Infinite-dimensional stochastic differential equations related to random matrices and
a phase transition conjecture

- General theory for ISDEs:
quasi-Gibbs property \& log derivative
- Sine RPF, Bessel RPF, Airy RPF, Ginibre RPF,
- A phase transition conjecture for Ginibre Interacting Brownian motions
- Simulations by Ben Said \& Otobe

General theorems for Infinite-dim SDE: set up

Let $S=\mathbb{R}^{d}, \mathbb{C},[0, \infty)$.
S: Configuration space over S

$$
\mathrm{S}=\left\{\mathrm{s}=\sum_{i} \delta_{s_{i}} ; s_{i} \in S, \mathrm{~s}(|s|<r)<\infty(\forall r \in \mathbb{N})\right\}
$$

μ : RPF on S. i.e. prob meas. on S.
Prob: (1) To construct a natural stochastic dynamics

$$
\mathbf{X}_{t}=\left(X_{t}^{i}\right)_{i \in \mathbb{N}} \quad \text { (labeled dynamics) }
$$

related to μ, i.e.

$$
X_{t}=\sum_{i \in \mathbb{N}} \delta_{X_{t}^{i}} \quad(\text { unlabeled dynamics })
$$

is reversible w.r.t. μ.
(2) To find the ∞-dim. SDE that X_{t} satisfies.

General theorems for Infinite-dim SDE: set up

- ρ^{n} is called the n-correlation function of μ w.r.t. Radon m. m if

$$
\int_{A_{1}^{k_{1}} \times \cdots \times A_{m}^{k_{m}}} \rho^{n}\left(\mathbf{x}_{n}\right) \prod_{i=1}^{n} m\left(d x_{i}\right)=\int_{\mathrm{S}} \prod_{i=1}^{m} \frac{\mathrm{~s}\left(A_{i}\right)!}{\left(\mathrm{s}\left(A_{i}\right)-k_{i}\right)!} d \mu
$$

for any disjoint $A_{i} \in \mathcal{B}(S), k_{i} \in \mathbb{N}$ s.t. $k_{1}+\ldots+k_{m}=n$.

- μ is called the determinantal RPF generated by (K, m) if its n-corraltion fun. ρ^{n} is given by

$$
\rho^{n}\left(\mathbf{x}_{n}\right)=\operatorname{det}\left[K\left(x_{i}, x_{j}\right)\right]_{1 \leq i, j \leq n}
$$

- Ginibre RPF $S=\mathbb{C}$. $\mu_{\text {gin }}$ is generated by $\left(K_{\text {gin }, 2}, \mathrm{~g}\right)$

$$
K_{\operatorname{gin}, 2}(x, y)=e^{x \bar{y}} \quad \mathrm{~g}(d x)=\pi^{-1} e^{-|x|^{2}} d x
$$

Property of Ginibre RPF

(g1) $\mu_{\text {gin, } 2}$ is translation and rotation invariant
(g2) Singularity of Palm meas.
Palm meas. For $\mathbf{x}=\left\{x_{1}, \ldots, x_{\mathrm{m}}\right\} \subset S^{\mathrm{m}}$ set

$$
\mu_{\mathrm{x}}:=\mu\left(\cdot-\sum_{l=1}^{\mathrm{m}} \delta_{x_{l}} \mid \mathrm{s}\left(\left\{x_{l}\right\}\right) \geq 1(\forall l)\right)
$$

Thm 1 (with Shirai). Let $m, n \in\{0\} \cup \mathbb{N}$. Then
(1) If $\mathrm{m}=\mathrm{n}$, then $\mu_{\mathrm{x}} \sim \mu_{\mathrm{y}}$. (\sim means ab. cont.)
(2) If $\mathrm{m} \neq \mathrm{n}$, then μ_{x} and μ_{y} are singular each other.

Remark: - In case of Gibbs measures, it holds always

$$
\mu_{\mathrm{X}} \prec \mu
$$

- In this sense Ginibre RPF is similar to periodic RPF.

Thm 2 (with Shirai). Suppose $\mathrm{m}=\mathrm{n}$. Then for μ_{y}-a.s. $\mathrm{s}=\sum_{i} \delta_{s_{i}}$,

$$
\frac{d \mu_{\mathrm{x}}}{d \mu_{\mathrm{y}}}=\frac{\Delta^{\mathrm{m}}(\mathbf{x}) \operatorname{det}\left[K_{\mathrm{gin}, 2}\left(x_{i}, x_{j}\right)\right]_{i, j=1}^{\mathrm{m}}}{\Delta^{\mathrm{m}}(\mathbf{y}) \operatorname{det}\left[K_{\mathrm{gin}, 2}\left(y_{i}, y_{j}\right)\right]_{i, j=1}^{\mathrm{m}}} \lim _{r \rightarrow \infty} \prod_{\left|s_{i}\right|<b_{r}} \frac{\left|\mathbf{x}-s_{i}\right|^{2}}{\left|\mathbf{y}-s_{i}\right|^{2}}
$$

cpt uni in $\mathrm{x} \in \mathbb{C}^{\mathrm{m}}$.

- $\left\{b_{r}\right\}_{r \in \mathbb{N}}: \lim b_{r}=\infty$
- $\left|\mathrm{x}-s_{i}\right|=\prod_{m=1}^{m}\left|x_{m}-s_{i}\right|$ for $\mathrm{x}=\left(x_{1}, \ldots, x_{\mathrm{m}}\right)$
- $\Delta^{\mathrm{m}}(\mathrm{x})=\prod_{i<j}^{\mathrm{m}}\left|x_{i}-x_{j}\right|^{2}$ if $\mathrm{m} \geq 2, \Delta^{\mathrm{m}}(\mathrm{x})=1$ if $\mathrm{m}=1$.

In particular, if $m=1$, then

$$
\frac{d \mu_{x}}{d \mu_{y}}=\frac{e^{-|x|^{2}}}{e^{-|y|^{2}}} \lim _{r \rightarrow \infty} \prod_{\left|s_{i}\right|<b_{r}} \frac{\left|x-s_{i}\right|^{2}}{\left|y-s_{i}\right|^{2}}
$$

Index of the number of missing particles:

$$
D_{q}=\{z \in \mathbb{C} ;|z|<\sqrt{q}\} q \in \mathbb{N}
$$

$$
\begin{equation*}
F_{r}(\mathrm{~s})=\frac{1}{r} \sum_{q=1}^{r}\left(\mathrm{~s}\left(D_{q}\right)-q\right) \tag{1}
\end{equation*}
$$

Thm 3 (with Shirai). Let S be the configuration space over \mathbb{C}. Let $\mathrm{m} \in \mathbb{N}$. Then for $\mathbf{x}=\left(x_{1}, \ldots, x_{\mathrm{m}}\right)$

$$
\begin{equation*}
\lim _{r \rightarrow \infty} F_{r}(\mathrm{~s})=-\mathrm{m} \quad \text { weakly in } L^{2}\left(\mathrm{~S}, \mu_{\mathrm{x}}\right) \tag{2}
\end{equation*}
$$

Remark: m is the number of the removed particles.

