Strong solutions of infinite-dimensional stochastic differential equations

2013/12/4/Wed Courant/Probability and Mathematical Physics Seminar

Motivation

- Soft edge scaling limit and Airy RPFs
- Coulomb stochastic dynamics in infinite dimensions

General Theory

- Quasi-Gibbs measures & Log derivative
- Tail triviality
- Existence and uniqueness of strong solutions of ISDEs
- Uniqueness of quasi-regular Dirichlet forms

ISDEs

• Let $S = \mathbb{R}^d$. Consider infinte-many particles $\{X^i_t\}_{i \in \mathbb{N}}$ with potentials: Φ and Ψ

 $\Phi: \mathbb{R}^d \to \mathbb{R} \cup \{\infty\} \quad \text{(free potential)} \\ \Psi: \mathbb{R}^d \to \mathbb{R} \cup \{\infty\} \quad \text{(interaction potential)}$

ISDEs

• Let $S = \mathbb{R}^d$. Consider infinte-many particles $\{X_t^i\}_{i \in \mathbb{N}}$ with potentials: Φ and Ψ

 $\Phi: \mathbb{R}^d \to \mathbb{R} \cup \{\infty\} \quad \text{(free potential)} \\ \Psi: \mathbb{R}^d \to \mathbb{R} \cup \{\infty\} \quad \text{(interaction potential)}$

• The infinite-dimensional SDEs we study are (typically)

$$dX_t^i = dB_t^i - \frac{1}{2}\nabla\Phi(X_t^i)dt - \frac{1}{2}\sum_{j\neq i}^{\infty}\nabla\Psi(X_t^i - X_t^j)dt.$$

Here (B^i) are indep copies of d-dim Brownian motions.

• • •

ISDEs

• Let $S = \mathbb{R}^d$. Consider infinte-many particles $\{X_t^i\}_{i \in \mathbb{N}}$ with potentials: Φ and Ψ

$$\Phi: \mathbb{R}^d \to \mathbb{R} \cup \{\infty\} \quad \text{(free potential)} \\ \Psi: \mathbb{R}^d \to \mathbb{R} \cup \{\infty\} \quad \text{(interaction potential)}$$

• The infinite-dimensional SDEs we study are (typically)

$$dX_t^i = dB_t^i - \frac{1}{2}\nabla\Phi(X_t^i)dt - \frac{1}{2}\sum_{j\neq i}^{\infty}\nabla\Psi(X_t^i - X_t^j)dt.$$

Here (B^i) are indep copies of *d*-dim Brownian motions. • The purpose of this talk is to provide a general method to construct unique strong solutions of the above ISDEs, even if the interaction potentials are long range such as log potentials.

Examples

All examples below have unique strong solutions :

- that preserves the tail σ field of the configuration spaces.
- reversible (suitable) equilibrium states.

Gibbs measures: Ruelle's class potentials

• All Gibbs measures with Ruelle's class potentials. with marginal assumptions explained later.

Gibbs measures: Ruelle's class potentials

• All Gibbs measures with Ruelle's class potentials. with marginal assumptions explained later.

Lennard-Jones 6-12 potential: Let d = 3 and $\beta > 0$.

$$\Psi_{6,12}(x) = |x|^{-12} - |x|^{-6}$$

The corresponding ISDE is:

$$dX_t^i = dB_t^i + \frac{\beta}{2} \sum_{j=1, j \neq i}^{\infty} \{ \frac{12(X_t^i - X_t^j)}{|X_t^i - X_t^j|^{14}} - \frac{6(X_t^i - X_t^j)}{|X_t^i - X_t^j|^8} \} dt \quad (i \in \mathbb{N})$$

Examples: sine rpf (Dyson's model)-bulk scaling limit

Sine_{\beta} RPF:
$$S = R$$
, $\beta = 1, 2, 4$, $\Phi = 0$, $\Psi(x) = -\log |x|$.
 $dX_t^i = dB_t^i + \frac{\beta}{2} \lim_{r \to \infty} \sum_{\substack{X_t^i - X_t^j | < r, \ j \neq i}} \frac{1}{X_t^i - X_t^j} dt$

Motivation 1

First motivation:

Dynamical soft edge scaling limit of Gaussian ensembles

Motivation 1

• The dist of eigen values of the G(O/U/S)E Random Matrices are given by ($\beta = 1, 2, 4$)

$$m_{\beta}^{N}(d\mathbf{x}_{N}) = \frac{1}{Z} \prod_{i < j}^{N} |x_{i} - x_{j}|^{\beta} e^{-\frac{\beta}{4} \sum_{i=1}^{N} |x_{i}|^{2}} d\mathbf{x}_{N}, \quad (1)$$

• The distribution of

$$N^{-1} \sum_{i=1}^N \delta_{x_i/\sqrt{N}} \quad \text{ under } m_\beta^N$$

converges the semi-circle law

$$\varsigma(x)dx = \frac{1}{2\pi}\sqrt{4 - x^2}dx \tag{2}$$

10

Sine rpf (Dyson's model)–Bulk scaling limit

$$m_{\beta}^{N}(d\mathbf{x}_{N}) = \frac{1}{Z} \prod_{i < j}^{N} |x_{i} - x_{j}|^{\beta} e^{-\frac{\beta}{4} \sum_{i=1}^{N} |x_{i}|^{2}} d\mathbf{x}_{N}, \quad \varsigma(x) dx = \frac{1}{2\pi} \sqrt{4 - x^{2}} dx$$

• Take $x_i = s_i/\sqrt{N}$ in (1) and set

$$\mu_{\sin,\beta}^{N}(d\mathbf{s}_{N}) = \frac{1}{Z} \prod_{i< j}^{N} |s_{i} - s_{j}|^{\beta} \prod_{k=1}^{N} e^{-\beta |s_{k}|^{2}/4N} d\mathbf{s}_{N}$$
(3)

