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Motivation

• Soft edge scaling limit and Airy RPFs

• Coulomb stochastic dynamics in infinite dimensions

General Theory

• Quasi-Gibbs measures & Log derivative

• Tail triviality

• Existence and uniqueness of strong solutions of ISDEs

• Uniqueness of quasi-regular Dirichlet forms



ISDEs

• Let S = Rd. Consider infinte-many particles {Xi
t}i∈N

with potentials: Φ and Ψ

Φ:Rd→R ∪ {∞} (free potential)

Ψ:Rd→R ∪ {∞} (interaction potential)

• • •

• • •
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ISDEs

• Let S = Rd. Consider infinte-many particles {Xi
t}i∈N

with potentials: Φ and Ψ

Φ:Rd→R ∪ {∞} (free potential)

Ψ:Rd→R ∪ {∞} (interaction potential)

• The infinite-dimensional SDEs we study are (typically)

dXi
t = dBi

t −
1

2
∇Φ(Xi

t)dt−
1

2

∞∑
j ̸=i

∇Ψ(Xi
t −X

j
t )dt.

Here (Bi) are indep copies of d-dim Brownian motions.

• • •
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ISDEs

• Let S = Rd. Consider infinte-many particles {Xi
t}i∈N

with potentials: Φ and Ψ

Φ:Rd→R ∪ {∞} (free potential)

Ψ:Rd→R ∪ {∞} (interaction potential)

• The infinite-dimensional SDEs we study are (typically)

dXi
t = dBi

t −
1

2
∇Φ(Xi

t)dt−
1

2

∞∑
j ̸=i

∇Ψ(Xi
t −X

j
t )dt.

Here (Bi) are indep copies of d-dim Brownian motions.
• The purpose of this talk is to provide a general method
to construct unique strong solutions of the above ISDEs,
even if the interaction potentials are long range such as
log potentials.
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Examples:

Examples
All examples below have unique strong solutions :

• that preserves the tail σ field of the configuration spaces.

• reversible (suitable) equilibrium states.
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Examples: Gibbs measures

Gibbs measures: Ruelle’s class potentials

• All Gibbs measures with Ruelle’s class potentials.

with marginal assumptions explained later.

• • •
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Examples: Gibbs measures

Gibbs measures: Ruelle’s class potentials

• All Gibbs measures with Ruelle’s class potentials.

with marginal assumptions explained later.

Lennard-Jones 6-12 potential: Let d = 3 and β > 0.

Ψ6,12(x) = |x|−12 − |x|−6

The corresponding ISDE is:

dXi
t = dBi

t +
β

2

∞∑
j=1,j ̸=i

{
12(Xi

t −X
j
t )

|Xi
t −X

j
t |14

−
6(Xi

t −X
j
t )

|Xi
t −X

j
t |8

}dt (i ∈ N).
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Examples: sine rpf (Dyson’s model)–bulk scaling limit

Sineβ RPF: S = R, β = 1,2,4, Φ = 0, Ψ(x) = − log |x|.

dXi
t = dBi

t +
β

2
lim
r→∞

∑
|Xi

t−X
j
t |<r, j ̸=i

1

Xi
t −X

j
t

dt
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Motivation 1

First motivation:

Dynamical soft edge scaling limit

of

Gaussian ensembles
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Motivation 1

• The dist of eigen values of the G(O/U/S)E Random

Matrices are given by (β = 1,2,4)

mN
β (dxN) =

1

Z

N∏
i<j

|xi − xj|βe−
β
4

∑N
i=1 |xi|2dxN , (1)

• The distribution of

N−1
N∑

i=1

δ
xi/

√
N

under mN
β

converges the semi-circle law

ς(x)dx =
1

2π

√
4− x2dx (2)
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Sine rpf (Dyson’s model)–Bulk scaling limit

mN
β (dxN) =

1

Z

N∏
i<j

|xi − xj|βe−
β
4

∑N
i=1 |xi|2dxN , ς(x)dx =

1

2π

√
4− x2dx

• Take xi = si/
√
N in (1) and set

µNsin,β(dsN) =
1

Z

N∏
i<j

|si − sj|β
N∏

k=1

e−β|sk|2/4NdsN (3)

