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Configuration space and Random Point Fields (rpf)

e Configuration space S over C:
S:{s:ngi; s; €C, s(|s| <r) <oo (VreN)}
i

s = ) .0s; denotes the set of unlabeled particles {s;} in C
s =) .0s;, €S is called a cofiguration.

e A prob. meas. v on S is called Random Point Field
Exam. Poisson rpf, Periodic rpf, Gibbs meas.

e p'' is called n correlation fun of v w.r.t. a meas. m if

n ik N o S(AZ>| y
/Aklx---xAﬁlm P (xn) 21;11 midri) = /Szl;ll (s(A4;) — kz’)!d
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for any disjoint A; € B(S), k; e Ns.t. k1+...4+kn = n.



Ginibre Random Point Fields (rpf)

Let K(x,y) be a kernel, m be a meas.
e v is called a determinantal rpf generated by (K,m) if
its n correaltion fun p" w.r.t. m is given by

:genl

p"(xn) = det[K(z;, z5)]1<ij<n (1)
o Ginibre rpf p is the det rpf generated by (Kyin,g):

Kgn(w.y) =7 g(de) = nte " da
e Ginibre rpf p is det rpf generated by (Kgyin, dz)

:gen2

. 1 _1..240..= 1,2
Rgin(z,y) = ~e 21zl ey =3y (2)

e The 1 correlation pt w.r.t. de of uis pl(z) = 1/7.
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Property of Ginibre rpf 1
(gl) p is translation and rotation invariant

(g2) p has small fluctuation: Let D, = {|z| < r}. Then

:small

Vart[(1p,,s)] ~ 7. (3)

The order is r2 in case of Plg)isson rof whose intensity

is 2D Lebesgue m. So (@) implies the fluctuation of
Ginibre rpf is suppressed.

e [ he above property is similar to periodic rpf.

e On the other hand, u has bounded correlation func-
tions for all n by construction.

This quite different from periodic rpf, and is rather sim-
ilar to Gibbs measures with Ruelle’s class potentials.



Property of Ginibre rpf 2

(93) w is the thermodynamical limit of pgm:

1 n n :muN
Hgin = —, [ ] Iz — ;1% ] edzy) (4)
1<J k=1

o ugm IS the distribution of the eigen values of Gaussian
random Matrices.

o “Bin is det rpf generated by (Kgm,g), where

Kain(wa y) — Z



Property of Ginibre rpf 3
Loosely, (g3) implies u is a prob m. on CY given by

1 . 00 €—|37k|2 111z
MZEH z; — 1% | ] —dzy (5)
1<J k=1

o0 :11zz

1 O
p= EH 2 — % | dax (6)

Both of them are not rigorous, but to some extent
correct representations. Anyway, ugin is a infinite 2D

Coulomb systems.
Ginibre rpf is not Gibbs meas in the sense that it does

not satisfy the DLR eq. But its log derivative is related
to 2D Coulomb pot.



Problem

Problem:

e Let v be a translation invariant rpf on C.

o Let s=) .05, be a sample point under v.

e Take a finite number of particles from the sample
points {s;}.

e Can one detect the number of the removed particles?



Problem

Problem:
e Let v be a translation invariant rpf on C.

o Let s=) .05, be a sample point under v.

e Take a finite number of particles from the sample
points {s;}.

e Can one detect the number of the removed particles?

If v is a perioduc rpf, then "Yes"'.

If v is a Poisson rpf, then "NoO".
The Ginibre rpf u has a property between periodic

and Poisson.



Main Theorems

Palm meas. For a set of m-points x = {x1,...,xzm} let

pxi=p(- — > by | s({m}) =1 (I=1,...,m))
[=1

1:21
Thm 1.Let myne {0} UN. Then
(1) If m =n, then ux and uy are mutually ab. cont..

(2) If m % n, then ux and py are singular each other.



Main T heorems

Palm meas. For a set of m-points x = {x1,...,zm} let

px = (- = Y 0y | s({xy}) > 1(VD))
[=1

1:21

Thm D Let m,ne {0} UN. Then
(1) If m =n, then px and py are mutually ab. cont..
(2) If m # n, then ux and py are singular each other.

e (2) shows a special property of Ginibre rpf. Indeed,
N\ Poisson rpf = Ax = A

v Gibbs meas with Ruelle’s class potentials = vx < v
e v periodic rpf = (2) holds



Main T heorems
1:22

Thm 2. Suppose m =n. Then for py-a.s. s =) . ds,

d 1 2 :21c
Hx — “m |X S’L|2 (7)
d/iy ny r—eo |57j|<b'r |y T Si|
compact uniformly in x € C", y € C™\{s1,...,5m}

Z A(y)det[Kgln(wwx])]ZJ 1
A A(X)det[Kgm(ymyj)]z] 1

m
A(x) = H 2 — ]2, x—sil = ] lom —s
m=1

1<J
{bT}TEN : br T 00
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Main Theorems

Let D 5={z€C; |2] < 4},
:61a

Fr(9) = Y (D) — ). (8)

=1

By definition s(D_z) is the number of particless = ) _; ds,
s the disk D /.

