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Configuration space and Random Point Fields (rpf)

• Configuration space S over C:

S = {s =
∑
i

δsi ; si ∈ C, s(|s| < r) < ∞ (∀r ∈ N)}

s =
∑

i δsi denotes the set of unlabeled particles {si} in C

s =
∑

i δsi ∈ S is called a cofiguration.

• A prob. meas. ν on S is called Random Point Field

Exam. Poisson rpf, Periodic rpf, Gibbs meas.

• ρn is called n correlation fun of ν w.r.t. a meas. m if∫
A
k1
1 ×···×Akm

m

ρn(xn)
n∏

i=1

m(dxi) =

∫
S

m∏
i=1

s(Ai)!

(s(Ai)− ki)!
dν

for any disjoint Ai ∈ B(S), ki ∈ N s.t. k1+ . . .+km = n.
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Ginibre Random Point Fields (rpf)

Let K(x, y) be a kernel, m be a meas.

• ν is called a determinantal rpf generated by (K,m) if

its n correaltion fun ρn w.r.t. m is given by

ρn(xn) = det[K(xi, xj)]1≤i,j≤n (1)
:gen1

• Ginibre rpf µ is the det rpf generated by (Kgin, g):

Kgin(x, y) = exȳ g(dx) = π−1e−|x|2dx

• Ginibre rpf µ is det rpf generated by (K̂gin, dx)

K̂gin(x, y) =
1

π
e−

1
2|x|

2+xȳ−1
2|y|

2
(2)
:gen2

• The 1 correlation ρ̂1 w.r.t. dx of µ is ρ̂1(x) = 1/π.
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Property of Ginibre rpf 1

(g1) µ is translation and rotation invariant

(g2) µ has small fluctuation: Let Dr = {|x| < r}. Then

Varµ[⟨1Dr, s⟩] ∼ r. (3)
:small

The order is r2 in case of Poisson rpf whose intensity

is 2D Lebesgue m. So (
:small

3) implies the fluctuation of

Ginibre rpf is suppressed.

• The above property is similar to periodic rpf.

• On the other hand, µ has bounded correlation func-

tions for all n by construction.

This quite different from periodic rpf，and is rather sim-

ilar to Gibbs measures with Ruelle’s class potentials.
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Property of Ginibre rpf 2

(g3) µ is the thermodynamical limit of µngin:

µngin =
1

Z

n∏
i<j

|xi − xj|2
n∏

k=1

g(dxk) (4)
:muN

• µngin is the distribution of the eigen values of Gaussian

random Matrices.

• µngin is det rpf generated by (Kn
gin, g), where

Kn
gin(x, y) =

n−1∑
i=0

(xȳ)i

i!
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Property of Ginibre rpf 3

Loosely, (g3) implies µ is a prob m. on CN given by

µ̄ =
1

Z

∞∏
i<j

|xi − xj|2
∞∏

k=1

e−|xk|2

π
dxk (5)

:11z

Since µgin is translation inv, µgin can be written by

µ̄ =
1

Z

∞∏
i<j

|xi − xj|2
∞∏

k=1

dxk (6)
:11zz

Both of them are not rigorous, but to some extent
correct representations. Anyway, µgin is a infinite 2D
Coulomb systems.
Ginibre rpf is not Gibbs meas in the sense that it does

not satisfy the DLR eq. But its log derivative is related
to 2D Coulomb pot.
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Problem

Problem:

• Let ν be a translation invariant rpf on C.
• Let s =

∑
i δsi be a sample point under ν.

• Take a finite number of particles from the sample

points {si}.
• Can one detect the number of the removed particles?

6



Problem

Problem:

• Let ν be a translation invariant rpf on C.
• Let s =

∑
i δsi be a sample point under ν.

• Take a finite number of particles from the sample

points {si}.
• Can one detect the number of the removed particles?

If ν is a perioduc rpf, then ”Yes”.

If ν is a Poisson rpf, then ”No”.

The Ginibre rpf µ has a property between periodic

and Poisson.
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Main Theorems

Palm meas. For a set of m-points x = {x1, . . . , xm} let

µx := µ( · −
m∑

l=1

δxl | s({xl}) ≥ 1 (l = 1, . . . ,m))

l:21

Thm 1.Let m, n ∈ {0} ∪ N. Then

(1) If m = n, then µx and µy are mutually ab. cont..

(2) If m ̸= n, then µx and µy are singular each other.

8



Main Theorems

Palm meas. For a set of m-points x = {x1, . . . , xm} let

µx := µ( · −
m∑

l=1

δxl | s({xl}) ≥ 1(∀l))

Thm
l:21

1 Let m, n ∈ {0} ∪ N. Then

(1) If m = n, then µx and µy are mutually ab. cont..

(2) If m ̸= n, then µx and µy are singular each other.