• The associated N particle system is given by the SDE: 30p

dXi
t = dBi

t +
β

2

N∑
j ̸=i

1

Xi
t −X

j
t

dt−
β

4N
Xi

tdt (4)

• So the ass ∞ particle system is given by

dXi
t = dBi

t +
β

2

∞∑
j ̸=i

1

Xi
t −X

j
t

dt
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Airy rpf – Soft edge scaling limit

Airy rpf: µAi,β (S = R, β = 1,2,4)

Take the scaling xi 7→ 2
√
N + siN

−1/6 in

mN
β (dxN) =

1

Z

N∏
i<j

|xi − xj|βe−
β
4

∑N
i=1 |xi|2dxN

and set

µNAi,β(dsN) =
1

Z

N∏
i<j

|si − sj|βe−
β
4

∑N
i=1 |2

√
N+N−1/6si|2dsN .

Then µAi,β is the TDL of µNAi,β:

lim
N→∞

µNAi,β = µAi,β
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Airy rpf – Soft edge scaling limit

• β = 2 ⇒ µAi,β is the det rpf gen by (KAi, dx):

KAi(x, y) =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y

Here Ai(·) the Airy function such that

Ai(z) =
1

2π

∫
γ
dk ei(zk+k3/3), z ∈ C. (5)

If β = 1,4, the correlation func of µAi,β are given by

similar formula of quaternion determinant.
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Airy rpf – Dynamical soft edge scaling limit

• From

µNAi,β(dsN) =
1

Z

∏
i<j

|si − sj|βe−
β
4

∑N
i=1 |2

√
N+N−1/6si|2dsN

we deduce the SDE of the N particle system:

dXi
t = dBi

t +
β

2

N∑
j=1,j ̸=i

1

Xi
t −X

j
t

dt−
β

2
{N1/3 +

1

2N1/3
Xi

t}dt

• Problem: What is the limit SDE?

Does lim
N→∞

{
N∑

j=1,j ̸=i

1

Xi
t −X

j
t

−N1/3} converge ?

How to solve the limit SDE?
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Airy rpf – Dynamical soft edge scaling limit

Thm 1 (with Tanemura). Let β = 1,2,4. Then:

• the limit ISDE is

dXi
t = dBi

t +
β

2
lim
r→∞

{(
∑

j ̸=i, |Xj
t |<r

1

Xi
t −X

j
t

)−
∫
|x|<r

ϱ(x)

−x
dx}dt

ϱ(x) =

√
−x

π
1(−∞,0](x)

• • •

• • •

• • •

• • •
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Airy rpf – Dynamical soft edge scaling limit

Thm 1 [with Tanemura] Let β = 1,2,4. Then:

• the limit ISDE is

dXi
t = dBi

t +
β

2
lim
r→∞

{(
∑

j ̸=i, |Xj
t |<r

1

Xi
t −X

j
t

)−
∫
|x|<r

ϱ(x)

−x
dx}dt

ϱ(x) =

√
−x

π
1(−∞,0](x)

• The above SDE has a unique, strong solution.

• • •

• • •

• • •
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Airy rpf – Dynamical soft edge scaling limit
Thm 1 [with Tanemura] Let β = 1,2,4. Then:
• the limit ISDE is

dXi
t = dBi

t +
β

2
lim
r→∞

{(
∑

j ̸=i, |Xj
t |<r

1

Xi
t −X

j
t

)−
∫
|x|<r

ϱ(x)

−x
dx}dt

ϱ(x) =

√
−x

π
1(−∞,0](x)

• The above SDE has a unique, strong solution.
• So far the sto dyn related to Airy RPF was constructed only for
β = 2 by Spohn, Johansson, and others by the method of space-time
cor funs. This sto dyn is same as the above.

• • •

• • •
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Airy rpf – Dynamical soft edge scaling limit

Thm 1 [with Tanemura] Let β = 1,2,4. Then:

• the limit ISDE is

dXi
t = dBi

t +
β

2
lim
r→∞

{(
∑

j ̸=i, |Xj
t |<r

1

Xi
t −X

j
t

)−
∫
|x|<r

ϱ(x)

−x
dx}dt

ϱ(x) =

√
−x

π
1(−∞,0](x)

• The above SDE has a unique, strong solution.

