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• General theory to construct unique, strong solutions of

infinite-dimensional stochastic differential equations



Strong solutions of ISDE: Non Markov type

S = Rd, [0,∞),C
W (SN) = C([0, T );SN), (0 < T < ∞) labeled path sp.

• a quadruplet ({σi}, {bi},Wsol,S0)

Wsol ： a Borel subset of W (SN) sp of soltions of ISDE

σi, bi :Wsol→W (SN) coefficients of ISDE

S0 be a Borel subset of SN initial starting points of ISDE

• the ISDE on SN of the form

dXi
t = σi(X)tdB

i
t + bi(X)tdt (i ∈ N) (1)

X0 = s = (si)i∈N ∈ S0 (2)

X ∈ Wsol. (3)

• X = {(Xi
t)i∈N}t∈[0,T ) ∈ Wsol

• B = (Bi) (i ∈ N) is the SN-valued standard Br motion.
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Strong solutions of ISDE: Assump (P1)

dXi
t = σi(X)tdB

i
t + bi(X)tdt (i ∈ N)

X0 = s = (si)i∈N ∈ S0
X ∈ Wsol.

(P1) ISDE (1) has a solution (X,B). (not a strong sol! )

Here B = (Bi)i∈N is the Brownian motion on SN

Problem: Prove that X is a functional of the Br B

Idea:
Strong solutions of Infinite-dimensional SDE

⇔
Infinite-many, finite-dimensional SDEs with consistency

+
Triviality of Tail σ-field of label pathes
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Assump (P2) 　 infinite-many, finite-dimensional SDEs with consistency

• P̄s: a prob meas on W (SN)×W 0(SN)

• P̄s,B = P̄s(X ∈ ·|B): the regular conditional prob

• Ps = P̄s(X ∈ ·), P∞
Br = P̄s(B ∈ ·)

For X ∈ Wsol, s ∈ S0, and m ∈ N,
we introduce a new SDE (6) on Ym = (Y 1

t , . . . , Y m
t ).

dY i
t = σi(Ym +Xm∗)tdB

i
t + bi(Ym +Xm∗)tdt (4)

Ym
0 = (s1, . . . , sm) ∈ Sm, where s = (si)

∞
i=1,

Ym +Xm∗ ∈ Wsol.

Here Xm∗ = (0, . . . ,0, Xm+1
t , Xm+2

t , . . .) and we set

Ym +Xm∗ = (Y 1
t , . . . , Y m

t , Xm+1
t , Xm+2

t , . . .). (5)

Xm∗ is interpreted as a part of the coefficients of the SDE (6).
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Strong solutions of ISDE: (P2) seq of finite-dim SDEs with consistecy

dY i
t = σi(Ym +Xm∗)tdB

i
t + bi(Ym +Xm∗)tdt (6)

Ym
0 = (s1, . . . , sm) ∈ Sm,

Ym +Xm∗ ∈ Wsol.

(P2) The SDE (6) has a unique, strong solution

for each s ∈ S0, X ∈ W s
sol, and m ∈ N.
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Strong solutions of ISDE: (P3) Tail triviality

Let Tail (W (SN)) be the tail σ-field of W (SN); we set

Tail (W (SN)) =
∞∩

m=1

σ[Xm∗] (7)

Tail [1](P) = {A ∈ Tail (W (SN)) ; P(A) = 1}.

Here P is a probability measure on W (SN).

(P3) Tail (W (SN)) is Ps-trivial for each s ∈ S0.
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Strong solutions of ISDE: Main Theorem 1

(P1) ISDE (1) has a solution (X,B).

(P2) SDE (6) has a unique, strong solution for all s,X,m.

(P3) Tail (W (SN)) is Ps-trivial for each s ∈ S0.

Thm 1.Assume (P1)–(P3). Then

(1) ISDE (1)–(3) has a strong solution for each s ∈ S0.