• The associated N particle system is given by the SDE: 30p

$$dX_{t}^{i} = dB_{t}^{i} + \frac{\beta}{2} \sum_{j \neq i}^{N} \frac{1}{X_{t}^{i} - X_{t}^{j}} dt - \frac{\beta}{4N} X_{t}^{i} dt$$
(4)

- So the ass ∞ particle system is given by

$$dX_t^i = dB_t^i + \frac{\beta}{2} \sum_{j \neq i}^{\infty} \frac{1}{X_t^i - X_t^j} dt$$

11

Airy rpf – Soft edge scaling limit

Airy rpf: $\mu_{Ai,\beta}$ (S = \mathbb{R} , β = 1,2,4)

Take the scaling $x_i \mapsto 2\sqrt{N} + s_i N^{-1/6}$ in

$$m_{\beta}^{N}(d\mathbf{x}_{N}) = \frac{1}{Z} \prod_{i < j}^{N} |x_{i} - x_{j}|^{\beta} e^{-\frac{\beta}{4} \sum_{i=1}^{N} |x_{i}|^{2}} d\mathbf{x}_{N}$$

and set

$$\mu_{\mathsf{Ai},\beta}^{N}(d\mathbf{s}_{N}) = \frac{1}{Z} \prod_{i< j}^{N} |s_{i} - s_{j}|^{\beta} e^{-\frac{\beta}{4} \sum_{i=1}^{N} |2\sqrt{N} + N^{-1/6}s_{i}|^{2}} d\mathbf{s}_{N}.$$

Then $\mu_{Ai,\beta}$ is the TDL of $\mu_{Ai,\beta}^N$:

$$\lim_{N\to\infty}\mu^N_{{\rm Ai},\beta}=\mu_{{\rm Ai},\beta}$$

Airy rpf – Soft edge scaling limit

• $\beta = 2 \Rightarrow \mu_{Ai,\beta}$ is the det rpf gen by (K_{Ai}, dx) :

$$K_{Ai}(x,y) = \frac{Ai(x)Ai'(y) - Ai'(x)Ai(y)}{x - y}$$

Here $Ai(\cdot)$ the Airy function such that

$$\operatorname{Ai}(z) = \frac{1}{2\pi} \int_{\gamma} dk \, e^{i(zk+k^3/3)}, \quad z \in \mathbb{C}.$$
 (5)

If $\beta = 1, 4$, the correlation func of $\mu_{Ai,\beta}$ are given by similar formula of quaternion determinant.

• From

$$\mu_{\mathsf{A}i,\beta}^{N}(d\mathbf{s}_{N}) = \frac{1}{Z} \prod_{i < j} |s_{i} - s_{j}|^{\beta} e^{-\frac{\beta}{4} \sum_{i=1}^{N} |2\sqrt{N} + N^{-1/6}s_{i}|^{2}} d\mathbf{s}_{N}$$

we deduce the SDE of the ${\cal N}$ particle system:

$$dX_t^i = dB_t^i + \frac{\beta}{2} \sum_{j=1, j \neq i}^N \frac{1}{X_t^i - X_t^j} dt - \frac{\beta}{2} \{N^{1/3} + \frac{1}{2N^{1/3}} X_t^i\} dt$$

• Problem: What is the limit SDE?

Does
$$\lim_{N \to \infty} \{ \sum_{j=1, j \neq i}^{N} \frac{1}{X_t^i - X_t^j} - N^{1/3} \}$$
 converge ?

How to solve the limit SDE?

Thm 1 (with Tanemura). Let $\beta = 1, 2, 4$. Then:

• the limit ISDE is

$$dX_t^i = dB_t^i + \frac{\beta}{2} \lim_{r \to \infty} \{ (\sum_{j \neq i, |X_t^j| < r} \frac{1}{X_t^i - X_t^j}) - \int_{|x| < r} \frac{\varrho(x)}{-x} dx \} dt$$

$$\varrho(x) = \frac{\sqrt{-x}}{\pi} \mathbf{1}_{(-\infty,0]}(x)$$

Thm 1 [with Tanemura] Let $\beta = 1, 2, 4$. Then:

• the limit ISDE is

$$dX_t^i = dB_t^i + \frac{\beta}{2} \lim_{r \to \infty} \{ (\sum_{j \neq i, |X_t^j| < r} \frac{1}{X_t^i - X_t^j}) - \int_{|x| < r} \frac{\varrho(x)}{-x} dx \} dt$$

$$\varrho(x) = \frac{\sqrt{-x}}{\pi} \mathbf{1}_{(-\infty,0]}(x)$$

• The above SDE has a unique, strong solution.

- • •
- • •

Thm 1 [with Tanemura] Let $\beta = 1, 2, 4$. Then:

• the limit ISDE is

$$dX_{t}^{i} = dB_{t}^{i} + \frac{\beta}{2} \lim_{r \to \infty} \{ (\sum_{j \neq i, |X_{t}^{j}| < r} \frac{1}{X_{t}^{i} - X_{t}^{j}}) - \int_{|x| < r} \frac{\varrho(x)}{-x} dx \} dt$$
$$\varrho(x) = \frac{\sqrt{-x}}{\pi} \mathbf{1}_{(-\infty,0]}(x)$$

• The above SDE has a unique, strong solution.

• So far the sto dyn related to Airy RPF was constructed only for $\beta = 2$ by Spohn, Johansson, and others by the method of space-time cor funs. This sto dyn is same as the above.

• • •

• • •

Thm 1 [with Tanemura] Let $\beta = 1, 2, 4$. Then:

• the limit ISDE is

$$dX_t^i = dB_t^i + \frac{\beta}{2} \lim_{r \to \infty} \{ (\sum_{j \neq i, |X_t^j| < r} \frac{1}{X_t^i - X_t^j}) - \int_{|x| < r} \frac{\varrho(x)}{-x} dx \} dt$$

$$\varrho(x) = \frac{\sqrt{-x}}{\pi} \mathbf{1}_{(-\infty,0]}(x)$$

• The above SDE has a unique, strong solution.

