Strong solutions of infinite-dimensional stochastic
differential equations

2013/12/4/Wed Courant/Probability and Mathematical Physics Seminar

Motivation

e Soft edge scaling limit and Airy RPFs

e Coulomb stochastic dynamics in infinite dimensions
General Theory

e Quasi-Gibbs measures & Log derivative

e Tail triviality

e EXxistence and uniqueness of strong solutions of ISDEs

e Uniqueness of quasi-regular Dirichlet forms
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ISDEs
e Let S = R?% Consider infinte-many particles {X};cn

with potentials: ® and W
®:R*3RU{oco} (free potential)
ViR SR U{oo} (interaction potential)

e The infinite-dimensional SDEs we study are (typically)

. 1 . 1 . .
dX} = dB} — SV (X{)dt — 5 > VW(X]— X])dt.
J7F1
Here (BY) are indep copies of d-dim Brownian motions.
e T he purpose of this talk is to provide a general method
to construct unique strong solutions of the above ISDEs,

even if the interaction potentials are long range such as
log potentials.



Examples:

Examples

All examples below have unigue strong solutions :
e that preserves the tail o field of the configuration spaces.
e reversible (suitable) equilibrium states.



Examples: Gibbs measures

Gibbs measures: Ruelle’'s class potentials
e All Gibbs measures with Ruelle’'s class potentials.
with marginal assumptions explained later.



Examples: Gibbs measures

Gibbs measures: Ruelle’'s class potentials
e All Gibbs measures with Ruelle’'s class potentials.

with marginal assumptions explained later.
Lennard-Jones 6-12 potential: Let d= 3 and g8 > 0.
We 1o(z) = |o| 1 — |2|7°
The corresponding ISDE is:
X 12(X) - X)) e(x) - X))

dX! = dB} 4+ = Z (= . , .
J J
2 Sigm XE- XM IX] - X

Mt (i €N




Examples: sine rpf (Dyson’'s model)—bulk scaling limit

Sineg RPF: S=R, §=1,2,4, =0, V(z) = —log |z|.
- 0 1
dX} = dB! + = lim > , dt
J
2 r—00 X;fL_Xt

1 Xi— X |<r, ji



Motivation 1

First motivation:

Dynamical soft edge scaling limit
of

Gaussian ensembles



Motivation 1
e The dist of eigen values of the G(O/U/S)E Random
Matrices are given by (86 =1,2,4)

1N

_BNN 12
1<J
e [ he distribution of
N
1 N
N Z(Sa:i/\/ﬁ under mg
i=1
converges the semi-circle law

s(x)dxr = %\/4 — z°dz (2)
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Sine rpf (Dyson’s model)—Bqu scaling limit

N 12 1
m‘g(dXN) = H lx; — x; |B Zi:l 4] dxp, <(x)dr = o 4 — z%dz
’L<]
e Take x; = s;/vVN in () and set
o 2
pdin s (dsy) = H 5 — 551 H Plsrl"/4N ds (3)
z<j k=1
e The associated N particle system is given by the SDE: 30p
N
. . 1
dX} = dB} + b > dt — ﬂxtdt (4)
2 “ XZ XJ 4N
JFt
e SO the ass oo particle system is given by
1
dX! = dB! + = Z dt

J
2 X - X
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Airy rpf — Soft edge scaling limit
Airy rpf. upig (S=R, =1,2,4)

Take the scaling z; — 2v/N 4+ s;N—1/6 in

N 1 al —QZZ\L |$|2
mg (dXN)ZZH|xi—xj|5e 4 Za=11Y1 dx 5y
1<J
and set
N 1 B —85N |2y N4N-1/652
MAi,g(dSN)=EH|Sz‘—Sj\ e 4=l dsy
1<J

Then paj g is the TDL of pf. ot

: N -
]\;inoo Hai g = HAIB
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Airy rpf — Soft edge scaling limit
e 3=2 = pupjg is the det rpf gen by (K, dz):

