Sa0 such that µ(·|ξ)(Sa0) = 1. (5)
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Uniqueness of strong solutions 1

Thm 4 (O.-Tanemura).Assume (A1)–(A6).
Let X = (Xi) and X̂ = (X̂i) be strong sol of the ISDE

dXi
t = dBi

t +
1

2
dµ(Xi

t,
∑
j̸=i

δ
X

j
t
)dt, (Xi

0)i∈N = s = (si)i∈N

on the same Br m. Let Xt =
∑

i δXi
t
and X̂t =

∑
i δX̂i

t
.

Suppose, for µ-a.s. ξ,

Pµξ ◦ X−1
t ≺ µξ and Pµξ ◦ X̂−1

t ≺ µξ (∀t)

Then

X = X̂ a.s. for µ-a.s. s =
∞∑
i=1

δsi
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Uniqueness of strong solutions

Thm 5 (O.-Tanemura).Assume (A1)–(A7). Here

(A7) µ is tail trivial.

Then the strong solution X = (Xi) such that

Pµ ◦ X−1
t ≺ µ for all t

is unique for µ-a.e. x =
∑

i δxi.

Here X is the unlabeled dynamics of X:

Xt =
∞∑
i

δXi
t

Cor If µ is a determinantal RPF, then the strong, solution of the

ISDE that is reversible w.r.t. µ is unique.

• Tail σ-fields of Airy, Sine, Ginibre RPFs with β = 2 are trivial.
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Uniqueness of Dirichlet forms

Let Dµ
poly be the closure of polynomials on S s.t.Eµ

1(f, f) < ∞. Then

Dµ
poly ⊂ Dµ

because polynomials are local and smooth.
Thm 6 (O.-Tanemura ’14).Assume (A1)–(A7). Then quasi-regular
Dirichlet forms that are extension of (Eµ,Dµ

poly) are unique.

In particular, Dµ
poly = Dµ, and Lang’s construction and O.’s con-

struction are same.

Remark 1. (1) Dirichlet forms here are same as those constructed by
Albeverio-Kondratiev-Röckner, and Yoshida.
(2) If (A5) (non-explosion) does not hold. Then Thm 6 does not
hold. This is very natural theorem that says the uniqueness of Dirich-
let forms is related to the non-explosion problem of tagged problem.
(3) Proof follows from the uniqueness of solutions of ISDEs. This
idea originates from Tanemura (98. PTRF).
We thus prove static property (uniqueness of q.r. Dirichlet forms)
from dynamical property (uniqueness of strong solutions of ISDEs).
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Outline of the proof.

Our approach consists of 6 steps:

• By the first three steps we construct weak solutions.

• By the next three steps we lift them to strong solutions

and prove the pathwise uniqueness of ISDEs.
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Idea to solve ISDE: S ⇒ C([0,∞); S) ⇒ C([0,∞);SN)

(Step 1) • We start with a random point field µ (a probability mea-

sure on configuration space S).

• We construct µ-reversible unlabeled diffusions X by Dirichlet forms.

Xt =
∞∑
i=1

δXi
t
.

For this we introduce the map from RPF µ on S to bilinear forms :

µ 7→ Eµ(f, g) =

∫
S
D[f, g]dµ on L2(S, µ).

Here D is the standard square field on S:

D[f, g](s) =
1

2

∞∑
i=1

∂f̃

∂si
·
∂g̃

∂si

Here f is a local and smooth function on S, and f̃(s1, . . . , ) is a

symmetric function such that f(s) = f̃(s1, . . . , ), where s =
∑∞

i=1 δsi.
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• If µ is the Poisson RPF = Λ with Lebesgue intensity, then the
associated diffusion Xt is S-valued Brownian motion Bt =

∑∞
i=1 δBi

t
,

which is a reason we call D the standard square field.
Thus this Dirichlet space is a distorted Brownian motion on S al-
though µ does not have a density with respect to Λ usually.
• We assume:

µ is a Ψ-quasi-Gibbs measure.
Roughly speaking, quasi-Gibbs means that µ has a local density con-
ditioned out side. Gibbs measures are of course quasi-Gibbs, and
there exist RPF that are quasi-Gibbs for logarithmic potential Ψ.

• Assume that µ is Ψ-quasi-Gibbs with upper semicontinuous Ψ, and
that

∑∞
m=1mµ(Smr ) < ∞ (Smr = {s; s(Sr) = m}), and that m-density

functions on Sr are in L2(Sm
r ) for all r,m ∈ N. Here Sr = {|s| < r}.

• With these assumption, the bilinear form is closable and its closure

is a quasi-regular Dirichlet form.

• We thus have unlabeled diffusions.
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S ⇒ C([0,∞); S) ⇒ C([0,∞);SN)

(Step 2) • Assuming non-collision and non-explosion of tagged par-
ticles, we can construct labeled dynamics.
• The difficulty to construct SN-valued diffusion, there is no good
measure on SN. (Hence no associated Dirichlet forms).
Even if Brownian motions, the measure should be dxN!
Hence we consider m-Campbell measure µ[m] of µ.
Introduce the countable family of Dirichlet forms:

(Eµ[m]
, L2(Sm × S, µ[m])), X[m] := (Xm,1, . . . , Xm,m,

∞∑
i=m+1

δXm,i)

There is natural coupling associated diffusions. ⇒
Xm,i are independent of m. ⇒
From this consistency we can construct the labeled diffusion on SN.