• So far the sto dyn related to Airy RPF was constructed only for $\beta = 2$ by Spohn, Johansson, and others by the method of space-time cor funs. This sto dyn is same as the above.

• The labeled dyn $\mathbf{X}_t = (X_t^i)$ is a diffusion with state space $\mathbb{R}^{\mathbb{N}}$.

Thm 1 [with Tanemura] Let $\beta = 1, 2, 4$. Then:

• the limit ISDE is

$$dX_t^i = dB_t^i + \frac{\beta}{2} \lim_{r \to \infty} \{ (\sum_{j \neq i, |X_t^j| < r} \frac{1}{X_t^i - X_t^j}) - \int_{|x| < r} \frac{\varrho(x)}{-x} dx \} dt$$

$$\varrho(x) = \frac{\sqrt{-x}}{\pi} \mathbf{1}_{(-\infty,0]}(x)$$

• The above SDE has a unique, strong solution.

• So far the sto dyn related to Airy RPF was constructed only for $\beta = 2$ by Spohn, Johansson, and others by the method of space-time cor funs. This sto dyn is same as the above.

• The labeled dyn $\mathbf{X}_t = (X_t^i)$ is a diffusion with state space $\mathbb{R}^{\mathbb{N}}$.

• The unlabeled dyn $X_t = \sum_{i=1}^{\infty} \delta_{X_t^i}$ is reversible w.r.t. $\mu_{airy,\beta}$.

Quasi-Gibbs measures, Log derivative, and (weak) solutions of ISDEs

 Ψ -Quasi-Gibbs meas.

•
$$S = \mathbb{R}^d$$
, $S_r = \{|x| \le r\}$, $S = \{s = \sum_i \delta_{s_i}, s(S_r) < \infty(\forall r)\}$
• $\pi = \pi^c : S \to S = \pi(s) = s(s \cap S), \pi^c(s) = s(s \cap S^c)$

•
$$\pi_r, \pi_r^c: S \rightarrow S, \ \pi_r(s) = s(\cdot \cap S_r), \ \pi_r^c(s) = s(\cdot \cap S_r^c)$$

• • •

 Ψ -Quasi-Gibbs meas.

•
$$S = \mathbb{R}^d$$
, $S_r = \{ |x| \le r \}$, $S = \{ s = \sum_i \delta_{s_i}, s(S_r) < \infty(\forall r) \}$

• $\pi_r, \pi_r^c: S \to S, \ \pi_r(s) = s(\cdot \cap S_r), \ \pi_r^c(s) = s(\cdot \cap S_r^c)$

• Let μ be a RPF over S.

 $\mu_{r,\xi}^m(\cdot) = \mu(\pi_r \in \cdot | \mathsf{s}(S_r) = m, \pi_r^c(\mathsf{s}) = \pi_r^c(\xi))$

• Let $\Psi: S \to \mathbb{R} \cup \{\infty\}$ (interaction).

$$\mathcal{H}_r = \sum_{s_i, s_j \in S_r, i < j} \Psi(s_i - s_j)$$

• • •

 Ψ -Quasi-Gibbs meas.

•
$$S = \mathbb{R}^d$$
, $S_r = \{ |x| \le r \}$, $S = \{ s = \sum_i \delta_{s_i}, s(S_r) < \infty(\forall r) \}$

• $\pi_r, \pi_r^c: S \to S, \ \pi_r(s) = s(\cdot \cap S_r), \ \pi_r^c(s) = s(\cdot \cap S_r^c)$

• Let μ be a RPF over S.

 $\mu_{r,\xi}^m(\cdot) = \mu(\pi_r \in \cdot | \mathsf{s}(S_r) = m, \pi_r^c(\mathsf{s}) = \pi_r^c(\xi))$

• Let $\Psi: S \to \mathbb{R} \cup \{\infty\}$ (interaction).

$$\mathcal{H}_r = \sum_{s_i, s_j \in S_r, i < j} \Psi(s_i - s_j)$$

Def: μ is Ψ -quasi-Gibbs measure if $\exists c_{r,\xi}^m$ s.t.

$$c_{r,\xi}^{m-1}e^{-\mathcal{H}_r}d\Lambda_r^m \le \mu_{r,\xi}^m \le c_{r,\xi}^m e^{-\mathcal{H}_r}d\Lambda_r^m$$

Here $\Lambda_r^m = \Lambda(\cdot|s(S_r) = m)$ and Λ_r is the Poisson RPF with $1_{S_r}dx$. • Gibbs measures \Rightarrow Quasi-Gibbs measure .

(A1) μ is a Ψ -quasi-Gibbs m with upper-semicont Ψ .

(A2)
$$\sum_{k=1}^{\infty} k\mu(\mathsf{S}_r^k) < \infty, \ \sigma_r^k \in L^2(S_r^k, dx)$$

Here $S_r = \{|x| < r\}$, $S_r^k = \{s(S_r) = k\}$, σ_r^k is k-density fun on S_r .

(A1) μ is a Ψ -quasi-Gibbs m with upper-semicont Ψ . \Rightarrow (closability) (A2) $\sum_{k=1}^{\infty} k\mu(S_r^k) < \infty$, $\sigma_r^k \in L^2(S_r^k, dx) \Rightarrow$ (existence of diffusions)

• • •

• • •

(A1)
$$\mu$$
 is a Ψ -quasi-Gibbs m with upper-semicont Ψ . \Rightarrow (closability
(A2) $\sum_{k=1}^{\infty} k\mu(S_r^k) < \infty, \ \sigma_r^k \in L^2(S_r^k, dx) \Rightarrow$ (existence of diffusions)
Let \mathcal{D}_0 be the set of local, smooth functions on S.
Let $\tilde{f}(s_1, \ldots) = f(s)$, where \tilde{f} is symmetric, $s = \sum \delta_{s_i}$.
 $\mathcal{E}^{\mu}(f,g) = \int_{S} \mathbb{D}[f,g]\mu(ds), \ \mathbb{D}[f,g] = \frac{1}{2} \sum_{i} \nabla_i \tilde{f} \cdot \nabla_i \tilde{g}$
 $\mathcal{D}_0^{\mu} = \{f \in \mathcal{D}_0; \mathcal{E}^{\mu}(f,f) < \infty, f \in L^2(\mu)\}$