• (2) shows a special property of Ginibre rpf. Indeed,

Λ Poisson rpf ⇒ Λx = Λ

ν Gibbs meas with Ruelle’s class potentials ⇒ νx ≺ ν

• ν periodic rpf ⇒ (2) holds
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Main Theorems
l:22

Thm 2.Suppose m = n. Then for µy-a.s. s =
∑

i δsi

dµx

dµy
=

1

Zxy
lim
r→∞

∏
|si|<br

|x− si|2

|y − si|2
(7)
:21c

compact uniformly in x ∈ Cm, y ∈ Cm\{s1, . . . , sm}

Zxy =
∆(y) det[Kgin(xi, xj)]

m
i,j=1

∆(x) det[Kgin(yi, yj)]
m
i,j=1

∆(x) =
m∏
i<j

|xi − xj|2, |x− si| =
m∏

m=1

|xm − si|

{br}r∈N : br ↑ ∞
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Main Theorems

Let D√
q = {z ∈ C ; |z| < √

q},

Fr(s) =
1

r

r∑
q=1

(s(D√
q)− q). (8)

:61a

By definition s(D√
q) is the number of particles s =

∑
i δsi

in the disk D√
q.l:3

Thm 3.Let x = (x1, . . . , xm).

lim
r→∞

Fr(s) = −m weakly in L2(S, µx) (9)
:3

• The
l:3

3 means we can determine the number of missing

particles. So

∞− m ̸= ∞
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Proof of Thm 1

Thm
l:21

1 Let m, n ∈ {0} ∪ N. Then

(1) If m = n, then µx and µy are mutually ab. cont..

(2) If m ̸= n, then µx and µy are singular each other.

Proof: Thm
l:21

1 follows from Thm
l:22

2 and Thm
l:3

3 imme-

diately.
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Proof of Thm 2

dµx

dµy
=

1

Zxy
lim
r→∞

∏
|si|<br

|x− si|2

|y − si|2
cpt uni in x ∈ Cm

where

Zxy =
∆(y) det[Kgin(xi, xj)]

m
i,j=1

∆(x) det[Kgin(yi, yj)]
m
i,j=1
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Proof of Thm 2

• Recall that

µ = lim
n→∞

µngin

Hence

µx = lim
n→∞

µngin,x

• Since

µngin =
1

Z

n∏
i<j

|si − sj|2
n∏

k=1

g(dsk),

we have

µngin,x =
1

Zn
x

n−m∏
i=1

|x− si|2
n−m∏
j<k

|sj − sk|2
n−m∏
l=1

g(dsl)
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Proof of Thm 2

• Since

µngin,x =
1

Zn
x

n−m∏
i=1

|x− si|2
n−m∏
j<k

|sj − sk|2
n−m∏
l=1

g(dsl),

we have

dµngin,x

dµngin,y
(s) =

Zn
y

Zn
x

n−m∏
i=1

|x− si|2

|y − si|2
(s =

∑
i

δsi).

• Therefore we obtain

dµx

dµy
(s) = lim

r→∞
{ lim
n→∞

{E[
Zn
y

Zn
x

n−m∏
i=1

|x− si|2

|y − si|2
|B(πr)]}}.
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Proof of Thm 2

• Let πr : S → S such that πr(s) = s(· ∩Dr)

To prove

dµx

dµy
(s) = lim

r→∞
{ lim
n→∞

{E[
Zn
y

Zn
x

n−m∏
i=1

|x− si|2

|y − si|2
|B(πr)]}},

we use the small fluctuation property of Ginibre rpf:

sup
n

E
µngin,x[⟨1Qr, s⟩] = O(r) (small fluctuation)

Note that, in case of Poisson rpf, O(r2).
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Proof of Thm 3

(1): Let 0m = (0, . . . ,0) ∈ Cm and x ∈ Cm.

• By Th 1 (1), µx ∼ µ0m.

• Hence it enugh to show Thm 3 only for µ0m and µ0n.

(2): µ0m is rotation invariant.

(3): µ0m is a det rpf generated by (K∗
m, g), where

K∗
m(x, y) =

∞∑
k=m

1

k!
xkȳk
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Proof of Thm 3

(4): ξi ≥ 0, ξ2i ∼ Γi, where Γi = Γ(i)−1ti−1e−tdtl:3a

Prop 1.Let Ξ =
∏∞

i=1P
ξi, ι(s) =

∑
i δ|si|,

µ0m ◦ ι−1 ∼ (
∞∑

i=m+1

δξi,Ξ) (10)
:qq

(5): Let D√
q = {z ∈ C ; |z| < √

q} q ∈ N、

Fr(s) =
1

r

r∑
q=1

(s(D√
q)− q), Gr(s) =

1

r

r∑
q=1

(s([0,
√
q))− q)

• Then Fr ◦ ι−1 = Gr.

• Let κm((xi)i∈N) =
∑

i=m+1 δxi. Then

(Fr, µ0m) ∼ (Gr ◦ κm,Ξ) (11)
:pf5a
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Proof of Thm 3

(6): Key estimate:

lim
r→∞

Eµ0m[Fr] = −m (12)
:6a

lim
r→∞

Varµ0m[Fr] < ∞ (13)
l:6b

• By these and (
:pf5a

11), we see

{Gr ◦ κm} is bounded in L2([0,∞)N,Ξ)

• Hence we can take a subsequene such that

lim
r′→∞

Gr′ ◦ κm = Hm weakly in L2([0,∞)N,Ξ) (14)
:6c
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Proof of Thm 3

(7): We next investigate the property of Hm:

lim
r′→∞

Gr′ ◦ κm = Hm weakly in L2([0,∞)N,Ξ) (15)
:6c

• Gr(s) = 1
r

∑r
q=1(s([0,

√
q))− q) ⇒ Hm is tail m’able,

κm((xi)i∈N) =
∑

i=m+1 δxi
• (

:pf5a

11) (Fr, µ0m) ∼ (Gr ◦ κm,Ξ) ⇒ Hm −Hn = −m+ n

• Hm is const by Kolmogorov’s 0-1 law.
• E[Hm] = −m by (

:6a

12).
Threfore

Hm = −m

(
:pf5a

11) implies

lim
r→∞

(Fr, µ0m) ∼ Hm = −m
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Thank You !
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