(2) Let Ys and Y′
s be strong solutions of ISDE (1)–(3)

starting at s ∈ S0 defined on the same space of Brownian

motions B. Then Ys = Y′
s a.s. if and only if

Tail [1](Law(Ys)) = Tail [1](Law(Y′
s)). (8)
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Strong solutions of ISDE: Idea of Main Theorem 1 (1)

(P1) ISDE (1) has a solution (X,B).

(P2) SDE (6) has a unique, strong solution for all s,X,m.

(P3) Tail (W (SN)) is Ps-trivial for each s ∈ S0.

• (X,B): sol of ISDE by (P1). Let (X,B) be fixed.

• Ym is a unique strong sol of SDE(5) by (P2)

• Ym is σ[B]
∨

σ[Xm∗]-m’ble. Xm∗ = (Xn)m<n<∞.

• Ym = (X1, . . . , Xm). 　by (P2)

• X is σ[B]
∨

Tail (W (SN))-m’ble by m → ∞.

• Tail (W (SN)) is trivial by (P3) ⇒ X is a strong solution.
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Strong solutions of ISDE: How to prove (P1)–(P3)

(P1) ISDE (1) has a solution (X,B).

(P2) SDE (6) has a unique, strong solution for all s,X,m.

(P3) Tail (W (SN)) is Ps-trivial for each s ∈ S0.

• (P1) follows from a general theory of O..

• (P2) is classical.

• How to prove (P3)？⇒ Tail Theorems.

Thm 2.Assume Pµ ◦ X−1
t ≺ µ for all t. Assume µ is tail

trivial. Then (P3) holds. Here

Xt =
∑
i∈N

δXi
t

(unlabeled dynamics)
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General theorems for Infinite-dim SDE: set up

End
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General theorems for Infinite-dim SDE: set up

Let S = Rd, C, [0,∞).
S: Configuration space over S

S = {s =
∑
i

δsi ; si ∈ S, s(|s| < r) < ∞ (∀r ∈ N)}

µ: RPF on S. i.e. prob meas. on S.

Prob: (1) To construct a natural stochastic dynamics

Xt = (Xi
t)i∈N (labeled dynamics)

related to µ, i.e.

Xt =
∑
i∈N

δXi
t

(unlabeled dynamics)

is reversible w.r.t. µ.
(2) To find the ∞-dim. SDE that Xt satisfies.
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General theorems for Infinite-dim SDE: set up

• ρn is called the n-correlation function of µ w.r.t. Radon
m. m if∫

A
k1
1 ×···×Akm

m

ρn(xn)
n∏

i=1

m(dxi) =

∫
S

m∏
i=1

s(Ai)!

(s(Ai)− ki)!
dµ

for any disjoint Ai ∈ B(S), ki ∈ N s.t. k1 + . . .+ km = n.

• µ is called the determinantal RPF generated by (K,m)
if its n-correlation fun. ρn is given by

ρn(xn) = det[K(xi, xj)]1≤i,j≤n

• Ginibre RPF S = C. µgin is generated by (Kgin,2, g)

Kgin,2(x, y) = exȳ g(dx) = π−1e−|x|2dx

12



Gibbs measure
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Main theorems: Unlabeled level construction

Let D be the canonical square field on S: s =
∑

i δsi, s = (si).

D[f, g](s) =
1

2

∑
i

∇sif̃(s) · ∇sig̃(s)

Let D be the set of local smooth fun with Eµ
1(f, f) < ∞.

Eµ(f, g) =

∫
S
D[f, g]dµ

Thm 3. [O.96[CMP],10[JMSJ],12?[AOP]

(1) If µ is quasi-Gibbs with upper semi-cont potentials (Φ,Ψ), then

(Eµ,D, L2(S, µ)) is closable.

(2) If (Eµ,D, L2(S, µ)) is closable & all correlation fun are loc bounded,

then a diffusion Xt associated with the closure (Eµ,Dµ) exists.