$$
\infty-m \neq \infty
$$

Property of Ginibre rpf: log gass

(g2) $\mu_{\mathrm{gin}, 2}$ is the weak limit of $\mu_{\mathrm{gin}, 2}^{N}$:
the labeled expression $\breve{\mu}_{\text {gin }}^{N}$ of $\mu_{\text {gin }, 2}^{N}$ is

$$
\begin{equation*}
\check{\mu}_{\mathrm{gin}}^{N}=\frac{1}{Z} \prod_{i<j}^{N}\left|x_{i}-x_{j}\right|^{2} \prod_{k=1}^{N} \mathrm{~g}\left(d x_{k}\right) \tag{3}
\end{equation*}
$$

$\mu_{\mathrm{gin}, 2}^{N}$ is the determinantal RPF gen. by $\left(K_{\text {gin }, 2}^{N}, \mathrm{~g}\right)$, where

$$
K_{\mathrm{gin}, 2}^{N}(x, y)=\sum_{i=0}^{N-1} \frac{(x \bar{y})^{i}}{i!}
$$

Non rigorous expression of $\mu_{\mathrm{gin}, 2}$ as a meas $\breve{\mu}_{\mathrm{gin}, 2}$ on $\mathbb{C}^{\mathbb{N}}$:

From (g3)

$$
\begin{equation*}
\check{\mu}_{\mathrm{gin}, 2}=\frac{1}{Z} \prod_{i<j}^{\infty}\left|x_{i}-x_{j}\right|^{2} \prod_{k=1}^{\infty} \frac{e^{-\left|x_{k}\right|^{2}}}{\pi} d x_{k} \tag{4}
\end{equation*}
$$

From the trans inv we have another informal expression:

$$
\begin{equation*}
\widetilde{\mu}_{\mathrm{gin}, 2}=\frac{1}{Z} \prod_{i<j}^{\infty}\left|x_{i}-x_{j}\right|^{2} \prod_{k=1}^{\infty} d x_{k} \tag{5}
\end{equation*}
$$

Which representations are correct?

Non rigorous expression of $\mu_{\mathrm{gin}, 2}$

Non rigorous expression of $\mu_{\text {gin }, 2}$ as a meas $\check{\mu}_{\text {gin }, 2}$ on $\mathbb{C}^{\mathbb{N}}$:
From (g3)

$$
\begin{equation*}
\check{\mu}_{\mathrm{gin}, 2}=\frac{1}{Z} \lim _{r \rightarrow \infty} \prod_{i<j,\left|x_{i}\right|,\left|x_{j}\right|<r}^{\infty}\left|x_{i}-x_{j}\right|^{2} \prod_{k=1}^{\infty} \frac{e^{-\left|x_{k}\right|^{2}}}{\pi} d x_{k} \tag{6}
\end{equation*}
$$

From the translation invariance we have another informal expression:

$$
\begin{equation*}
\check{\mu}_{\mathrm{gin}, 2}=\frac{1}{Z} \lim _{r \rightarrow \infty} \prod_{i<j,\left|x_{i}-x_{j}\right|<r}^{\infty}\left|x_{i}-x_{j}\right|^{2} \prod_{k=1}^{\infty} d x_{k} \tag{7}
\end{equation*}
$$

Which representations are correct?
Both

Gibbs measure

- Ψ : Ruelle class interaction potential,

$$
\begin{array}{r}
Q_{r}=\{|x| \leq r\}, \pi_{r}(\mathrm{~s})=\mathrm{s}\left(\cdot \cap Q_{r}\right), \pi_{r}^{c}(\mathrm{~s})=\mathrm{s}\left(\cdot \cap Q_{r}^{c}\right) \\
\mu_{r, \xi}^{m}(\cdot)=\mu\left(\pi_{r} \in \cdot \mid \mathrm{s}\left(Q_{r}\right)=m, \pi_{r}^{c}(\mathrm{~s})=\pi_{r}^{c}(\xi)\right)
\end{array}
$$

- μ is called (Φ, Ψ)-Gibbs m. if it satisfies DLR eq:

$$
\begin{gathered}
d \mu_{r, \xi}^{m}=\frac{1}{z_{r, \xi}} e^{-\mathcal{H}_{r}(\mathrm{~s})-\mathcal{W}_{r, \xi}(\mathrm{~s})} \prod_{k=1}^{m} e^{-\Phi\left(s_{k}\right)} d s_{k} \\
\mathcal{H}_{r}=\sum_{s_{i}, s_{j} \in Q_{r}, i<j} \Psi\left(s_{i}-s_{j}\right), \mathcal{W}_{r, \xi}=\sum_{s_{i} \in Q_{r}, \xi_{j} \in Q_{r}^{c}} \Psi\left(s_{i}-\xi_{j}\right)
\end{gathered}
$$

- Ginibre RPF: $\Phi=0 \Psi(x)=-2 \log |x|$

In Ginibre rpf, $\mathcal{W}_{r, \xi}$ diverge, so DLR does not make sense
(Φ, Ψ)-Gibbs m. Let $\nu_{r}^{m}=\prod_{k=1}^{m} 1_{Q_{r}}\left(s_{k}\right) e^{-\Phi\left(s_{k}\right)} d s_{k}$

$$
\begin{equation*}
d \mu_{r, \xi}^{m}=\frac{1}{z_{r, \xi}^{m}} e^{-\mathcal{H}_{r}-\mathcal{W}_{r, \xi}} d \nu_{r}^{m} \tag{DLReq}
\end{equation*}
$$

(Φ, Ψ)-quasi Gibbs m. $\exists c_{r, \xi}^{m}$

$$
c_{r, \xi}^{m-1} e^{-\mathcal{H}_{r}} d \nu_{r}^{m} \leq \mu_{r, \xi}^{m} \leq c_{r, \xi}^{m} e^{-\mathcal{H}_{r}} d \nu_{r}^{m}
$$

- If μ is Ginibre RPF, $\mathcal{W}_{r, \xi}$ and $z_{r, \xi}^{m}$ diverge. But $e^{-\mathcal{W}_{r, \xi}} / z_{r, \xi}^{m}$ conv.

$$
c_{r, \xi}^{m-1} \leq e^{-\mathcal{W}_{r, \xi}} / z_{r, \xi}^{m} \leq c_{r, \xi}^{m}
$$

- Quasi-Gibbs is very mild restriction. If μ is (Φ, Ψ) -quasi-Gibbs m , then μ is also ($\Phi+f, \Psi$)-quasi Gibbs m for any loc bdd m'able f.

Main theorems: Unlabeled level construction
Let \mathbb{D} be the canonical square field on $\mathrm{S}: \mathrm{s}=\sum_{i} \delta_{s_{i}}$, $\mathrm{s}=\left(s_{i}\right)$.

$$
\mathbb{D}[f, g](\mathrm{s})=\frac{1}{2} \sum_{i} \nabla_{s_{i}} \tilde{f}(\mathrm{~s}) \cdot \nabla_{s_{i}} \tilde{g}(\mathbf{s})
$$

Let \mathcal{D} be the set of local smooth fun with $\mathcal{E}_{1}^{\mu}(f, f)<\infty$.

$$
\mathcal{E}^{\mu}(f, g)=\int_{S} \mathbb{D}[f, g] d \mu
$$

Thm 4. [O.95, 09, 10]
(1) If μ is quasi-Gibbs with upper semi-cont potentials (Φ, Ψ), then $\left(\mathcal{E}^{\mu}, \mathcal{D}, L^{2}(\mathrm{~S}, \mu)\right)$ is closable.
(2) If $\left(\mathcal{E}^{\mu}, \mathcal{D}, L^{2}(S, \mu)\right)$ is closable \& all correlation fun are loc bounded, then a diffusion X_{t} associated with the closure $\left(\mathcal{E}^{\mu}, \mathcal{D}^{\mu}\right)$ exists.