• So far the sto dyn related to Airy RPF was constructed only for

β = 2 by Spohn, Johansson, and others by the method of space-time

cor funs. This sto dyn is same as the above.

• The labeled dyn Xt = (Xi
t) is a diffusion with state space RN.

• • •
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Airy rpf – Dynamical soft edge scaling limit

Thm 1 [with Tanemura] Let β = 1,2,4. Then:

• the limit ISDE is

dXi
t = dBi

t +
β

2
lim
r→∞

{(
∑

j ̸=i, |Xj
t |<r

1

Xi
t −X

j
t

)−
∫
|x|<r

ϱ(x)

−x
dx}dt

ϱ(x) =

√
−x

π
1(−∞,0](x)

• The above SDE has a unique, strong solution.

• So far the sto dyn related to Airy RPF was constructed only for

β = 2 by Spohn, Johansson, and others by the method of space-time

cor funs. This sto dyn is same as the above.

• The labeled dyn Xt = (Xi
t) is a diffusion with state space RN.

• The unlabeled dyn Xt =
∑∞

i δXi
t
is reversible w.r.t. µairy,β.
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Quasi-Gibbs measures,

Log derivative,

and

(weak) solutions of ISDEs
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Ψ-Quasi-Gibbs meas.

• S = Rd, Sr = {|x| ≤ r}, S = {s =
∑

i δsi, s(Sr) < ∞(∀r)}
• πr, πc

r :S→S, πr(s) = s(· ∩ Sr), πc
r(s) = s(· ∩ Sc

r)

• • •

• • •
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Ψ-Quasi-Gibbs meas.

• S = Rd, Sr = {|x| ≤ r}, S = {s =
∑

i δsi, s(Sr) < ∞(∀r)}
• πr, πc

r :S→S, πr(s) = s(· ∩ Sr), πc
r(s) = s(· ∩ Sc

r)

• Let µ be a RPF over S.

µmr,ξ(·) = µ(πr ∈ ·|s(Sr) = m,πc
r(s) = πcr(ξ))

• Let Ψ:S→R ∪ {∞} (interaction).

Hr =
∑

si,sj∈Sr,i<j

Ψ(si − sj)

• • •
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Ψ-Quasi-Gibbs meas.

• S = Rd, Sr = {|x| ≤ r}, S = {s =
∑

i δsi, s(Sr) < ∞(∀r)}
• πr, πc

r :S→S, πr(s) = s(· ∩ Sr), πc
r(s) = s(· ∩ Sc

r)

• Let µ be a RPF over S.

µmr,ξ(·) = µ(πr ∈ ·|s(Sr) = m,πc
r(s) = πcr(ξ))

• Let Ψ:S→R ∪ {∞} (interaction).

Hr =
∑

si,sj∈Sr,i<j

Ψ(si − sj)

Def: µ is Ψ-quasi-Gibbs measure if ∃ cmr,ξ s.t.

cmr,ξ
−1e−HrdΛm

r ≤ µmr,ξ ≤ cmr,ξe
−HrdΛm

r

Here Λm
r = Λ(·|s(Sr) = m) and Λr is the Poisson RPF with 1Srdx.

• Gibbs measures ⇒ Quasi-Gibbs measure .
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Application of quasi-Gibbs property to dynamics

(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ.

(A2)
∑∞

k=1 kµ(S
k
r) < ∞, σkr ∈ L2(Sk

r , dx)

Here Sr = {|x| < r}, Skr = {s(Sr) = k}, σkr is k-density fun on Sr.
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Application of quasi-Gibbs property to dynamics

(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ. ⇒ (closability)

(A2)
∑∞

k=1 kµ(S
k
r) < ∞, σkr ∈ L2(Sk

r , dx) ⇒ (existence of diffusions)

• • •

• • •
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Application of quasi-Gibbs property to dynamics

(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ. ⇒ (closability)

(A2)
∑∞

k=1 kµ(S
k
r) < ∞, σkr ∈ L2(Sk

r , dx) ⇒ (existence of diffusions)

Let D0 be the set of local, smooth functions on S.