Kni(z,y) = Ai(x)Ai (yi : ji (x)Ai(y)

Here Ai(-) the Airy function such that

Ai(z) = i/ dk GEHR2/3) e (5)
Y

27

If = 1,4, the correlation func of uajg are given by
similar formula of quaternion determinant.
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Airy rpf — Dynamical soft edge scaling limit

e From
1 _ BN N ~1/6, (2
Z

1<J

M%,B(dSN) —

we deduce the SDE of the N particle system:
N

- B 1 Ba1/3 '
dX;=dBj+= dt — —{N1/3 4 X7}t
' 9 1/3
Zj=rgmXi— X2 2N
e Problem: What is the limit SDE?
al 1
Does lim { ) . — N3} converge ?
_ x
N=eor, 5 X — Xi

How to solve the limit SDE?
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Airy rpf — Dynamical soft edge scaling limit
Thm 1 (with Tanemura). Let3=1,2,4. Then:
e the limit ISDE is

dX! = dB! +§T|Lngo{(. Z X i Xg.) - /|x|<r %daz}dt
j7#L, | XY |<r
o(@) = V"1 (a)
oo
oo
oo
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Airy rpf — Dynamical soft edge scaling limit
Thm [ [with Tanemura] Let 8 =1,2,4. Then:
e the limit ISDE is

B

- - . 1 o(z)
dX} = dB! + = lim , .)_/
t t QHOO{(. Z X - X jal<r =
jF£1, |Xg\<7"
0(@) = 1o )(@)

e T he above SDE has a unique, strong solution.

dx }dt
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Airy rpf — Dynamical soft edge scaling limit
Thm [ [with Tanemura] Let 8=1,2,4. Then:
e the limit ISDE is

ng:ng_l_gr”—@o{( Z : 1 j) _/| i Q(x)da:}dt

) — —X
j#i, | X |<r A
o(x) = Y"1 (@)
ﬂ‘ ,

e The above SDE has a unique, strong solution.

e SO far the sto dyn related to Airy RPF was constructed only for
B8 = 2 by Spohn, Johansson, and others by the method of space-time
cor funs. This sto dyn is same as the above.
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Airy rpf — Dynamical soft edge scaling limit
Thm [ [with Tanemura] Let 8 =1,2,4. Then:
e the limit ISDE is

ng:dB’%ngr'LrQo{( Z 7;1 '>_/|, Q(x)da:}dt
x| <r

. — X/ —x
j#i, |X;Z\<rXt A
vV — XL
0(@) = ——1(_s0,0(@)

e T he above SDE has a unique, strong solution.

e SO far the sto dyn related to Airy RPF was constructed only for
B8 = 2 by Spohn, Johansson, and others by the method of space-time
cor funs. This sto dyn is same as the above.

e The labeled dyn X; = (Xg?) is a diffusion with state space RN,
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Airy rpf — Dynamical soft edge scaling limit
Thm [ [with Tanemura] Let 8 =1,2,4. Then:
e the limit ISDE is

B 1 o(z)
dX!=dB'+ 2 lim ( E , .)—/ dx Y dt
: AT L X -Xy jz|<r — /

J#L, | X | <r

N

o(xz) =

e T he above SDE has a unique, strong solution.

e SO far the sto dyn related to Airy RPF was constructed only for
B8 = 2 by Spohn, Johansson, and others by the method of space-time
cor funs. This sto dyn is same as the above.

e The labeled dyn X; = (X”") is a diffusion with state space RN,

e The unlabeled dyn X; = > 776 Xi is reversible w.r.t. paipy 3.

19



Quasi-Gibbs measures,
Log derivative,
and
(weak) solutions of ISDEs



W-Quasi-Gibbs meas.
e S=R% S, ={lz| <r}, S={s =136, s(Sr) < co(Vr)}
o mp, w5:S—S, mr(s) =s(-NSr), w5(s) = s(-NSS)
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W-Quasi-Gibbs meas.
e S=R% S, ={lz| <r}, S={s=13,08s, s(Sr) < co(Vr)}
o T, m5:S—S, mr(s) =s(-NSr), ®5(s) = s(-NST)
e Let 4 be a RPF over §.
pr () = plar € [s(Sr) = m, m(s) = m:(£))
o Let W:S—RU{cx} (interaction).