If μ is Poisson rpf with Lebesgue intensity, then $X_{t}=\sum_{i} \delta_{B_{t}^{i}}$.

- Let μ_{x} be the (reduced) Palm m. of μ conditioned at x

$$
\mu_{x}(\cdot)=\mu\left(\cdot-\delta_{x} \mid s(x) \geq 1\right)
$$

- Let μ^{1} be the 1 -Campbell measure on $\mathbb{R}^{d} \times \mathrm{S}$:

$$
\mu^{1}(A \times B)=\int_{A} \rho^{1}(x) \mu_{x}(B) d x
$$

- $\mathrm{d}_{\mu} \in L^{1}\left(\mathbb{R}^{d} \times \mathrm{S}, \mu^{1}\right)$ is called the log derivative of μ if

$$
\int_{\mathbb{R}^{d} \times S} \nabla_{x} f d \mu^{1}=-\int_{\mathbb{R}^{d} \times S} f \mathrm{~d}_{\mu} d \mu^{1} \quad \forall f \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right) \otimes \mathcal{D}
$$

Here ∇_{x} is the nabla on $\mathbb{R}^{d}, \mathcal{D}$ is the space of local smooth functions on S with compact support.

- Very informally

$$
\mathrm{d}_{\mu}=\nabla_{x} \log \mu^{1}
$$

\log derivatives of the Ginibre rpf $\mathrm{d}_{\mu_{\mathrm{gin}, 2}}$

- Ginibre RPF: $\mathrm{d}_{\mu_{\mathrm{gin}, 2}}$ has plural representations

$$
\begin{aligned}
& \mathrm{d}_{\mu_{\text {gin }, 2}}(x, \mathrm{y})=-2 x+2 \lim _{r \rightarrow \infty} \sum_{\left|y_{i}\right|<r} \frac{x-y_{i}}{\left|x-y_{i}\right|^{2}} \quad \text { in } L_{\mathrm{loc}}^{2}\left(\mu^{1}\right) \\
& \mathrm{d}_{\mu_{\text {gin }, 2}}(x, \mathrm{y})=2 \lim _{r \rightarrow \infty} \sum_{\left|x-y_{i}\right|<r} \frac{x-y_{i}}{\left|x-y_{i}\right|^{2}} \quad \text { in } L_{\mathrm{loc}}^{2}\left(\mu^{1}\right)
\end{aligned}
$$

\log derivatives of the Ginibre $\operatorname{rpf} \mathrm{d}_{\mathrm{gin}, 2}$

- Ginibre RPF: $\mathrm{d}_{\mu_{\mathrm{gin}, 2}}$ has plural representations

$$
\begin{aligned}
& \mathrm{d}_{\mu_{\text {gin }, 2}}(x, y)=-2 x+2 \lim _{r \rightarrow \infty} \sum_{\left|y_{i}\right|<r} \frac{x-y_{i}}{\left|x-y_{i}\right|^{2}} \quad \text { in } L_{\text {loc }}^{2}\left(\mu^{1}\right) \\
& \mathrm{d}_{\mu_{\text {gin }, 2}}(x, y)=2 \lim _{r \rightarrow \infty} \sum_{\left|x-y_{i}\right|<r} \frac{x-y_{i}}{\left|x-y_{i}\right|^{2}} \quad \text { in } L_{\text {loc }}^{2}\left(\mu^{1}\right)
\end{aligned}
$$

- These correspond to the following:

$$
\begin{align*}
& \check{\mu}_{\text {gin }, 2}=\frac{1}{Z} \lim _{r \rightarrow \infty} \prod_{i<j,\left|x_{i}\right|,\left|x_{j}\right|<r}^{\infty}\left|x_{i}-x_{j}\right|^{2} \prod_{k=1}^{\infty} \frac{e^{-\left|x_{k}\right|^{2}}}{\pi} d x_{k} \tag{13}\\
& \widetilde{\mu}_{\text {gin }, 2}=\frac{1}{Z} \lim _{r \rightarrow \infty} \prod_{i<j,\left|x_{i}-x_{j}\right|<r}^{\infty}\left|x_{i}-x_{j}\right|^{2} \prod_{k=1}^{\infty} d x_{k} \tag{7}
\end{align*}
$$

Main theorems: Infinite-dim SDE
(A1) ρ^{k} of μ are locally bounded for all $k \in \mathbb{N}$
(A2) $\left(\mathcal{E}^{\mu}, \mathcal{D}\right)$ is closable on $L^{2}(\mathrm{~S}, \mu) \Leftarrow \mu$ is quasi-Gibbs
(A3) The log derivative $\mathrm{d}_{\mu} \in L_{\text {loc }}^{1}\left(\mu^{1}\right)$ exists
(A4) $\left\{X_{t}^{i}\right\}$ do not collide each other (non-collision)
(A5) each tagged particle X_{t}^{i} never explode (non-explosion)
Let $\mathfrak{u}: S^{\mathbb{N}} \rightarrow \mathrm{S}$ such that $\mathfrak{u}\left(\left(s_{i}\right)\right)=\sum_{i} \delta_{s_{i}}$.
Thm 5. (O.10) (A1)-(A5) $\Rightarrow \exists \mathrm{S}_{0} \subset \mathrm{~S}$ such that

$$
\begin{equation*}
\mu\left(\mathrm{S}_{0}\right)=1, \tag{8}
\end{equation*}
$$

and that, for $\forall \mathrm{s} \in \mathfrak{u}^{-1}\left(\mathrm{~S}_{0}\right), \exists \mathfrak{u}^{-1}\left(\mathrm{~S}_{0}\right)$-valued pr. $\left(X_{t}^{i}\right)_{i \in \mathbb{N}}$ and $\exists S^{\mathbb{N}}$-valued Brownian m. $\left(B_{t}^{i}\right)_{i \in \mathbb{N}}$ satisfying

$$
\begin{equation*}
d X_{t}^{i}=d B_{t}^{i}+\frac{1}{2} \mathrm{~d} \mu\left(X_{t}^{i}, \sum_{j \neq i} \delta_{X_{t}^{j}}\right) d t, \quad\left(X_{0}^{i}\right)_{i \in \mathbb{N}}=\mathrm{s} \tag{9}
\end{equation*}
$$

Main theorems: labeled diffusions

$$
d X_{t}^{i}=d B_{t}^{i}+\frac{1}{2} \mathrm{~d} \mu\left(X_{t}^{i}, \sum_{\mathrm{j} \neq \mathrm{i}} \delta_{X_{t}^{j}}\right) d t, \quad\left(X_{0}^{i}\right)_{i \in \mathbb{N}}=\mathrm{s}
$$

Thm 6 (O. (JMSJ 09)). The family of processes $\left\{\left(X_{t}^{i}\right)_{i \in \mathbb{N}}\right\}$ is a diffusion with state space $\mathfrak{u}^{-1}\left(\mathrm{~S}_{0}\right) \subset S^{\mathbb{N}}$.