Let f̃(s1, . . .) = f(s), where f̃ is symmetric, s =
∑

δsi.

Eµ(f, g) =

∫
S
D[f, g]µ(ds), D[f, g] =

1

2

∑
i

∇if̃ · ∇ig̃

Dµ
0 = {f ∈ D0; Eµ(f, f) < ∞, f ∈ L2(µ)}

• • •
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Application of quasi-Gibbs property to dynamics

(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ. ⇒ (closability)

(A2)
∑∞

k=1 kµ(S
k
r) < ∞, σkr ∈ L2(Sk

r , dx) ⇒ (existence of diffusions)

Let D0 be the set of local, smooth functions on S.

Let f̃(s1, . . .) = f(s), where f̃ is symmetric, s =
∑

δsi.

Eµ(f, g) =

∫
S
D[f, g]µ(ds), D[f, g] =

1

2

∑
i

∇if̃ · ∇ig̃

Dµ
0 = {f ∈ D0; Eµ(f, f) < ∞, f ∈ L2(µ)}

Thm 2. (1) (A1) ⇒ (Eµ,Dµ
0) is closable on L2(µ).

(2) (A1), (A2) ⇒ ∃ diffusion Xt =
∑

i δXi
t
associated with

(Eµ,Dµ
0) on L2(µ).
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General theorems on infinite-dim SDEs

(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ.

(A2)
∑∞

k=1 kµ(S
k
r) < ∞, σkr ∈ L2(Sk

r , dx)

(A3) {Xi
t} do not collide each other (non-collision)

(A4) each tagged particle Xi
t never explode (non-explosion)

By (A3) and (A4) the labeled dynamics

Xt = (X1
t , X

2
t , . . .)

can be constructed from the unlabeled dynamics

Xt =
∑
i∈N

δXi
t
.

Indeed, the particles keep the initial label forever.

• • •
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General theorems on infinite-dim SDEs

(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ.

(A2)
∑∞

k=1 kµ(S
k
r) < ∞, σkr ∈ L2(Sk

r , dx)

(A3) {Xi
t} do not collide each other (non-collision)

(A4) each tagged particle Xi
t never explode (non-explosion)

By (A3) and (A4) the labeled dynamics

Xt = (X1
t , X

2
t , . . .)

can be constructed from the unlabeled dynamics

Xt =
∑
i∈N

δXi
t
.

Indeed, the particles keep the initial label forever.

To represent Xt by ISDEs, we introduce the log derivative of µ.
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Log derivative of µ: precise correspondence between RPFs & potentials

• Let µx be the (reduced) Palm m. of µ conditioned at x
µx(·) = µ(· − δx|s(x) ≥ 1)

• Let µ1 be the 1-Campbell measure on Rd×S:

µ1(A×B) =

∫
A
ρ1(x)µx(B)dx

• dµ ∈ L1
loc(R

d×S, µ1) is called the log derivative of µ if∫
Rd×S

∇xfdµ
1 = −

∫
Rd×S

fdµdµ1 ∀f ∈ C∞
0 (Rd)⊗D

Here ∇x is the nabla on Rd, D is the space of bounded,
local smooth functions on S.
• Very informally

dµ = ∇x logµ1
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Log derivative
• If µ1(dxds) = m(x, s1, . . .)dx

∏
i dsi, then

−
∫

∇xf(x, s1, . . .)µ
1(dxds1 · · · )

=−
∫

∇xf(x, s1, . . .)m(x, s1, . . .)dx
∏
i

dsi

=

∫
f(x, s1, . . .)∇xm(x, s1, . . .)dx

∏
i

dsi

=

∫
f(x, s1, . . .)

∇xm(x, s1, . . .)

m(x, s1, . . .)
m(x, s1, . . .)dx

∏
i

dsi.

Hence

dµ =
∇xm(x, s1, . . .)

m(x, s1, . . .)
= ∇x logm(x, s1, . . .).

This is very informal calculation.
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General theorems on infinite-dim SDEs

(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ.

