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• Coulomb RPFs in infinite volume

• Quasi-Gibbs meas. Log derivative

• Tail triviality • Palm singularity

• General theory for strong solutions of ISDEs

• Uniqueness of Dirichlet forms

• Soft edge scaling limit and Airy RPFs

• Application to interacting Brownian motions (IBMs)

• Examples: Sine, Bessel, Airy, Ginibre RPFs

• Homogenization & Phase transition conjecture of Ginibre IBMs



How to define Coulomb RPFs in infinite volume 1

Let Ψc be c-dim Coulomb potential:

Ψ2(x) = − log |x|, (2− c)−1Ψc(x) = |x|2−c (c ̸= 2)

Very loosely, translation invariant Coulomb random point

fields µc with inverse temparature β > 0:

µc,β ∼
1

Z
e−β

∑∞
i<j Ψc(xi−xj)

∞∏
k=1

dxk (1)

In particular,

µ2,β ∼
1

Z

∞∏
i<j

|xi − xj|β
∞∏

k=1

dxk (2)

(1) How to define Coulomb RPFs (No DLR eq.!)
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How to solve c dim Coulomb infinte-dim SDEs:

• (Rd)N-valued SDE: Xt = (Xi
t)i∈N

• Ψc is a c-dim Coulomb pot.

• Coulomb ISDE:

dXi
t = dBi

t −
β

2

∞∑
j=1, j ̸=i

∇Ψc(X
i
t −X

j
t )

dXi
t = dBi

t +
β

2

∞∑
j=1, j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |c

dt (c dim Coulomb).

(2) How to solve Coulomb ISDEs (No Ito’s scheme !)

I will show, if (c, d, β) = (2,2,2), (2,1,1), (2,1,2), (2,1,4), then OK.
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How to define Coulomb RPFs in infinite vol 2: Ψ-Quasi-Gibbs meas.

• S = Rd, Sr = {|x| ≤ r}, S = {s =
∑

i δsi, s(Sr) < ∞(∀r)}
• πr, πc

r :S→S, πr(s) = s(· ∩ Sr), πc
r(s) = s(· ∩ Sc

r)
• Let µ be a RPF over S.

µmr,ξ(·) = µ(πr ∈ ·|s(Sr) = m,πc
r(s) = πcr(ξ))

• Let Ψ:S→R ∪ {∞} (interaction).

Hr =
∑

si,sj∈Sr,i<j

Ψ(si − sj)

Def: µ is Ψ-quasi-Gibbs measure if ∃ cmr,ξ s.t.

cmr,ξ
−1e−Hrdνmr ≤ µmr,ξ ≤ cmr,ξe

−Hrdνmr

Here νmr =
∏m

k=1 1Sr(sk)dsk

• Gibbs measu ⇒ Quasi-Gibbs measure .
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Coulomb RPFs

cmr,ξ
−1e−Hrdνmr ≤ µmr,ξ ≤ cmr,ξe

−Hrdνmr (quasi-Gibbs property)

Let Ψc is the c dim Coulomb potential as before.

• We say µ is Coulomb RPF if µ is Ψc-quasi-Gibbs meas.

• The case (d ≤ c < d+2) is interesting.

• µ is called strict Coulomb RPF if c = d.

Thm 1 (O. AOP 13, O.-Honda, O.-Tanemura ).

(1) Ginibre RPF is a 2Ψ2-quasi Gibbs measure.

(2) Sineβ RPF are βΨ2-quasi Gibbs m for β = 1,2,4.

(3) Bessela2 RPF is a 2Ψ2-quasi Gibbs m.

(4) Airyβ RPF are βΨ2-quasi Gibbs m for β = 1,2,4.
• Conjecture: The following is a quasi Gibbs measure

(1)β-Sine, Bessel, Airy RPFs for all β.

(2) All determinantal RPFs. Zero points of GAFs.
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Application of quasi-Gibbs property to dynamics

Let D0 be a local, smooth funs on S.

Let f̃(s1, . . .) = f(s), where f̃ is symmetric, s =
∑

δsi.

D[f, g] =
1

2

∑
i

∇if̃ · ∇ig̃

Eµ(f, g) =

∫
S
D[f, g]µ(ds) : bilinear form on Dµ

0

Dµ
0 = {f ∈ D0; Eµ(f, f) < ∞, f ∈ L2(µ)}

Thm 2. Let µ be Ψ-quasi-Gibbs with upper semi-conti Ψ. Then

(1)(Eµ,Dµ
0) is closable on L2(µ).

