
Infinite-dimensional stochastic differential equations

related to random matrices

and

a phase transition conjecture

• General theory for ISDEs:

quasi-Gibbs property & log derivative

• Sine RPF, Bessel RPF, Airy RPF, Ginibre RPF,

• A phase transition conjecture for Ginibre Interacting

Brownian motions

• Simulations by Ben Said & Otobe



General theorems for Infinite-dim SDE: set up

Let S = Rd, C, [0,∞).
S: Configuration space over S

S = {s =
∑
i

δsi ; si ∈ S, s(|s| < r) < ∞ (∀r ∈ N)}

µ: RPF on S. i.e. prob meas. on S.

Prob: (1) To construct a natural stochastic dynamics

Xt = (Xi
t)i∈N (labeled dynamics)

related to µ, i.e.

Xt =
∑
i∈N

δXi
t

(unlabeled dynamics)

is reversible w.r.t. µ.
(2) To find the ∞-dim. SDE that Xt satisfies.
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General theorems for Infinite-dim SDE: set up

• ρn is called the n-correlation function of µ w.r.t. Radon
m. m if∫

A
k1
1 ×···×Akm

m

ρn(xn)
n∏

i=1

m(dxi) =

∫
S

m∏
i=1

s(Ai)!

(s(Ai)− ki)!
dµ

for any disjoint Ai ∈ B(S), ki ∈ N s.t. k1 + . . .+ km = n.

• µ is called the determinantal RPF generated by (K,m)
if its n-corraltion fun. ρn is given by

ρn(xn) = det[K(xi, xj)]1≤i,j≤n

• Ginibre RPF S = C. µgin is generated by (Kgin,2, g)

Kgin,2(x, y) = exȳ g(dx) = π−1e−|x|2dx
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Property of Ginibre RPF

(g1) µgin,2 is translation and rotation invariant

(g2) Singularity of Palm meas.

Palm meas. For x = {x1, . . . , xm} ⊂ Sm set

µx := µ( · −
m∑

l=1

δxl | s({xl}) ≥ 1(∀l))

Thm 1 (with Shirai). Let m, n ∈ {0} ∪ N. Then

(1) If m = n, then µx ∼ µy. (∼ means ab. cont.)

(2) If m ̸= n, then µx and µy are singular each other.

Remark: • In case of Gibbs measures, it holds always

µx ≺ µ

• In this sense Ginibre RPF is similar to periodic RPF.
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Thm 2 (with Shirai). Suppose m = n. Then for µy-a.s. s =
∑

i δsi,

dµx

dµy
=

∆m(x) det[Kgin,2(xi, xj)]
m
i,j=1

∆m(y) det[Kgin,2(yi, yj)]
m
i,j=1

lim
r→∞

∏
|si|<br

|x− si|2

|y − si|2

cpt uni in x ∈ Cm.

• {br}r∈N: lim br = ∞
• |x− si| =

∏m
m=1 |xm − si| for x = (x1, . . . , xm)

• ∆m(x) =
∏m

i<j |xi − xj|2 if m ≥ 2, ∆m(x) = 1 if m = 1.

In particular, if m = 1, then

dµx

dµy
=

e−|x|2

e−|y|2
lim
r→∞

∏
|si|<br

|x− si|2

|y − si|2
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Index of the number of missing particles:

Dq = {z ∈ C ; |z| < √
q} q ∈ N、

Fr(s) =
1

r

r∑
q=1

(s(Dq)− q). (1)

Thm 3 (with Shirai). Let S be the configuration space
over C. Let m ∈ N. Then for x = (x1, . . . , xm)

lim
r→∞

Fr(s) = −m weakly in L2(S, µx) (2)

Remark: m is the number of the removed particles.

