
Unspecified Journal
Volume 00, Number 0, Pages 000–000
S ????-????(XX)0000-0

STOCHASTIC GEOMETRY AND DYNAMICS OF INFINITELY

MANY PARTICLE SYSTEMS

—RANDOM MATRICES AND INTERACTING BROWNIAN

MOTIONS IN INFINITE DIMENSIONS

HIROFUMI OSADA

Dedicated to the memory of Nobuyuki Ikeda

Abstract. We explain the general theories involved in solving an infinite-

dimensional stochastic differential equation (ISDE) for interacting Brownian
motions in infinite dimensions related to random matrices. Typical exam-
ples are the stochastic dynamics of infinite particle systems with logarithmic
interaction potentials such as the sine, Airy, Bessel, and also for the Ginibre in-
teracting Brownian motions. The first three are infinite-dimensional stochastic

dynamics in one-dimensional space related to random matrices called Gaussian

ensembles. They are the stationary distributions of interacting Brownian mo-
tions and given by the limit point processes of the distributions of eigenvalues

of these random matrices.
The sine, Airy, and Bessel point processes and interacting Brownian mo-

tions are thought to be geometrically and dynamically universal as the limits of

bulk, soft edge, and hard edge scaling. The Ginibre point process is a rotation-
and translation-invariant point process on R2, and an equilibrium state of the

Ginibre interacting Brownian motions. It is the bulk limit of the distributions

of eigenvalues of non-Hermitian Gaussian random matrices.
When the interacting Brownian motions constitute a one-dimensional sys-

tem interacting with each other through the logarithmic potential with inverse

temperature β = 2, an algebraic construction is known in which the stochastic
dynamics are defined by the space-time correlation function. The approach

based on the stochastic analysis (called the analytic approach) can be applied

to an extremely wide class. If we apply the analytic approach to this system,
we see that these two constructions give the same stochastic dynamics. From

the algebraic construction, despite being an infinite interacting particle system,
it is possible to represent and calculate various quantities such as moments by

the correlation functions. We can thus obtain quantitative information. From

the analytic construction, it is possible to represent the dynamics as a solution
of an ISDE. We can obtain qualitative information such as semi-martingale

properties, continuity, and non-collision properties of each particle, and the

strong Markov property of the infinite particle system as a whole.
Ginibre interacting Brownian motions constitute a two-dimensional infinite

particle system related to non-Hermitian Gaussian random matrices. It has a

logarithmic interaction potential with β = 2, but no algebraic configurations
are known.The present result is the only construction.
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1. Prologue

We explain the general theories involved in solving an infinite-dimensional sto-
chastic differential equation (ISDE) called the interacting Brownian motions in
infinite dimensions. We have developed recently two general theories for construct-
ing interacting Brownian motions. One offers a geometric approach for solving the
ISDE (for convenience referred to as the first theory), and the other provides a new
method to establish the existence of strong solutions and the pathwise uniqueness
of solutions of the ISDE by introducing a new notion of solution of an ISDE (called
the IFC solution) and examining various tail σ-fields (referred to as the second
theory). The former is developed in a quartet of papers [40, 41, 42, 43], and the
latter is developed in [49] together with [50, 52, 53, 51]. We shall explain the basic
ideas from these papers.

Interacting Brownian motions arising from random matrices have logarithmic in-
teraction potentials (two-dimensional Coulomb potentials). These potentials inher-
ently have a very strong long-range effect, from which some interesting phenomena
develop that we shall present.

Herbert Spohn at Minnesota in 1986:
The starting point of this research is a lecture presented in 1986 by Spohn at-

tended by the author. The Institute for Mathematics and Its Applications (IMA)
was established in Minnesota University in 1982. Between 1985–1986, the IMA had
a program called Stochastic Differential Equations and Their Applications. George
Papanicolaou organized the workshop “Hydrodynamic behavior and interacting
particle systems”, where the lecture was delivered. What the author would like to
portray is the atmosphere at the workshop for Spohn’s lecture.

Spohn was speaking quickly, writing equations on the whiteboard behind the
platform of the big venue. The author could hardly understand his lecture on
the stage, and the only thing that impressed most was the stochastic differential
equation (SDE) he wrote in the corner of the whiteboard:

dXi
t = dBi

t +

∞∑
j ̸=i

1

Xi
t −Xj

t

dt (i ∈ N).(1.1)

This is the ISDE called Dyson’s model in infinite dimensions.
The reason why this equation impressed is that the ISDE (1.1) has a beautiful

shape, and that there was a mysteriousness in solving this equation despite the
effect of the interaction strongly remaining at infinity. In reading the proceedings
[61], it turned out to be that Spohn obtained informally the ISDE (1.1) as a limit
of the N -particle SDEs

dXN ,i
t = dBi

t +

N∑
j ̸=i

1

XN ,i
t −XN ,j

t

dt− 1

N
XN ,i

t dt (i = 1, . . . ,N )(1.2)

and he did not solve the ISDE (1.1) itself.
Consider the stochastic dynamics XN given by the finite-dimensional SDEs (FS-

DEs)

XN
t =

N∑
i=1

δXN ,i
t

.
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Then the stationary distribution µN of solutions of (1.2) is

1

Z
{

N∏
i<j

|xi − xj |2} exp

{
− 1

2N

N∑
k=1

|xk|2
}
dxN .

The corresponding distribution of the configuration space S is denoted by the same
symbol µN . This is the image measure µN ◦u−1 through the map u((si)) =

∑
i δsi ,

and is the stationary distribution of the unlabeled dynamics XN by construction.
From the result of random matrix theory (orthogonal polynomial theory), its limit
µ exists as the probability measure on the configuration space S and is called the
Sine2 point process. We recall here a probability measure on the configuration
space is generally called a point process (also called a random point field).

Spohn proved that the natural positive bilinear form associated with µ is closable
on L2(µ). From this he constructed the L2(S, µ)-Markovian semi-group associated
with the closure of the Dirichlet form. This was the meaning of the stochastic
dynamics given by (1.1). His proof of the closability was via the free fermion
theory. He used various tools such as random matrices, the matrix representation
of correlation functions, and the fermion representation. Although a long time ago,
the lecture left a long-lasting profound impression.

Spohn showed that the fluctuation of the particles is extremely small, so the
infinite sum of the coefficients of the ISDE described above also has a significance
as a conditional convergence. For long-range correlations such that the interaction
potential is infinite range and polynomial decay, we could not solve the ISDE even
with good potentials such as those of Ruelle’s class. Therefore, it seemed impossible
to solve the ISDE (1.1) with logarithmic interaction potentials.

Recently, Tsai [65] has solved a family of ISDEs including (1.1) such that for
general β ≥ 1

dXi
t = dBi

t +
β

2
lim

R→∞

∞∑
j ̸=i;|Xi

t−Xj
t |<R

1

Xi
t −Xj

t

dt (i ∈ N).

His method uses the special structure of one-dimensional system and a special
monotonicity of the logarithmic interaction potential appearing only in this model.

2. Typical examples

In a sequence of papers [40, 41, 42, 43], we constructed a general theory to solve a
class of ISDEs, called interacting Brownian motions. Interacting Brownian motions
are usually described by SDEs such that

dXi
t = dBi

t −
β

2
∇Φ(Xi

t)dt−
β

2

∞∑
j ̸=i

∇Ψ(Xi
t , X

j
t )dt (i ∈ N),(2.1)

where Φ : Rd → R ∪ {∞} is a free potential and Ψ : Rd×Rd → R ∪ {∞} is an
interaction potential, and β a non-negative constant called inverse temperature. If
β is large, then the system is affected more strongly by the interaction potentials.
In the following, all examples other than the Airy interacting Brownian motions
are of the form given in (2.1). By definition, the solution X = (Xi)i∈N of (2.1) is
an (Rd)N-valued stochastic process.
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What we were aiming at is solving the ISDE as related to random matrices, for
which the interaction potential Ψ is

Ψ(x, y) = − log |x− y|.(2.2)

Below are a few typical examples of interacting Brownian motions. The space
in which the particles move is denoted as S. Because S = Rd, we identify S by
the dimension d, the exception being the Bessel interacting Brownian motions for
which S = [0,∞).

The first four examples related to random matrices, we take (2.2). The last
two examples are typical of interaction potentials in statistical physics; both are of
Ruelle’s class. All these potentials are long-range interactions, so the conventional
theory cannot be applied in constructing the solutions of the ISDE.

When considering an ISDE, the equation cannot have meaning over the entire
space (Rd)N, and an appropriate subset has to be set. We first consider a stationary
state µ naturally equipped with an ISDE and take the set as the support of µ.
Here µ is not a probability measure on (Rd)N but the probability measure on the
configuration space S on Rd

S = {s =
∑
i

δsi ; s(Sr) < ∞ for all r ∈ N},(2.3)

where Sr = {|s| ≤ r}, δa is the Delta measure at a, and S is equipped with the
vague topology. By construction S is a Polish space.

We call s = (si) ∈ (Rd)N labeled particles and s =
∑

i δsi ∈ S unlabeled particles,
respectively. In the former, individual particles are numbered and distinguishable,
whereas in the latter, individual particles are not distinguishable. Define the two
stochastic dynamics X = {Xt} and X = {Xt} by

Xt = (Xi
t)i∈N (labeled dynamics),

Xt =

∞∑
i∈N

δXi
t

(unlabeled dynamics).

Below we set X =
∑

i δXi by Xt =
∑

i δXi
t
. The map u :SN → S, u(s) =

∑
i δsi , is

called the unlabeling map, and l :S→SN is called a labeling map. The unlabeling
map u is unique, whereas we have infinitely many labeling maps l. One reason
for introducing the unlabeled dynamics for interacting Brownian motions is labeled
dynamics do not have any stationary distributions, whereas the unlabeled dynamics
may have. This is similar to the role of unlabeled particles in the theory of infinite-
volume Gibbs measures.

A solution space of an ISDE is the subset of (Rd)N in which the labeled particles
move. The choice of solution space is an important issue in considering the ISDE
(2.1). We consider the support Sµ of the probability measure µ on a configuration
space and take a suitable subset of the inverse image u−1(Sµ) of Sµ as the solution
space. Here, µ is suitably chosen for the ISDE. Hence, we have to clarify the mean-
ing of the point process µ related to the ISDE. Indeed, choosing µ appropriately
for each ISDE, as we shall show later, means solving “differential equation (7.5)
for µ” determined from the ISDE. In this sense as well, our theory is geometric.