• • •

(A1)
$$\mu$$
 is a Ψ -quasi-Gibbs m with upper-semicont Ψ . \Rightarrow (closability)
(A2) $\sum_{k=1}^{\infty} k\mu(S_r^k) < \infty$, $\sigma_r^k \in L^2(S_r^k, dx) \Rightarrow$ (existence of diffusions)
Let \mathcal{D}_0 be the set of local, smooth functions on S.
Let $\tilde{f}(s_1, \ldots) = f(s)$, where \tilde{f} is symmetric, $s = \sum \delta_{s_i}$.
 $\mathcal{E}^{\mu}(f,g) = \int_{\mathsf{S}} \mathbb{D}[f,g]\mu(ds), \ \mathbb{D}[f,g] = \frac{1}{2} \sum_i \nabla_i \tilde{f} \cdot \nabla_i \tilde{g}$
 $\mathcal{D}_0^{\mu} = \{f \in \mathcal{D}_0; \mathcal{E}^{\mu}(f,f) < \infty, f \in L^2(\mu)\}$

Thm 2. (1) (A1) $\Rightarrow (\mathcal{E}^{\mu}, \mathcal{D}_{0}^{\mu})$ is closable on $L^{2}(\mu)$. (2) (A1), (A2) $\Rightarrow \exists$ diffusion $X_{t} = \sum_{i} \delta_{X_{t}^{i}}$ associated with $(\mathcal{E}^{\mu}, \mathcal{D}_{0}^{\mu})$ on $L^{2}(\mu)$.

(A1)
$$\mu$$
 is a Ψ -quasi-Gibbs m with upper-semicont Ψ .
(A2) $\sum_{k=1}^{\infty} k\mu(S_r^k) < \infty$, $\sigma_r^k \in L^2(S_r^k, dx)$
(A3) $\{X_t^i\}$ do not collide each other (non-collision)
(A4) each tagged particle X_t^i never explode (non-explosion)
By (A3) and (A4) the labeled dynamics

$$\mathbf{X}_t = (X_t^1, X_t^2, \ldots)$$

can be constructed from the unlabeled dynamics

$$\mathsf{X}_t = \sum_{i \in \mathbb{N}} \delta_{X_t^i}.$$

Indeed, the particles keep the initial label forever.

• • •

(A1)
$$\mu$$
 is a Ψ -quasi-Gibbs m with upper-semicont Ψ .
(A2) $\sum_{k=1}^{\infty} k\mu(S_r^k) < \infty$, $\sigma_r^k \in L^2(S_r^k, dx)$
(A3) $\{X_t^i\}$ do not collide each other (non-collision)
(A4) each tagged particle X_t^i never explode (non-explosion)
By (A3) and (A4) the labeled dynamics

$$\mathbf{X}_t = (X_t^1, X_t^2, \ldots)$$

can be constructed from the unlabeled dynamics

$$\mathsf{X}_t = \sum_{i \in \mathbb{N}} \delta_{X_t^i}.$$

Indeed, the particles keep the initial label forever. To represent X_t by ISDEs, we introduce the log derivative of μ . Log derivative of μ : precise correspondence between RPFs & potentials

- Let μ_x be the (reduced) Palm m. of μ conditioned at x $\mu_x(\cdot) = \mu(\cdot - \delta_x | \mathbf{s}(x) \ge 1)$
- Let μ^1 be the 1-Campbell measure on $\mathbb{R}^d \times S$:

$$\mu^{1}(A \times B) = \int_{A} \rho^{1}(x) \mu_{x}(B) dx$$

• $d^{\mu} \in L^1_{loc}(\mathbb{R}^d \times S, \mu^1)$ is called the log derivative of μ if

$$\int_{\mathbb{R}^d \times S} \nabla_x f d\mu^1 = - \int_{\mathbb{R}^d \times S} f d^{\mu} d\mu^1 \quad \forall f \in C_0^{\infty}(\mathbb{R}^d) \otimes \mathcal{D}$$

Here ∇_x is the nabla on \mathbb{R}^d , \mathcal{D} is the space of bounded, local smooth functions on S.

• Very informally

$$\mathsf{d}^{\mu} = \nabla_x \log \mu^1$$

30

Log derivative
• If
$$\mu^{1}(dxds) = m(x, s_{1}, ...)dx \prod_{i} ds_{i}$$
, then
 $-\int \nabla_{x} f(x, s_{1}, ...)\mu^{1}(dxds_{1} \cdots)$
 $= -\int \nabla_{x} f(x, s_{1}, ...)m(x, s_{1}, ...)dx \prod_{i} ds_{i}$
 $= \int f(x, s_{1}, ...)\nabla_{x} m(x, s_{1}, ...)dx \prod_{i} ds_{i}$
 $= \int f(x, s_{1}, ...) \frac{\nabla_{x} m(x, s_{1}, ...)}{m(x, s_{1}, ...)}m(x, s_{1}, ...)dx \prod_{i} ds_{i}.$

Hence

$$\mathsf{d}^{\mu} = \frac{\nabla_x m(x, s_1, \ldots)}{m(x, s_1, \ldots)} = \nabla_x \log m(x, s_1, \ldots).$$

This is very informal calculation.

(A1) μ is a Ψ -quasi-Gibbs m with upper-semicont Ψ .