If µ is Poisson rpf with Lebesgue intensity, then Xt =
∑

i δBi
t
.
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Main theorems: Infinite-dim SDE

(A1) µ is a quasi-Gibbs measure. (closability)

(A2)
∑∞

k=1 kµ(S
k
r) < ∞, σkr ∈ L2(Sk

r , dx) (quasi-regular)

Here Sr = {|x| < r}, Skr = {s(Sr) = k}, σkr is k-density fun on Sr.

(A3) The log derivative dµ ∈ L1
loc(µ

1) exists (SDE rep)

(A4) {Xi
t} do not collide each other (non-collision)

(A5) each tagged particle Xi
t never explode (non-explosion)

Let u :SN→S such that u((si)) =
∑

i δsi.
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Main theorems: labeled diffusions

Thm 4. (O.12(PTRF)) (A1)–(A5) ⇒ ∃S0 ⊂ S such that

µ(S0) = 1, (9)

and that, for ∀s ∈ u−1(S0), ∃u−1(S0)-valued pr. (Xi
t)i∈N

and ∃SN-valued Brownian m. (Bi
t)i∈N satisfying

dXi
t = dBi

t +
1

2
dµ(X

i
t,
∑
j ̸=i

δ
X

j
t
)dt, (Xi

0)i∈N = s (10)
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Main theorems: labeled diffusions

dXi
t = dBi

t +
1

2
dµ(X

i
t,
∑
j̸=i

δ
X

j
t
)dt, (Xi

0)i∈N = s

Thm 5 (O. (JMSJ 10)).The family of processes {(Xi
t)i∈N}

is a diffusion with state space u−1(S0) ⊂ SN.

Remark 1. (1) (A1)–(A5) can be checked for Ginibre RPF (β = 2),

Sine RPFs, Airy RPFs and Bessel RPFs (β = 1,2,4).

(2) We can calculate the log derivatives of these measures.

(3) We have general theorems for quasi-Gibbs property and the log

derivatives (O. PTRF12, to appear in AOP, preprint). The state-

ments are too messy to be omitted here.
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unique, strong solution

H1 = {(x, s) ∈ S × S ; dµ(x, s) is locally Lips cont. }
Here “locally” means we regard dµ(x, s) as symmetric fun
on Sr with fixed particles outside Sc

r for ∀r except a ca-
pacity zero set (non-single points, say).
Let H = {δx + s ; (x, s) ∈ H1} Assume
(A6) Capµ(Hc) = 0.
Thm 6 (with Tanemura).Assume (A1)–(A6). Then the
SDE has a unique, strong solution for initial starting
points (si) ∈ SN such that

∑
i δsi ∈ H q.e..

Remark: (1) It is quite likely that all determinantal rpfs in continuous
spaces satisfy (A1)–(A6).
(2) It is likely that the conclusion of Thm 6 holds for all initial points
s = (si) such that

∑
i δsi ∈ H. (in progress)
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Uniqueness of Dirichlet forms

Let Dµ
poly be the closure of the set of polynomials on S

such that Eµ
1(f, f) < ∞. Then

Dµ
poly ⊂ Dµ

because polynomials are local and smooth.

Thm 7 (with Tanemura).Assume (A1)–(A6). Then the

Dirichlet form that are extension of (Eµ,Dµ
poly) is unique.

In particular, Dµ
poly = Dµ, and Lang’s construction and

Osada’s construction are same.

Remark 2. If (A5) (non-explosion) does not hold. Then Thm 7 does
not hold. This is very natural theorem that says the uniqueness of
Dirichlet forms is related to the non-explosion problem of tagged
problem.
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Examples: Gibbs measures

All example below satisfy (A1)–(A6). Hence by Thm 6

we have a unique, strong solution.

Gibbs measures :

• All Gibbs measures with Ruelle’s class potentials (smooth

outside the origin) satisfy the assumptions (A.1)–(A.6).

Non-collision (A4) does not hold in general. But it always holds for

d ≥ 2 and, for repulsive interaction Ψ in d = 1.