∞− m ̸= ∞
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Property of Ginibre rpf: log gass

(g2) µgin,2 is the weak limit of µNgin,2:

the labeled expression µ̌Ngin of µNgin,2 is

µ̌Ngin =
1

Z

N∏
i<j

|xi − xj|2
N∏

k=1

g(dxk) (3)

µNgin,2 is the determinantal RPF gen. by (KN
gin,2, g), where

KN
gin,2(x, y) =

N−1∑
i=0

(xȳ)i

i!
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Non rigorous expression of µgin,2

Non rigorous expression of µgin,2 as a meas µ̌gin,2 on CN:

From (g3)

µ̌gin,2 =
1

Z

∞∏
i<j

|xi − xj|2
∞∏

k=1

e−|xk|2

π
dxk (4)

From the trans inv we have another informal expression:

µ̌gin,2 =
1

Z

∞∏
i<j

|xi − xj|2
∞∏

k=1

dxk (5)

Which representations are correct?
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Non rigorous expression of µgin,2

Non rigorous expression of µgin,2 as a meas µ̌gin,2 on CN:

From (g3)

µ̌gin,2 =
1

Z
lim
r→∞

∞∏
i<j,|xi|,|xj|<r

|xi − xj|2
∞∏

k=1

e−|xk|2

π
dxk (6)

From the translation invariance we have another informal
expression:

µ̌gin,2 =
1

Z
lim
r→∞

∞∏
i<j,|xi−xj|<r

|xi − xj|2
∞∏

k=1

dxk (7)

Which representations are correct?
Both
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Gibbs measure

• Ψ: Ruelle class interaction potential,

Qr = {|x| ≤ r}, πr(s) = s(· ∩Qr), πcr(s) = s(· ∩Qc
r)

µmr,ξ(·) = µ(πr ∈ ·|s(Qr) = m,πc
r(s) = πcr(ξ))

• µ is called (Φ,Ψ)-Gibbs m. if it satisfies DLR eq:

dµmr,ξ =
1

zr,ξ
e−Hr(s)−Wr,ξ(s)

m∏
k=1

e−Φ(sk)dsk

Hr =
∑

si,sj∈Qr,i<j

Ψ(si − sj), Wr,ξ =
∑

si∈Qr,ξj∈Qc
r

Ψ(si − ξj)

• Ginibre RPF: Φ = 0 Ψ(x) = −2 log |x|
In Ginibre rpf, Wr,ξ diverge, so DLR does not make sense
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(Φ,Ψ)-Quasi Gibbs measures

(Φ,Ψ)-Gibbs m. Let νmr =
∏m

k=1 1Qr(sk)e
−Φ(sk)dsk

dµmr,ξ =
1

zmr,ξ
e−Hr−Wr,ξdνmr (DLR eq)

(Φ,Ψ)-quasi Gibbs m. ∃ cmr,ξ

cmr,ξ
−1e−Hrdνmr ≤ µmr,ξ ≤ cmr,ξe

−Hrdνmr

• If µ is Ginibre RPF, Wr,ξ and zmr,ξ diverge. But e−Wr,ξ/zmr,ξ conv.

cmr,ξ
−1 ≤ e−Wr,ξ/zmr,ξ ≤ cmr,ξ

• Quasi-Gibbs is very mild restriction. If µ is (Φ,Ψ)-

quasi-Gibbs m, then µ is also (Φ + f,Ψ)-quasi Gibbs m

for any loc bdd m’able f .
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Main theorems: Unlabeled level construction

Let D be the canonical square field on S: s =
∑

i δsi, s = (si).

D[f, g](s) =
1

2

∑
i

∇sif̃(s) · ∇sig̃(s)

Let D be the set of local smooth fun with Eµ
1(f, f) < ∞.

Eµ(f, g) =

∫
S
D[f, g]dµ

Thm 4. [O.95,09,10]

(1) If µ is quasi-Gibbs with upper semi-cont potentials (Φ,Ψ), then

(Eµ,D, L2(S, µ)) is closable.

(2) If (Eµ,D, L2(S, µ)) is closable & all correlation fun are loc bounded,

then a diffusion Xt associated with the closure (Eµ,Dµ) exists.

If µ is Poisson rpf with Lebesgue intensity, then Xt =
∑

i δBi
t
.
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Log derivative of µ

• Let µx be the (reduced) Palm m. of µ conditioned at x

µx(·) = µ(· − δx|s(x) ≥ 1)

• Let µ1 be the 1-Campbell measure on Rd×S:

µ1(A×B) =

∫
A
ρ1(x)µx(B)dx

• dµ ∈ L1(Rd×S, µ1) is called the log derivative of µ if∫
Rd×S

∇xfdµ
1 = −

∫
Rd×S

fdµdµ
1 ∀f ∈ C∞

0 (Rd)⊗D

Here ∇x is the nabla on Rd, D is the space of local smooth
functions on S with compact support.
• Very informally

dµ = ∇x logµ1
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log derivatives of the Ginibre rpf dµgin,2