Hr — Z \U(SZ‘ — S])

Si,SjES’/“,?:<j
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W-Quasi-Gibbs meas.
o S = Rd, Sy = {\ZIZ| < ?“}, S = {S — Zz 5si7 S(S’r) < OO(VT)}
o mp,my..S—S, mr(s) =s(-NSr), m:(s) =s(-NSy)
e Let 4 be a RPF over §.
upe(:) = umr € -|s(Sr) = m, wi(s) = m(E))
o Let W:S—RU{oo} (interaction).
H,y = Z \U(SZ — Sj)
Si,SjGSfr,i<j

Def: u is W-quasi-Gibbs measure if 4 cjf% S.t.

e e N < it < e AN

Here A" = A(:|s(Sr) = m) and A, is the Poisson RPF with 1g dx.
e Gibbs measures = Quasi-Gibbs measure .
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Application of quasi-Gibbs property to dynamics
(Al) p is a W-quasi-Gibbs m with upper-semicont W.
(A2) Y721 ku(Sy) < oo, of € L?(SF, dx)
Here S, = {|z| < r}, SF = {s(S;) = k}, oF is k-density fun on S;.
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Application of quasi-Gibbs property to dynamics
(Al) pis @ W-quasi-Gibbs m with upper-semicont W. = (closability)
(A2) "2 1 ku(SF) < oo, of € L?(SF,dz) = (existence of diffusions)
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Application of quasi-Gibbs property to dynamics
(Al) p is a W-quasi-Gibbs m with upper-semicont W. = (closability)
(A2) 322 ;1 ku(SF) < oo, of € L2(SF,dx) = (existence of diffusions)
Let Do be the set of local, smooth functions on S.
Let f(s1,...) = f(s), where f is symmetric, s = > §s..

£(f,9) = [ DIf.glu(ds), DIf.gl = 53 Vif - Vig

Dy = {f € Do; E"(f, f) < o0, f € L?(1)}
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Application of quasi-Gibbs property to dynamics
(Al) p is a W-quasi-Gibbs m with upper-semicont W. = (closability)
(A2) 322 ;1 ku(SF) < oo, of € L2(SF,dx) = (existence of diffusions)
Let Do be the set of local, smooth functions on S.
Let f(s1,...) = f(s), where f is symmetric, s = > §s..

1 -
ER(f,g) = /S DIf, glu(ds), DIf,gl =" Vif - Vi
Dh = {f € Do; EM(f, f) < oo, f € L*(w)}

Thm 2. (1) (A1) = (EH, DY) is closable on L?(p).
(2) (A1), (A2) = 3 diffusion Xy = ) ;6 associated with
t

(EF, D) on L2(u).
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General theorems on infinite-dim SDEs
(Al) p is a W-quasi-Gibbs m with upper-semicont W.
(A2) Y721 ku(Sy) < oo, of € L?(SF, dx)
(A3) {X}!} do not collide each other (non-collision)

(A4) each tagged particle X{f never explode (non-explosion)
By (A3) and (A4) the labeled dynamics

X = (X}, X7,...)
can be constructed from the unlabeled dynamics
Xy = i
t Zéxt
iEN
Indeed, the particles keep the initial label forever.
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General theorems on infinite-dim SDEs
(Al) p is a W-quasi-Gibbs m with upper-semicont W.
(A2) Y721 ku(Sy) < oo, of € L?(SF, dx)
(A3) {X}} do not collide each other (non-collision)

(A4) each tagged particle X;f never explode (non-explosion)
By (A3) and (A4) the labeled dynamics

X, = (X} XZ2,..)
can be constructed from the unlabeled dynamics
Xy = I3
t Zéxt
ieN
Indeed, the particles keep the initial label forever.