(A2)
$$\sum_{k=1}^{\infty} k\mu(\mathsf{S}_r^k) < \infty$$
, $\sigma_r^k \in L^2(S_r^k, dx)$

- (A3) $\{X_t^i\}$ do not collide each other
- (A4) each tagged particle X_t^i never explode

(A5) The log derivative $d^{\mu} \in L^{1}_{loc}(\mu^{1})$ exists \Rightarrow (SDE representation)

(A1)
$$\mu$$
 is a Ψ -quasi-Gibbs m with upper-semicont Ψ .
(A2) $\sum_{k=1}^{\infty} k\mu(S_r^k) < \infty$, $\sigma_r^k \in L^2(S_r^k, dx)$
(A3) $\{X_t^i\}$ do not collide each other
(A4) each tagged particle X_t^i never explode
(A5) The log derivative $d^{\mu} \in L^1_{loc}(\mu^1)$ exists \Rightarrow (SDE representation)
Thm 3. (O.12(PTRF)) (A1)-(A5) $\Rightarrow \exists S_0 \subset S$ such that
 $\mu(S_0) = 1$,
and that, for $\forall s \in \mathfrak{u}^{-1}(S_0)$, $\exists \mathfrak{u}^{-1}(S_0)$ -valued pr. $(X_t^i)_{i\in\mathbb{N}}$ and $\exists S^{\mathbb{N}}$

and that, for $\forall s \in \mathfrak{u}^{-1}(S_0)$, $\exists \mathfrak{u}^{-1}(S_0)$ -valued pr. $(X_t^i)_{i \in \mathbb{N}}$ and $\exists S^{\mathbb{N}}$ -valued Brownian m. $(B_t^i)_{i \in \mathbb{N}}$ satisfying

$$dX_t^i = dB_t^i + \frac{1}{2} \mathsf{d}^{\mu} (X_t^i, \sum_{j \neq i} \delta_{X_t^j}) dt, \quad (X_0^i)_{i \in \mathbb{N}} = \mathbf{s}$$

Here $\mathfrak{u}: S^{\mathbb{N}} \to S$ such that $\mathfrak{u}((s_i)) = \sum_i \delta_{s_i}$.

(A1) μ is a Ψ -quasi-Gibbs m with upper-semicont Ψ . \Rightarrow (closability) (A2) $\sum_{k=1}^{\infty} k\mu(S_r^k) < \infty$, $\sigma_r^k \in L^2(S_r^k, dx) \Rightarrow$ (existence of diffusions) Here $S_r = \{|x| < r\}$, $S_r^k = \{s(S_r) = k\}$, σ_r^k is k-density fun on S_r . (A3) $\{X_t^i\}$ do not collide each other \Rightarrow (non-collision) (A4) each tagged particle X_t^i never explode \Rightarrow (non-explosion) (A5) The log derivative $d^{\mu} \in L^1_{loc}(\mu^1)$ exists \Rightarrow (SDE representation) **Thm 4.** (O.12(PTRF)) (A1)-(A5) $\Rightarrow \exists S_0 \subset S$ such that $\mu(S_0) = 1$, and that for $\forall s \in u^{-1}(S_s)$, $\exists u^{-1}(S_s)$ valued proof $(X^i) = u$ and $\exists S^N$

and that, for $\forall s \in \mathfrak{u}^{-1}(S_0)$, $\exists \mathfrak{u}^{-1}(S_0)$ -valued pr. $(X_t^i)_{i \in \mathbb{N}}$ and $\exists S^{\mathbb{N}}$ -valued Brownian m. $(B_t^i)_{i \in \mathbb{N}}$ satisfying

$$dX_{t}^{i} = dB_{t}^{i} + \frac{1}{2} d^{\mu} (X_{t}^{i}, \sum_{j \neq i} \delta_{X_{t}^{j}}) dt, \quad (X_{0}^{i})_{i \in \mathbb{N}} = s$$

The solution (X, B) is not a strong solution.

We next construct a strong solution from a weak solution.

Strong solutions

To construct strong solutions
 we have two important geometric properties of RPFs.
 Tail triviality & Tail decomposition

Tail triviality of determinantal RPFs & Tail decomp of quasi-Gibbs m Let T = T(S) be the tail σ field of S:

$$\mathcal{T}(\mathsf{S}) = \bigcap_{r=1}^{\infty} \sigma[\pi_r^c] \quad (\pi_r^c(\mathsf{s}) = \mathsf{s}(\cdot \cap S_r^c)).$$

Thm 5. Let μ be a det RPF. Then $\mathcal{T}(S)$ is μ -trivial.

• Thm 5 is a generalization of that for the discrete determinantal RPFs due to Russel Lyons, Shirai-Takahashi.

• • •

Tail triviality of determinantal RPFs & Tail decomp of quasi-Gibbs m Let T = T(S) be the tail σ field of S:

$$\mathcal{T}(\mathsf{S}) = \bigcap_{r=1}^{\infty} \sigma[\pi_r^c] \quad (\pi_r^c(\mathsf{s}) = \mathsf{s}(\cdot \cap S_r^c)).$$

Thm 5 Let μ be a det RPF. Then $\mathcal{T}(S)$ is μ -trivial.

Thm 6. Let μ be a quasi-Gibbs measure. Let $\mu(\cdot|\mathcal{T})$ be the regular conditional probability. Then

$$\mu(\cdot) = \int_{\mathsf{S}} \mu(\cdot | \mathcal{T})(\xi) \mu(d\xi)$$

and, for μ -a.s. ξ ,

$$\mu(A|\mathcal{T})(\xi) = \mathbf{1}_A(\xi)$$
 for any $A \in \mathcal{T}$.

• Thm 6 is a generalization of that for the discrete Gibbs m due to Georgii.

existence of strong solution

$$dX_t^i = dB_t^i + \frac{1}{2} \mathsf{d}^{\mu} (X_t^i, \sum_{j \neq i} \delta_{X_t^j}) dt, \quad (X_0^i)_{i \in \mathbb{N}} = \mathbf{s}$$

We consider a condition such that the drifts $d^{\mu}(x,s)$ are locally Lipschitz continuous in x.