• Ginibre RPF: dµgin,2 has plural representations

dµgin,2(x, y) = −2x+2 lim
r→∞

∑
|yi|<r

x− yi
|x− yi|2

in L2
loc(µ

1)

dµgin,2(x, y) = 2 lim
r→∞

∑
|x−yi|<r

x− yi
|x− yi|2

in L2
loc(µ

1)
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log derivatives of the Ginibre rpf dµgin,2

• Ginibre RPF: dµgin,2 has plural representations

dµgin,2(x, y) = −2x+2 lim
r→∞

∑
|yi|<r

x− yi
|x− yi|2

in L2
loc(µ

1)

dµgin,2(x, y) = 2 lim
r→∞

∑
|x−yi|<r

x− yi
|x− yi|2

in L2
loc(µ

1)

• These correspond to the following:

µ̌gin,2 =
1

Z
lim
r→∞

∞∏
i<j,|xi|,|xj|<r

|xi − xj|2
∞∏

k=1

e−|xk|2

π
dxk (13)

µ̌gin,2 =
1

Z
lim
r→∞

∞∏
i<j,|xi−xj|<r

|xi − xj|2
∞∏

k=1

dxk (7)
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Main theorems: Infinite-dim SDE

(A1) ρk of µ are locally bounded for all k ∈ N
(A2) (Eµ,D) is closable on L2(S, µ) ⇐ µ is quasi-Gibbs
(A3) The log derivative dµ ∈ L1

loc(µ
1) exists

(A4) {Xi
t} do not collide each other (non-collision)

(A5) each tagged particle Xi
t never explode (non-explosion)

Let u :SN→S such that u((si)) =
∑

i δsi.

Thm 5. (O.10) (A1)–(A5) ⇒ ∃S0 ⊂ S such that

µ(S0) = 1, (8)

and that, for ∀s ∈ u−1(S0), ∃u−1(S0)-valued pr. (Xi
t)i∈N

and ∃SN-valued Brownian m. (Bi
t)i∈N satisfying

dXi
t = dBi

t +
1

2
dµ(X

i
t,
∑
j ̸=i

δ
X

j
t
)dt, (Xi

0)i∈N = s (9)
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Main theorems: labeled diffusions

dXi
t = dBi

t +
1

2
dµ(X

i
t,
∑
j̸=i

δ
X

j
t
)dt, (Xi

0)i∈N = s

Thm 6 (O. (JMSJ 09)).The family of processes {(Xi
t)i∈N}

is a diffusion with state space u−1(S0) ⊂ SN.

Remark 1. (1) (A1)–(A5) can be checked for Ginibre RPF (β = 2),

Sine RPFs, Airy RPFs and Bessel RPFs (β = 1,2,4).

(2) We can calcurate the log derivatives of these measures.

(3) We have general theorems for quasi-Gibbs property and the log

derivatives (O. PTRF10, AOP). The statements are too messy to

be omited here.
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Tail triviality & strong solution & the uniquness of Dirichlet forms

Thm 7 (with Tanemura). If µ is a (Φ,Ψ) quasi-Gibbs
measure with smooth potential (on x ̸= 0). Assume
(H.1) The tail sigma field of µ is trivial.
Then
(1) The SDE has a unique strong solution for q.e. initial
staring points (si).
(2) The associated martingale problem is unique.
(3) The Dirichlet form that are extention of (Eµ,Dµ) is
unique.
Remark: We do not know the tail triviality hold for

Ginibre rpf and others. It is known that all discrete de-
terminantal rpf have trivial tail sigma fields by Russel
Lyons. So it is quite likely the same also hold for the
determinantal rpfs in continuous spaces.
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Examples: Gibbs measures

Gibbs measures :

• All Gibbs measures with Ruelle’s class upper semi-cont

potentials satisfy the assumptions (A.1)–(A.5).

• In this case, the SDEs become

dXi
t = dBi

t −
1

2
∇Φ(Xi

t)dt−
1

2

∑
j ̸=i

∇Ψ(Xi
t −X

j
t )dt. (10)
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Examples: Ginibre rpf

Ginibre rpf: Ψ(x) = −β log |x| d = 2, β = 2. If µ = µgin,2,

dXi
t = dBi

t + lim
r→∞

∑
|Xi

t−X
j
t |<r,j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

dt (11)

and also

dXi
t = dBi

t −Xi
tdt+ lim

r→∞

∑
|Xj

t |<r j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

dt. (12)

This comes from the pulral expressions of dµgin,2.