• In this case, the SDEs become

dXi
t = dBi

t −
1

2
∇Φ(Xi

t)dt−
1

2

∑
j ̸=i

∇Ψ(Xi
t −X

j
t )dt. (11)
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Examples: Ruelle’s class potentials

Lennard-Jones 6-12 potential
Let Φ6,12(x) = c{|x|−12 − |x|−6}, where d = 3 and c > 0
is a constant. Φ6,12 is called the Lennard-Jones 6-12
potential. The corresponding ISDE is:

dXi
t = dBi

t +
c

2

∞∑
j=1,j ̸=i

{
12(Xi

t −X
j
t )

|Xi
t −X

j
t |14

−
6(Xi

t −X
j
t )

|Xi
t −X

j
t |8

}dt (i ∈ N).

Coulomb like potentials (not Coulomb!)
Let a > d and set Φa(x) = (c/a)|x|−a, where c > 0. Then
the corresponding ISDE is:

dXi
t = dBi

t +
c

2

∞∑
j=1,j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |a+2

dt (i ∈ N). (12)
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Examples: Ruelle’s class potentials

Coulomb like potentials (not Coulomb!)
Let a > d and set Φa(x) = (c/a)|x|−a, where c > 0. Then
the corresponding ISDE is:

dXi
t = dBi

t +
c

2

∞∑
j=1,j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |a+2

dt (i ∈ N). (13)

At first glance the ISDE (13) resembles Ginibre IBMs,
because these corresponds to the case a = 0 in (13).
The sums in the drift terms, however, converge abso-
lutely, unlike Coulomb (log) potentials. We emphasize
that the structures of the dynamics given by the solu-
tions of (13) and Ginibre IBMs are completely different
from each other.
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Examples: Ginibre rpf

Ginibre rpf: Ψ(x) = −β log |x| d = 2, β = 2. If µ = µgin,2,

dXi
t = dBi

t + lim
r→∞

∑
|Xi

t−X
j
t |<r,j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

dt (14)

and also

dXi
t = dBi

t −Xi
tdt+ lim

r→∞

∑
|Xj

t |<r j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

dt. (15)

This comes from the plural expressions of dµgin,2.
For finite N , these SDEs give different solution.
But in the limit N → ∞ give the same solution if the
initial distribution is closed to Ginibre rpf.
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Examples: Bessel rpf–hard edge scaling limit

Bessel RPF (joint work with Honda):

S = [0,∞), β = 2, a > 1

dXi
t = dBi

t +
a

2Xi
t

dt+ lim
r→∞

β

2

∑
|Xj

t |<r

j ̸=i

1

Xi
t −X

j
t

dt

β = 1,4 are in progress.
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Examples: sine rpf (Dyson’s model)–bulk scaling limit

Sineβ RPF: S = R, β = 1,2,4

dXi
t = dBi

t +
β

2
lim
r→∞

∑
|Xi

t−X
j
t |<r, j ̸=i

1

Xi
t −X

j
t

dt

Spohn (1987) considered the case β = 2:

dXi
t = dBi

t +
∑
j ̸=i

1

Xi
t −X

j
t

dt

He constructed the dynamics as a Markov semigr by Dirichlet form.
The def of µ = µsin,β:
β = 2 ⇒ µsin,β is the det rpf generated by (Ksin, dx):

Ksin(x, y) =
sin(π(x− y))

π(x− y)
β = 1,4 ⇒ the correlation funs are given by quaternion det.
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Examples: Airy rpf – Soft edge scaling limit

Thm 8 (with Tanemura). Let β = 1,2,4. Then:

• The log derivative dµAi,β is

dµAi,β(x, s) = β lim
r→∞

{(
∑

|x−si|<r

1

x− si
)−

∫
|x|<r

ϱ(x)

−x
dx}

Here

ϱ(x) =

√
−x

π
1(−∞,0](x)

• Airy rpf µAi,β satisfy (A1)–(A6) and the limit ISDE is

dXi
t = dBi

t +
β

2
lim
r→∞

{(
∑

j ̸=i, |Xj
t |<r

1

Xi
t −X

j
t

)−
∫
|x|<r

ϱ(x)

−x
dx}dt
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Examples: Airy rpf – Soft edge scaling limit

• The key idea is to take the rescaled semi-circle law ς,

as the first approximation of the 1-correlation fun ρ
N,1
Ai,β.