To represent X; by ISDEs, we introduce the log derivative of wu.
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Log derivative of u: precise correspondence between RPFs & potentials

e Let uy be the (reduced) Palm m. of u conditioned at x
pa(-) = (- — Szls(a) > 1)
o Let ul be the 1-Campbell measure on R¢xS:

ul(Ax B) = / ol (2) o (B) da
A

o d“ € L (R¥xS,ut) is called the log derivative of p if

Vaefdul = — fdhdut Vi e CPRY) @D
RIxS RIxS

Here V., is the nabla on Rd, D is the space of bounded,
local smooth functions on S.
e Very informally

d* =V log pt
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Log derivative
o If pl(dxds) = m(x,sq,...)dx [1; ds;, then

~ [ Vot (a5, dud(dodsy )
= /fo(a:, s1,...)om(x,s1,...)dx H ds;

— / f(x,s1,...)Vam(x,sy,...)dx H ds;

:/f(x, 51, .. .)vxm(m’ L )m(a?, S1, .. .)dedsi.

m(x,s1,...)
Hence
_ Vaem(zx,sq1,...)

m(x,s1,...)
This is very informal calculation.

dM

= Vg logm(x,sq,...).
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General theorems on infinite-dim SDEs
(Al) p is a W-quasi-Gibbs m with upper-semicont W.
(A2) Y721 ku(Sy) < oo, of € L?(SF, dx)
(A3) {X}!} do not collide each other
(A4) each tagged particle X} never explode

(A5) The log derivative d# € LL (u!) exists =(SDE representation)
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General theorems on infinite-dim SDEs
(Al) p is a W-quasi-Gibbs m with upper-semicont W.
(A2) 92 ku(SE) < oo, of € L2(SE, dx)
(A3) {X}!} do not collide each other
(A4) each tagged particle ng never explode
(A5) The log derivative d* € L1 (ul) exists =(SDE representation)

loC
Thm 3. (0.12(PTRF)) (A1)—(A5) = 3Sqg C S such that
n(So) = 1,

and that, for Vs € u=1(Sg), Fu=1(Sg)-valued pr. (X});en and 3SN-
valued Brownian m. (Bg)ieN satisfying

. 1 . .
dX! = dB} + 5cW(X;g, Z(ng-)dt, (X8)ien = s
J7F1
Here u: SN —S such that u((s;)) =, ds..
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General theorems on infinite-dim SDEs
(Al) pis @ W-quasi-Gibbs m with upper-semicont W. = (closability)
(A2) 322, ku(SKF) < oo, oF € L?(SF,dx) = (existence of diffusions)
Here S, = {|z| < r}, SF = {s(S;) = k}, oF is k-density fun on S;.
(A3) {X}!} do not collide each other = (non-collision)
(A4) each tagged particle X;f never explode = (non-explosion)
(A5) The log derivative d* € L1 (ul) exists =(SDE representation)

loC
Thm 4. (0.12(PTRF)) (A1)—(A5) = 3Sq C S such that

1(So) = 1,
and that, for Vs € u=1(Sg), Ju=1(Sp)-valued pr. (X})jeny and 3SN-
valued Brownian m. (B});cN Satisfying

dX! = dB! + %du(xg, ZéXg)dt, (X0)jen = s
J71
The solution (X,B) is not a strong solution.
We next construct a strong solution from a weak solution.
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existence of strong solution

Strong solutions

e To construct strong solutions
we have two important geometric properties of RPFs.
Tail triviality & Tail decomposition

35



Tail triviality of determinantal RPFs & Tail decomp of quasi-Gibbs m
Let 7 = T7(S) be the tail o field of S:

T(S) = N22y0lrd  (75(s) = s(- N S9)).