For finite N , these SDEs give different solution.

But in the limit N → ∞ give the same solution if the

initial distribution is closed to Ginibre rpf.
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Examples: Bessel rpf–hard edge scaling limit

Bessel RPF (joint work with Honda):

S = [0,∞), β = 2, a > 1

dXi
t = dBi

t +
a

2Xi
t

dt+ lim
r→∞

β

2

∑
|Xj

t |<r

j ̸=i

1

Xi
t −X

j
t

dt

β = 1,4 are in progress.
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Examples: sine rpf (Dyson’s model)–bulk scaling limit

Sineβ RPF: S = R, β = 1,2,4

dXi
t = dBi

t +
β

2
lim
r→∞

∑
|Xi

t−X
j
t |<r, j ̸=i

1

Xi
t −X

j
t

dt

Spohn (1987) considered the case β = 2:

dXi
t = dBi

t +
∑
j ̸=i

1

Xi
t −X

j
t

dt

He constructed the dynamics as a Markov semigr by Dirichlet form.
The def of µ = µsin,β:
β = 2 ⇒ µsin,β is the det rpf generated by (Ksin, dx):

Ksin(x, y) =
sin(π(x− y))

π(x− y)
β = 1,4 ⇒ the correlation funs are given by quaternion det.
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Examples: sine rpf (Dyson’s model)–bulk scaling limit
• The dist of eigen values of the G(O/U/S)E RMs are given by

mN
β (dxN) =

1

Z

N∏
i<j

|xi − xj|βe−
β
4

∑N
i=1 |xi|2dxN , (13)

• mN
β converge the semi-circle law ς(x)dx = 1

π

√
2π − x2dx

• Take xi = si/
√
N in (13) and set

µNsin,β(dsN) =
1

Z

N∑
i<j

|si − sj|β
N∏

k=1

e−β|sk|2/4NdsN (14)

• The stationary m. µ = µsin,β is TDL of µNsin,β
• The associated N particle system is given by the SDE:

dXi
t = dBi

t +
β

2

N∑
j ̸=i

1

Xi
t −X

j
t

dt−
β

2N
Xi

tdt
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Examples: Airy rpf – Soft edge scaling limit

Airy rpf: µAi,β (S = R, β = 1,2,4) joint work with Tanemura.

Take the scaling xi 7→ 2
√
N + siN

−1/6 in

mN
β (dxN) =

1

Z

N∏
i<j

|xi − xj|βe−
β
4

∑N
i=1 |xi|2dxN

and set

µNAi,β(dsN) =
1

Z

∏
i<j

|si − sj|βe−
β
4

∑N
i=1 |2

√
N+N−1/6si|2dsN .

Then µAi,β is the TDL of µNAi,β:

lim
N→∞

µNAi,β = µAi,β
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Examples: Airy rpf – Soft edge scaling limit

• β = 2 ⇒ µNAi,β is the det rpf gen by (KAi, dx):

KAi(x, y) =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y

Here Ai(·) the Airy function such that

Ai(z) =
1

2π

∫
R
dk ei(zk+k3/3), z ∈ C. (15)
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Examples: Airy rpf – Soft edge scaling limit

• From

µNAi,β(dsN) =
1

Z

∏
i<j

|si − sj|βe−
β
4

∑N
i=1 |2

√
N+N−1/6si|2dsN

we deduce the SDE of the N particle system:

dXi
t = dBi

t +
β

2

N∑
j=1,j ̸=i

1

Xi
t −X

j
t

dt−
β

2
{N1/3 +

1

2N1/3
Xi

t}dt

• The point is

lim
N→∞

{
N∑

j=1,j ̸=i

1

Xi
t −X

j
t

−N1/3} converge
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Examples: Airy rpf – Soft edge scaling limit

Thm 8 (with Tanemura). Let β = 1,2,4. Then:

• The log derivative dµAi,β is

dµAi,β(x, s) = β lim
r→∞

{(
∑

|x−si|<r

1

x− si
)−

∫
|x|<r

ϱ(x)

−x
dx}

Here

ϱ(x) =

√
−x

π
1(−∞,0](x)

• Airy rpf µAi,β satisfy (A1)–(A5) and the limit ISDE is

dXi
t = dBi

t +
β

2
lim
r→∞

{(
∑

j ̸=i, |Xj
t |<r

1

Xi
t −X

j
t

)−
∫
|x|<r

ϱ(x)

−x
dx}dt
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Examples: Airy rpf – Soft edge scaling limit
• The key idea is to take the rescaled semi-circle law ς, as the first
approximation of the 1-correlation fun ρ

N,1
Ai,β.