We recall some notation. A probability measure µ on the configuration space
(S,B(S)) is called a point process. For a point process µ on S, a symmetric function
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ρn :Sn → [0,∞) is called the n-point correlation function of µ with respect to the
Radon measure m if ρn satisfies∫

A
k1
1 ×···×Akm

m

ρn(x1, . . . , xn)m(dx1) · · ·m(dxn) =

∫
S

m∏
i=1

s(Ai)!

(s(Ai)− ki)!
dµ,

where A1, . . . , Am ∈ B(S), k1, . . . , km ∈ N, k1 + · · · + km = n. Here we set
s(Ai)!/(s(Ai)− ki)! = 0 for s(Ai)− ki < 0.

A point process µ is called a determinantal point process with kernelK :S×S→C
and Radon measure m (a (K,m)-determinantal point process) if for each n ∈ N the
n-correlation function of µ with respect to m is given by

ρn(x1, . . . , xn) = det[K(xi, xj)]
n
i,j=1.

If K is Hermite symmetric with spectrum contained in [0, 1], then the (K,m)-
determinantal point process exists and is unique [27, 58, 60]. Here, we always take
m to be the Lebesgue measure.

With this preparation, the rest of this section describes typical examples of
interacting Brownian motions.

2.1. Sineβ-interacting Brownian motion (Dyson’s model in infinite di-
mensions) [41, 65]:

Let d = 1, Φ(x) = 0, Ψ(x, y) = − log |x− y|, β = 1, 2, 4 .

dXi
t = dBi

t +
β

2
lim
r→∞

∑
|Xi

t−Xj
t |<r, j ̸=i

1

Xi
t −Xj

t

dt (i ∈ N).(2.4)

We note that the stationary distribution of the unlabeled dynamics associated with
(2.4) has translation invariance in R-action. Hence, the sum of the drift coefficient
in (2.4) does not converge absolutely; it only enjoys conditional convergence. ISDE
(2.4) is called Dyson’s model in infinite dimensions, which corresponds to (1.1)
mentioned before. The stationary distribution of the associated unlabeled dynamics
is called the sine2 point process, which is a determinantal point process for which
the n-point correlation function with respect to the Lebesgue measure is given by

ρnsin,2(x) = det[Ksin,2(xi − xj)]
n
i,j=1,

where Ksin,2 is the sine kernel which is a continuous function such that

Ksin,2(x− y) =
sin 2(x− y)

π(x− y)
.(2.5)

If β = 1, 4, then the analogous formula are given by the Pfaffian (or quaternion
[29, 30]). The same holds for point processes in one dimension arising from random
matrices. Sineβ-point processes are translation and rotation invariant (β = 1, 2, 4).
These properties are inherited by sineβ-interacting Brownian motions.

2.2. Airyβ-interacting Brownian motion [50]:
Let d = 1, Φ(x) = 0, Ψ(x, y) = − log |x− y|, and β = 1, 2, 4.

dXi
t = dBi

t +
β

2
lim
r→∞

{( ∑
j ̸=i, |Xj

t |<r

1

Xi
t −Xj

t

)
−

∫
|x|<r

ϱ̂(x)

−x
dx

}
dt (i ∈ N).



6 HIROFUMI OSADA

Here ϱ̂ is given by

ϱ̂(x) =
1(−∞,0)(x)

π

√
−x.

The stationary distribution µAi,2 of the associated unlabeled dynamics is a deter-
minantal point process called an Airyβ-point process. When β = 2, its n-point
correlation function ρnAi,2 is such that

ρnAi,2(xn) = det[KAi,2(xi, xj)]
n
i,j=1.

Here the kernel function is a continuous function given by

KAi,2(x, y) =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y
(x ̸= y),

where Ai′(x) = dAi(x)/dx and Ai(·) is the Airy function defined by

Ai(z) =
1

2π

∫
R
dk ei(zk+k3/3), z ∈ R.

2.3. Besselα,β-interacting Brownian motion [11]:
Let d = 1, S = [0,∞), and 1 ≤ α < ∞. The ISDE is given by

dXi
t = dBi

t + { α

2Xi
t

+
β

2

∞∑
j ̸=i

1

Xi
t −Xj

t

}dt (i ∈ N).

The stationary distribution µBe,α,β of the associated unlabeled dynamics is a de-
terminantal point process ρnAi,2 called a Besselα,β-point process, where β = 1, 2, 4.
When β = 2, its n-point correlation function ρnBe,α,2 with respect to the Lebesgue

measure on [0,∞) is given by

ρnBe,α,2(x
n) = det[KBe,α,2(xi, xj)]

n
i,j=1.

Here the kernel function KBe,α,2 is a continuous function such that

KBe,α,2(x, y) =
Jα(

√
x)
√
yJ ′

α(
√
y)−

√
xJ ′

α(
√
x)Jα(

√
y)

2(x− y)
(x ̸= y).

2.4. Ginibre interacting Brownian motion [41]:
Let d = 2 and Ψ(x, y) = − log |x − y|. We consider the two ISDEs (2.6) and

(2.7):

dXi
t = dBi

t +
β

2
lim
r→∞

∑
|Xi

t−Xj
t |<r, j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |2
dt (i ∈ N),(2.6)

dXi
t = dBi

t −Xi
t +

β

2
lim
r→∞

∑
|Xj

t |<r, j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |2
dt (i ∈ N).(2.7)

If β = 2, the stationary distribution of the unlabeled dynamics associated with
these ISDEs are the Ginibre point process µGin, which is a determinantal point
process with kernel function given by

KGin(x, y) =
1

π
exp{−1

2
|x|2 + xȳ − 1

2
|y|2},

where we naturally identify R2 with C; ȳ is the complex conjugate of y ∈ C. Clearly,
ISDEs (2.6) and (2.7) are different SDEs. These equations have the same solutions
on the support of the Ginibre point process µGin for µGin-a.s. starting points. Both
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are strong solutions and enjoy pathwise uniqueness. Thus, the different ISDEs
have the same pathwise-unique strong solutions. This is the first example of the
dynamical rigidity of interacting Brownian motions with logarithmic interaction
potentials.

All the examples given above are related to random matrices. We next present
examples of Gibbs measures associated with Ruelle’s class interaction potentials.
Here, we mean Gibbs measures are point processes for which conditional distri-
butions are given by the Dobrushin–Lanford–Ruelle (DLR) equation. The precise
definition of Gibbs measure is given by (5.5). Our general theory can be applied to
essentially all Gibbs measures.

2.5. Lennard-Jones 6-12 potential:
Let d = 3, β > 0, and Ψ6,12(x) = {|x|−12 − |x|−6}. The interacting potential

Ψ6,12 is called the Lennard–Jones 6-12 potential. The associated ISDE is

dXi
t = dBi

t +
β

2

∞∑
j=1,j ̸=i

{12(X
i
t −Xj

t )

|Xi
t −Xj

t |14
− 6(Xi

t −Xj
t )

|Xi
t −Xj

t |8
}dt (i ∈ N).

2.6. Riesz potentials of Ruelle’s class:
Let d < a ∈ N, 0 < β, and Ψa(x) = (β/a)|x|−a. The associated ISDE is

dXi
t = dBi

t +
β

2

∞∑
j=1,j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |a+2
dt (i ∈ N).(2.8)

At first glance this ISDE resembles (2.4) and (2.6). Indeed, (2.8) corresponds to
(2.4) and (2.6) with a = 0. The sum of the drift term converges absolutely unlike
(2.4) and (2.6).

3. Random matrices and interacting Brownian motions

In this section, we explain the relationship between random matrices and the
interacting Brownian motions. We assume β = 1, 2, 4 throughout this section. We
refer to [29, 1, 5] for the general theory of random matrices.

Gaussian random matrices of order N are square matrices MN = [mij ]
N
i,j=1 for

which each elements are either real, Hermitian, or quaternionic—that is, the dis-
tributions are invariant under orthogonal, unitary, or symplectic transformations
(denoted by capital letters O/U/S)— and are independent except for these sym-
metries. These random matrices are referred to as Gaussian ensembles labeled
G(O/U/S)E. Let F denote one of the real/complex/quaternion fields; they corre-
spond respectively to G(O/U/S)E. We assumeMN is F-symmetric, and its elements
are mean free, F-valued Gaussian random variables. Moreover, their covariances
are one for i < j. On the diagonal, that is i = j, they are real Gaussian random
variable with variance one. Then the eigenvalue distribution of MN is given by

mN
β (dxN ) =

1

Z
{

N∏
i<j

|xi − xj |β} exp

{
−β

4

N∑
k=1

|xk|2
}
dxN ,(3.1)

where xN = (x1, . . . , xN ), dxN = dx1 · · · dxN . Here GOE, GUE, and GSE corre-
spond to β = 1, 2, and 4, respectively. Equation (3.1) makes sense for all 0 < β < ∞
and correspond to typical log gases [5].
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Let P denote the set of all probability measures on (R,B(R)). Under mN
β (dxN ),

we consider P-valued random variable

XN =
1

N

N∑
i=1

δxi/
√
N

and denote by µN
β its distribution. By definition, µN

β is a probability measure on

P. Let σsemi(x)dx ∈ P such that

σsemi(x) =
1

π

√
4− x21(−2,2)(x).(3.2)

The probability measure σsemi(x)dx is called the semi-circle distribution. The cel-
ebrated Wigner semicircle law asserts that {µN

β } converges weakly to δσsemi(x)dx:

lim
N→∞

µN
β = δσsemi(x)dx weakly.

Because the limit distribution is non random, we can regard this as a law of large
numbers in random matrix theory. Then what is the counterpart of the central
limit theorem in random matrix theory? Furthermore, will it lead to invariance
principles?

We call a point θ in the support of the semi-circle distribution a macro-position.
We rescale (3.2) at θ ∈ [−2, 2] to obtain meaningful limits. We can divide the
support [−2, 2] into two parts |θ| < 2 and θ = ±2. The former is called the bulk
and the latter is called the soft edge.