(2) ∃ diffusion Xt =
∑

i δXi
t
associate with (Eµ,Dµ

0).
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Log derivative of µ: precise correspondence between RPFs & potentials

• Let µx be the (reduced) Palm m. of µ conditioned at x
µx(·) = µ(· − δx|s(x) ≥ 1)

• Let µ1 be the 1-Campbell measure on Rd×S:

µ1(A×B) =

∫
A
ρ1(x)µx(B)dx

• dµ ∈ L1(Rd×S, µ1) is called the log derivative of µ if∫
Rd×S

∇xfdµ
1 = −

∫
Rd×S

fdµdµ1 ∀f ∈ C∞
0 (Rd)⊗D

Here ∇x is the nabla on Rd, D is the space of bounded,
local smooth functions on S.
• Very informally

dµ = ∇x logµ1
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dµ = ∇x logµ1

Thm 3 (O. PTRF 12).

(1) Let µgin be the Ginibre RPF. Then

dµgin(x, s) = lim
r→∞

2
∑

|x−si|<r

x− si
|x− si|2

dµgin(x, s) = −2x+ lim
r→∞

2
∑

|si|<r

x− si
|x− si|2

(2) Let µsin,β be the Sineβ RPF. Suppose β = 1,2,4. Then

dµsin,β(x, s) = lim
r→∞

β
∑

|x−si|<r

1

x− si
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Thm 4 (O.-Honda).Let µabes,2 be the Bessela2 RPF. Then

d
µabes,2(x, s) =

a

x
+ lim

r→∞
2

∑
|x−si|<r

1

x− si

Thm 5 (O.-Tanemura). [ Airy RPFs: µAi,β ]

Let β = 1,2,4. Then the log derivative dµAi,β is

dµAi,β(x, s) = β lim
r→∞

{(
∑

|x−si|<r

1

x− si
)−

∫
|x|<r

ϱ(x)

−x
dx}

Here

ϱ(x) =

√
−x

π
1(−∞,0](x)



Tail triviality of determinantal RPFs & Tail decomp of quasi-Gibbs m

Let T = T (S) be the tail σ field of S:

T (S) = ∩∞
r=1σ[π

c
r].

Thm 6.Let µ be a det RPF. Then T (S) is µ-trivial.
• Thm 6 is a generalization of that for the discrete determinantal

RPFs due to Russel Lyons, Shirai-Takahashi.

Thm 7.Let µ be a quasi-Gibbs measure. Let µ(·|T ) be
the regular conditional probability. Then

µ(·) =

∫
S
µ(·|T )(ξ)µ(dξ)

and, for µ-a.s. ξ,

µ(A|T )(ξ) = 1A(ξ) for any A ∈ T .

• Thm 7 is a generalization of that for the discrete Gibbs m due to

Georgii.
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Palm sigularity: Def of Ginibre RPF

Let K(x, y) be a kernel, m be a meas.

• ν is called a determinantal rpf generated by (K,m) if

its n correaltion fun ρn w.r.t. m is given by

ρn(xn) = det[K(xi, xj)]1≤i,j≤n (3)

• Ginibre rpf µ is the det rpf generated by (Kgin, g):

Kgin(x, y) = exȳ g(dx) = π−1e−|x|2dx

• Ginibre RPF is translation invariant.
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How to detect the number of missing particles

Problem:

• Let ν be a translation invariant rpf on C.
• Let s =

∑
i δsi be a sample point under ν.

• Remove a finite number of particles from the sample

points {si}.
• Can one detect the number of the removed particles?
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Answers

Problem:

• Let ν be a translation invariant rpf on C.
• Let s =

∑
i δsi be a sample point under ν.

• Remove a finite number of particles from the sample

points {si}.
• Can one detect the number of the missing particles?
If ν is a perioduc rpf, then ”Yes”.

If ν is a Poisson rpf, then ”No”.

The Ginibre rpf µ has a property between periodic and Poisson.

• Yes! for this problem. So Ginibre is simialr to periodic RPF rather

than Poisson RPFs.