• Our method can be applied to other soft edge scaling.
• Let us label Xi

t > Xi+1
t (∀i).

If β = 2, then the top particle X1
t is the Airy process A(t) in the

sense of Spohn.
In fact, if the tail sigma field of µAi,β is trivial, then the SDE has a
unique strong solution.
Even if this is not the case, we proved that the infinite dim stochastic
dynamics constructed by Spohn, Johansson & others by the space-
time correlation fun is a solution of the prescribed SDE:

dXi
t = dBi

t +
β

2
lim
r→∞

{(
∑

j ̸=i, |Xj
t |<r

1

Xi
t −X

j
t

)−
∫
|x|<r

ϱ(x)

−x
dx}dt

• Recently the Airy process has been extensively studued by Spohn,

Johansson, and many others. Our result is the first time to clarify

the SDE describing the limit infinite system for the soft edge.
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Examples: Airy rpf – Soft edge scaling limit

• The SDE gives a kind of Girsanov formula.

• These examples are the first time that the infinite dy-

namics are constructed for rpf appeared in random matrix

theory with β = 1,4 even if the bulk and the hard edge

as well as the soft edge scaling
In one dimensional system, the method of space-time

correaltion functions are avialable (Nagao, Katori-Tanemura,

Spohn, and others), but this method is restricted to

β = 2.

• By construction, if the total system start from the Airyβ
rpf µAi,β, then the distribution of the top particle X1

t

equals Fβ,edge(x), the β Tracy-Widom distribution, where

β = 1,2,4.
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To sum up

Thm 9.Ginibre RPF (β = 2), Sine RPFs, Airy RPFs and
Bessel RPFs (β = 1,2,4) are qausi-Gibbs m. for Ψ(x) =
−β log |x|, and the log derivative can be calculated. The
asociated ISDE has a solution. If the tail σ field is trivial,
then unique strong solution exists.
• The key point of the proof is to use the small fluctuation property
(SFP) of linear statistics for these measures.
• SFP was established by Soshnikov (Sine, Airy, Bessel RPFs), Shirai
(Ginibre RPF).

• Proof consists of several parts:

(1) To find a good finite particle approximation {µN}
(2) To prove uniform small fluctuation of {µN}
(3) To prove uni bounds of 1 & 2 cor funs of {µN}
(4) To carry out the limiting procedure of dµN & quasi-Gibbs property

by using general theorems. (O. 11,12)
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A phase transition conjecture for 2D Coulomb stochastic dynamics

Let β ∈ [0,∞) and set

dXi
t = dBi

t +
β

2
lim
r→∞

∑
|Xi

t−X
j
t |<r,j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

dt.

When β = 2, then the SDE has a solution, for general β

we assume the existence of solution and the rpf µgin,β.

• We tag X
i0
t and investgate the diffusive scaling:

lim
ϵ→0

ϵX
i0
t/ϵ2

=
√

2αself[µgin,β]Bt

• Assume X
i0
0 = 0 and

∑
i ̸=i0

δXi
0
∼ µgin,β,o.

• αself[·] is called the self-diffusion matrix.
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A phase transition conjecture for 2D Coulomb stochastic dynamics

dXi
t = dBi

t +
β

2
lim
r→∞

∑
|Xi

t−X
j
t |<r,j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

dt

lim
ϵ→0

X
i0
t/ϵ2

=
√
2αself[µgin,β]Bt, X

i0
0 = 0,

∑
i ̸=i0

δXi
0
∼ µgin,β,o.

Conj: There exist constants β1 < β2 < β3 such that
(C1) β < β1 ⇒ αself[µgin,β] > 0 (diffusive)
(C2) β1 < β < ∞ ⇒ αself[µgin,β] = 0 (subdiffusive),

(C3) β2 < β < ∞ ⇒ X
i0
t has an inv prob measure

X
i0
t = O(log t) (log behaivior)

(C4) β3 < β < ∞ ⇒ (Xi
t)i∈N form a lattice like system.