Remark 1. (1) (A1)-(A5) can be checked for Ginibre RPF ($\beta=2$), Sine RPFs, Airy RPFs and Bessel RPFs ($\beta=1,2,4$).
(2) We can calcurate the log derivatives of these measures.
(3) We have general theorems for quasi-Gibbs property and the log derivatives (O. PTRF10, AOP). The statements are too messy to be omited here.

Tail triviality \& strong solution \& the uniquness of Dirichlet forms
Thm 7 (with Tanemura). If μ is a (Φ, Ψ) quasi-Gibbs measure with smooth potential (on $x \neq 0$). Assume (H.1) The tail sigma field of μ is trivial.

Then
(1) The SDE has a unique strong solution for q.e. initial staring points (s_{i}).
(2) The associated martingale problem is unique.
(3) The Dirichlet form that are extention of $\left(\mathcal{E}^{\mu}, \mathcal{D}^{\mu}\right)$ is unique.

Remark: We do not know the tail triviality hold for Ginibre rpf and others. It is known that all discrete determinantal rpf have trivial tail sigma fields by Russel Lyons. So it is quite likely the same also hold for the determinantal rpfs in continuous spaces.

Examples: Gibbs measures

Gibbs measures :

- All Gibbs measures with Ruelle's class upper semi-cont potentials satisfy the assumptions (A.1)-(A.5).
- In this case, the SDEs become

$$
\begin{equation*}
d X_{t}^{i}=d B_{t}^{i}-\frac{1}{2} \nabla \Phi\left(X_{t}^{i}\right) d t-\frac{1}{2} \sum_{j \neq i} \nabla \Psi\left(X_{t}^{i}-X_{t}^{j}\right) d t \tag{10}
\end{equation*}
$$

Ginibre rpf: $\Psi(x)=-\beta \log |x| d=2, \beta=2$. If $\mu=\mu_{\mathrm{gin}, 2}$,

$$
\begin{equation*}
d X_{t}^{i}=d B_{t}^{i}+\lim _{r \rightarrow \infty} \sum_{\left|X_{t}^{i}-X_{t}^{j}\right|<r, j \neq i} \frac{X_{t}^{i}-X_{t}^{j}}{\left|X_{t}^{i}-X_{t}^{j}\right|^{2}} d t \tag{11}
\end{equation*}
$$

and also

$$
\begin{equation*}
d X_{t}^{i}=d B_{t}^{i}-X_{t}^{i} d t+\lim _{r \rightarrow \infty} \sum_{\left|X_{t}^{j}\right|<r} \frac{X_{t}^{i}-X_{t}^{j}}{\left|X_{t}^{i}-X_{t}^{j}\right|^{2}} d t \tag{12}
\end{equation*}
$$

This comes from the pulral expressions of $\mathrm{d}_{\mu_{\text {gin }, 2}}$. For finite N, these SDEs give different solution. But in the limit $N \rightarrow \infty$ give the same solution if the initial distribution is closed to Ginibre rpf.

Examples: Bessel rpf-hard edge scaling limit
Bessel RPF (joint work with Honda):
$S=[0, \infty), \beta=2, a>1$

$$
d X_{t}^{i}=d B_{t}^{i}+\frac{a}{2 X_{t}^{i}} d t+\lim _{r \rightarrow \infty} \frac{\beta}{2} \sum_{\substack{\left|X_{t}^{j}\right|<r \\ j \neq i}} \frac{1}{X_{t}^{i}-X_{t}^{j}} d t
$$

$\beta=1,4$ are in progress.

Examples: sine rpf (Dyson's model)-bulk scaling limit
Sine $_{\beta}$ RPF: $S=R, \beta=1,2,4$

$$
d X_{t}^{i}=d B_{t}^{i}+\frac{\beta}{2} \lim _{r \rightarrow \infty} \sum_{\left|X_{t}^{i}-X_{t}^{j}\right|<r, j \neq i} \frac{1}{X_{t}^{i}-X_{t}^{j}} d t
$$

Spohn (1987) considered the case $\beta=2$:

$$
d X_{t}^{i}=d B_{t}^{i}+\sum_{j \neq i} \frac{1}{X_{t}^{i}-X_{t}^{j}} d t
$$

He constructed the dynamics as a Markov semigr by Dirichlet form.
The def of $\mu=\mu_{\sin , \beta}$:
$\beta=2 \Rightarrow \mu_{\sin , \beta}$ is the det rpf generated by $\left(K_{\sin }, d x\right)$:

$$
K_{\sin }(x, y)=\frac{\sin (\pi(x-y))}{\pi(x-y)}
$$

$\beta=1,4 \Rightarrow$ the correlation funs are given by quaternion det.

Examples: sine rpf (Dyson's model)-bulk scaling limit

- The dist of eigen values of the $G(O / U / S) E R M s$ are given by

$$
\begin{equation*}
m_{\beta}^{N}\left(d \mathbf{x}_{N}\right)=\frac{1}{Z} \prod_{i<j}^{N}\left|x_{i}-x_{j}\right|^{\beta} e^{-\frac{\beta}{4} \sum_{i=1}^{N}\left|x_{i}\right|^{2}} d \mathbf{x}_{N} \tag{13}
\end{equation*}
$$

- m_{β}^{N} converge the semi-circle law $\varsigma(x) d x=\frac{1}{\pi} \sqrt{2 \pi-x^{2}} d x$
- Take $x_{i}=s_{i} / \sqrt{N}$ in (13) and set

$$
\begin{equation*}
\mu_{\mathrm{sin}, \beta}^{N}\left(d \mathbf{s}_{N}\right)=\frac{1}{Z} \sum_{i<j}^{N}\left|s_{i}-s_{j}\right|^{\beta} \prod_{k=1}^{N} e^{-\beta\left|s_{k}\right|^{2} / 4 N} d \mathbf{s}_{N} \tag{14}
\end{equation*}
$$

- The stationary m. $\mu=\mu_{\sin , \beta}$ is TDL of $\mu_{\sin , \beta}^{N}$
- The associated N particle system is given by the SDE:

$$
d X_{t}^{i}=d B_{t}^{i}+\frac{\beta}{2} \sum_{j \neq i}^{N} \frac{1}{X_{t}^{i}-X_{t}^{j}} d t-\frac{\beta}{2 N} X_{t}^{i} d t
$$

Examples: Airy rpf - Soft edge scaling limit Airy rpf: $\mu_{\mathrm{Ai}, \beta}(S=\mathbb{R}, \beta=1,2,4)$ joint work with Tanemura. Take the scaling $x_{i} \mapsto 2 \sqrt{N}+s_{i} N^{-1 / 6}$ in

$$
m_{\beta}^{N}\left(d \mathbf{x}_{N}\right)=\frac{1}{Z} \prod_{i<j}^{N}\left|x_{i}-x_{j}\right|^{\beta} e^{-\frac{\beta}{4} \sum_{i=1}^{N}\left|x_{i}\right|^{2}} d \mathbf{x}_{N}
$$

and set

$$
\mu_{\mathrm{Ai}, \beta}^{N}\left(d \mathbf{s}_{N}\right)=\frac{1}{Z} \prod_{i<j}\left|s_{i}-s_{j}\right|^{\beta} e^{-\frac{\beta}{4} \sum_{i=1}^{N}\left|2 \sqrt{N}+N^{-1 / 6} s_{i}\right|^{2}} d \mathbf{s}_{N}
$$