(A2)
∑∞

k=1 kµ(S
k
r) < ∞, σkr ∈ L2(Sk

r , dx)

(A3) {Xi
t} do not collide each other

(A4) each tagged particle Xi
t never explode

(A5) The log derivative dµ ∈ L1
loc(µ

1) exists ⇒(SDE representation)
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General theorems on infinite-dim SDEs

(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ.

(A2)
∑∞

k=1 kµ(S
k
r) < ∞, σkr ∈ L2(Sk

r , dx)

(A3) {Xi
t} do not collide each other

(A4) each tagged particle Xi
t never explode

(A5) The log derivative dµ ∈ L1
loc(µ

1) exists ⇒(SDE representation)

Thm 3. (O.12(PTRF)) (A1)–(A5) ⇒ ∃S0 ⊂ S such that

µ(S0) = 1,

and that, for ∀s ∈ u−1(S0), ∃u−1(S0)-valued pr. (Xi
t)i∈N and ∃SN-

valued Brownian m. (Bi
t)i∈N satisfying

dXi
t = dBi

t +
1

2
dµ(Xi

t,
∑
j ̸=i

δ
X

j
t
)dt, (Xi

0)i∈N = s

Here u :SN→S such that u((si)) =
∑

i δsi.
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General theorems on infinite-dim SDEs

(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ. ⇒ (closability)

(A2)
∑∞

k=1 kµ(S
k
r) < ∞, σkr ∈ L2(Sk

r , dx) ⇒ (existence of diffusions)

Here Sr = {|x| < r}, Skr = {s(Sr) = k}, σkr is k-density fun on Sr.

(A3) {Xi
t} do not collide each other ⇒ (non-collision)

(A4) each tagged particle Xi
t never explode ⇒ (non-explosion)

(A5) The log derivative dµ ∈ L1
loc(µ

1) exists ⇒(SDE representation)

Thm 4. (O.12(PTRF)) (A1)–(A5) ⇒ ∃S0 ⊂ S such that

µ(S0) = 1,

and that, for ∀s ∈ u−1(S0), ∃u−1(S0)-valued pr. (Xi
t)i∈N and ∃SN-

valued Brownian m. (Bi
t)i∈N satisfying

dXi
t = dBi

t +
1

2
dµ(Xi

t,
∑
j ̸=i

δ
X

j
t
)dt, (Xi

0)i∈N = s

The solution (X,B) is not a strong solution.

We next construct a strong solution from a weak solution.
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existence of strong solution

Strong solutions
• To construct strong solutions

we have two important geometric properties of RPFs.

Tail triviality & Tail decomposition
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Tail triviality of determinantal RPFs & Tail decomp of quasi-Gibbs m

Let T = T (S) be the tail σ field of S:

T (S) = ∩∞
r=1σ[π

c
r] (πc

r(s) = s(· ∩ Sc
r)).

Thm 5.Let µ be a det RPF. Then T (S) is µ-trivial.

• Thm 5 is a generalization of that for the discrete determinantal

RPFs due to Russel Lyons, Shirai-Takahashi.

• • •
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Tail triviality of determinantal RPFs & Tail decomp of quasi-Gibbs m

Let T = T (S) be the tail σ field of S:

T (S) = ∩∞
r=1σ[π

c
r] (πc

r(s) = s(· ∩ Sc
r)).

Thm 5 Let µ be a det RPF. Then T (S) is µ-trivial.

Thm 6.Let µ be a quasi-Gibbs measure. Let µ(·|T ) be

the regular conditional probability. Then

µ(·) =

∫
S
µ(·|T )(ξ)µ(dξ)

and, for µ-a.s. ξ,

µ(A|T )(ξ) = 1A(ξ) for any A ∈ T .

• Thm 6 is a generalization of that for the discrete Gibbs m due to

Georgii.
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existence of strong solution

dXi
t = dBi

t +
1

2
dµ(Xi

t,
∑
j̸=i

δ
X

j
t
)dt, (Xi

0)i∈N = s

We consider a condition such that the drifts dµ(x, s) are locally

Lipschitz continuous in x.

Let Sr = {|x| < r} and

H(r, n) = {s =
∑
i

δsi; |∇xd
µ(si, s− δsi)| < n for ∀i s.t. si ∈ Sr},

H =
∞∩

r=1

∞∪
n=1

H(r, n).