• Our method can be applied to other soft edge scaling.

Our result is the first time to clarify the SDE describing

the limit infinite system for the soft edge.
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Examples: Airy rpf – Soft edge scaling limit

Thm 9 (with Tanemura).Assume β = 2.

Let us label Xi
t > Xi+1

t (∀i).
• The top particle X1

t is the Airy process A(t) in the sense
of Spohn.
• The infinite dim stochastic dynamics constructed by
Spohn, Johansson & others by the space-time correlation
fun is a solution of the prescribed SDE:

dXi
t = dBi

t +
β

2
lim
r→∞

{(
∑

j ̸=i, |Xj
t |<r

1

Xi
t −X

j
t

)−
∫
|x|<r

ϱ(x)

−x
dx}dt
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Examples: Airy rpf – Soft edge scaling limit

• The SDE gives a kind of Girsanov formula.

• These examples are the first time that the infinite dy-

namics are constructed for rpf appeared in random matrix

theory with β = 1,4 even if the bulk and the hard edge

as well as the soft edge scaling

In one dimensional system, the method of space-time

correlation functions are available (Nagao, Katori-Tanemura,

Spohn, and others), but this method is restricted to

β = 2.

• By construction, if the total system start from the Airyβ
rpf µAi,β, then the distribution of the top particle X1

t

equals Fβ,edge(x), the β Tracy-Widom distribution, where

β = 1,2,4.
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To sum up

Thm 10.Ginibre RPF (β = 2), Sine RPFs, Airy RPFs

(β = 1,2,4) and Bessel RPFs (β = 2) are quasi-Gibbs

m. for Ψ(x) = −β log |x|, and the log derivative can be

calculated. The associated ISDE has a unique, strong

solution.

Remark 3.Virág et all have been constructed the RPF for

all β on Dyson, Airy and Bessel RPFs (called β ensemble).

It is quite likely that these RPFs satisfy our assumptions

(A1)–(A6). But unfortunately, they have not yet prove

the existence of correlation functions for these models.

Only an existence of TDL has been established!
It is important to prove these are quasi-Gibbs measures

and to calculate the log derivative.
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Thank You !
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To sum up

• The key point of the proof is to use the small fluctuation property

(SFP) of linear statistics for these measures.

• SFP was established by Soshnikov (Sine, Airy, Bessel RPFs), Shirai

(Ginibre RPF).

• Proof consists of several parts:

(1) To find a good finite particle approximation {µN}

(2) To prove uniform small fluctuation of {µN}

(3) To prove uni bounds of 1 & 2 cor funs of {µN}

(4) To carry out the limiting procedure of dµN & quasi-Gibbs property

by using general theorems. (O. 11,12)
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Derivation of (??): (EµNsin,β, L2(µNsin,β))

EµNsin,β(f, g) =

∫
D[f, g]µNsin,β(dx), D[f, g] =

1

2

N∑
i=1

∂f

∂si

∂g

∂si

EµNsin,β(f, g) =

∫
D[f, g]

1

Z

N∑
i<j

|si − sj|β
N∏

k=1

e−β|sk|2/4NdsN

= −
1

2

∫
{∆f +

N∑
i ̸=j

β

si − sj

∂f

∂si
−

N∑
k=1

βsk
2N

∂f

∂sk
}g

1

Z

N∑
i<j

|si − sj|β
N∏

k=1

e−β|sk|2/4NdsN

= −
∫

{
1

2
∆f +

β

2

N∑
i=1

[(
N∑
j ̸=i

1

si − sj
)−

si
2N

]
∂f

∂si
}g µNsin,β(ds)
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