Then $\mu_{\mathrm{Ai}, \beta}$ is the TDL of $\mu_{\mathrm{Ai}, \beta}^{N}$:

$$
\lim _{N \rightarrow \infty} \mu_{\mathrm{Ai}, \beta}^{N}=\mu_{\mathrm{Ai}, \beta}
$$

Examples: Airy rpf - Soft edge scaling limit

- $\beta=2 \Rightarrow \mu_{\mathrm{Ai}, \beta}^{N}$ is the det rpf gen by $\left(K_{\mathrm{Ai}}, d x\right)$:

$$
K_{\mathrm{Ai}}(x, y)=\frac{\mathrm{Ai}(x) \mathrm{Ai}^{\prime}(y)-\mathrm{Ai}^{\prime}(x) \mathrm{Ai}(y)}{x-y}
$$

Here $\mathrm{Ai}(\cdot)$ the Airy function such that

$$
\begin{equation*}
\operatorname{Ai}(z)=\frac{1}{2 \pi} \int_{\mathbb{R}} d k e^{i\left(z k+k^{3} / 3\right)}, \quad z \in \mathbb{C} \tag{15}
\end{equation*}
$$

Examples: Airy rpf - Soft edge scaling limit

- From

$$
\mu_{\mathrm{Ai}, \beta}^{N}\left(d \mathbf{s}_{N}\right)=\frac{1}{Z} \prod_{i<j}\left|s_{i}-s_{j}\right|^{\beta} e^{-\frac{\beta}{4} \sum_{i=1}^{N}\left|2 \sqrt{N}+N^{-1 / \sigma_{s}} s_{i}\right|^{2}} d \mathbf{s}_{N}
$$

we deduce the SDE of the N particle system:

$$
d X_{t}^{i}=d B_{t}^{i}+\frac{\beta}{2} \sum_{j=1, j \neq i}^{N} \frac{1}{X_{t}^{i}-X_{t}^{j}} d t-\frac{\beta}{2}\left\{N^{1 / 3}+\frac{1}{2 N^{1 / 3}} X_{t}^{i}\right\} d t
$$

- The point is

$$
\lim _{N \rightarrow \infty}\left\{\sum_{j=1, j \neq i}^{N} \frac{1}{X_{t}^{i}-X_{t}^{j}}-N^{1 / 3}\right\} \quad \text { converge }
$$

Examples: Airy rpf - Soft edge scaling limit
Thm 8 (with Tanemura). Let $\beta=1,2,4$. Then:

- The log derivative $\mathrm{d}^{\mu_{\mathrm{Ai}, \beta}}$ is

$$
\mathrm{d}^{\mu_{\mathrm{Ai}, \beta}}(x, \mathrm{~s})=\beta \lim _{r \rightarrow \infty}\left\{\left(\sum_{\left|x-s_{i}\right|<r} \frac{1}{x-s_{i}}\right)-\int_{|x|<r} \frac{\varrho(x)}{-x} d x\right\}
$$

Here

$$
\varrho(x)=\frac{\sqrt{-x}}{\pi} 1_{(-\infty, 0]}(x)
$$

- Airy rpf $\mu_{\mathrm{Ai}, \beta}$ satisfy (A1)-(A5) and the limit ISDE is

$$
d X_{t}^{i}=d B_{t}^{i}+\frac{\beta}{2} \lim _{r \rightarrow \infty}\left\{\left(\sum_{j \neq i,\left|X_{t}^{j}\right|<r} \frac{1}{X_{t}^{i}-X_{t}^{j}}\right)-\int_{|x|<r} \frac{\varrho(x)}{-x} d x\right\} d t
$$

Examples: Airy rpf - Soft edge scaling limit

- The key idea is to take the rescaled semi-circle law ς, as the first approximation of the 1-correlation fun $\rho_{\mathrm{Ai}, \beta}^{N, 1}$.
- Our method can be applied to other soft edge scaling.
- Let us label $X_{t}^{i}>X_{t}^{i+1}(\forall i)$.

If $\beta=2$, then the top particle X_{t}^{1} is the Airy process $\mathcal{A}(t)$ in the sense of Spohn.
In fact, if the tail sigma field of $\mu_{\mathrm{Ai}, \beta}$ is trivial, then the SDE has a unique strong solution.
Even if this is not the case, we proved that the infinite dim stochastic dynamics constructed by Spohn, Johansson \& others by the spacetime correlation fun is a solution of the prescribed SDE:

$$
d X_{t}^{i}=d B_{t}^{i}+\frac{\beta}{2} \lim _{r \rightarrow \infty}\left\{\left(\sum_{j \neq i,\left|X_{t}^{j}\right|<r} \frac{1}{X_{t}^{i}-X_{t}^{j}}\right)-\int_{|x|<r} \frac{\varrho(x)}{-x} d x\right\} d t
$$

- Recently the Airy process has been extensively studued by Spohn, Johansson, and many others. Our result is the first time to clarify the SDE describing the limit infinite system for the soft edge.

Examples: Airy rpf - Soft edge scaling limit

- The SDE gives a kind of Girsanov formula.
- These examples are the first time that the infinite dynamics are constructed for rpf appeared in random matrix theory with $\beta=1,4$ even if the bulk and the hard edge as well as the soft edge scaling

In one dimensional system, the method of space-time correaltion functions are avialable (Nagao, Katori-Tanemura, Spohn, and others), but this method is restricted to $\beta=2$.

- By construction, if the total system start from the Airy β_{β} rpf $\mu_{\mathrm{Ai}, \beta}$, then the distribution of the top particle X_{t}^{1} equals $F_{\beta, \text { edge }}(x)$, the β Tracy-Widom distribution, where $\beta=1,2,4$.

To sum up

Thm 9. Ginibre RPF $(\beta=2)$, Sine RPFs, Airy RPFs and Bessel RPFs $(\beta=1,2,4)$ are quasi-Gibbs m. for $\psi(x)=$ $-\beta \log |x|$, and the log derivative can be calculated. The asociated ISDE has a solution. If the tail σ field is trivial, then unique strong solution exists.

- The key point of the proof is to use the small fluctuation property (SFP) of linear statistics for these measures.
- SFP was established by Soshnikov (Sine, Airy, Bessel RPFs), Shirai (Ginibre RPF).
- Proof consists of several parts:
(1) To find a good finite particle approximation $\left\{\mu^{N}\right\}$
(2) To prove uniform small fluctuation of $\left\{\mu^{N}\right\}$
(3) To prove uni bounds of $1 \& 2$ cor funs of $\left\{\mu^{N}\right\}$
(4) To carry out the limiting procedure of $\mathrm{d}_{\mu^{N}}$ \& quasi-Gibbs property by using general theorems. (O. 11,12)

A phase transition conjecture for 2D Coulomb stochastic dynamics
Let $\beta \in[0, \infty)$ and set

$$
d X_{t}^{i}=d B_{t}^{i}+\frac{\beta}{2} \lim _{r \rightarrow \infty} \sum_{\left|X_{t}^{i}-X_{t}^{j}\right|<r, j \neq i} \frac{X_{t}^{i}-X_{t}^{j}}{\left|X_{t}^{i}-X_{t}^{j}\right|^{2}} d t
$$

When $\beta=2$, then the SDE has a solution, for general β we assume the existence of solution and the rpf $\mu_{\mathrm{gin}, \beta}$.