Thm 5. Let u be a det RPF. Then T(S) is u-trivial.
e Thm IS a generalization of that for the discrete determinantal

RPFs due to Russel Lyons, Shirai-Takahashi.
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Tail triviality of determinantal RPFs & Tail decomp of quasi-Gibbs m
Let 7 = T(S) be the tail o field of S:

T(S) =niZqolm]  (m:(s) =s(-NSp)).
Thm B Let u be a det RPF. Then 7(S) is u-trivial.

Thm 6. Let u be a quasi-Gibbs measure. Let u(-|T) be
the regular conditional probability. Then

u() = /S (T (E)(de)

and, for u-a.s. &,
n(A[T)(E) =14(&) forany AeT.

e Thm [@l is a generalization of that for the discrete Gibbs m due to
Georqii.
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existence of strong solution

dX! = dB! + d”(Xt, Zéxj)dt (X8)ieny = s
J7
We consider a condition such that the drifts d#(x,s) are locally

Lipschitz continuous in =x.
Let S, = {|z| < r} and
H(r,n) = {s = Z&gi; |V d”(s;,s — ds,)| < n for Vi s.t.s; € Sr},

H = ﬂ UH(’rn)

r=1n=1

(A6) CapH(H®) = 0.
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existence of strong solution
(Al) p is a W-quasi-Gibbs m with upper-semicont W.
(A2) Y721 ku(Sy) < oo, of € L?(SF, dx)
(A3) {X}!} do not collide each other
(A4) each tagged particle X{f never explode
(A5) The log derivative d* € Lt (ul!) exists
(A6) CapH(H®) = 0.

Thm 7 (O.-Tanemura). (A1)—(A6). = (1) The ISDE
. 1 . .
dXy = dBy + Ed“(Xfa Z(ng)dt’ (X0)ien =
J7i
has a strong solution for s = (s;) € SN s.t. .. s, € H.
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existence of strong solution
(Al) p is a W-quasi-Gibbs m with upper-semicont W.
(A2) Y721 ku(Sy) < oo, of € L?(SF, dx)
(A3) {X}} do not collide each other
(A4) each tagged particle X} never explode
(A5) The log derivative d# € LL (u!) exists
(A6) CapH(H¢) = 0.

Thm [[O.-Tanemura] (A1)—(A6). = (1) The ISDE
dX}! = dB! + %d“(X{é, Z(ng)dt, (X8)ien = s
7
has a strong solution for s = (s;) € SN s.t. >, ds, € H.
(2) The ass unlabeled diffusion X =} .6 satisfies
Py, oxt—l <pe (Vt) for p-a.s. &
Here pue = p(|7(S))(§) in Thm [@.
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Uniqueness of strong solutions 1

Thm 8 (O.-Tanemura). Assume (A1)—(A6).
Let X = (X*) and X = (X*) be strong sol of the ISDE

dX} = dBj + d'u(Xta Z5X])dt (X8)ien = s = (si)ien
7

on the same Br m. Let X; =73 ,8y; and X; =3, .
t t
Suppose, for pu-a.s. &,

Pue o X; < pe and Py o X7 < pge (V1)
T hen

©.@)
X=X a.s. for u-a.s. s = Z Os;
i=1
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Uniqueness of strong solutions

Thm 9 (O.-Tanemura). Assume (Al1)—(A7). Here
(A7) p is tail trivial.
Then the strong solution X = (X%) such that

Puoxt_l<u for all t

is unique for p-a.e. x = ) .05, Here X is the unlabeled
dynamics of X:

O
X = ZéXg
(}

Cor If u is a determinantal RPF, then the strong, solution of the

ISDE that is reversible w.r.t. p is unique.
e Tail o-fields of Airy, Sine, Ginibre RPFs with g = 2 are trivial.
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Uniqueness of Dirichlet forms

Let DX be the closure of the set of polynomials on S

poly
such that E'(f, f) < oco. Then
7!
Dpoly C DH

because polynomials are local and smooth.
Thm 10 (O.-Tanemura). Assume (A1)—(A7). Then quasi-
regular Dirichlet forms that are extension of (E*, D )

poly
are unique.