3.1. Bulk limits and universality. The scaling at a bulk position θ ∈ {|θ| < 2}
is called the bulk scaling. We now take this scaling:

xi 7→
si + θN√

N
.

Then the distribution of mN
β (dsN ) is

m̃N
β (dsN ) =

1

Z
{

N∏
i<j

|si − sj |β} exp

{
−β

4

N∑
k=1

∣∣∣sk + θN√
N

∣∣∣2} dsN .(3.3)

Let us denote by µN
β,θ the corresponding distribution in the configuration space S.

Then the limit of µN
β,θ becomes the sineβ,θ point process µβ,θ:

lim
N→∞

µN
β,θ = µβ,θ weakly.

Here µβ,θ is the determinantal point process for which correlation functions with
respect to the Lebesgue measure is given by the kernel function

Kθ(x, y) =
sin{

√
4− θ2(x− y)}
π(x− y)

.

The bulk scaling limit has a universality in the sense that the limits are always
the sine2 point process with different constant density. The case θ = 0 has already
appeared in (2.5). We next consider its dynamical counterpart.
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We deduce from (3.3) the SDE describing a N -particle systems as follows: For
each i = 1, . . . ,N , XN = (XN ,i)Ni=1 の is given by

dXN ,i
t = dBi

t +
β

2

N∑
j ̸=i

1

XN ,i
t −XN ,j

t

dt− β

2N
XN ,i

t dt− β

2
θdt(3.4)

Here β > 0 is taken to be general. As N → ∞, (3.4) becomes

dX∞,i
t = dBi

t +
β

2

∞∑
j ̸=i

1

X∞,i
t −X∞,j

t

dt− β

2
θdt.

This ISDE does not give a correct answer other than θ = 0. Indeed, the limit ISDE
is independent of θ and we always have

dXi
t = dBi

t +
β

2
lim
r→∞

∑
|Xi

t−Xj
t |<r, j ̸=i

1

Xi
t −Xj

t

dt (i ∈ N).(2.4)

Recently, we proved an SDE gap phenomena:

Theorem 3.1 (Kawamoto-O. [22]). Let β = 2. Let the initial distribution of the
unlabeled dynamics be µN

2,θ and take the label lN such that µN
2,θ ◦ (lN )−1 converge

weakly to µ2,θ ◦ l−1. Then, for each m ∈ N, we have the first m-particles of XN =
(XN ,i)Ni=1 converge weakly in C([0,∞);Rm) to (Xi)mi=1; that is,

lim
N→∞

(XN ,i)mi=1 = (Xi)mi=1 (weakly).

Here (Xi)mi=1 is the first m-components of the solution of (2.4).

We mentioned the “SDE gap” above because the form of the SDEs is different
for finite-particle systems and the limit ISDE. We thus have a gap of SDEs. This
phenomenon has dynamical universality corresponding to the above (geometric)
universality in the sense that the limit stochastic dynamics is always described by
the same ISDE independent of θ.

In addition, θ is included only in the initial condition. The solution of this ISDE
is highly nonergodic, and it will stay in the strata (infinite-dimensional submanifold)
evolving by itself as determined by θ [21]. However, the ISDE describing it is the
same. This result can be interpreted as proving that the drift coefficient of the
ISDE (2.4) is oriented in the direction tangential to the submanifold.

We expect that this result holds for general β-ensembles. We construct a general
result regarding the convergence of SDE solutions of N -particle systems to that of
ISDE [24]; as a corollary, Theorem 3.1 obtains. If the interaction potentials are
of Ruelle’s class, then we can apply [24] straightforwardly without any calculation.
For logarithmic potentials, as we see in Theorem 3.1, we need a fine calculation. In
one-dimensional systems with a logarithmic potential and β = 2, we can prove the
same result by an algebraic method based on a calculation of space-time correlation
functions [53, 51]. We therefore see that for such a class there exist two completely
different methods for constructing stochastic dynamics.

3.2. Soft edge limit and Airy interacting Brownian motions.
At the positions θ = ±2, the scaling is called the soft-edge scaling. We then

consider the correspondence such that

x 7−→ 2
√
N +

s

N 1/6
.
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The distributions mN
Ai,β(ds) of the labeled N -particles are given by

mN
Ai,β(dsN ) =

1

Z
{

N∏
i<j

|si − sj |β} exp
{
− β

4

N∑
k=1

|2
√
N +

sk
N 1/6

|2
}
dsN .

From this we deduce that the SDE describing the reversible N -particle systems
XN = (XN ,1

t , . . . , XN ,N
t ) is given by

dXN ,i
t = dBi

t +
β

2

N∑
j=1, j ̸=i

1

XN ,i
t −XN ,j

t

dt− β

2
{N 1/3 +

1

2N 1/3
XN ,i

t }dt.(3.5)

We now want to take N to infinity. The difficulty is that the coefficient in (3.5)
contains the divergent term

−β

2
N 1/3dt.

In [50], we solved the ISDE

dXi
t = dBi

t +
β

2
lim
r→∞

{( ∑
j ̸=i, |Xj

t |<r

1

Xi
t −Xj

t

)
−

∫
|x|<r

ϱ̂(x)

−x
dx

}
dt,(3.6)

and in [24] it was proved that the solutions of (3.5) converge weakly to that of (3.6)
under suitable assumptions regarding the initial distributions.

In the following, we clarify the reason why (3.6) appears in the limit. We first
consider the inverse transformation of the soft-edge scaling and rescale the limit
semicircle distribution according to this:

ϱ̂N (x) = N 1/3σsemi(xN
−2/3 + 2).(3.7)

We regard ϱ̂N in (3.7) as a first approximation of the one-point correlation function
of the reduced Palm measure of N -particle systems conditioned at x. Then clearly∫

R
ϱ̂N (x)dx = N .

A simple calculation shows that

ϱ̂N (x) =
1(−4N 2/3,0)(x)

π

√
−x

(
1 +

x

4N 2/3

)
,(3.8)

lim
N→∞

ϱ̂N (x) = ϱ̂(x) compact uniformly.(3.9)

The key point is the following identity.

N 1/3 =

∫
R

ϱ̂N (x)

−x
dx.(3.10)

The appearance ϱ̂(x) in (3.6) stems from (3.8) and (3.9). Indeed, as N → ∞,

dXi
t ∼ dBi

t +
β

2

{( N∑
j ̸=i, j=1

1

Xi
t −Xj

t

)
−N 1/3

}
dt

∼ dBi
t +

β

2
lim
r→∞

{( ∑
j ̸=i, |Xj

t |<r

1

Xi
t −Xj

t

)
−

∫
|x|<r

ϱ̂N (x)

−x
dx

}
dt by (3.10)

∼ dBi
t +

β

2
lim
r→∞

{( ∑
j ̸=i, |Xj

t |<r

1

Xi
t −Xj

t

)
−

∫
|x|<r

ϱ̂(x)

−x
dx

}
dt by (3.9).
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We thus obtain ISDE (3.6). We expect that this procedure is common in the soft-
edge scaling limits. We note that the solutions of the ISDE in the limit satisfy the
non-collision property [37]; that is, X = (Xi

t)i∈N satisfies the following:

P (Xi
t ̸= Xj

t 0 ≤ ∀t < ∞, i ̸= j) = 1.

Hence, we label the particles as Xi
t > Xj

t (∀ i < j ∈ N). Then the stochastic
dynamics (Xi

t)i∈N is an RN
>–valued process, where RN

> = {(xi) ∈ RN;xi > xj (i <
j)}. If β = 2, then the stochastic dynamics can be constructed by the algebraic
method (see Section 4). This construction has been studied by Johannson, Spohn,
Ferrari, Katori-Tanemura, and others. The right-most particle X1 is called the
Airy process and has been extensively studied. These two stochastic dynamics
constructed by completely different methods coincide with each other [49, 50, 52,
53, 51, 22].

4. The algebraic construction:
method of space-time correlation functions

When d = 1 and β = 2, we can construct the stochastic dynamics using explicit
expressions for the space-time correlation functions in terms of extended kernel
functions. In this section, we present these explicit expressions for examples given
in Section 1 such as the sine, Airy, and Bessel point processes with β = 2.

We define multi-time moment generating functions of S-valued process Xt as
follows:

Ψt[f ] = E

[
exp

{
M∑

m=1

∫
R
fmdXtm

}]
.

Let K(s, x; t, y) be an extended kernel [16, 19]. For the one-dimensional examples
in Section 2, we can represent Ψt[f ] by using the Fredholm determinant of K:

Ψt[f ] = Det
(s,t)∈{t1,t2,...,tM}2,

(x,y)∈R2

[
δstδ(x− y) +K(s, x; t, y)χt(y)

]
.

Here M ∈ N = {1, 2, . . . }, f = (f1, f2, . . . , fM ) ∈ C0(R)M , t = (t1, t2, . . . , tM )
(0 < t1 < · · · < tM < ∞), and χtm = efm − 1, 1 ≤ m ≤ M .

(i)Extended sine kernel: Ksin(s, x; t, y), s, t ∈ R+ = {x ∈ R : x ≥ 0}, x, y ∈ R:

Ksin(s, x; t, y) =


1

π

∫ 1

0

du eu
2(t−s)/2 cos{u(y − x)} if s < t,

Ksin(x, y) if s = t,

− 1

π

∫ ∞

1

du eu
2(t−s)/2 cos{u(y − x)} if s > t.

(ii) Extended Airy kernel: KAi(s, x; t, y), s, t ∈ R+, x, y ∈ R:

KAi(s, x; t, y) =



∫ ∞

0

du e−u(t−s)/2Ai(u+ x)Ai(u+ y) if s < t,

KAi(x, y) if s = t,

−
∫ 0

−∞
du e−u(t−s)/2Ai(u+ x)Ai(u+ y) if s > t.
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(iii) Extended Bessel kernel: KJν
(s, x; t, y), s, t ∈ R+, x, y ∈ R+:

KJν (s, x; t, y) =



∫ 1

0

du e−2u(s−t)Jν(2
√
ux)Jν(2

√
uy) if s < t,

KJν (x, y) if s = t,

−
∫ ∞

1

du e−2u(s−t)Jν(2
√
ux)Jν(2

√
uy) if s > t.