- We tag $X_{t}^{i_{0}}$ and investgate the diffusive scaling:

$$
\lim _{\epsilon \rightarrow 0} \epsilon X_{t / \epsilon^{2}}^{i_{0}}=\sqrt{2 \alpha_{\text {self }}\left[\mu_{\mathrm{gin}, \beta}\right]} B_{t}
$$

- Assume $X_{0}^{i_{0}}=0$ and $\sum_{i \neq i_{0}} \delta_{X_{0}^{i}} \sim \mu_{\text {gin }, \beta, \mathbf{o}}$.
- $\alpha_{\text {self }}[\cdot]$ is called the self-diffusion matrix.

A phase transition conjecture for 2D Coulomb stochastic dynamics

$$
\begin{aligned}
& d X_{t}^{i}=d B_{t}^{i}+\frac{\beta}{2} \lim _{r \rightarrow \infty} \sum_{\left|X_{t}^{i}-X_{t}^{j}\right|<r, j \neq i} \frac{X_{t}^{i}-X_{t}^{j}}{\left|X_{t}^{i}-X_{t}^{j}\right|^{2}} d t \\
& \lim _{\epsilon \rightarrow 0} X_{t / \epsilon^{2}}^{i_{0}}=\sqrt{2 \alpha_{\text {self }}\left[\mu_{\operatorname{gin}, \beta}\right]} B_{t}, \quad X_{0}^{i_{0}}=0, \quad \sum_{i \neq i_{0}} \delta_{X_{0}^{i}} \sim \mu_{\mathrm{gin}, \beta, \mathrm{o}}
\end{aligned}
$$

Conj: There exist constants $\beta_{1}<\beta_{2}<\beta_{3}$ such that (C1) $\beta<\beta_{1} \Rightarrow \alpha_{\text {self }}\left[\mu_{\text {gin }, \beta}\right]>0$ (diffusive)
(C2) $\beta_{1}<\beta<\infty \Rightarrow \alpha_{\text {self }}\left[\mu_{\text {gin }, \beta}\right]=0$ (subdiffusive),
(C3) $\beta_{2}<\beta<\infty \Rightarrow X_{t_{0}}^{i_{0}}$ has an inv prob measure $X_{t}^{i_{0}}=O(\log t)(\log$ behaivior)
(C4) $\beta_{3}<\beta<\infty \Rightarrow\left(X_{t}^{i}\right)_{i \in \mathbb{N}}$ form a lattice like system. Moreover,

$$
\beta_{1} \sim 1, \quad \beta_{2} \sim 2
$$

Rigorous results: homogenization of diffusion in 2D Coulomb-periodic env.

Let $\mathrm{s}=\sum_{i} \delta_{s_{i}} \in \mathrm{~S}$. Let $X_{t}^{\mathrm{s}} \in \mathbb{R}^{2}$ be the solution of

$$
d X_{t}^{\mathrm{s}}=d B_{t}+\frac{\beta}{2} \lim _{q \rightarrow \infty} \sum_{\left|X_{t}^{\mathrm{s}}-s_{i}\right|<q} \frac{X_{t}^{\mathrm{s}}-s_{i}}{\left|X_{t}^{\mathrm{s}}-s_{i}\right|^{2}} d t
$$

Let μ be a rpf, and set for a.s. s w.r.t. μ

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow \infty} \varepsilon X_{t / \varepsilon^{2}}^{\mathrm{s}}=\sqrt{\alpha_{\mathrm{eff}}^{\beta}[\mu]} B_{t} \tag{16}
\end{equation*}
$$

Thm 10. $\mu_{\text {per }}$ be a periodic rpf \Rightarrow
(1) $\alpha_{\text {eff }}^{\beta}\left[\mu_{\text {per }}\right]>0$.
(2) $\alpha_{\text {eff }}^{\beta}\left[\mu_{\text {per }, 0}\right]>0$ for $\beta<1$

$$
\alpha_{\mathrm{eff}}^{\beta}\left[\mu_{\mathrm{per}, 0}\right]=0, \quad X_{t}^{\mathrm{s}} \text { has a inv prob } m \text { for } \beta>2
$$

Rigorous results: homogenization of diffusion in Ginibre env. Let $\mathrm{s}=\sum_{i} \delta_{s_{i}} \in \mathrm{~S}$. Let $X_{t}^{\mathrm{s}} \in \mathbb{R}^{2}$ be the solution of

$$
d X_{t}^{\mathbf{s}}=d B_{t}+\lim _{q \rightarrow \infty} \sum_{\left|X_{t}^{\mathbf{s}}-s_{i}\right|<q} \frac{X_{t}^{\mathbf{s}}-s_{i}}{\left|X_{t}^{\mathbf{s}}-s_{i}\right|^{2}} d t
$$

Thm 11. Assume s $\sim \mu_{\text {gin, } 2, \mathrm{o}}$ and set

$$
\lim _{\varepsilon \rightarrow \infty} \varepsilon X_{t / \varepsilon^{2}}^{\mathrm{s}}=\sqrt{\alpha_{\mathrm{eff}}^{2}\left[\mu_{\mathrm{gin}, 2, \mathrm{o}}\right]} B_{t}
$$

Then

$$
\alpha_{\mathrm{eff}}^{2}\left[\mu_{\mathrm{gin}, 2, \mathrm{o}}\right]=0
$$

Conj: The positivity of $\alpha_{\text {eff }}^{2}\left[\mu_{\mathrm{gin}, 2}\right]$ is an open problem. Since $\mu_{\text {gin, } 2}$ is similar to $\mu_{\text {per }}$, we should have

$$
\alpha_{\mathrm{eff}}^{2}\left[\mu_{\mathrm{gin}, 2}\right]>0
$$

Observation: self-diffusion of 2D Coulomb system 1
Obs 0: $\mu_{\text {gin }, \beta}$ exists for general $\beta>0$.
Obs 1: Since (by O.-Shirai [2012])

$$
\begin{equation*}
\mu_{\mathrm{gin}, 2} \perp \mu_{\mathrm{gin}, 2, \mathrm{o}} \tag{17}
\end{equation*}
$$

we have for general $\beta>\beta_{1} \quad\left(\beta_{1} \leq 2\right)$

$$
\begin{equation*}
\mu_{\operatorname{gin}, \beta} \perp \mu_{\operatorname{gin}, \beta, \mathbf{o}} \tag{18}
\end{equation*}
$$

Let $\mathbf{X}_{t}=\left(X_{t}^{i}\right)_{i \in \mathbb{N}}$ be the solution of

$$
\begin{equation*}
d X_{t}^{i}=d B_{t}^{i}+\frac{\beta}{2} \lim _{r \rightarrow \infty} \sum_{\left|X_{t}^{i}-X_{t}^{j}\right|<r, j \neq i} \frac{X_{t}^{i}-X_{t}^{j}}{\left|X_{t}^{i}-X_{t}^{j}\right|^{2}} d t \tag{19}
\end{equation*}
$$

Note that

$$
\begin{equation*}
X_{t}:=\sum_{i \in \mathbb{N}} \delta_{X_{t}^{i}} \sim \mu_{\operatorname{gin}, \beta} \tag{20}
\end{equation*}
$$