In particular, Dgoly — DH. and Lang’s construction and

O.’'s construction are same.

Remark 1.1f (A5) (non-explosion) does not hold. Then Thm does
not hold. This is very natural theorem that says the uniqueness of
Dirichlet forms is related to the non-explosion problem of tagged
problem.
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Examples: Airy rpf — Soft edge scaling limit

Application to
soft-edge scaling

Airy RPFs
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Examples: Airy rpf — Soft edge scaling limit
Thm 11 (O.-Tanemura). Let 8=1,2,4. Then:
e The log derivative d"AiB js

dHai8(z,s) = B lim {( Y L )—/||< Q(x)dx}

r—00 Tr — S; —X
lx—s;|<r
Here
v — XL
(@) = ——1(_00,01(@)
o Airy rpf up; g satisfy (A1)—(A6) and the limit ISDE is
- B 1 / o(x)
dX; = dB}! + = lim ) — —dx tdt
/ {1 > r_mo{( Z i Xg) ier —a T}

g7, | X |<r
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Examples: Airy rpf — Soft edge scaling limit
e The key idea is to take the rescaled semi-circle law g,
as the first approximation of the 1-correlation fun ,0%”16.
e Our method can be applied to other soft edge scaling.
Our result is the first time to clarify the SDE describing

the limit infinite system for the soft edge.
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Examples: Airy rpf — Soft edge scaling limit
Thm 12 (O.-Tanemura). Assume 8 = 2.
Let us label X! > X!T1 (Vi). Then :

(1) The top particle X} is the Airy process A(t) in the
sense of Spohn.

(2) The infinite dim stochastic dynamics constructed by
Spohn, Johansson & others by the space-time correlation
fun is a solution of the prescribed SDE:

- B 1 / o(x)
dX! =dB!+ = lim E ) — dx }dt
¢ = 4Bt 5 I TR Ll Wi
jF£i, |Xg|<r t ¢
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Examples: Airy rpf — Soft edge scaling limit

e The SDE gives a kind of Girsanov formula.
e [ hese examples are the first time that the infinite dy-
namics are constructed for rpf appeared in random matrix
theory with 8 = 1.4 even if the bulk and the hard edge
as well as the soft edge scaling

In one dimensional system, the method of space-time
correlation functions are available (Nagao, Katori-Tanemura,
Spohn, and others), but this method is restricted to
£ = 2.
e By construction, if the total system start from the Airy,
rpf pai2. then the distribution of the top particle X}
equals F5 .qgc(x), the 2 Tracy-Widom distribution.
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Idea of "strong sol of ISDES"
2013/12/4 Courant

e General theory to construct unique, strong solutions of
infinite-dimensional stochastic differential equations



Strong solutions of ISDE: Non Markov type
S =R [0, ), C
W (SN =c([0,7); SN), (0 < T < ) labeled path sp.
e a quadruplet ({o*}, {b'}, Weor, So)
Weol : a Borel subset of W(SY)  sp of solutions of ISDE
ol b": Weoy— W (SN) coefficients of ISDE
Sg be a Borel subset of SN initial starting points of ISDE

e the ISDE on SN of the form

dX}! = 0" (X)dB! 4+ bY(X)idt (i € N) (6)
Xo =5 = (si)ieN € So (7)
X € Weg- (8)

* X = {(Xg)ieN}te[O,T) € Wso
e B=(B" (i €N) is the SN-valued standard Br motion.
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Strong solutions of ISDE: Assump (P1)

dX! = 6" (X)dB! + b'(X)idt (i € N)
Xo =5 = (si)ieN € So
X E Wso|.