Moreover,

β1 ∼ 1, β2 ∼ 2.
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Rigorous results: homogenization of diffusion in 2D Coulomb-periodic env.

Let s =
∑

i δsi ∈ S. Let Xs
t ∈ R2 be the solution of

dXs
t = dBt +

β

2
lim
q→∞

∑
|Xs

t−si|<q

Xs
t − si

|Xs
t − si|2

dt

Let µ be a rpf, and set for a.s. s w.r.t. µ

lim
ε→∞

εXs
t/ε2

=
√
α
β
eff[µ]Bt (16)

Thm 10. µper be a periodic rpf ⇒
(1) α

β
eff[µper] > 0.

(2) α
β
eff[µper,0] > 0 for β < 1

α
β
eff[µper,0] = 0, Xs

t has a inv prob m for β > 2
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Rigorous results: homogenization of diffusion in Ginibre env.
Let s =

∑
i δsi ∈ S. Let Xs

t ∈ R2 be the solution of

dXs
t = dBt + lim

q→∞

∑
|Xs

t−si|<q

Xs
t − si

|Xs
t − si|2

dt

Thm 11.Assume s ∼ µgin,2,o and set

lim
ε→∞

εXs
t/ε2

=
√
α2
eff[µgin,2,o]Bt

Then

α2
eff[µgin,2,o] = 0

Conj: The positivity of α2
eff[µgin,2] is an open problem.

Since µgin,2 is similar to µper, we should have

α2
eff[µgin,2] > 0
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Observation: self-diffusion of 2D Coulomb system 1

Obs 0: µgin,β exists for general β > 0.

Obs 1: Since (by O.-Shirai [2012])

µgin,2 ⊥ µgin,2,o (17)

we have for general β > β1 (β1 ≤ 2)

µgin,β ⊥ µgin,β,o. (18)

Let Xt = (Xi
t)i∈N be the solution of

dXi
t = dBi

t +
β

2
lim
r→∞

∑
|Xi

t−X
j
t |<r, j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

dt (19)

Note that

Xt :=
∑
i∈N

δXi
t
∼ µgin,β (20)
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Observation: self-diffusion of 2D Coulomb system 2

Let X1
t be the tag particle, and set Y i

t = Xi+1
t −X1

t .
Obs 2: By (18) and

Yt :=
∑
i̸=i0

δY i
t
∼ µgin,β,o, (21)

we have X∗
t ∈ C such that

X∗
t ∼ prob m, Yt + δX∗

t
∼ Xt ∼ µgin,β (22)

Obs 3:

dX1
t = dB1

t +
β

2
lim
r→∞

∑
|X1

t −Xi
t |<r, i≥2

X1
t −Xi

t

|X1
t −Xi

t|2
dt (23)

dX1
t = dB1

t −
β

2
lim
r→∞

∑
|Y i

t |<r, i∈N

Y i
t

|Y i
t |2

dt
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Observation: self-diffusion of 2D Coulomb system 3

Set Y ∗
t = X∗

t −X1
t . Then from

dX1
t = dB1

t −
β

2
lim
r→∞

∑
|Y i

t |<r, i∈N

Y i
t

|Y i
t |2

dt (24)

we have

dX1
t = dB1

t −
β

2

X1
t −X∗

t

|X1
t −X∗

t |2
dt−

β

2
lim
r→∞

∑
|Y i

t |<r, i∈N∪{∗}

Y i
t

|Y i
t |2

dt

Hence

dX1
t = dB1

t −
β

2

X1
t

|X1
t |2

dt (25)

+
β

2
{

X1
t

|X1
t |2

−
X1

t −X∗
t

|X1
t −X∗

t |2
}dt−

β

2
lim
r→∞

∑
|Y i
t |<r,

i∈N∪{∗}

Y i
t

|Y i
t |2

dt
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Observation: self-diffusion of 2D Coulomb system 4

dX1
t = dB1

t −
β

2

X1
t

|X1
t |2

dt (26)

+
β

2
{

X1
t

|X1
t |2

−
X1

t −X∗
t

|X1
t −X∗

t |2
}dt−

β

2
lim
r→∞

∑
|Y i

t |<r, i∈N∪{∗}

Y i
t

|Y i
t |2

dt

Obs 4: (1) By homogenization, ∃
√
2a[β] ≤ E

ϵ{B1
u/ϵ2

−
β

2
lim
r→∞

∫ u/ϵ2

0

∑
|Y i

t |<r, i∈N∪{∗}

Y i
t

|Y i
t |2

dt} =
√

2a[β]B̂u (27)