• The quasi-Gibbs property implies Ginibre is similar to Poisson RPFs

rather than periodic RPFs.
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Main Theorems

Palm meas. For a set of m-points x = {x1, . . . , xm} let

µx := µ( · −
m∑

l=1

δxl | s({xl}) ≥ 1 (l = 1, . . . ,m))

Thm 8 (O.-Shirai).Let m, n ∈ {0} ∪ N. Then

(1) If m = n, then µx and µy are mutually ab. cont..

(2) If m ̸= n, then µx and µy are singular each other.

• (2) shows a special property of Ginibre rpf. Indeed,

Λ Poisson rpf ⇒ Λx = Λ

ν Gibbs meas with Ruelle’s class potentials ⇒ νx ≺ ν

• ν periodic rpf ⇒ (2) holds
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Main Theorems

Thm 9 (O.-Shirai).Let m = n. Then for µy-a.s. s

dµx

dµy
=

1

Zxy
lim
r→∞

∏
|si|<br

|x− si|2

|y − si|2
(s =

∑
i

δsi) (4)

compact uniformly in x ∈ Cm, y ∈ Cm\{s1, . . . , sm}

Zxy =
∆(y) det[Kgin(xi, xj)]

m
i,j=1

∆(x) det[Kgin(yi, yj)]
m
i,j=1

∆(x) =
m∏
i<j

|xi − xj|2, |x− si| =
m∏

m=1

|xm − si|

{br}r∈N : br ↑ ∞

14



Main Theorems

Let D√
q = {z ∈ C ; |z| < √

q},

Fr(s) =
1

r

r∑
q=1

(s(D√
q)− q). (5)

By definition s(D√
q) is the number of particles s =

∑
i δsi

in the disk D√
q.

Thm 10 (O.-Shirai).Let x = (x1, . . . , xm).

lim
r→∞

Fr(s) = −m weakly in L2(S, µx) (6)

• Thm 10 means we can determine the number of missing particles:

∞− m ̸= ∞
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General theorems on infinite-dim SDEs

Dynamical Theory:
infinite dimentional SDEs
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General theorems on infinite-dim SDEs

(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ. ⇒ (closability)

(A2)
∑∞

k=1 kµ(S
k
r) < ∞, σkr ∈ L2(Sk

r , dx) ⇒ (existence of diffusions)

Here Sr = {|x| < r}, Skr = {s(Sr) = k}, σkr is k-density fun on Sr.

(A3) The log derivative dµ ∈ L1
loc(µ

1) exists ⇒(SDE representation)

(A4) {Xi
t} do not collide each other ⇒ (non-collision)

(A5) each tagged particle Xi
t never explode ⇒ (non-explosion)

Thm 11. (O.12(PTRF)) (A1)–(A5) ⇒ ∃S0 ⊂ S such that

µ(S0) = 1, (7)

and that, for ∀s ∈ u−1(S0), ∃u−1(S0)-valued pr. (Xi
t)i∈N and ∃SN-

valued Brownian m. (Bi
t)i∈N satisfying

dXi
t = dBi

t +
1

2
dµ(Xi

t,
∑
j ̸=i

δ
X

j
t
)dt, (Xi

0)i∈N = s (8)

Here u :SN→S such that u((si)) =
∑

i δsi.
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Main theorems: labeled diffusions

dXi
t = dBi

t +
1

2
dµ(Xi

t,
∑
j̸=i

δ
X

j
t
)dt, (Xi

0)i∈N = s

Thm 12 (O. (JMSJ 10)).The family of processes {(Xi
t)i∈N}

is a diffusion with state space u−1(S0) ⊂ SN.

Remark 1. (1) (A1)–(A5) can be checked for Ginibre RPF (β = 2),

Sine RPFs, Airy RPFs and Bessel RPFs (β = 1,2,4).

(2) We can calculate the log derivatives of these measures.

(3) We have general theorems for quasi-Gibbs property and the log

derivatives (O. PTRF12, to appear in AOP, preprint). The state-

ments are too messy to be omitted here.
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existence of strong solution

dXi
t = dBi

t +
1

2
dµ(Xi

t,
∑
j̸=i

δ
X

j
t
)dt, (Xi

0)i∈N = s

H1 = {(x, s) ∈ S × S ; dµ(x, s) is locally Lips cont. }

Here “locally” means we regard dµ(x, s) as symmetric fun on Sr with

fixed particles outside Sc
r for ∀r except a capacity zero set. (non-

single points, say).