(A6) Capµ(Hc) = 0.
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existence of strong solution

(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ.

(A2)
∑∞

k=1 kµ(S
k
r) < ∞, σkr ∈ L2(Sk

r , dx)

(A3) {Xi
t} do not collide each other

(A4) each tagged particle Xi
t never explode

(A5) The log derivative dµ ∈ L1
loc(µ

1) exists

(A6) Capµ(Hc) = 0.

Thm 7 (O.-Tanemura). (A1)–(A6). ⇒ (1) The ISDE

dXi
t = dBi

t +
1

2
dµ(Xi

t,
∑
j̸=i

δ
X

j
t
)dt, (Xi

0)i∈N = s

has a strong solution for s = (si) ∈ SN s.t.
∑

i δsi ∈ H.

• • •
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existence of strong solution
(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ.
(A2)

∑∞
k=1 kµ(S

k
r) < ∞, σkr ∈ L2(Sk

r , dx)
(A3) {Xi

t} do not collide each other
(A4) each tagged particle Xi

t never explode
(A5) The log derivative dµ ∈ L1

loc(µ
1) exists

(A6) Capµ(Hc) = 0.

Thm 7[O.-Tanemura] (A1)–(A6). ⇒ (1) The ISDE

dXi
t = dBi

t +
1

2
dµ(Xi

t,
∑
j̸=i

δ
X

j
t
)dt, (Xi

0)i∈N = s

has a strong solution for s = (si) ∈ SN s.t.
∑

i δsi ∈ H.
(2) The ass unlabeled diffusion X =

∑
i δXi satisfies

Pµξ ◦ X−1
t ≺ µξ (∀t) for µ-a.s. ξ

Here µξ = µ(·|T (S))(ξ) in Thm 6.
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Uniqueness of strong solutions 1

Thm 8 (O.-Tanemura).Assume (A1)–(A6).
Let X = (Xi) and X̂ = (X̂i) be strong sol of the ISDE

dXi
t = dBi

t +
1

2
dµ(Xi

t,
∑
j̸=i

δ
X

j
t
)dt, (Xi

0)i∈N = s = (si)i∈N

on the same Br m. Let Xt =
∑

i δXi
t
and X̂t =

∑
i δX̂i

t
.

Suppose, for µ-a.s. ξ,

Pµξ ◦ X−1
t ≺ µξ and Pµξ ◦ X̂−1

t ≺ µξ (∀t)

Then

X = X̂ a.s. for µ-a.s. s =
∞∑
i=1

δsi
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Uniqueness of strong solutions

Thm 9 (O.-Tanemura).Assume (A1)–(A7). Here

(A7) µ is tail trivial.

Then the strong solution X = (Xi) such that

Pµ ◦ X−1
t ≺ µ for all t

is unique for µ-a.e. x =
∑

i δxi Here X is the unlabeled

dynamics of X:

Xt =
∞∑
i

δXi
t

Cor If µ is a determinantal RPF, then the strong, solution of the

ISDE that is reversible w.r.t. µ is unique.

• Tail σ-fields of Airy, Sine, Ginibre RPFs with β = 2 are trivial.
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Uniqueness of Dirichlet forms

Let Dµ
poly be the closure of the set of polynomials on S

such that Eµ
1(f, f) < ∞. Then

Dµ
poly ⊂ Dµ

because polynomials are local and smooth.

Thm 10 (O.-Tanemura).Assume (A1)–(A7). Then quasi-

regular Dirichlet forms that are extension of (Eµ,Dµ
poly)

are unique.
In particular, Dµ

poly = Dµ, and Lang’s construction and

O.’s construction are same.

Remark 1. If (A5) (non-explosion) does not hold. Then Thm 10 does
not hold. This is very natural theorem that says the uniqueness of
Dirichlet forms is related to the non-explosion problem of tagged
problem.