It is known that one can construct S-valued stochastic dynamics through these
kernels. For finite particle systems, there exists a representation given by these
kernels, and the infinite unlabeled dynamics are their limits as N → ∞. The
Markov property of the limit dynamics thus constructed is not clear. Indeed, the
underlying measures are singular each other if the numbers of particles are different,
hence it is not clear such a property is inherited by the infinite volume stochastic
dynamics. The Markov property was proved in [19] and the strong Markov property
was proved in [53]. Combining these results with [49, 50, 52, 53, 51], we see that
the stochastic dynamics constructed by the space-time correlation functions and by
the stochastic analysis in [49] are the same.

Originally, the stochastic dynamics associated with the Airy kernel was con-
structed by Prähofer and Spohn and by Johansson as a limit of the finite systems
of the space-time correlation functions [54, 15]. At the very beginning, even the
continuity of trajectories of particles was an issue. In particular, proving the non-
collision property of particles is difficult with this method. A semi-martingale
property of each particle was proposed as an open problem in [15] and solved in
Hägg [10] and Corwin-Hammond [4]. We also remark that in [50] the ISDE de-
scribing the Airy interacting Brownian motions was solved, and from this and [53],
the semi-martingale property follows immediately.

Katori–Tanemura studied the algebraic method based on the space-time corre-
lation functions to construct the infinite-volume dynamics of infinite particle sys-
tems. The extended kernels are the analogy of the “transition probability density”
in infinite dimensions. They used this to represent the transition probability of
the dynamics explicitly [18]. In this sense, this research can be regard as solvable
models in probability theory [16, 17, 18, 19, 20].

5. Beginning of the general theory of interacting Brownian motions

A system of an infinite number of Brownian particles moving in Rd interacting
via the potential Ψ:Rd→R ∪ {∞} is described by the following ISDE,

dXi
t = dBi

t −
β

2

∞∑
j ̸=i

∇Ψ(Xi
t −Xj

t )dt (i ∈ N),(5.1)

which is a special case of (2.1) with Φ = 0 and Ψ(x, y) = Ψ(x − y). Here β ≥ 0
is a constant called the inverse temperature, and {Bi}i∈N is a system of infinite,
independent d-dimensional standard Brownian motions.

The stochastic dynamics X = (Xi)i∈N are (Rd)N-valued. Intuitively, the invari-
ant measure µ̌ of the solutions of (5.1) is given by

µ̌(dx) =
1

Z
e−β

∑
i<j∈N Ψ(xi−xj)

∞∏
k=1

dxk.(5.2)
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Because this representation contains the infinite product of Lebesgue measures

dx∞ =

∞∏
k=1

dxk,(5.3)

we cannot justify (5.2) as it is. The traditional method to solve this is to introduce
the Gibbs measures based on the DLR equation [55].

We consider the configuration space S over Rd; S is the space consisting of
unlabeled particles. We denote by µn

r,ξ the regular conditional probability of a
point process µ:

µn
r,ξ(dx) = µ(πSr (·) ∈ ·|πSc

r
(x) = πSc

r
(ξ), x(Sr) = n),(5.4)

where πA(s) = s(·∩A), Sr = {s ∈ S; |s| < r}, ξ ∈ S. By defitition µn
r,ξ(dx) is a con-

ditional probability such that there exists n particles in Sr. Here we regard µn
r,ξ(dx)

as a probability on S, and we often identify µn
r,ξ(dx) as a symmetric probability on

Sn.
Let Λ be the Poisson point process for which the intensity is the Lebesgue mea-

sure. We set Λn
r = Λ(· ∩ Snr ), where Snr = {s ∈ S; s(Sr) = n}. We call µ a

(Φ,Ψ)-canonical Gibbs measure if µ satisfies the DLR equation. For each n, r ∈ N
and µ-a.s. ξ ∈ S, we set

µn
r,ξ(dx) =

1

Z
e−Hr,ξΛn

r (dx),(5.5)

where Hr,ξ = Hr + Ir,ξ and

Hr(s) = β{
n∑

i=1

Φ(si) +
∑

i<j, si,sj∈Sr

Ψ(si, sj)},(5.6)

Ir,ξ = β
∑

si∈Sr, ξk∈Sc
r

Ψ(si, ξk).

Here Hr is a Hamiltonian in Sr and Ir,ξ denotes the interaction term between inside
and outside particles. We thus consider (Φ,Ψ)-canonical Gibbs measures instead
of (5.2) through DLR equation.

Except for the special case in R due to Lippner and Rost, ISDE (5.1) was first
solved by Lang [25, 26] in a general frame work (see also [56]). Fritz [6] constructed
non-equilibrium solutions in Rd for d ≤ 4. Tanemura [62] solved the ISDE of hard-
core Brownian balls. Usually, we use the Itô scheme to solve the SDE. Indeed, we
use a kind of the Picard approximation as similarly used in ordinary differential
equations. We then need, at least locally, Lipschitz continuity for the coefficients.
The difficulty of performing this method in infinite dimensions is that the Lipschitz
continuity for the coefficients cannot be expected at all in infinite dimensions, and
that localization is also very complicated. Furthermore, the coefficients are defined
on only a small region of the space. Lang studied the case whereby Φ = 0 and that

Ψ ∈ C3
0 (Rd).

He carried out the analysis by combining estimates of Gibbs measures. Even in the
manageable category of Ruelle’s class, for Ψ of polynomial decay, Lang’s method
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— using the traditional method of Itô — was impossible to prove. For the infinite-
dimensional Dyson model (1.1), the interacting potential is the logarithmic poten-
tial:

Ψ(x, y) = −β log |x− y|

Instead of an attenuation, this logarithmic potential diverges to infinity at the point
of infinity. Normally, the DLR equation has meaning, and various means such as
uniform evaluation of local density can be used, but they become impossible for
a logarithmic potential. Conversely, the appearance of particles moving under the
potential to generate strong interactions in such distant places should be vividly
different from that of the ordinary Ruelle’s class. Pursuing this aspect appears to
be an interesting problem.

In general, an ISDE has an infinite number of different coefficients σi and bi and
is given in the form

dX1
t = σ1(Xt)dB

1
t + b1(Xt)dt(5.7)

dX2
t = σ2(Xt)dB

2
t + b2(Xt)dt

dX3
t = σ3(Xt)dB

3
t + b3(Xt)dt

· · · .

If (σi, bi) converges fast enough to (1, 0) as i → ∞, (5.7) can be solved similarly to an
ordinary SDE (depending on the convergence speed). The problem is that, if (σi, bi)
has “symmetry”, it does not converge to (1, 0) as i → ∞. That is, the coefficients

of the ISDE are given by a single function (σ, b) : Rd×Rd → (Rd2 ×Rd) ∪ {∞} as
follows:

dX1
t = σ(X1

t ,X
1♢
t )dB1

t + b(X1
t ,X

1♢
t )dt(5.8)

dX2
t = σ(X2

t ,X
2♢
t )dB2

t + b(X2
t ,X

2♢
t )dt

dX3
t = σ(X3

t ,X
3♢
t )dB3

t + b(X3
t ,X

3♢
t )dt

· · · ,

where Xi♢ =
∑

j ̸=i δXj . We emphasize again that the function (σ, b)(x, s) is inde-
pendent of particle label i. Symmetry became an obstacle to using conventional
techniques. Conversely, by considering the entire system as an object to take values
in the configuration space, we can use the notion of unlabeled stochastic dynamics

X =

∞∑
i=1

δXi .

Because X can have an invariant probability measure, we can use the geometric
stochastic analytic method; that is, the Dirichlet form theory becomes effective.

6. Dirichlet form approach: In case of Brownian motions

The Dirichlet form (E ,D) is a nonnegative closed form defined on domain D and
has the Markov property. The combination with the underlying L2 space is called
the Dirichlet space [7].
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For Brownian motions on Rd, the associated Dirichlet form on L2(Rd, dx) is
given by

Edx(f, g) =

∫
Rd

D[f, g]dx, D = H1(Rd),

where D is the standard carré du champ operator on Rd; that is,

D[f, g] =
1

2
(∇f,∇g)Rd .

The reason why we call D standard is that when combined with the Lebesgue
measure it defines the standard Brownian motion. The naturalness of the caré du
champ D should present no objection. Normally, the Dirichlet form (E ,D) is often
defined as the closure of a closable form (E ,D0). We can take D0 = C∞

0 (Rd) for
the standard Brownian motion on Rd.

The important thing is that through D we have a correspondence such that

dx ⇐⇒ (Edx, C∞
0 (Rd), L2(Rd, dx)) ⇐⇒ (Edx,H1(Rd), L2(Rd, dx)) ⇐⇒ B.(6.1)

Even if dx is replaced by a general Radon measure µ, this relation is still valid
under a mild condition. We then have

µ ⇐⇒ (Eµ, C∞
0 (Rd), L2(Rd, µ)) ⇐⇒ (Eµ, C∞

0 (Rd)
µ
, L2(Rd, µ)) ⇐⇒ X(6.2)

Here, the rightmost side is the µ-reversible diffusion process. A sufficient condition
for the validity of this correspondence is that µ has an upper semi-continuous
density to the Lebesgue measure. In this case, the corresponding diffusion process
(or Dirichlet form) is called a distorted Brownian motion.

Taking (6.2) in mind, we introduce the map FD = FD(µ) from the space of
Radon measures to the space of “positive bilinear forms”, and then to the space of
“diffusion processes”

µ
[0]−→ (Eµ, C∞

0 (Rd), L2(Rd, µ))
[1]−→ (Eµ, C∞

0 (Rd)
µ
, L2(Rd, µ))

[2]−→ X.(6.3)

One issue is to what extend this mapping really has meaning. We shall find a
sufficient condition under which the space of diffusion processes is reachable. The
correspondence of [0] is self-explanatory. From the general theory, [1] is reduced
to the closability of (Eµ, C∞

0 (Rd)) on L2(Rd, µ) and [2] is reduced to the regularity

of the Dirichlet form (Eµ, C∞
0 (Rd)

µ
) on L2(Rd, µ). See [7] for the regularity of

Dirichlet forms.
We remark that this strategy is not limited to Rd, being still valid even in

infinite dimensions as long as the space has a good carré du champ operator D.
Then the problem becomes “What is a good carré du champ operator?”. It is
D appearing from the best diffusion (Brownian motion) with the best measure
(Lebesgue measure) that appears in the correspondence in (6.1). In other words, if
there are two Brownian motions, a Lebesgue measure, and a D, we can expect that
one can be constructed from the other naturally.