• We use unlabeled diffusion Xt to couple with these X[m].
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(Step 3) Calculate the logarithmic derivative dµ. ISDE becomes

dXi
t = dBi

t +
1

2
dµ(Xi

t,
∑
j ̸=i

δ
X

j
t
)dt

In the case of Ginibre, Sineβ(Dyson), Bessel, and Gibbs measures:

β∇Φ(x) + β lim
r→∞

∑
j ̸=i, |x−sj|<r

∇Ψ(x− sj)

Then we have the ISDE (weak solution):

dXi
t = dBi

t −
β

2
∇Φ(Xi

t)−
β

2
lim
r→∞

∑
j ̸=i, |Xi

t−X
j
t |<r

∇Ψ(Xi
t −X

j
t )dt

To calculate the logarithmic derivative we use finite particle approx-

imation. In particular, orthogonal polynomials.

The shape of Airy RPF is different.
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(Step 4) Introduce:
The infinite system of finite-dimensional SDEs with consistency (IFC):
Let (X,B) be a weak solution.
We regard X as a part of coefficients of SDEs.
For each m consider SDE of Ym = (Y m,1, . . . , Y m,m):

dY
m,i
t =dBi

t −
β

2
∇Φ(Y m,i

t )

−
β

2

m∑
j=1,j ̸=i

∇Ψ(Y m,i
t − Y

m,j
t )dt−

β

2

∞∑
j=m+1

∇Ψ(Y m,i
t −X

j
t )dt.

These (time inhomogeneous, finite-dimensional) SDEs have unique
strong solution (under suitable assumptions). Hence

Ym = Xm := (X1, . . . , Xm)

• We solve infinite-many finite-dimensional SDEs with consistency
in stead of solving a single ISDE.
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(Step 5)

• Let Tpath(SN) be the tail σ-field of labeled path space w.r.t. label.

Tpath(SN) =
∞∩

m=1

σ[Xm, . . . , ].

• Ym is a functional of (B, (Xm+1, . . . , )).

⇒ If limm→∞Ym exists, then σ[B] ∨ Tpath(SN)-measurable.

⇒ Since limm→∞Ym = X, X is σ[B] ∨ Tpath(SN)-measurable.

⇒ If Tpath(SN) is trivial, then X is a strong solution.

• Since we see in the (Step 5) that

Ym = Xm := (X1, . . . , Xm),

Ym satisy these.
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(Step 6) • We say unlabeled diffusion satisfies the absolutely conti-

nuity condition (ACC) if

Pµ(Xt ∈ ·) ≺ µ for all t. (ACC)

Thm 7 (Tail theorem 2).Assume (ACC) and that S is µ-tail trivial.

Then Tpath(SN) is Ps(X ∈ ·)-trivial for µℓ-a.s. s.

Here ℓ is a label, and Ps(X ∈ ·) is the distribution of labeled path

starting at s (solution of ISDE startng at s).

• Tail triviality of RPF ⇒ tail tiriviality of labeled path space.

• We regard Tpath(SN) as a boundary condition of ISDE.

So if it is trivial and unique, then the solution of ISDE is unique.
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• Our pathwise uniqueness does not exclude the posiibility of the

existence of a tail moving or shock solution. It is related to the

uniqueness of Dirichlet forms (domain choice).

• We have not yet solve the non-equilibrium problem. We have not

yet fully utilize the property of this method, and expect that with

this we can solve the non-equilibrium problem at the lebel of Fritz

(1987).
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Tail triviality of µ is not a real restriction. Indeed,

Prop 1.Determinantal RPFs (in continuous spaces) are

tail trivial. In particular, Ginibre RPF is tail trivial.

This result is a generalization of Shirai-Talahashi, and Russel

Lyons for discrete spaces.

Note that RPFs appearing in random matrix theory are determinantal

random point fields if β = 2. So our results provide the uniqueness

for these.

Even if µ is not tail trivial, we can still apply our results

to quasi-Gibbs measures because of the following result.
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Prop 2.Quasi-Gibbs measures µ have decomposition w.r.t.

their tail σ-fields T (S) such that each components are tail

trivial: For µ-a.s. s

µ(A|T (S))(s) = 1A(s) for all A ∈ T (S).

This is an analogy of the result of Georgii on Gibbs measures on

discrete spaces.



Summary:

• We regard the tail σ-field of labeled path spaces as

boundary condition of ISDEs.

Hence if it is trivial, then there exists a strong solution.

• In addition, two solutions are equal if and only if their

distributions on the tail σ-field are equal.

• The tail triviality of labeled path spaces follows from

the tail triviality of configuration spaces.
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END
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