(P1) ISDE (@) has a solution (X, B). (not a strong sol! )

Here B = (B%),cy is the Brownian motion on SN

Problem: Prove that X is a functional of the Br B

Idea:
Strong solutions of Infinite-dimensional SDE
&
Infinite-many, finite-dimensional SDEs with consistency
_|_

Triviality of Tail o-field of label pathes
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Assump (P2) infinite-many, finite-dimensional SDEs with consistency

e P;: a prob meas on W(SY) x wO(sh)

e P, = Ps(X € -|B): the regular conditional prob

.PS:ps(XE‘), Péot,:ps(Be)

FOF X E Wso|, S E SO, aﬂd m E N,

we introduce a new SDE (II) on Y™ = (Y,},...,Y/™).
dY} = o' (Y™ 4+ X)) d B! + b' (Y™ 4+ X™*)dt (9)
Yo = (s1,...,sm) €S, where s = (s;);=1,
Ym _I_ }{Tn>l< E Wso|.

Here X™* = (O, .. .,O,XZ”""l,XZM'Q, ...) and we set

Y™ 4 X = (YL, Yy x v xm2 ), (10)
X™* is interpreted as a part of the coefficients of the SDE (I1).
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Strong solutions of ISDE: (P2) seq of finite-dim SDEs with consistecy

dY} = o' (Y™ 4+ X™)dB! + (Y™ + X" )dt (11)
Y87J — (817°°'78m) S Sm7
Y™ 4 X e W,

(P2) The SDE (I1) has a unique, strong solution

for each s € So, X € W_,,, and m € N.
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Strong solutions of ISDE: (P3) Tail triviality
Let Tail (W(SN)) be the tail o-field of W(SN); we set

Tail (W(S™) = () o[X™] (12)

m=1
Tail (P) = {A € Tuil (W(SY)): P(4) = 1}
Here P is a probability measure on W (SY).
(P3) Tail (W(SY)) is Pg-trivial for each s € Syp.
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Strong solutions of ISDE: Main Theorem 1
(P1) ISDE (@) has a solution (X,B).
(P2) SDE ([I1) has a unique, strong solution for all s, X, m.
(P3) Tail (W (SY)) is Ps-trivial for each s € Syp.

Thm 13. Assume (P1)—(P3). Then

(1) ISDE (B8)—(8) has a strong solution for each s € Sy.
(2) Let Ys and Y. be strong solutions of ISDE (B8)—(8)
starting at s € Sg defined on the same space of Brownian
motions B. Then Ys =Y} a.s. if and only if

Tail N (Law(Ys)) = Tail M (Law(Y))). (13)
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Strong solutions of ISDE: Idea of Main Theorem 1 (1)
(P1) ISDE (B)) has a solution (X, B).
(P2) SDE (I1) has a unique, strong solution for all s, X, m.
(P3) Tail (W (SY)) is Ps-trivial for each s € Sy.

e (X,B): sol of ISDE by (P1). Let (X,B) be fixed.
e Y is a unique strong sol of SDE(IQ) by (P2)

e Y™ is o[B]\/ o[X™]-m'ble. X™* = (X"™)m<n<oo.
o Y™ = (X1 ..., X™). by (P2)

e X is o[B]V Tail (W (SN))-m’'ble by m — oo.

o Tail (W(SY)) is trivial by (P3) = X is a strong solution.
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Strong solutions of ISDE: How to prove (P1)—(P3)
(P1) ISDE () has a solution (X, B).
(P2) SDE (1)) has a unique, strong solution for all s, X, m.
(P3) Tail (W(SY)) is Ps-trivial for each s € S.

e (P1) follows from a general theory of O..
e (P2) is classical.
e How to prove (P3)?= Tail Theorems.
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Strong solutions of ISDE: How to prove (P1)—(P3)
(Q1) p is tail trivial.
(Q2) PyoX; 1 < p for all t.

Let Sy = {|o| <r}, Xe = Fien Oy, Xt ={X}}.

m, = inf{m € N; X* € C([0,T]; S¢) for m < Vi € N}.
(Q3) Pu(NpZ{m,(X) <oo}) = 1.
Thm 14. Assume (Q1)—(Q3). Then (P3) holds.
(P3) Tail (W(SY)) is Ps-trivial for each s € Sy.
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General theorems for Infinite-dim SDE: set up

End
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