(A6) Capµ(Hc) = 0. Here H = {δx + s ; (x, s) ∈ H1}
Thm 13 (O.-Tanemura).Assume (A1)–(A6). Then:

The SDE has a strong solution for ini cond (si) ∈ SN s.

t.
∑

i δsi ∈ H q.e..
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Uniqueness of strong solutions 1

Thm 14 (O.-Tanemura).Assume (A1)–(A6).
Let X = (Xi) and X̂ = (X̂i) be strong sol of the ISDE

dXi
t = dBi

t +
1

2
dµ(Xi

t,
∑
j̸=i

δ
X

j
t
)dt, (Xi

0)i∈N = s = (si)i∈N

on the same Br m. Let Xt =
∑

i δXi
t
and X̂t =

∑
i δX̂i

t
.

Suppose, for µ-a.s. ξ,

Xt ≺ µξ and X̂t ≺ µξ (∀t)

Here µξ = µ(·|T (S))(ξ) (Thm 7). Then

X = X̂ a.s. for µ-a.s. s =
∞∑
i=1

δsi
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Uniqueness of strong solutions

Thm 15 (O.-Tanemura).Assume (A1)–(A7). Here

(A7) µ is tail trivial.

Then the strong solution X = (Xi) such that

Pµ ◦ X−1
t ≺ µ for all t

is unique for µ-a.e. x =
∑

i δxi Here X is the unlabeled

dynamics of X:

Xt =
∞∑
i

δXi
t

Cor If µ is a determinantal RPF, then the strong, solution of the

ISDE that is reversible w.r.t. µ is unique.

• Tail σ-fields of Airy, Sine, Ginibre RPFs with β = 2 are trivial.
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Uniqueness of Dirichlet forms

Let Dµ
poly be the closure of the set of polynomials on S

such that Eµ
1(f, f) < ∞. Then

Dµ
poly ⊂ Dµ

because polynomials are local and smooth.

Thm 16 (O.-Tanemura).Assume (A1)–(A7). Then the

Dirichlet form that are extension of (Eµ,Dµ
poly) is unique.

In particular, Dµ
poly = Dµ, and Lang’s construction and

O.’s construction are same.

Remark 2. If (A5) (non-explosion) does not hold. Then Thm 16 does
not hold. This is very natural theorem that says the uniqueness of
Dirichlet forms is related to the non-explosion problem of tagged
problem.
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Examples: Gibbs measures

All example below satisfy (A1)–(A6). Hence by Thm 14

we have a strong solution that preserves the tail σ field.

Gibbs measures :

• All Gibbs measures with Ruelle’s class potentials (smooth

outside the origin) satisfy the assumptions (A.1)–(A.6).

Non-collision (A4) does not hold in general. But it always holds for

d ≥ 2 and, for repulsive interaction Ψ in d = 1.

• In this case, the SDEs become

dXi
t = dBi

t −
1

2
∇Φ(Xi

t)dt−
1

2

∑
j ̸=i

∇Ψ(Xi
t −X

j
t )dt. (9)
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Examples: Ruelle’s class potentials

Lennard-Jones 6-12 potential
Let Φ6,12(x) = c{|x|−12 − |x|−6}, where d = 3 and c > 0
is a constant. Φ6,12 is called the Lennard-Jones 6-12
potential. The corresponding ISDE is:

dXi
t = dBi

t +
c

2

∞∑
j=1,j ̸=i

{
12(Xi

t −X
j
t )

|Xi
t −X

j
t |14

−
6(Xi

t −X
j
t )

|Xi
t −X

j
t |8

}dt (i ∈ N).

Coulomb like potentials (not Coulomb!)
Let a > d and set Φa(x) = (c/a)|x|−a, where c > 0. Then
the corresponding ISDE is:

dXi
t = dBi

t +
c

2

∞∑
j=1,j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |a+2

dt (i ∈ N). (10)
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Examples: Ruelle’s class potentials

Coulomb like potentials (not Coulomb!)
Let a > d and set Φa(x) = (c/a)|x|−a, where c > 0. Then
the corresponding ISDE is:

dXi
t = dBi

t +
c

2

∞∑
j=1,j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |a+2

dt (i ∈ N). (11)

At first glance the ISDE (11) resembles Ginibre IBMs,
because these corresponds to the case a = 0 in (11).
The sums in the drift terms, however, converge abso-
lutely, unlike Coulomb (log) potentials. We emphasize
that the structures of the dynamics given by the solu-
tions of (11) and Ginibre IBMs are completely different
from each other.