Observation: self-diffusion of 2D Coulomb system 2

Let X_{t}^{1} be the tag particle, and set $Y_{t}^{i}=X_{t}^{i+1}-X_{t}^{1}$. Obs 2: By (18) and

$$
\begin{equation*}
Y_{t}:=\sum_{i \neq i_{0}} \delta_{Y_{t}^{i}} \sim \mu_{\mathrm{gin}, \beta, \mathbf{o}} \tag{21}
\end{equation*}
$$

we have $X_{t}^{*} \in \mathbb{C}$ such that

$$
\begin{equation*}
X_{t}^{*} \sim \operatorname{prob} \mathrm{~m}, \quad \mathrm{Y}_{t}+\delta_{X_{t}^{*}} \sim \mathrm{X}_{t} \sim \mu_{\mathrm{gin}, \beta} \tag{22}
\end{equation*}
$$

Obs 3:

$$
\begin{align*}
& d X_{t}^{1}=d B_{t}^{1}+\frac{\beta}{2} \lim _{r \rightarrow \infty} \sum_{\left|X_{t}^{1}-X_{t}^{i}\right|<r, i \geq 2} \frac{X_{t}^{1}-X_{t}^{i}}{\left|X_{t}^{1}-X_{t}^{i}\right|^{2}} d t \tag{23}\\
& d X_{t}^{1}=d B_{t}^{1}-\frac{\beta}{2} \lim _{r \rightarrow \infty} \sum_{\left|Y_{t}^{i}\right|<r, i \in \mathbb{N}} \frac{Y_{t}^{i}}{\left|Y_{t}^{i}\right|^{2}} d t
\end{align*}
$$

Observation: self-diffusion of 2D Coulomb system 3
Set $Y_{t}^{*}=X_{t}^{*}-X_{t}^{1}$. Then from

$$
\begin{equation*}
d X_{t}^{1}=d B_{t}^{1}-\frac{\beta}{2} \lim _{r \rightarrow \infty} \sum_{\left|Y_{t}^{i}\right|<r, i \in \mathbb{N}} \frac{Y_{t}^{i}}{\left|Y_{t}^{i}\right|^{2}} d t \tag{24}
\end{equation*}
$$

we have

$$
d X_{t}^{1}=d B_{t}^{1}-\frac{\beta}{2} \frac{X_{t}^{1}-X_{t}^{*}}{\left|X_{t}^{1}-X_{t}^{*}\right|^{2}} d t-\frac{\beta}{2} \lim _{r \rightarrow \infty} \sum_{\left|Y_{t}^{i}\right|<r, i \in \mathbb{N} \cup\{*\}} \frac{Y_{t}^{i}}{\left|Y_{t}^{i}\right|^{2}} d t
$$

Hence

$$
\begin{align*}
d X_{t}^{1} & =d B_{t}^{1}-\frac{\beta}{2} \frac{X_{t}^{1}}{\left|X_{t}^{1}\right|^{2}} d t \tag{25}\\
& +\frac{\beta}{2}\left\{\frac{X_{t}^{1}}{\left|X_{t}^{1}\right|^{2}}-\frac{X_{t}^{1}-X_{t}^{*}}{\left|X_{t}^{1}-X_{t}^{*}\right|^{2}}\right\} d t-\frac{\beta}{2} \lim _{r \rightarrow \infty} \sum_{\substack{\left.\left|Y_{t}^{i}\right|<r, i \in \mathbb{N} \cup *\right\}}} \frac{Y_{t}^{i}}{\left|Y_{t}^{i}\right|^{2}} d t
\end{align*}
$$

Observation: self-diffusion of 2D Coulomb system 4

$$
\begin{aligned}
d X_{t}^{1} & =d B_{t}^{1}-\frac{\beta}{2} \frac{X_{t}^{1}}{\left|X_{t}^{1}\right|^{2}} d t \\
& +\frac{\beta}{2}\left\{\frac{X_{t}^{1}}{\left|X_{t}^{1}\right|^{2}}-\frac{X_{t}^{1}-X_{t}^{*}}{\left|X_{t}^{1}-X_{t}^{*}\right|^{2}}\right\} d t-\frac{\beta}{2} \lim _{r \rightarrow \infty} \sum_{\left|Y_{t}^{i}\right|<r,} \sum_{i \in \mathbb{N} \cup\{*\}} \frac{Y_{t}^{i}}{\left|Y_{t}^{i}\right|^{2}} d t
\end{aligned}
$$

Obs 4: (1) By homogenization, $\exists \sqrt{2 a[\beta]} \leq E$

$$
\begin{equation*}
\epsilon\left\{B_{u / \epsilon^{2}}^{1}-\frac{\beta}{2} \lim _{r \rightarrow \infty} \int_{0}^{u / \epsilon^{2}} \sum_{\left|Y_{t}^{i}\right|<r, i \in \mathbb{N} \cup\{*\}} \frac{Y_{t}^{i}}{\left.\left|Y_{t}^{i}\right|\right|^{2}} d t\right\}=\sqrt{2 a[\beta]} \hat{B}_{u} \tag{27}
\end{equation*}
$$

Since X_{t}^{*} has inv prob

$$
\begin{equation*}
\epsilon \int_{0}^{u / \epsilon^{2}} \frac{\beta}{2}\left\{\frac{X_{t}^{1}}{\left|X_{t}^{1}\right|^{2}}-\frac{X_{t}^{1}-X_{t}^{*}}{\left|X_{t}^{1}-X_{t}^{*}\right|^{2}}\right\} d t \sim o(\epsilon) \tag{28}
\end{equation*}
$$

Observation: self-diffusion of 2D Coulomb system 5
Hence we have (approximately)

$$
\begin{equation*}
d X_{t}^{1}=\sqrt{2 a[\beta]} d B_{t}^{1}-\frac{\beta}{2} \frac{X_{t}^{1}}{\left|X_{t}^{1}\right|^{2}} d t \tag{29}
\end{equation*}
$$

By the simple calculation $\left(\beta>\beta_{00}, \tilde{B}_{t}\right.$ is $1 \mathrm{D} \mathrm{Br} m$)

$$
\begin{equation*}
d\left|X_{t}^{1}\right|=\sqrt{2 a[\beta]} d \tilde{B}_{t}+\left(a[\beta]-\frac{\beta}{2}\right) \frac{1}{\left|X_{t}^{1}\right|} d t \tag{30}
\end{equation*}
$$

So the phase transition follows from the one of Bessel processes.

Simulation of Ginibre IBM (2D Coulomb system) and phase transition

$$
\begin{align*}
& d X_{t}^{i}=d B_{t}^{i}+\frac{\beta}{2} \lim _{r \rightarrow \infty} \sum_{\left|X_{t}^{i}-X_{t}^{j}\right|<r} \frac{X_{t}^{i}-X_{t}^{j}}{\left|X_{t}^{i}-X_{t}^{j}\right|^{2}} d t \tag{T}\\
& d X_{t}^{i}=d B_{t}^{i}+\frac{\beta}{2}\left\{-\alpha X_{t}^{i}+\lim _{r \rightarrow \infty} \sum_{\left|X_{t}^{j}\right|<r} \frac{X_{t}^{i}-X_{t}^{j}}{\left|X_{t}^{i}-X_{t}^{j}\right|^{2}}\right\} d t . \tag{OU}
\end{align*}
$$

Here, since $\rho^{1}=1 / \pi, \alpha=|\{|x| \leq 1\}| \rho^{1}=1$.