Let $S_r = \{|x| < r\}$ and $H(r,n) = \{s = \sum_i \delta_{s_i}; |\nabla_x d^{\mu}(s_i, s - \delta_{s_i})| < n \text{ for } \forall i \text{ s.t. } s_i \in S_r\},$ $H = \bigcap_{r=1}^{\infty} \bigcup_{n=1}^{\infty} H(r,n).$

(A6) $Cap^{\mu}(H^c) = 0.$

existence of strong solution

(A1) μ is a Ψ -quasi-Gibbs m with upper-semicont Ψ .

(A2)
$$\sum_{k=1}^{\infty} k\mu(\mathsf{S}^k_r) < \infty$$
, $\sigma^k_r \in L^2(S^k_r, dx)$

- (A3) $\{X_t^i\}$ do not collide each other
- (A4) each tagged particle X_t^i never explode
- (A5) The log derivative $d^{\mu} \in L^{1}_{loc}(\mu^{1})$ exists
- (A6) $Cap^{\mu}(H^{c}) = 0.$

Thm 7 (O.-Tanemura). (A1)–(A6). \Rightarrow (1) The ISDE

$$dX_t^i = dB_t^i + \frac{1}{2} d^{\mu} (X_t^i, \sum_{j \neq i} \delta_{X_t^j}) dt, \ (X_0^i)_{i \in \mathbb{N}} = s$$

has a strong solution for $s = (s_i) \in S^{\mathbb{N}}$ s.t. $\sum_i \delta_{s_i} \in H$.

• • •

existence of strong solution

- (A1) μ is a Ψ -quasi-Gibbs m with upper-semicont Ψ .
- (A2) $\sum_{k=1}^{\infty} k\mu(\mathsf{S}_r^k) < \infty$, $\sigma_r^k \in L^2(S_r^k, dx)$
- (A3) $\{X_t^i\}$ do not collide each other
- (A4) each tagged particle X_t^i never explode
- (A5) The log derivative $d^{\mu} \in L^{1}_{loc}(\mu^{1})$ exists
- (A6) $Cap^{\mu}(H^{c}) = 0.$
- Thm 7[O.-Tanemura] (A1)–(A6). \Rightarrow (1) The ISDE

$$dX_t^i = dB_t^i + \frac{1}{2} d^{\mu} (X_t^i, \sum_{j \neq i} \delta_{X_t^j}) dt, \ (X_0^i)_{i \in \mathbb{N}} = s$$

has a strong solution for $s = (s_i) \in S^{\mathbb{N}}$ s.t. $\sum_i \delta_{s_i} \in H$. (2) The ass unlabeled diffusion $X = \sum_i \delta_{X^i}$ satisfies

$$P_{\mu_{\xi}} \circ {\sf X}_t^{-1} \prec \mu_{\xi}$$
 ($orall t)$ for $\mu ext{-a.s.}$ ξ

Here $\mu_{\xi} = \mu(\cdot | \mathcal{T}(S))(\xi)$ in Thm 6.

Uniqueness of strong solutions 1

Thm 8 (O.-Tanemura). Assume (A1)–(A6). Let $\mathbf{X} = (X^i)$ and $\hat{\mathbf{X}} = (\hat{X}^i)$ be strong sol of the ISDE $dX_t^i = dB_t^i + \frac{1}{2} d^{\mu} (X_t^i, \sum_{j \neq i} \delta_{X_t^j}) dt, \quad (X_0^i)_{i \in \mathbb{N}} = \mathbf{s} = (s_i)_{i \in \mathbb{N}}$

on the same Br m. Let $X_t = \sum_i \delta_{X_t^i}$ and $\hat{X}_t = \sum_i \delta_{\hat{X}_t^i}$. Suppose, for μ -a.s. ξ ,

$$P_{\mu_{\xi}} \circ X_t^{-1} \prec \mu_{\xi} \text{ and } P_{\mu_{\xi}} \circ \widehat{X}_t^{-1} \prec \mu_{\xi} \ (\forall t)$$

Then

$$\mathbf{X} = \hat{\mathbf{X}}$$
 a.s. for μ -a.s. $\mathbf{s} = \sum_{i=1}^{\infty} \delta_{s_i}$

Uniqueness of strong solutions

Thm 9 (O.-Tanemura). Assume (A1)–(A7). Here (A7) μ is tail trivial.

Then the strong solution $\mathbf{X} = (X^i)$ such that

$$P_{\mu} \circ \mathsf{X}_{t}^{-1} \prec \mu$$
 for all t

is unique for μ -a.e. $\mathbf{x} = \sum_i \delta_{x_i}$ Here X is the unlabeled dynamics of X:

$$\mathsf{X}_t = \sum_i^\infty \delta_{X_t^i}$$

Cor If μ is a determinantal RPF, then the strong, solution of the ISDE that is reversible w.r.t. μ is unique.

• Tail σ -fields of Airy, Sine, Ginibre RPFs with $\beta = 2$ are trivial.

Uniqueness of Dirichlet forms

Let \mathcal{D}_{poly}^{μ} be the closure of the set of polynomials on S such that $\mathcal{E}_{1}^{\mu}(f,f) < \infty$. Then

$${\mathcal D}^{\mu}_{\operatorname{\mathsf{poly}}}\subset {\mathcal D}^{\mu}$$

because polynomials are local and smooth.

Thm 10 (O.-Tanemura). Assume (A1)–(A7). Then quasiregular Dirichlet forms that are extension of $(\mathcal{E}^{\mu}, \mathcal{D}^{\mu}_{poly})$ are unique.

In particular, $\mathcal{D}_{poly}^{\mu} = \mathcal{D}^{\mu}$, and Lang's construction and O.'s construction are same.

Remark 1. If (A5) (non-explosion) does not hold. Then Thm 10 does not hold. This is very natural theorem that says the uniqueness of Dirichlet forms is related to the non-explosion problem of tagged problem.