25



Examples: Ginibre rpf

Ginibre rpf: Ψ(x) = −β log |x| d = 2, β = 2. If µ = µgin,2,

dXi
t = dBi

t + lim
r→∞

∑
|Xi

t−X
j
t |<r,j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

dt (12)

and also

dXi
t = dBi

t −Xi
tdt+ lim

r→∞

∑
|Xj

t |<r j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

dt. (13)

This comes from the plural expressions of dµgin,2.
For finite N , these SDEs give different solution.
But in the limit N → ∞ give the same solution if the
initial distribution is closed to Ginibre rpf.
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Examples: Bessel rpf–hard edge scaling limit

Bessel RPF (joint work with Honda):

S = [0,∞), β = 2, a > 1

dXi
t = dBi

t +
a

2Xi
t

dt+ lim
r→∞

β

2

∑
|Xj

t |<r

j ̸=i

1

Xi
t −X

j
t

dt

β = 1,4 are in progress.
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Examples: sine rpf (Dyson’s model)–bulk scaling limit

Sineβ RPF: S = R, β = 1,2,4

dXi
t = dBi

t +
β

2
lim
r→∞

∑
|Xi

t−X
j
t |<r, j ̸=i

1

Xi
t −X

j
t

dt

Spohn (1987) considered the case β = 2:

dXi
t = dBi

t +
∑
j ̸=i

1

Xi
t −X

j
t

dt

He constructed the dynamics as a Markov semigr by Dirichlet form.
The def of µ = µsin,β:
β = 2 ⇒ µsin,β is the det rpf generated by (Ksin, dx):

Ksin(x, y) =
sin(π(x− y))

π(x− y)
β = 1,4 ⇒ the correlation funs are given by quaternion det.
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Examples: Airy rpf – Soft edge scaling limit

Thm 17 (O.-Tanemura). Let β = 1,2,4. Then:

• The log derivative dµAi,β is

dµAi,β(x, s) = β lim
r→∞

{(
∑

|x−si|<r

1

x− si
)−

∫
|x|<r

ϱ(x)

−x
dx}

Here

ϱ(x) =

√
−x

π
1(−∞,0](x)

• Airy rpf µAi,β satisfy (A1)–(A6) and the limit ISDE is

dXi
t = dBi

t +
β

2
lim
r→∞

{(
∑

j ̸=i, |Xj
t |<r

1

Xi
t −X

j
t

)−
∫
|x|<r

ϱ(x)

−x
dx}dt
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Examples: Airy rpf – Soft edge scaling limit

• The key idea is to take the rescaled semi-circle law ς,

as the first approximation of the 1-correlation fun ρ
N,1
Ai,β.

• Our method can be applied to other soft edge scaling.

Our result is the first time to clarify the SDE describing

the limit infinite system for the soft edge.
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Examples: Airy rpf – Soft edge scaling limit

Thm 18 (O.-Tanemura).Assume β = 2.

Let us label Xi
t > Xi+1

t (∀i). Then :

(1) The top particle X1
t is the Airy process A(t) in the

sense of Spohn.
(2) The infinite dim stochastic dynamics constructed by
Spohn, Johansson & others by the space-time correlation
fun is a solution of the prescribed SDE:

dXi
t = dBi

t +
β

2
lim
r→∞

{(
∑

j ̸=i, |Xj
t |<r

1

Xi
t −X

j
t

)−
∫
|x|<r

ϱ(x)

−x
dx}dt
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Examples: Airy rpf – Soft edge scaling limit

• The SDE gives a kind of Girsanov formula.

• These examples are the first time that the infinite dy-

namics are constructed for rpf appeared in random matrix

theory with β = 1,4 even if the bulk and the hard edge

as well as the soft edge scaling

In one dimensional system, the method of space-time

correlation functions are available (Nagao, Katori-Tanemura,

Spohn, and others), but this method is restricted to

β = 2.