- Taking (OU) \& (T)into account we take the model:

$$
\begin{align*}
d X_{t}^{i} & =d B_{t}^{i}+\frac{\beta}{2}\left\{-X_{t}^{i}+\sum_{j=1}^{N} \frac{X_{t}^{i}-X_{t}^{j}}{\left|X_{t}^{i}-X_{t}^{j}\right|^{2}}\right\} d t \tag{OUN}\\
d X_{t}^{i} & =d B_{t}^{i}+\frac{\beta}{2}\left\{\sum_{j=1}^{N} \frac{X_{t \neq i}^{i}-X_{t}^{j}}{\left|X_{t}^{i}-X_{t}^{j}\right|^{2}}\right\} d t \tag{TN}
\end{align*}
$$

Simulation: 3D Coulomb system

$$
\begin{align*}
& d X_{t}^{i}=d B_{t}^{i}+\frac{\beta}{2} \lim _{r \rightarrow \infty} \sum_{\left|X_{t}^{i}-X_{t}^{j}\right|<r} \frac{X_{t}^{i}-X_{t}^{j}}{\left|X_{t}^{i}-X_{t}^{j}\right|^{2}} d t \tag{T}\\
& d X_{t}^{i}=d B_{t}^{i}+\frac{\beta}{2}\left\{-\alpha X_{t}^{i}+\lim _{r \rightarrow \infty} \sum_{\left|X_{t}^{j}\right|<r} \frac{X_{t}^{i}-X_{t}^{j}}{\left|X_{t}^{i}-X_{t}^{j}\right|^{2}}\right\} d t . \tag{OU}
\end{align*}
$$

We take $\rho^{1}=1$. So $\alpha=|\{|x| \leq 1\}| \rho^{1}=4 \pi / 3$.

- Taking (OU) \& (T)into account we take the model:

$$
\begin{align*}
& d X_{t}^{i}=d B_{t}^{i}+\frac{\beta}{2}\left\{-\frac{4 \pi}{3} X_{t}^{i}+\sum_{j=1}^{N} \frac{X_{t}^{i}-X_{t}^{j}}{\left|X_{t}^{i}-X_{t}^{j}\right|^{2}}\right\} d t \tag{OUN}\\
& d X_{t}^{i}=d B_{t}^{i}+\frac{\beta}{2}\left\{\sum_{j=1}^{N} \frac{X_{t \neq i}^{i}-X_{t}^{j}}{\left|X_{t}^{i}-X_{t}^{j}\right|^{2}}\right\} d t \tag{TN}
\end{align*}
$$

[]]
[][]
[][]

Representation of α Let $\tilde{\mathcal{E}}: L^{2}\left(\mu_{\text {gin },, 2,, 2, \mathrm{o}}\right) \otimes L^{2}\left(\mu_{\text {gin },, 2, \mathrm{o}}\right) \rightarrow$ \mathbb{R} :

$$
\begin{aligned}
& \tilde{\mathcal{E}}(\mathbf{f}, \mathbf{g})=\int_{\mathrm{S}} \frac{1}{2} \sum_{i=1}^{2} f_{i} g_{i} d \mu_{\mathrm{gin},, 2, \mathrm{o}} \quad \text { for } \mathbf{f}=\left(f_{1}, f_{2}\right) \\
& \tilde{\mathcal{D}}=\overline{\left\{\left(D_{1} f, D_{2} f\right) ; f \in \mathcal{D}_{0}\right\}}
\end{aligned}
$$

Here D_{i} is the generator of the translation, \mathbf{e}_{i} unit vector. There's a unique $\mathbf{u}_{i} \in \tilde{\mathcal{D}}$ s.t.

$$
\begin{equation*}
\tilde{\mathcal{E}}\left(\mathbf{u}_{i}, \mathbf{g}\right)=\tilde{\mathcal{E}}\left(\mathbf{e}_{i}, \mathbf{g}\right) \text { for all } \mathrm{g} \in \tilde{\mathcal{D}} \tag{31}
\end{equation*}
$$

Thm 12 (O.98). The effective-diffusion matrix α is given by

$$
\begin{equation*}
\alpha_{i j}=\widetilde{\mathcal{E}}\left(\mathbf{e}_{i}-\mathbf{u}_{i}, \mathbf{e}_{j}-\mathbf{u}_{j}\right) \tag{32}
\end{equation*}
$$

Moreover, $\alpha=0$ if and only if $\mathbf{e}_{i} \in \tilde{\mathcal{D}}$ for all i.

- We need to prove $\mathrm{e}_{1}, \mathrm{e}_{2} \in \tilde{\mathcal{D}}$
- One can check $\left(F_{r}, 0\right) \in \tilde{\mathcal{D}}$. Hence

$$
\mathbf{e}_{1}=\lim _{r \rightarrow \infty}\left(-F_{r}, 0\right) \quad \text { weakly in } \tilde{\mathcal{D}}
$$

This completes the proof of Thm 8.
Conj: If we replace $\mu_{\text {gin }, 2, \mathrm{o}}$ by $\mu_{\text {gin }, 2}$, then $\alpha>0$. Indeed, in case of periodic μ, this is the case.

General theorems for Infinite-dim SDE: set up

Related problems:

- Yoo proved that Determinantal RPF with

$$
\operatorname{Spec}(K) \subset[0,1)
$$

are Gibbs measures. So it is likely all Determinantal RPF are quasi Gibbs measures, i.e., under the condition

$$
\operatorname{Spec}(K) \subset[0,1]
$$

To strength Yoo's result like this is important because RPFs in infinite volume appeared in RMT usually satisfy that

$$
\operatorname{Spec}(K)=\{0,1\}
$$

- To calculate the log derivative of Determinantal RPFs.
- β ensemble of Sine, Bessel, Airy for general $\beta>0$:
(Valkó, B.-Világ, B., Ramírez, J.-Rider, B.-Világ, B.)
Good finite approximations are clear: Log gasses.
The problem is to control correlation functions and to prove small fluctuations.
- The spectrum of Gaussian Analitic functions
(Some progress done by Shirai)
- In particular, GAF with Bergmann Kernel

Related problems:

- Yoo proved that Determinantal RPF with

$$
\operatorname{Spec}(K) \subset[0,1)
$$

are Gibbs measures. So it is likely all Determinantal RPF are quasi Gibbs measures, i.e., under the condition

$$
\operatorname{Spec}(K) \subset[0,1]
$$

To strength Yoo's result like this is important because RPFs in infinite volume appeared in RMT usually satisfy that

$$
\operatorname{Spec}(K)=\{0,1\}
$$

- To calculate the log derivative of Determinantal RPFs.
- β ensemble of Sine, Bessel, Airy for general $\beta>0$:
(Valkó, B.-Világ, B., Ramírez, J.-Rider, B.-Világ, B.)
Good finite approximations are clear: Log gasses.
The problem is to control correlation functions and to prove small fluctuations.
- The spectrum of Gaussian Analitic functions
(Some progress done by Shirai)
- In particular, GAF with Bergmann Kernel
[1][]