Generally, in each regular symmetric Dirichlet space, it is proved that there is
always a carré du champ operator. The point is that a “good” D is robust, and it
is commonly chosen in the Dirichlet space accompanied with a very wide range of
Radon measures µ, beyond being a carré du champ operator of one specific regular
symmetric Dirichlet space. We expect that the carré du champ operator of the
best diffusion process on each space has this property. In the general theory, we
can take µ in the Dirichlet form and µ in L2-space differently. Taking a common µ
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affords an advantage in that we can use a geometric method. For example, in finite-
dimensional spaces, we can estimate heat kernels using Nash’s inequality through
isoperimetric inequalities associated with the carré du champ operator.

In (6.1) and (6.2), we took C∞
0 (Rd)

µ
. Generally, the choice of domain D is an

important issue because the behavior of the particles changes markedly depending
on the choice of the domain D in the Dirichlet form (E ,D). For example, even if
µ has no density for the Lebesgue measure, we can construct good diffusions by

choosing a good new domain D other than C∞
0 (Rd)

µ
. Indeed, a family of good

diffusions on the Sierpinski carpets and other fractals were constructed by this
method [36, 38, 39].

6.1. A scheme for constructing infinite-dimensional Brownian motion:
Dirichlet forms without underlying measures.

The space to solve the ISDE is (Rd)N. The ISDE includes (Rd)N-Brownian
motion B = (Bi)i∈N. Fortunately, in (Rd)N, we have (Rd)N-Brownian motion
B = (Bi)i∈N and a natural caré du champ D∞[f, g]. Indeed, the construction
of (Rd)N-valued Brownian motion B = (Bi)i∈N is easy because we simply prepare
infinite copies of independent d-dimensional Brownian motions. Its generator L∞

is given by

L∞ =
1

2

∞∑
i=1

∆i,

where each ∆i denotes the Laplacian on Rd. The caré du champ D∞ on (Rd)N is

D∞[f, g] =
1

2

∞∑
i=1

(∇if,∇ig)Rd .

Therefore, considering the Dirichlet form from the above correspondence in the
Dirichlet form, we have intuitively

Edx∞
(f, g) =

∫
(Rd)∞

D∞[f, g]dx∞, L2((Rd)∞, dx∞).

However, this cannot be justified because this contains the infinite product of the
Lebesgue measures dx∞. Hence, it breaks from the first stage of the correspondence
of (6.3). We thus fall into a troubling situation whereby “there is no Dirichlet form
despite the Brownian motion.” Therefore, we have to consider Dirichlet forms on the
space without measures. This leads us to introducing a sequence of Dirichlet forms
on the spaces with measures.

6.2. Approximate sequence of (Rd)N

—a tiny infinite dimensions and a huge infinite dimensions—.
We consider the configuration space S on Rd defined by (2.3) instead of (Rd)N.

The Poisson point process Λ for which the intensity is the Lebesgue measure is
normally used as a substitute for the infinite product of the Lebesgue measure
dx∞. By definition, the Poisson point process with the Lebesgue intensity is the
probability measure on S such that for A,B ∈ B(Rd)

(1) If A ∩B = ∅, then Λ ◦ π−1
A and Λ ◦ π−1

B are independent,

(2) Λ(s(A) = n) = e−λ(A)λ(A)n/n!,
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where πA : S → S is πA(s) = s( · ∩ A). The function f on S can be represented
uniquely by the symmetric function f̌ defined on a subset of

∪
i∈{0,N,∞}(Rd)i as

follows.

f(s) = f̌(s1, s2, . . .) (s =
∑
i

δsi).

See [32, 3] for more rigorous definition of f̌ . We say a function f on S is local if f
is σ[πSr ]-measurable for some r ∈ N, and smooth if f̌ is smooth. We denote by D◦
the set consisting of all local and smooth functions on S.

We set a caré du champ D on S by

D[f, g](s) = D∞[f̌ , ǧ](s1, s2, . . .).

The right-hand side is symmetric in (si) and can be regarded as a function of
s =

∑
i δsi . Consider the Dirichlet form

EΛ(f, g) =

∫
S

D[f, g]dΛ, L2(S,Λ).

Let DΛ
◦ = {f ∈ D◦ ; EΛ(f, f) < ∞, f ∈ L2(S,Λ)}. Then (EΛ,DΛ

◦ ) is closable on
L2(S,Λ). Let (EΛ,DΛ) be the closure of (EΛ,DΛ

◦ ). Then the S-valued Brownian
motion

B =
∑
i∈N

δBi(6.4)

is associated with the Dirichlet form (EΛ,DΛ) on L2(S,Λ).
We therefore see that the infinite-dimensional space S being very tiny compared

with (Rd)N, has Lebesgue measure Λ, the caré du champ D, and Brownian motion
B. This triplet satisfies the relation (6.1). In addition, various choices exist for
Bi satisfying (6.4) at each time t. With a suitably choice, B = (Bi)i∈N becomes
the (Rd)N-valued Brownian motions. As shall be described later, if each Bi is
continuous and does not collide with each other, then it is uniquely determined
only by the initial label’s arbitrariness.

There is a big difference between the two infinite-dimensional spaces S and (Rd)N.
Hence, we connect the tiny infinite dimension S with the huge infinite dimension
(Rd)N by considering a sequence of infinite-dimensional spaces such that

S, Rd×S, (Rd)2×S, (Rd)3×S, (Rd)4×S, (Rd)5×S, · · ·
The sequence of Lebesgue measures on each spaces is given by

Λ, dx×Λ, dx2×Λ, dx3×Λ, dx4×Λ, dx5×Λ, · · · .
Furthermore, the sequence of Brownian motions is given by

B, (B1,B1), (B2,B2), (B3,B3), (B4,B4), (B5,B5), · · · ,

where Bn = (B1, . . . , Bn) and Bn =
∑∞

i=n+1 δBi . The Dirichlet form

(Edxn×Λ, L2((Rd)n×S, dxn×Λ))

is associated with the Brownian motion (Bn,Bn) at the nth element of these
columns. Let Λ[n] = dxn×Λ be the Campbell measure of Λ. Put S[n] = (Rd)n×S.
Define Ξ[n] by

Ξ[n](Λ) = (EΛ[n]

, L2(S[n],Λ[n])).(6.5)
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The representation Ξ[n](Λ) makes sense for general µ and thus we write Ξ[n](µ) in
Theorem 7.3.

Suppose d ≥ 2 and take an initial label l. Each particle then can move without
changing its label. Hence we can construct a natural map lpath from the S-valued
path space C([0,∞);S) to the (Rd)N-valued path space C([0,∞); (Rd)N) through
the label l. Then we have

lpath(B) = B.

Importantly, this correspondence gives the couplings among Dirichlet forms. In-
deed, we can represent the (Rd)n×S-valued diffusion process given associated with
the Dirichlet space Ξ[n] by this mapping lpath and the diffusion process (unlabeled

Brownian motion B) originally given by the Dirichlet space Ξ[0]. In other words,
each element Ξ[n] of the countably infinite number of Dirichlet forms defines the
diffusion process. Originally, these diffusions are unrelated to each other. The map
lpath gives the couplings among these (Rd)n×S-valued diffusions (Bn,B). All these
diffusions can be represented as a functional of the Brownian motion B on the
smallest space. We thus see that the smallest Dirichlet space plays a role giving the
structure of the mutual relationship of the infinitely many Dirichlet spaces. Since
we have certainly constructed the Dirichlet space Ξ[n]

Bn = (B1, . . . , Bn)

for each n ∈ N and found the afore-mentioned relation, we can say that we have
created a Dirichlet space on (Rd)N that handles B = (Bn)n∈N. Although this
viewpoint cannot cover all of the ISDEs on (Rd)N as in (5.7), it is sufficient to solve
the target ISDE, that is, ISDE with symmetry given by (5.8).

7. Dirichlet form approach to interacting Brownian motions:
(the first theory)

In this section, we apply the idea in the preceding section to non-trivial examples
and state the main theorem. The purpose of this section is to develop a general
theory to solve ISDEs of the form

dXi
t = σ(Xi

t ,X
i♢
t )dBi

t + b(Xi
t ,X

i♢
t )dt(7.1)

X ∈ Wsol.(7.2)

We solve the ISDE on the interval [0, T ] for each T ∈ N and set W ((Rd)N) =
C([0, T ]; (Rd)N). Wsol is a symmetric subset of W ((Rd)N) that includes the so-
lutions of ISDE. We regard the coefficients of the ISDE as functions defined on a
subset of W ((Rd)N) naturally, and we then suppose Wsol is contained by the subset.

This class of ISDE includes (2.1), (5.1), (5.8), and all concrete examples Section 2.
The key notions are quasi-Gibbs property and logarithmic derivative of point
process µ. The former plays an important role in the construction of the unlabeled
diffusion and the latter for the representation as a solution of ISDE (7.1).

7.1. Construction of unlabeled diffusions.
Taking the correspondence (6.3) into account, we introduce the general method

by which to generate the unlabeled diffusion from a given point process µ. We
begin with the notion of quasi-Gibbs measures.
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Definition 7.1. Let Φ and Ψ be the free and interaction potentials, respectively.
A point process µ is called a (Φ,Ψ)-quasi Gibbs measure, if the regular conditional
probability µn

r,ξ of µ defined by (5.4) satisfies the inequality such that

C(r, ξ, n)−1e−Hr(s)dΛn
r ≤ µn

r,ξ(ds) ≤ C(r, ξ, n)e−Hr(s)dΛn
r

for µ-a.s. ξ and all r, n ∈ N with a positive constant C = C(r, ξ, n) depending on
(r, ξ, n). Here µ ≤ ν means that two measures µ and ν satisfy µ(A) ≤ ν(A) for all
A, and Hr(s) denotes the Hamiltonian given by (5.6) defined only inside Sr.