43



Examples: Airy rpf – Soft edge scaling limit

Application to

soft-edge scaling

Airy RPFs
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Examples: Airy rpf – Soft edge scaling limit

Thm 11 (O.-Tanemura). Let β = 1,2,4. Then:

• The log derivative dµAi,β is

dµAi,β(x, s) = β lim
r→∞

{(
∑

|x−si|<r

1

x− si
)−

∫
|x|<r

ϱ(x)

−x
dx}

Here

ϱ(x) =

√
−x

π
1(−∞,0](x)

• Airy rpf µAi,β satisfy (A1)–(A6) and the limit ISDE is

dXi
t = dBi

t +
β

2
lim
r→∞

{(
∑

j ̸=i, |Xj
t |<r

1

Xi
t −X

j
t

)−
∫
|x|<r

ϱ(x)

−x
dx}dt
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Examples: Airy rpf – Soft edge scaling limit

• The key idea is to take the rescaled semi-circle law ς,

as the first approximation of the 1-correlation fun ρ
N,1
Ai,β.

• Our method can be applied to other soft edge scaling.

Our result is the first time to clarify the SDE describing

the limit infinite system for the soft edge.
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Examples: Airy rpf – Soft edge scaling limit

Thm 12 (O.-Tanemura).Assume β = 2.

Let us label Xi
t > Xi+1

t (∀i). Then :

(1) The top particle X1
t is the Airy process A(t) in the

sense of Spohn.
(2) The infinite dim stochastic dynamics constructed by
Spohn, Johansson & others by the space-time correlation
fun is a solution of the prescribed SDE:

dXi
t = dBi

t +
β

2
lim
r→∞

{(
∑

j ̸=i, |Xj
t |<r

1

Xi
t −X

j
t

)−
∫
|x|<r

ϱ(x)

−x
dx}dt
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Examples: Airy rpf – Soft edge scaling limit

• The SDE gives a kind of Girsanov formula.

• These examples are the first time that the infinite dy-

namics are constructed for rpf appeared in random matrix

theory with β = 1,4 even if the bulk and the hard edge

as well as the soft edge scaling

In one dimensional system, the method of space-time

correlation functions are available (Nagao, Katori-Tanemura,

Spohn, and others), but this method is restricted to

β = 2.

• By construction, if the total system start from the Airy2
rpf µAi,2, then the distribution of the top particle X1

t

equals F2,edge(x), the 2 Tracy-Widom distribution.
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Idea of ”strong sol of ISDEs”

2013/12/4 Courant

• General theory to construct unique, strong solutions of

infinite-dimensional stochastic differential equations



Strong solutions of ISDE: Non Markov type

S = Rd, [0,∞),C
W (SN) = C([0, T );SN), (0 < T < ∞) labeled path sp.

• a quadruplet ({σi}, {bi},Wsol,S0)

Wsol：a Borel subset of W (SN) sp of solutions of ISDE

σi, bi :Wsol→W (SN) coefficients of ISDE

S0 be a Borel subset of SN initial starting points of ISDE

• the ISDE on SN of the form

dXi
t = σi(X)tdB

i
t + bi(X)tdt (i ∈ N) (6)

X0 = s = (si)i∈N ∈ S0 (7)

X ∈ Wsol. (8)

• X = {(Xi
t)i∈N}t∈[0,T ) ∈ Wsol

• B = (Bi) (i ∈ N) is the SN-valued standard Br motion.
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Strong solutions of ISDE: Assump (P1)

dXi
t = σi(X)tdB

i
t + bi(X)tdt (i ∈ N)

X0 = s = (si)i∈N ∈ S0
X ∈ Wsol.

(P1) ISDE (6) has a solution (X,B). (not a strong sol! )

Here B = (Bi)i∈N is the Brownian motion on SN

Problem: Prove that X is a functional of the Br B

Idea:
Strong solutions of Infinite-dimensional SDE

⇔
Infinite-many, finite-dimensional SDEs with consistency

+
Triviality of Tail σ-field of label pathes
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Assump (P2) 　 infinite-many, finite-dimensional SDEs with consistency

• P̄s: a prob meas on W (SN)×W 0(SN)

• P̄s,B = P̄s(X ∈ ·|B): the regular conditional prob

• Ps = P̄s(X ∈ ·), P∞
Br = P̄s(B ∈ ·)

For X ∈ Wsol, s ∈ S0, and m ∈ N,
we introduce a new SDE (11) on Ym = (Y 1

t , . . . , Y m
t ).

dY i
t = σi(Ym +Xm∗)tdB

i
t + bi(Ym +Xm∗)tdt (9)

Ym
0 = (s1, . . . , sm) ∈ Sm, where s = (si)

∞
i=1,

Ym +Xm∗ ∈ Wsol.