Since X∗
t has inv prob

ϵ

∫ u/ϵ2

0

β

2
{

X1
t

|X1
t |2

−
X1

t −X∗
t

|X1
t −X∗

t |2
}dt ∼ o(ϵ) (28)
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Observation: self-diffusion of 2D Coulomb system 5

Hence we have (approximately)

dX1
t =

√
2a[β]dB1

t −
β

2

X1
t

|X1
t |2

dt (29)

By the simple calculation (β > β00, B̃t is 1D Br m)

d|X1
t | =

√
2a[β]dB̃t + (a[β]−

β

2
)

1

|X1
t |
dt (30)

So the phase transition follows from the one of Bessel

processes.
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Simulation of Ginibre IBM (2D Coulomb system) and phase transition

dXi
t = dBi

t +
β

2
lim
r→∞

∑
|Xi

t−X
j
t |<r j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

dt (T)

dXi
t = dBi

t +
β

2
{−αXi

t + lim
r→∞

∑
|Xj

t |<r j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

}dt. (OU)

Here, since ρ1 = 1/π, α = |{|x| ≤ 1}|ρ1 = 1.

• Taking (OU) & (T)into account we take the model:

dXi
t = dBi

t +
β

2
{−Xi

t +
N∑

j=1 j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

}dt (OUN)

dXi
t = dBi

t +
β

2
{

N∑
j=1 j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

}dt (TN)
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Simulation: 3D Coulomb system

dXi
t = dBi

t +
β

2
lim
r→∞

∑
|Xi

t−X
j
t |<r j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

dt (T)

dXi
t = dBi

t +
β

2
{−αXi

t + lim
r→∞

∑
|Xj

t |<r j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

}dt. (OU)

We take ρ1 = 1. So α = |{|x| ≤ 1}|ρ1 = 4π/3.
• Taking (OU) & (T)into account we take the model:

dXi
t = dBi

t +
β

2
{−

4π

3
Xi

t +
N∑

j=1 j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

}dt (OUN)

dXi
t = dBi

t +
β

2
{

N∑
j=1 j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

}dt (TN)
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Representation of α Let Ẽ : L2(µgin,,2,,2,o)⊗L2(µgin,,2,o) →
R:

Ẽ(f , g) =

∫
S

1

2

2∑
i=1

figidµgin,,2,o for f = (f1, f2)

D̃ = {(D1f,D2f); f ∈ D0}

Here Di is the generator of the translation, ei unit vector.

There’s a unique ui ∈ D̃ s.t.

Ẽ(ui, g) = Ẽ(ei, g) for all g ∈ D̃ (31)
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Thm 12 (O.98).The effective-diffusion matrix α is given

by

αij = Ẽ(ei − ui, ej − uj) (32)

Moreover, α = 0 if and only if ei ∈ D̃ for all i.

• We need to prove e1, e2 ∈ D̃
• One can check (Fr,0) ∈ D̃. Hence

e1 = lim
r→∞

(−Fr,0) weakly in D̃

This completes the proof of Thm 8.

Conj: If we replace µgin,,2,o by µgin,2, then α > 0. Indeed,

in case of periodic µ, this is the case.
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General theorems for Infinite-dim SDE: set up

Related problems:
• Yoo proved that Determinantal RPF with

Spec(K) ⊂ [0,1)

are Gibbs measures. So it is likely all Determinantal RPF
are quasi Gibbs measures, i.e., under the condition

Spec(K) ⊂ [0,1]

To strength Yoo’s result like this is important because
RPFs in infinite volume appeared in RMT usually satisfy
that

Spec(K) = {0,1}
• To calculate the log derivative of Determinantal RPFs.
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• β ensemble of Sine, Bessel, Airy for general β > 0:

(Valkó, B.-Világ, B., Raḿırez, J.-Rider, B.-Világ, B.)

Good finite approximations are clear: Log gasses.

The problem is to control correlation functions and to

prove small fluctuations.

• The spectrum of Gaussian Analitic functions

(Some progress done by Shirai)

• In particular, GAF with Bergmann Kernel
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• β ensemble of Sine, Bessel, Airy for general β > 0:
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