• By construction, if the total system start from the Airyβ
rpf µAi,β, then the distribution of the top particle X1

t

equals Fβ,edge(x), the β Tracy-Widom distribution, where

β = 1,2,4.
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A phase transition conjecture for 2D Coulomb stochastic dynamics

Homogenization

and

Phase transition conj of Ginibre IBMs
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A phase transition conjecture for 2D Coulomb stochastic dynamics

Let S = R2. Let β ∈ [0,∞) and set

dXi
t = dBi

t +
β

2
lim
r→∞

∑
|Xi

t−X
j
t |<r,j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

dt.

When β = 2, then the SDE has a solution, for general β

we assume the existence of solution and the rpf µgin,β.

• We tag X
i0
t and investgate the diffusive scaling:

lim
ϵ→0

ϵX
i0
t/ϵ2

=
√

2αself[µgin,β]Bt

• Assume X
i0
0 = 0 and

∑
i ̸=i0

δXi
0
∼ µgin,β,o.

• αself[·] is called the self-diffusion matrix.
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A phase transition conjecture for 2D Coulomb stochastic dynamics

dXi
t = dBi

t +
β

2
lim
r→∞

∑
|Xi

t−X
j
t |<r,j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

dt

lim
ϵ→0

X
i0
t/ϵ2

=
√
2αself[µgin,β]Bt, X

i0
0 = 0,

∑
i ̸=i0

δXi
0
∼ µgin,β,o.

Conj: There exist constants β1 < β2 < β3 such that
(C1) β < β1 ⇒ αself[µgin,β] > 0 (diffusive)
(C2) β1 < β < ∞ ⇒ αself[µgin,β] = 0 (subdiffusive),

(C3) β2 < β < ∞ ⇒ X
i0
t has an inv prob measure

X
i0
t = O(log t) (log behaivior)

(C4) β3 < β < ∞ ⇒ (Xi
t)i∈N form a lattice like system.

Moreover,

β1 ∼ 1, β2 ∼ 2.

35



Rigorous results: homogenization of diffusion in 2D Coulomb-periodic env.

Let s =
∑

i δsi ∈ S. Let Xs
t ∈ R2 be the solution of

dXs
t = dBt +

β

2
lim
q→∞

∑
|Xs

t−si|<q

Xs
t − si

|Xs
t − si|2

dt

Let µ be a rpf, and set for a.s. s w.r.t. µ

lim
ε→∞

εXs
t/ε2

=
√
α
β
eff[µ]Bt (14)

Thm 19. µper be a periodic rpf ⇒
(1) α

β
eff[µper] > 0.

(2) α
β
eff[µper,0] > 0 for β < 1

α
β
eff[µper,0] = 0, Xs

t has a inv prob m for β > 2
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Rigorous results: homogenization of diffusion in Ginibre env.
Let s =

∑
i δsi ∈ S. Let Xs

t ∈ R2 be the solution of

dXs
t = dBt + lim

q→∞

∑
|Xs

t−si|<q

Xs
t − si

|Xs
t − si|2

dt

Thm 20.Assume s ∼ µgin,2,o and set

lim
ε→∞

εXs
t/ε2

=
√
α2
eff[µgin,2,o]Bt

Then

α2
eff[µgin,2,o] = 0

• We use (5) in Thm 10 to prove Thm 20
Conj: The positivity of α2

eff[µgin,2] is an open problem.
Since µgin,2 is similar to µper, we should have

α2
eff[µgin,2] > 0
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Observation: self-diffusion of 2D Coulomb system 1

Obs 0: µgin,β exists for general β > 0.

Obs 1: Since (by O.-Shirai [2012])

µgin,2 ⊥ µgin,2,o (15)

we have for general β > β1 (β1 ≤ 2)

µgin,β ⊥ µgin,β,o. (16)

Let Xt = (Xi
t)i∈N be the solution of

dXi
t = dBi

t +
β

2
lim
r→∞

∑
|Xi

t−X
j
t |<r, j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

dt (17)

Note that

Xt :=
∑
i∈N

δXi
t
∼ µgin,β (18)
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Observation: self-diffusion of 2D Coulomb system 2

Let X1
t be the tag particle, and set Y i

t = Xi+1
t −X1

t .

Yt =
∑

i∈N δY i
t
is the env seen from the tagged particle.