Remark 7.1. (1) Clearly, Gibbs measures are quasi-Gibbs measures.
(2) Note that C(r, ξ, n) depends on ξ. Then this notion is robust for perturbation
of free potentials. If µ is a (Φ,Ψ)-quasi Gibbs measure with locally bounded Φ0,
then µ is also a (Φ+Φ0,Ψ)-quasi Gibbs measure. Point processes with logarithmic
interaction potentials in typical examples are all (0,−β log |x − y|)-quasi Gibbs
measures.

We set a(x, s) = σ(x, s) tσ(x, s), where σ the coefficient in (7.1). We assume:
(A1) a is uniformly elliptic and bounded. µ is a (Φ,Ψ)-quasi Gibbs measure. There
exists an upper semi-continuous potential (Φ0,Ψ0) and two positive constants c1
and c2 such that

c1(Φ0,Ψ0) ≤ (Φ,Ψ) ≤ c2(Φ0,Ψ0).

(A2) There exists a constant p > 1 such that each n-point correlation function ρn

is Lp locally bounded.
For µ and a satisfying these assumptions we set the Dirichlet form as follows.

Ea,µ(f, g) =

∫
S

Da[f, g]dµ, Da[f, g] =
1

2

∑
i

a(si, s
i♢)

∂f̌

∂si
· ∂ǧ

∂si
.

Here we set si♢ =
∑

j ̸=i δsj for s =
∑

i δsi . Let D◦ be the function space consisting
of local and smooth functions S as before, and put

Da,µ
◦ = {f ∈ D◦ ∩ L2(S, µ); Ea,µ(f, f) < ∞}.

Theorem 7.1 ([32, 33, 42]). Assume (A1) and (A2). Then (Ea,µ,Da,µ
◦ ) is clos-

able on L2(S, µ). The diffusion process (X, {Ps}s∈S) associated with the closure
(Ea,µ,Da,µ) exists.

A sufficient concrete condition for a point process µ to be a quasi-Gibbs measure
was given by [42, 43]. We can prove all point processes but the Gaussian analytic
functions (GAFs) in Section 9.4 in the present paper are quasi-Gibbs measures.

Assumption (A1) is used for the closability of the Dirichlet forms. (A2) is used
for the proof of the quasi-regularity of the Dirichlet forms (see [28] for the definition
of quasi-regularity). We thus obtain the existence of a L2-Markovian semi-group
from (A1), and the associated Markov processes from (A2). These two assumptions
are obvious for Gibbs measures and sufficiently feasible for point processes arising
from random matrices.

7.2. Labeled dynamics. In this section, we construct the labeled dynamics. Let

Ss,i = {s; s({x}) = 0 or 1 for ∀x ∈ Rd, s(Rd) = ∞}

and assume the following.
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(A3) Particles {Xi} do not collide with each other and the cardinality of particles
are infinite:

Pµ(Xt ∈ Ss,i for ∀t ∈ [0,∞)) = 1.

(A4) Each tagged particle does not explode:

Pµ(

∞∩
i=1

{ sup
0≤u≤t

|Xi
u| < ∞ for ∀t ∈ [0,∞)}) = 1.

Although these are conditions for each tagged particle of the labeled dynamics
X, we can verify them by investigating the unlabeled dynamics X. Indeed, denoting
by Cap the capacity of (Ea,µ,Da,µ, L2(µ)), then (A3) follows from

Cap(Scs,i) = 0.(7.3)

A (Φ,Ψ)-quasi-Gibbs with locally bounded potentials in Rd with d ≥ 2 always
satisfies (7.3). In one dimension, we have a simple sufficient condition on Ψ [14]. If
µ is a determinantal point process, then (A3) is deduced from the Hölder continuity
of the diagonal part of the determinantal kernel [37].

As for the non-explosion condition, we obtain (A4) if the growth order of the
one-point function ρ1 of µ at infinity is such that for some constant α < 2

ρ1(x) = O(e|x|
α

).(7.4)

Theorem 7.2. Assume (A1)–(A4). Then we can construct the labeled dynamics
X = lpath(X) from the unlabeled dynamics X in Theorem 7.1. The labeled dynamics
X is an (Rd)N-valued diffusion process.

The m-Campbell measure µ[m] of µ is by definition

µ[m](dxds) = ρm(x)dxµx(ds),

where x = (x1, . . . , xn), ρ
m is the m-point correlation function, and moreover µx is

the reduced Palm measure of µ conditioned at x. µx is informally given by

µx(ds) = µ(ds− x| s(xi) ≥ 1 for all i).

Here we write x =
∑n

i=1 δxi . An analogy of Theorem 7.1 on them-labeled stochastic

dynamics holds for each m-Campbell measure µ[m]. We then denote by Ξ[m](µ) the
Dirichlet space on (Rd)m×S corresponding to µ[m]. Ξ[m](µ) is defined by (6.5) with
the replacement of Λ[m] by µ[m]. Consistency investigated in Section 6, which is
an existence of coupling in the present situation, holds for the unlabeled dynamics
obtained in Theorem 7.1 through Theorem 7.2.

Theorem 7.3 ([40]). Assume (A1)–(A4). Then, for Ξ[m](µ), we have the same
coupling as in the case Λ in Section 6. That is, denoting by X[m] the stochastic
process associated with Ξ[m](µ), then we have

X[m] = (X1, . . . , Xm,

∞∑
i=m+1

δXi) in distribution,

where each Xi in the right hand side is a component of the labeled dynamics X =
(Xi)i∈N given by Theorem 7.2.
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7.3. Infinite-dimensional stochastic differential equations. We next solve
the ISDE (7.1). For this purpose we introduce the notion of the logarithmic deriv-
ative dµ of µ.

Definition 7.2. We say dµ is the logarithmic derivative of µ if for each f ∈
C0(Rd)⊗D◦ we have ∫

Rd×S
dµfdµ[1] = −

∫
Rd×S

∇xfdµ
[1]

We represent the logarithmic derivative by dµ(x, s) = ∇x logµ
[1](x, s).

In [41], we prepare a general theory to calculate the logarithmic derivative of µ.
Using this, we can calculate the logarithmic derivative of all the examples in this
article except for GAFs (see Section 9.4). As for the point processes with interaction
potentials of Ruelle’s class, the existence of logarithmic derivative is obvious. We
assume:
(A5) µ has the logarithmic derivative dµ.
(A6) µ satisfies the following differential equation.

2b(x, s) = ∇xa(x, s) + a(x, s)∇x logµ
[1](x, s).(7.5)

Theorem 7.4 ([41]). Assume (A1)–(A6). Then, for a given label l, ISDE (7.1)
has a solution (X,B) for µl-a.s. starting point s. The labeled dynamics X is
a (Rd)N-valued diffusion, and the associated unlabeled dynamics is a µ-reversible
diffusion.

We can apply Theorem 7.4 to all the examples in this article.
The key point to solving the ISDE (7.1) is Theorem 7.3. Indeed, letting x =

(xi)
∞
i=1 ∈ (Rd)N, we see that each coordinate function xi (i ≤ m) is in the domain

of the Dirichlet form Ξ[m] locally. Then, applying the Itô formula (the Fukushima
decomposition and the Revue correspondence) in this instance, the resulting process
satisfies SDE (7.1). Using the coupling obtained in Theorem 7.3, we can solve (7.1)
not only for i ≤ m but also for all i ∈ N.

8. Analysis of tail σ-fields (the second theory): Existence of strong
solutions and pathwise uniqueness

The results up to this point have found that ISDE (7.1) can be solved by the
analysis of a geometric differential equation (7.5) for the point process µ. This
solution is however a weak solution in the sense that it is a pair (X,B) compris-
ing a SN-valued process X and Brownian motion B. Roughly speaking, if X is
a functional of the Brownian motion B, then X is called a strong solution. The
construction in the previous section then does not provide the strong solution as
it is. Furthermore, although the solution associated with the given Dirichlet form
is certainly unique, we have not yet proved the uniqueness of Dirichlet forms asso-
ciated with ISDE (7.1). We have thus seen that the uniqueness of the solution of
ISDE (7.1) has not yet been proved in the first theory.

The difficulty of the problem is that to prove the existence of strong solutions
and pathwise uniqueness, we need more or less a classical approach as for the Itô
scheme. Hence, we have to find the Lipschitz continuity of the coefficients of the
ISDE to use the Picard approximation. Although we may localize the ISDE in such
a way that the coefficients are locally Lipschitz continuous outside a rough subset,
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localization should become very complicated. There is no way to carry out this
directly in the current situation. Also, it seems difficult to arrive at the existence
of strong solutions and pathwise uniqueness just by controlling the rough subset of
the domain of the coefficients from the theory of Dirichlet forms.

Here we use again the sequence {(Rd)m × S}m∈{0}∪N from the tiny infinite-

dimensional space S to the huge infinite-dimensional space (Rd)N. We regard (Rd)N

as the sequence of finite-dimensional spaces (Rd)m, where the existence of the strong
solution and the pathwise uniqueness are established. Here, we consider a sequence
of time-inhomogeneous, FSDEs on (Rd)m for each m. Then we introduce the cou-
pling among these FSDEs (8.1) on (Rd)m.

The point is the interpretation such that a single ISDE with symmetry is an
infinite system of FSDEs with consistency (IFC). With this interpretation,
we then reduce the problem to the analysis of various tail σ-fields related to the
scheme. To do this, we use the solution (X,B) obtained by the first theory. We
think that the essential structure of this method is very general, and we expect that
this method can be applied to many kinds of ISDE of infinite-particle type.

With these ideas, Tanemura and the author have developed the study of an ISDE
with symmetry and have proved the existence of strong solutions and pathwise
uniqueness of solutions of the ISDE in a sequence of papers [49, 50, 52, 53, 51],
which we now explain.

8.1. Existence of strong solutions and pathwise uniqueness of solutions
of ISDE.

In [49], Tanemura and the author proved the existence of strong solutions and the
pathwise uniqueness of solutions of ISDE (7.1) under almost the same assumption
as Theorem 7.4 with an additional assumption. This result can be applied to all
examples except GAFs to be described later.

The idea is introducing the concept called an IFC solution for the ISDE. Here,
as described in the previous section, an IFC is an infinite system of FSDEs with
consistency. This concept is specific to the infinite particle system. It can be
proved that it is equivalent to the conventional solution, and it is more appropriate
for analyzing ISDE in infinite-dimensional spaces. We emphasize that the essential
observation is the equivalence between ISDE and IFC.