Here Xm∗ = (0, . . . ,0, Xm+1
t , Xm+2

t , . . .) and we set

Ym +Xm∗ = (Y 1
t , . . . , Y m

t , Xm+1
t , Xm+2

t , . . .). (10)

Xm∗ is interpreted as a part of the coefficients of the SDE (11).
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Strong solutions of ISDE: (P2) seq of finite-dim SDEs with consistecy

dY i
t = σi(Ym +Xm∗)tdB

i
t + bi(Ym +Xm∗)tdt (11)

Ym
0 = (s1, . . . , sm) ∈ Sm,

Ym +Xm∗ ∈ Wsol.

(P2) The SDE (11) has a unique, strong solution

for each s ∈ S0, X ∈ W s
sol, and m ∈ N.
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Strong solutions of ISDE: (P3) Tail triviality

Let Tail (W (SN)) be the tail σ-field of W (SN); we set

Tail (W (SN)) =
∞∩

m=1

σ[Xm∗] (12)

Tail [1](P) = {A ∈ Tail (W (SN)) ; P(A) = 1}.

Here P is a probability measure on W (SN).

(P3) Tail (W (SN)) is Ps-trivial for each s ∈ S0.
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Strong solutions of ISDE: Main Theorem 1

(P1) ISDE (6) has a solution (X,B).

(P2) SDE (11) has a unique, strong solution for all s,X,m.

(P3) Tail (W (SN)) is Ps-trivial for each s ∈ S0.

Thm 13.Assume (P1)–(P3). Then

(1) ISDE (6)–(8) has a strong solution for each s ∈ S0.

(2) Let Ys and Y′
s be strong solutions of ISDE (6)–(8)

starting at s ∈ S0 defined on the same space of Brownian

motions B. Then Ys = Y′
s a.s. if and only if

Tail [1](Law(Ys)) = Tail [1](Law(Y′
s)). (13)
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Strong solutions of ISDE: Idea of Main Theorem 1 (1)

(P1) ISDE (6) has a solution (X,B).

(P2) SDE (11) has a unique, strong solution for all s,X,m.

(P3) Tail (W (SN)) is Ps-trivial for each s ∈ S0.

• (X,B): sol of ISDE by (P1). Let (X,B) be fixed.

• Ym is a unique strong sol of SDE(10) by (P2)

• Ym is σ[B]
∨

σ[Xm∗]-m’ble. Xm∗ = (Xn)m<n<∞.

• Ym = (X1, . . . , Xm). 　by (P2)

• X is σ[B]
∨

Tail (W (SN))-m’ble by m → ∞.

• Tail (W (SN)) is trivial by (P3) ⇒ X is a strong solution.
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Strong solutions of ISDE: How to prove (P1)–(P3)

(P1) ISDE (6) has a solution (X,B).

(P2) SDE (11) has a unique, strong solution for all s,X,m.

(P3) Tail (W (SN)) is Ps-trivial for each s ∈ S0.

• (P1) follows from a general theory of O..

• (P2) is classical.

• How to prove (P3)？⇒ Tail Theorems.
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Strong solutions of ISDE: How to prove (P1)–(P3)

(Q1) µ is tail trivial.

(Q2) Pµ ◦ X−1
t ≺ µ for all t.

Let Sr = {|x| < r}, Xt =
∑

i∈N δXi
t
, Xi = {Xi

t}.

mr = inf{m ∈ N;Xi ∈ C([0, T ];Sc
r) for m < ∀i ∈ N}.

(Q3) Pµ(∩∞
r=1{mr(X) < ∞}) = 1.

Thm 14.Assume (Q1)–(Q3). Then (P3) holds.

(P3) Tail (W (SN)) is Ps-trivial for each s ∈ S0.
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General theorems for Infinite-dim SDE: set up

End
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