Obs 2: By (16) and

Yt :=
∑
i̸=i0

δY i
t
∼ µgin,β,o, (19)

we have X∗
t ∈ C such that (by Goldman coupling if β = 2)

X∗
t ∼ prob m, Yt + δX∗

t
∼ Xt ∼ µgin,β (20)
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Observation: self-diffusion of 2D Coulomb system 3

Obs 3:

dX1
t = dB1

t +
β

2
lim
r→∞

∑
|X1

t −Xi
t|<r, i≥2

X1
t −Xi

t

|X1
t −Xi

t|2
dt (21)

dX1
t = dB1

t −
β

2
lim
r→∞

∑
|Y i

t |<r, i∈N

Y i
t

|Y i
t |2

dt
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Observation: self-diffusion of 2D Coulomb system 4

Set Y ∗
t = X∗

t −X1
t . Then from

dX1
t = dB1

t −
β

2
lim
r→∞

∑
|Y i

t |<r, i∈N

Y i
t

|Y i
t |2

dt (22)

we have

dX1
t = dB1

t −
β

2

X1
t −X∗

t

|X1
t −X∗

t |2
dt−

β

2
lim
r→∞

∑
|Y i

t |<r, i∈N∪{∗}

Y i
t

|Y i
t |2

dt

Hence

dX1
t = dB1

t −
β

2

X1
t

|X1
t |2

dt (23)

+
β

2
{

X1
t

|X1
t |2

−
X1

t −X∗
t

|X1
t −X∗

t |2
}dt−

β

2
lim
r→∞

∑
|Y i
t |<r,

i∈N∪{∗}

Y i
t

|Y i
t |2

dt
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Observation: self-diffusion of 2D Coulomb system 5

dX1
t = dB1

t −
β

2

X1
t

|X1
t |2

dt (24)

+
β

2
{

X1
t

|X1
t |2

−
X1

t −X∗
t

|X1
t −X∗

t |2
}dt−

β

2
lim
r→∞

∑
|Y i

t |<r, i∈N∪{∗}

Y i
t

|Y i
t |2

dt

Obs 4: (1) By homogenization, ∃
√
2a[β] ≤ E

ϵ{B1
u/ϵ2

−
β

2
lim
r→∞

∫ u/ϵ2

0

∑
|Y i

t |<r, i∈N∪{∗}

Y i
t

|Y i
t |2

dt} =
√

2a[β]B̂u (25)

Since X∗
t has inv prob

ϵ

∫ u/ϵ2

0

β

2
{

X1
t

|X1
t |2

−
X1

t −X∗
t

|X1
t −X∗

t |2
}dt ∼ o(ϵ) (26)
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Observation: self-diffusion of 2D Coulomb system 6

Hence we have (approximately)

dX1
t =

√
2a[β]dB1

t −
β

2

X1
t

|X1
t |2

dt (27)

By the simple calculation (β > β00, B̃t is 1D Br m)

d|X1
t | =

√
2a[β]dB̃t + (a[β]−

β

2
)

1

|X1
t |
dt (28)

So the phase transition follows from the one of Bessel

processes.
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Simulation of Ginibre IBM (2D Coulomb system) and phase transition

Simulation of Coulomb interacting Brownian motions
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Simulation of Ginibre IBM (2D Coulomb system) and phase transition

dXi
t = dBi

t +
β

2
lim
r→∞

∑
|Xi

t−X
j
t |<r j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

dt (T)

dXi
t = dBi

t +
β

2
{−αXi

t + lim
r→∞

∑
|Xj

t |<r j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

}dt. (OU)

Here, since ρ1 = 1/π, α = |{|x| ≤ 1}|ρ1 = 1.

• Taking (OU) & (T)into account we take the model:

dXi
t = dBi

t +
β

2
{−Xi

t +
N∑

j=1 j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

}dt (OUN)

dXi
t = dBi

t +
β

2
{

N∑
j=1 j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

}dt (TN)
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Simulation: 3D Coulomb system

dXi
t = dBi

t +
β

2
lim
r→∞

∑
|Xi

t−X
j
t |<r j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

dt (T)

dXi
t = dBi

t +
β

2
{−αXi

t + lim
r→∞

∑
|Xj

t |<r j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

}dt. (OU)

We take ρ1 = 1. So α = |{|x| ≤ 1}|ρ1 = 4π/3.
• Taking (OU) & (T)into account we take the model:

dXi
t = dBi

t +
β

2
{−

4π

3
Xi

t +
N∑

j=1 j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

}dt (OUN)

dXi
t = dBi

t +
β

2
{

N∑
j=1 j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

}dt (TN)

46