The scheme solving IFC is as follows: At each step of finite-dimension, we use the
conventional method. Then we lift the sequence of solutions to infinite dimensions
using the consistency of solutions of FSDEs. We have already obtained the weak
solution of ISDE by the first theory. From this, we prove the consistency of FSDEs.
The point of the second theory is the usage of weak solutions and analysis of tail
σ-field to complete the scheme.

Suppose that we have a weak solution (X,B) for ISDE (7.1). Then we introduce
the sequence consisting of the (Rd)m-valued SDE. For each m ∈ N we consider the
SDE for Ym = (Y m,i)mi=1 such that

dY m,i
t = σ(Y m,i

t ,Ym,i♢
t + Xm∗

t )dBi
t + b(Y m,i

t ,Ym,i♢
t + Xm∗

t )dt(8.1)

Y0 = sm.
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Here we set sm = (s1, . . . , sm) for s = (si)i∈N, and we put

Ym,i♢ =

m∑
j ̸=i

δY m,j , Xm∗ =

∞∑
k=m+1

δXk , Xm∗ = (Xk)∞k=m+1.

For each X the m-dimensional SDE (8.1) is time-inhomogeneous. Because (8.1) is
finite-dimensional, if X is well behaved, then (8.1) has a pathwise-unique, strong
solution for each m ∈ N. This solution is a functional of (Bm,Xm∗) and initial
staring point sm. We then denote it by

Ym = Ym(sm,Bm,Xm∗) = Ym(s,B,Xm∗).

Ym is σ[s,B,Xm∗]-measurable by construction. From the fact that (X,B) is a so-
lution of FSDE (8.1) and solution of (8.1) is pathwise-unique (recalling the existence
of strong solution and the pathwise uniqueness together imply the uniqueness in
the sense of distribution and the coincidence of weak solution and strong solution),
we see that for each m ∈ N

Xm = Ym.(8.2)

We thus see that the limit limm→∞ Ym obviously exists. That is, the following
relation holds.

X = lim
m→∞

Ym(s,B,Xm∗).(8.3)

From (8.2) we see that the solution X is a “fixed point”. We consider the more
general case in [49] not necessarily satisfying (8.2).

We define the tail σ-field Tpath((Rd)N) of the labeled path space with respect to
the label by

Tpath((Rd)N) =

∞∩
m=1

σ[Xm∗].

Furthermore, we set

T̃ T path = B((Rd)N)×B(W ((Rd)N))×Tpath((Rd)N).

Then from (8.3) we see that X is T̃ T path-measurable.
We denote by P the distribution of the solution (X,B), and define the regular

conditional probability conditioned at the initial starting point s and Brownian
motion B by

Ps,B = P ( · |(s,B)).

Let P∞
Br be the distribution of the Brownian motion B and put

Υ = (µ ◦ l−1)×P∞
Br .

We assume
(P1) ISDE (7.1) has a solution (X,B) for µ ◦ l−1-a.s. s.
(P2) (8.1) has a pathwise-unique, strong solution for each m ∈ N.
(P3) Ps,B|Tpath((Rd)N) is trivial and unique for Υ-a.s. (s,B).

The uniqueness in (P3) means that the distribution Ps,B|Tpath((Rd)N) is indepen-

dent of the particular choice of solutions (X,B). Because Ps,B|Tpath((Rd)N) is trivial,

this is equivalent to the independence of the set of Ps,B|Tpath((Rd)N)-measure 1.



24 HIROFUMI OSADA

Theorem 8.1 ([49]). Assume (P1)–(P3). Then ISDE (7.1) has a pathwise-unique,
strong solution for µ◦ l−1-a.s. s. In particular, an arbitrary solution coincides with
the strong solution.

Condition (P1) follows from the first theory. For other conditions, we explain
in the following subsections.

8.2. Sufficient conditions for (P2).
(P2) also has a sufficient condition to be established in a wide range [49]. We

can apply this to all examples in Section 2.

8.3. Sufficient conditions for (P3).
Generally, it is not easy to check (P3), but it can be derived again from the

geometric information of the configuration space. Indeed, the results described
below were obtained in this manner.

We denote by T (S) the tail σ-field of the configuration space S of Rd.

T (S) =
∞∩
r=1

σ[πSc
r
],

where Sc
r = {s ∈ Rd; |s| ≥ r} and πA :S→S is the projection πA(s) = s(· ∩A) for a

set A ⊂ Rd as before. We make assumptions:
(Q1) The tail σ-field T (S) is µ-trivial, that is, µ(A) ∈ {0, 1} for all A ∈ T (S).
(Q2) Pµ ◦ X−1

t ≺ µ for all t, (absolute continuity condition).
(Q3) Pµ(∩∞

r=1{mr(X) < ∞}) = 1, (no big jump condition),
where mr = inf{m ∈ N;Xi ∈ C([0, T ];Sc

r) for m < ∀i ∈ N} for X =
∑

i∈N δXi .

Theorem 8.2 ([49]). Assume (Q1)–(Q3). Then (P3) holds.

Theorem 8.2 asserts that tail triviality of the labeled path space with respect to
the distribution of the solution of ISDE follows from triviality of the tail σ-field of
the configuration space with respect to µ.

Remark 8.1. (i) Determinantal point processes satisfy (Q1) [45]. In particular,
Sine2, Airy2, Bessel2, and Ginibre point processes are all tail trivial, and thus
satisfy (Q1).
(ii) Because the unlabeled dynamics X is µ-reversible, (Q2) is obvious.
(iii) (Q3) follows from (7.4).
(iv) Let µa(·) = µ(·|T (S))(a) be the regular conditional probability of µ. Suppose
that µ is a quasi-Gibbs measure. Then we can take a version of µa in such a way that
each µa satisfies (Q1). Moreover, µa fulfills the assumption of Theorem 8.1 [49].
We thus see that we can apply Theorem 8.1 to (7.1) even if µ is not tail trivial. We
remark that we say nothing about the moving tail events of the stochastic dynamics
X. Recently, Kawamoto [21] proved that the Dyson Brownian motion with β = 2
does not change the tail events in a time evolutionary manner.

We next expound on the idea behind the proof of Theorem 8.2. We begin with
some preparatory notation. Let

T = {t = (t1, . . . , tm) ; ti ∈ [0, T ],m ∈ N}, Xn∗
t = (Xn∗

t1 , . . . ,X
n∗
tm)

T̃path(S) =
∨
t∈T

∞∩
r=1

σ[πc
r(Xt)], T̃path((Rd)N) =

∨
t∈T

∞∩
n=1

σ[Xn∗
t ].
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By definition, T̃path(S) is the cylindrical tail σ-field of the unlabeled path space,

and T̃path((Rd)N) is the cylindrical tail σ-field of the labeled path space W ((Rd)N).
The meaning of tails is different in these tail σ-fields. We shall deduce tail triviality
of Tpath((Rd)N) from that of T̃path(S). Here is a scheme of it.

T (S)
(Step I)−−−−−−−−−→

(Q1), (Q2)
T̃path(S)

(Step II)−−−−−→
(Q3)

T̃path((Rd)N)
(Step III)−−−−−−→
(IFC)

Tpath((Rd)N)

µ Pµ Pµl =

∫
P̄s(X ∈ ·)dµl P̄s,B a.s. (s,B).

This diagram shows the conditions and concepts used at each stage. The upper
row consists of the tail σ-fields. The lower row consists of the probability measures
for which we prove tail triviality. We shall therefore move from the smallest infinite
dimensions to the biggest infinite dimensions one by one.

The two theorems above can be applied to examples in the present article and, as
a result, the pathwise-unique, strong solution can be obtained. In these theorems,
the existence of potentials in the sense of the DLR equation is not presumed. The
quasi-Gibbs property of the point process µ and the existence of a logarithmic
derivative are sufficient for these theorems.

We have many applications of the pathwise uniqueness of solutions of ISDE.
Specifically, the uniqueness of Dirichlet forms [52, 51], SDE gaps [22], finite-particle
approximation of ISDE [24, 53, 51], coincidence of algebraic and analytic construc-
tions of stochastic dynamics [49, 50, 52, 53, 51], and the uniqueness of the martingale
problem.

8.4. IFC solution. The point of the previous discussion is consistency in (8.2).
Generally, we do not need exact consistency but only asymptotic consistency suf-
fices. We have hence arrived at the notion of an IFC solution. This notion has
various levels and corresponds to the classical “weak solution”, “strong solution”,
and “pathwise uniqueness”. Below we shall explain the IFC solutions and the
correspondences among them. We assume (P2) in this subsection.

Let W0 = {X ∈ W ((Rd)N) ; X0 = 0}, and Wsol
s = {X ∈ Wsol;X0 = s}. We

define the map Fm
s :Wsol

s ×W0→Wsol
s by

Fm
s (X,B) = {(Y m,1

t , . . . , Y m,m
t , Xm+1

t , Xm+2
t , . . .)}0≤t≤T .

Here Ym = (Y m,i)mi=1 is the unique solution (8.1) given by (P2).
Fix (s,B). Then Fm

s ( · ,B) defines the map from Wsol
s to Wsol

s . Suppose that a
probability measure P̄s on Wsol

s ×W0 is given. We say

F∞
s (X,B) = lim

m→∞
Fm
s (X,B) in Wsol under P̄s(8.4)

holds if the following are satisfied. F∞
s (X,B) ∈ Wsol and for each i ∈ N there exist

limits (8.5)–(8.7) in W (Rd) := C([0, T ];Rd) for P̄s-a.s. (X,B)

lim
m→∞

Fm,i
s (X,B) =F∞,i

s (X,B),(8.5)

lim
m→∞

∫ ·

0

σi(Fm
s (X,B)u)dB

i
u =

∫ ·

0

σi(F∞
s (X,B)u)dB

i
u,(8.6)

lim
m→∞

∫ ·

0

bi(Fm
s (X,B)u)du =

∫ ·

0

bi(F∞
s (X,B)u)du,(8.7)

where σi(Zt) = σ(Zi
t ,Z

i,♢
t ), and bi is defined in a similar fashion.
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Definition 8.1 (IFC solution). A probability measure P̄s on W ((Rd)N) × W0 is
called an IFC solution of (7.1) if P̄s satisfies (8.4) and (8.8):

P̄s(W
sol
s ×W0) = 1, P̄s(B ∈ ·) = P∞

Br .(8.8)

First, we construct a weak solution of (7.1) from the IFC solution P̄s.