Application to soft-edge scaling Airy RPFs

Thm 11 (O.-Tanemura). Let $\beta = 1, 2, 4$. Then:

• The log derivative $d^{\mu_{Ai,\beta}}$ is

$$\mathsf{d}^{\mu_{\mathsf{A}i,\beta}}(x,\mathsf{s}) = \beta \lim_{r \to \infty} \{ (\sum_{|x-s_i| < r} \frac{1}{x-s_i}) - \int_{|x| < r} \frac{\varrho(x)}{-x} dx \}$$

Here

$$\varrho(x) = \frac{\sqrt{-x}}{\pi} \mathbf{1}_{(-\infty,0]}(x)$$

• Airy rpf $\mu_{Ai,\beta}$ satisfy (A1)–(A6) and the limit ISDE is

$$dX_t^i = dB_t^i + \frac{\beta}{2} \lim_{r \to \infty} \{ (\sum_{j \neq i, |X_t^j| < r} \frac{1}{X_t^i - X_t^j}) - \int_{|x| < r} \frac{\varrho(x)}{-x} dx \} dt$$

45

• The key idea is to take the rescaled semi-circle law ς , as the first approximation of the 1-correlation fun $\rho_{Ai,\beta}^{N,1}$. • Our method can be applied to other soft edge scaling. Our result is the first time to clarify the SDE describing the limit infinite system for the soft edge.

Thm 12 (O.-Tanemura). Assume $\beta = 2$.

Let us label $X_t^i > X_t^{i+1}$ ($\forall i$). Then :

(1) The top particle X_t^1 is the Airy process $\mathcal{A}(t)$ in the sense of Spohn.

(2) The infinite dim stochastic dynamics constructed by Spohn, Johansson & others by the space-time correlation fun is a solution of the prescribed SDE:

$$dX_t^i = dB_t^i + \frac{\beta}{2} \lim_{r \to \infty} \{ (\sum_{j \neq i, |X_t^j| < r} \frac{1}{X_t^i - X_t^j}) - \int_{|x| < r} \frac{\varrho(x)}{-x} dx \} dt$$

• The SDE gives a kind of Girsanov formula.

• These examples are the first time that the infinite dynamics are constructed for rpf appeared in random matrix theory with $\beta = 1, 4$ even if the bulk and the hard edge as well as the soft edge scaling

In one dimensional system, the method of space-time correlation functions are available (Nagao, Katori-Tanemura, Spohn, and others), but this method is restricted to $\beta = 2$.

• By construction, if the total system start from the Airy₂ rpf $\mu_{Ai,2}$, then the distribution of the top particle X_t^1 equals $F_{2,edge}(x)$, the 2 Tracy-Widom distribution.

Idea of "strong sol of ISDEs" 2013/12/4 Courant

• General theory to construct unique, strong solutions of infinite-dimensional stochastic differential equations

Strong solutions of ISDE: Non Markov type

$$\begin{split} S &= \mathbb{R}^d, [0, \infty), \mathbb{C} \\ W(S^{\mathbb{N}}) &= C([0, T); S^{\mathbb{N}}), \ (0 < T < \infty) & \text{labeled path sp.} \\ \bullet \text{ a quadruplet } (\{\sigma^i\}, \{b^i\}, W_{\text{sol}}, \mathbf{S_0}) \\ W_{\text{sol}} &: \text{ a Borel subset of } W(S^{\mathbb{N}}) & \text{ sp of solutions of ISDE} \\ \sigma^i, b^i \colon W_{\text{sol}} \to W(S^{\mathbb{N}}) & \text{ coefficients of ISDE} \\ \mathbf{S_0} \text{ be a Borel subset of } S^{\mathbb{N}} & \text{ initial starting points of ISDE} \end{split}$$

• the ISDE on $S^{\mathbb{N}}$ of the form

$$dX_t^i = \sigma^i(\mathbf{X})_t dB_t^i + b^i(\mathbf{X})_t dt \quad (i \in \mathbb{N})$$
(6)

$$\mathbf{X}_0 = \mathbf{s} = (s_i)_{i \in \mathbb{N}} \in \mathbf{S}_0 \tag{7}$$

$$\mathbf{X} \in W_{\mathsf{sol}}.$$
 (8)

Strong solutions of ISDE: Assump (P1)

$$dX_t^i = \sigma^i(\mathbf{X})_t dB_t^i + b^i(\mathbf{X})_t dt \quad (i \in \mathbb{N})$$

$$\mathbf{X}_0 = \mathbf{s} = (s_i)_{i \in \mathbb{N}} \in \mathbf{S}_0$$

$$\mathbf{X} \in W_{\mathsf{sol}}.$$

(P1) ISDE (6) has a solution (\mathbf{X}, \mathbf{B}) . (not a strong sol!) Here $\mathbf{B} = (B^i)_{i \in \mathbb{N}}$ is the Brownian motion on $S^{\mathbb{N}}$

Idea:
Strong solutions of Infinite-dimensional SDE

$$\Leftrightarrow$$

Infinite-many, finite-dimensional SDEs with consistency
+
Triviality of Tail σ -field of label pathes

Assump (P2) infinite-many, finite-dimensional SDEs with consistency

- $\overline{P}_{\mathbf{s}}$: a prob meas on $W(S^{\mathbb{N}}) \times W^{\mathbf{0}}(S^{\mathbb{N}})$
- $\bar{P}_{s,B} = \bar{P}_{s}(X \in \cdot|B)$: the regular conditional prob
- $\mathbf{P}_{\mathbf{s}} = \bar{P}_{\mathbf{s}}(\mathbf{X} \in \cdot), \quad P_{\mathsf{Br}}^{\infty} = \bar{P}_{\mathbf{s}}(\mathbf{B} \in \cdot)$

For $\mathbf{X} \in W_{\mathsf{sol}}$, $\mathbf{s} \in \mathbf{S_0}$, and $m \in \mathbb{N}$,

we introduce a new SDE (11) on $\mathbf{Y}^m = (Y_t^1, \dots, Y_t^m)$.