Thm 3. Let x=(z1,...,Zm). .
im Fr(s) = —m  weakly in L?(S, ux) (9)
r—00

1:3

e [ hel3 means we can determine the number of missing

particles. So

00 — m £ 00
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Proof of Thm 1

1:21

Thm D Let myne {0} UN. Then
(1) If m = n, then px and py are mutually ab. cont..
(2) If m # n, then ux and py are singular each other.

1:21 1:22 1:3

Proof: Thm 1 follows from Thm 2 and Thm 3 imme-
diately.
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Proof of Thm 2

m—— cpt uni in x ¢ C™
97

. A(y)det[Kgln(fvzv ])]Z] 1
Xy = A(X)det[Kgm(ymy])]@J 1
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Proof of Thm 2

e Recall that
Hence

e Since

we have

n
Hgin x

— : n
w= 1M Hgin
S 1 n
Hx = n“_ggo Hgin, x

Hgin =~ H\sz sj|2Hg<dsk>

z<]

H x — 5;]° H 55 — sgl° H g(dsy)

1<k
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Proof of Thm 2

e Since

Hginx =~z H|x—sz|2H|sg—sk| Hg(dsz)

1<k
we have
n Nn—m
d'“gin x Zn H 5i|2
dun . y |2
“gm,y U
e [ herefore we obtain
n n—m

d,LLX

(s = Z Js;)-

Sz|2

——(s) = Iim { lim {E[— H

dﬂy r—00 N—00

|B(7Tr)]}}'
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Proof of Thm 2

e Let m-: S — S such that m(s) =s(-N Dy)
TO prove

Zy 11 Sz|2

Z“X(s) = lim { lim {E[—y H

My T—00 N—00

|B(7Tr)]}}

we use the small fluctuation property of Ginibre rpf:

sup E'ainx[(1¢,,5)] = O(r) (small fluctuation)
n

Note that, in case of Poisson rpf, O(frz).
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Proof of Thm 3

(1): Let Om=(0,...,0) e C™ and x &€ C™.
e By Th 1 (1), ux ~ uo,,-
e Hence it enugh to show Thm 3 only for pg. and pyg, .

(2): wo,, is rotation invariant.

(3): po,, is a det rpf generated by (K}, g), where

oo

1,
Kp(z,y) = ) Ewkyk’

k=m
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Proof of Thm 3

(4): & >0, € ~T;, where I = (i) i Le tdt

Prop 1. Let = = 7?21 sz" L(S) — Zz 5‘Sz|’
1 oo ‘99
Homot T~ () 8, ) (10)
1=m-+1

(5): Let D z=1{2€C; |z| <4} geN,
R =" (D) —0), Gr(s) = 3 ([0, @) — )
q=1 q=1

e Then Fr,o. 1 =@G,.
o et /fm((xz)zEN) — Zzzm—l—l 5x?, Then :pfba
(Fr,’uom) ~ (Gr,aOF(,m,E) (11)
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Proof of Thm 3

(6): Key estimate:

lim .ZE‘LOH][ZQr] — —Mm
T—00

lim Var#om[F,] < oo
r— 00
:pfba

e By these and (01)), we see
{Gy o km} is bounded in L?([0,c0)Y, =)
e Hence we can take a subsequene such that

im G, 0km= Hyn weakly in L?([0, o)V, 2)

r'—o00

:6a
(12)
1:6b

(13)

:6¢C

(14)
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Proof of Thm 3

(7): We next investigate the property of Hp: .
lim Gyrokm=Hn weakly in L2([0,)N. =) (15)
7’-—>CXD

o Gr(s) = %Zgzl(s([O,\/a)) —q) = Hpn is tail m’able,

o (jj__) (Ffr,,U/Om) ~ (G')"O/ﬁ)m,E) — Hm_Hn — _m—l_n

e Hpy IS const by Kolmogorov s 0-1 law.

e F[Hn] = —m by (O 2).

T hrefore

:pfba

(I1)) implies

lim (Fr, pug,,) ~ Hn = —m
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Thank You |
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