Lemma 8.3 ([49]). Fix initial starting point s and assume (P2). Suppose that P̄s

is an IFC solution of (7.1). Set Y = F∞
s (X,B), where F∞

s is given by (8.4). Then
(Y,B) under P̄s is a weak solution of (7.1).

The next theorem clarifies the relation between IFC solution and strong solution.
It also explains relation among the pathwise uniqueness, the uniqueness of strong
solutions, and tail triviality of the labeled path space with respect to the label.

Theorem 8.4 ([49]). Fix initial starting point s. Assume (P2). Then we have
(1) Suppose that P̄s is an IFC solution of (7.1), and set Y = F∞

s (X,B). Then
(Y,B) under P̄s is a strong solution of (7.1) if and only if the tail σ-field Tpath((Rd)N)
is P̄s,B-trivial for P∞

Br -a.s.B.
(2) Suppose that X and X′ are strong solutions of (7.1) defined for the same Brow-
nian motion B. Denote by P̄s and P̄ ′

s the distributions of (X,B) and (X′,B),
respectively. Then (8.9) and (8.10) are equivalent.

P∞
Br(X = X′) = 1(8.9)

T [1]
path((R

d)N; P̄s,B) = T [1]
path((R

d)N; P̄ ′
s,B) for P∞

Br -a.s. B.(8.10)

(3) (7.1) has a unique strong solution X if and if, for P∞
Br -a.s. B, the tail σ-field

Tpath((Rd)N) is P̄s,B-trivial, and T [1]
path((Rd)N; P̄s,B) is independent of the distribu-

tion P̄s of the solution (X,B) of (7.1).

We refer to [13] for the general theory on the existence of strong solutions and
pathwise uniqueness of solutions of SDEs. We remark that, in the present article,
we change the state space of the solutions of SDEs from Rd to the symmetric subset
of (Rd)N, and we modify the details of the general theory such as measurability of
the initial starting points and others were suitably appropriate.

We explain the concept of IFC. This idea is to use classical theory (finite-
dimensional result) at each stage, using the consistency of the scheme resulting
from the symmetry of the original ISDE. Conditions (P1)–(P3) may appear as
difficult assumptions to accept at first glance, but we can successfully check these
assumptions using the existence of the small infinite-dimensional space and the un-
labeled dynamics/Dirichlet space on it. In addition, we can develop what we need
based on the classical theory.

Finally, to validate such finite-dimensional schemes, we must demonstrate the
triviality of the tail σ-field in the labeled path space and make this scheme self-
contained. We treat the tail σ-field as the boundary condition of the strong solution.
Then, if the tail σ-field is trivial, the boundary condition consisting of “a single
point”, and hence the uniqueness of solution is reduced to the triviality of the tail
σ-field with respect to the restriction of the distribution of the solution to the tail
σ-field. Therefore, triviality of the tail σ-field of the labeled path space determines
the uniqueness of the solution of the original ISDE.

In addition to the existence and uniqueness of the strong solutions, we also
expect that the idea of this scheme is to extend the results of various other classical
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theories to the infinite particle system, such as the construction of stochastic flow
on (Rd)N, and ergodic decomposition of (Rd)N.

9. Further development

This ongoing research is currently taking various directions. Here, we explain
some of them.

9.1. Dynamical universality. Various kinds of universality about the point pro-
cesses arising from random matrix theory have been examined by Soshnikov [59],
Tao [64], Yau [2], and many others. These are the counterparts of the classical uni-
versality of the limit of the sum of identically, independent random variables; that
is, one can obtain the law of large numbers and the central limit theorem under
those assumptions given only by the moments of the random variable. The univer-
sality of random matrices is analogous to the eigenvalues of random matrices and
Coulomb gases. Once static universality is established, it is natural to pursue its
dynamical counterpart, that is, the universality of the natural stochastic dynamics
associated with the limit universal point processes. This is now being developed in
[22] and [23].

9.2. Dynamical rigidity of the Ginibre interacting Brownian motion and
phase transition conjectures. The Ginibre point process features various geo-
metric rigidities, as we see in Section 9.3. Hence, it can be expected that the Ginibre
interacting Brownian motion has dynamical rigidity reflected in it. In that regard,
the author conjectures that that tagged particles are sub-diffusive, that is,

lim
ϵ→0

ϵXi
t/ϵ2 = 0.(9.1)

A phase transition is also conjectured for the self-diffusion matrix. A toy model
of this conjecture asserts that the effective matrix describing the homogenization
of the periodic Coulomb potentials missing a particle at the origin has a phase
transition [31]. This strongly supports the conjecture regarding the self-diffusion
matrix.

Suppose now that the solution of (2.6) exists for the general reverse temperature
β > 0. Then the critical point βc for the inverse temperature β with respect to the
degeneracy/non-degeneracy of the limit coefficient of the diffusive scale limit (the
self-diffusion matrix) seems to have a bound such that

1 ≤ βc ≤ 2.

The upper bound follows from the conjecture (9.1). The lower bound follows from
the observation for the lower bound of effective constants of homogenization prob-
lem in the periodic Coulomb environment.

Tagged particles of interacting Brownian motions with Ruelle’s class potentials
with convex hard core in Rd (d ≥ 2) are always non-degenerate under the diffusive
scaling [35]. That is, each tagged particle Xi behaves like Brownian motion under
the diffusive scaling [32, 34, 35, 46]. Here we consider the translation-invariant
equilibrium states.

Therefore, the asymptotic behavior in the diffusive scaling of the Ginibre in-
teracting Brownian motions would be quite different from the usual interacting
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Brownian motions. This reveals the strength of the long-distance effect of logarith-
mic potentials. If the conjecture (9.1) is settled, then this would also be a dynamical
rigidity in the sense that the movement of each particle slows down.

Translation-invariant point processes on Rd interacting through a d-dimensional
Coulomb potential are called strict Coulomb point processes ([44, 48]). The Ginibre
point process is the most representative and, at the present time, the only strict
Coulomb point process. It would be interesting to consider the above-mentioned
conjecture for the strict Coulomb point process for general d ≥ 2.

9.3. Rigidity of the Ginibre point process. Rigidity of the Ginibre point pro-
cess has been successively developed by Ghosh [8], Ghosh and Peres [9], O.–Shirai
[47, 48], Shirai [57]. Simulations of the Poisson and Ginibre point processes are
given below.
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Figure 1. The Poisson and Ginibre point processes

As is evident, the Ginibre point process is certainly random, but at the same
time, it appears understandable in that it has somewhat orderly random crystal
structure.

Below we present examples of rigidity of the Ginibre point process.
• Shirai [57] proved that the variance in the number of particles in the disk of radius
r is of order r as r → ∞. We remark that the Poisson point process is of order r2.
• Ghosh and Peres [9] proved that, if we fixed the bounded subset A and the
configuration of the particles outside it, then the number of particles inside A is
uniquely determined. We remark that, for a Poisson point process, the inside and
outside distributions of the particles are independent.
• Considering the reduced Palm measure of the Ginibre point process, we see that
the necessary and sufficient condition for the reduced Palm measures mutually
becoming absolutely continuous arises as a coincidence in the number of conditioned
particles [48]. [48] also found another dichotomy in that two reduced Palm measures
are singular with each other if and only if the number of conditioned particles is
different. These results show that we can determine the number of removed particles
of reduced Palm measures with probability one.
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The rigidity above is the same as for periodic point processes. In this regard, the
Ginibre point process has a random periodic (crystal-like) property. Furthermore,
the Ginibre point process is a quasi-Gibbs measure, and has a local density function
conditioned outside the configuration. This property is similar to the Poisson point
process. In this way, the Ginibre point process has the interesting property of
enjoying both randomness and non-randomness.

9.4. GAF: beyond the logarithmic interaction potential. The above story
starts from the point process µ, constructs the label probability dynamics of the
space of the infinite particle system, expresses it as an ISDE, and examines its
nature. Such a story is valid for point processes not only with interaction potentials
but also without potentials. Indeed, recently, interesting point processes other than
those with interacting potential have emerged.

A typical example is a point process consisting of the zeros of a Gaussian random
analytic function (Gaussian Analytic functions (GAF)). Although there are various
types, we introduce the planer GAF point process µGAF. This is a point process
on C consisting of zero points of the entire function F (z) with Gaussian random
coefficients.

F (z) =

∞∑
k=0

ξk√
k!
zk.

Here {ξk}∞k=0 is iid, ξ1 has a mean free Gaussian distribution with unit variance on
C. Let µGAF be the distribution of zero points of F . Then, µGAF is rotation and
translation-invariant, and thus resembles the Ginibre point process. We refer to [12]
for simulation and other information. Peres and Ghosh proved µGAF has a stricter
rigidity than the Ginibre point process [9]. Indeed, if the configuration outside the
disk Sr is conditioned, then the number of the particles in Sr is determined in the
same fashion as the Ginibre point process. In addition, the mean of the particles
inside Sr µGAF is also determined.

The unlabeled dynamics associated with µGAF has been constructed in a similar
fashion as the first theory. In ongoing work, Ghosh, Shirai, and the author have
considered a logarithmic derivative dµGAF

and therefore have a representation of
the dynamics with ISDE

Xi
t = dBi

t +
1

2
dµGAF(X

i
t ,X

i⋄
t )dt.

We have not yet obtained any explicit representation of dµGAF
. The difficulty is that

µGAF is determined by the relation between roots and coefficients of the algebraic
equation, and is not simple as for the Ginibre point process with the structure given
by a two-body potential. Of course, if cancellations were to be found, then there is
a possibility that dµGAF has a clear expression, but we do not know at this moment.

The world of infinite particle systems is vast and there are various point pro-
cesses other than the foregoing, such as the determinantal point process, the α-
determinant point process, and the GAF. We expect further developments in the
research on various point processes. To do that, it is essential to study the rigidity
of these point processes, as well as various dynamical and geometric properties. The
first thing we need is the quasi-Gibbs property and the logarithmic deriva-
tives of the point processes.
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