 $dY_t^i = \sigma^i (\mathbf{Y}^m + \mathbf{X}^{m*})_t dB_t^i + b^i (\mathbf{Y}^m + \mathbf{X}^{m*})_t dt \qquad (9)$ $\mathbf{Y}_0^m = (s_1, \dots, s_m) \in \mathbf{S}^m, \quad \text{where } \mathbf{s} = (s_i)_{i=1}^{\infty},$ $\mathbf{Y}^m + \mathbf{X}^{m*} \in W_{\text{sol}}.$

Here
$$\mathbf{X}^{m*} = (0, \dots, 0, X_t^{m+1}, X_t^{m+2}, \dots)$$
 and we set
 $\mathbf{Y}^m + \mathbf{X}^{m*} = (Y_t^1, \dots, Y_t^m, X_t^{m+1}, X_t^{m+2}, \dots).$ (10)

 X^{m*} is interpreted as a part of the coefficients of the SDE (11).

Strong solutions of ISDE: (P2) seq of finite-dim SDEs with consistecy

$$dY_t^i = \sigma^i (\mathbf{Y}^m + \mathbf{X}^{m*})_t dB_t^i + b^i (\mathbf{Y}^m + \mathbf{X}^{m*})_t dt \qquad (11)$$

$$\mathbf{Y}_0^m = (s_1, \dots, s_m) \in \mathbf{S}^m,$$

$$\mathbf{Y}^m + \mathbf{X}^{m*} \in W_{\text{sol}}.$$

(P2) The SDE (11) has a unique, strong solution for each $s \in S_0$, $X \in W^s_{sol}$, and $m \in \mathbb{N}$.

Strong solutions of ISDE: (P3) Tail triviality

Let $Tail(W(S^{\mathbb{N}}))$ be the tail σ -field of $W(S^{\mathbb{N}})$; we set

$$Tail\left(W(S^{\mathbb{N}})\right) = \bigcap_{m=1}^{\infty} \sigma[\mathbf{X}^{m*}]$$
(12)

 $Tail^{[1]}(\mathbf{P}) = \{A \in Tail(W(S^{\mathbb{N}})); \mathbf{P}(A) = 1\}.$

Here P is a probability measure on $W(S^{\mathbb{N}})$.

(P3) Tail $(W(S^{\mathbb{N}}))$ is $\mathbf{P}_{\mathbf{s}}$ -trivial for each $\mathbf{s} \in \mathbf{S}_{\mathbf{0}}$.

Strong solutions of ISDE: Main Theorem 1

(P1) ISDE (6) has a solution (X, B).

(P2) SDE (11) has a unique, strong solution for all s, X, m. (P3) *Tail* ($W(S^{\mathbb{N}})$) is P_s -trivial for each $s \in S_0$.

Thm 13. Assume (P1)–(P3). Then (1) ISDE (6)–(8) has a strong solution for each $s \in S_0$. (2) Let Y_s and Y'_s be strong solutions of ISDE (6)–(8) starting at $s \in S_0$ defined on the same space of Brownian motions B. Then $Y_s = Y'_s$ a.s. if and only if

$$Tail^{[1]}(Law(\mathbf{Y}_s)) = Tail^{[1]}(Law(\mathbf{Y}'_s)).$$
 (13)

Strong solutions of ISDE: Idea of Main Theorem 1 (1)

- (P1) ISDE (6) has a solution (X, B).
- (P2) SDE (11) has a unique, strong solution for all s, X, m.
- (P3) Tail $(W(S^{\mathbb{N}}))$ is $\mathbf{P}_{\mathbf{s}}$ -trivial for each $\mathbf{s} \in \mathbf{S}_{\mathbf{0}}$.

- (X, B): sol of ISDE by (P1). Let (X, B) be fixed.
- \mathbf{Y}^m is a unique strong sol of SDE(10) by (P2)
- \mathbf{Y}^m is $\sigma[\mathbf{B}] \bigvee \sigma[\mathbf{X}^{m*}]$ -m'ble. $\mathbf{X}^{m*} = (X^n)_{m < n < \infty}$.
- $Y^m = (X^1, ..., X^m)$. by (P2)
- X is $\sigma[\mathbf{B}] \bigvee Tail(W(S^{\mathbb{N}}))$ -m'ble by $m \to \infty$.
- $Tail(W(S^{\mathbb{N}}))$ is trivial by (P3) $\Rightarrow \mathbf{X}$ is a strong solution.

Strong solutions of ISDE: How to prove (P1)–(P3)

- (P1) ISDE (6) has a solution (X, B).
- (P2) SDE (11) has a unique, strong solution for all s, X, m.
- (P3) Tail ($W(S^{\mathbb{N}})$) is $\mathbf{P}_{\mathbf{s}}$ -trivial for each $\mathbf{s} \in \mathbf{S}_{\mathbf{0}}$.
- (P1) follows from a general theory of O..
- (P2) is classical.
- How to prove (P3)? \Rightarrow Tail Theorems.

Strong solutions of ISDE: How to prove (P1)–(P3)

(Q1)
$$\mu$$
 is tail trivial.
(Q2) $P_{\mu} \circ X_t^{-1} \prec \mu$ for all t .
Let $S_r = \{|x| < r\}, X_t = \sum_{i \in \mathbb{N}} \delta_{X_t^i}, X^i = \{X_t^i\}.$
 $m_r = \inf\{m \in \mathbb{N}; X^i \in C([0, T]; S_r^c) \text{ for } m < \forall i \in \mathbb{N}\}.$
(Q3) $P_{\mu}(\bigcap_{r=1}^{\infty}\{m_r(X) < \infty\}) = 1.$
Thm 14. Assume (Q1)–(Q3). Then (P3) holds.
(P3) Tail (W(S^N)) is P_s-trivial for each $s \in S_0$.

General theorems for Infinite-dim SDE: set up

