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Abstract. We prove the convergence of N -particle systems of Brown-

ian particles with logarithmic interaction potentials onto a system described
by the infinite-dimensional stochastic differential equation (ISDE). For this
proof we present two general theorems on the finite-particle approximations
of interacting Brownian motions. In the first general theorem, we present a

sufficient condition for a kind of tightness of solutions of stochastic differential
equations (SDE) describing finite-particle systems, and prove that the limit
points solve the corresponding ISDE. This implies, if in addition the limit

ISDE enjoy a uniqueness of solutions, then the full sequence converges. We
treat non-reversible case in the first main theorem. In the second general the-
orem, we restrict to the case of reversible particle systems and simplify the
sufficient condition. We deduce the second theorem from the first. We ap-

ply the second general theorem to Airyβ interacting Brownian motion with
β = 1, 2, 4, and the Ginibre interacting Brownian motion. The former appears
in the soft-edge limit of Gaussian (orthogonal/unitary/symplectic) ensembles
in one spatial dimension, and the latter in the bulk limit of Ginibre ensem-

ble in two spatial dimensions, corresponding to a quantum statistical system
for which the eigen-value spectra belong to non-Hermitian Gaussian random
matrices. The passage from the finite-particle stochastic differential equation
(SDE) to the limit ISDE is a sensitive problem because the logarithmic po-

tentials are long range and unbounded at infinity. Indeed, the limit ISDEs are
not easily detectable from those of finite dimensions. Our general theorems
can be applied straightforwardly to the grand canonical Gibbs measures with

Ruelle-class potentials such as Lennard-Jones 6-12 potentials and and Riesz
potentials.

1. Introduction.

Interacting Brownian motion in infinite dimensions is prototypical of diffusion pro-

cesses of infinitely many particle systems, initiated by Lang [12], [13], followed by Fritz

[3], Tanemura [30], and others. Typically, interacting Brownian motion X = (Xi)i∈N
with Ruelle-class (translation invariant) interaction Ψ and inverse temperature β ≥ 0 is

given by
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dXi
t = dBi

t −
β

2

∞∑
j;j ̸=i

∇Ψ(Xi
t −Xj

t )dt (i ∈ N). (1.1)

Here an interaction Ψ is called Ruelle-class if Ψ is super stable in the sense of Ruelle,

and integrable at infinity [28].

The system X is a diffusion process with state space S0 ⊂ (Rd)N, and has no natural

invariant measures. Indeed, such a measure µ̌, if exists, is informally given by

µ̌ =
1

Z
e−β

∑∞
(i,j); i<j Ψ(xi−xj)

∏
k∈N

dxk, (1.2)

which cannot be justified as it is because of the presence of an infinite product of Lebesgue

measures. To rigorize the expression (1.2), the Dobrushin–Lanford–Ruelle (DLR) frame-

work introduces the notion of a Gibbs measure. A point process µ is called a Ψ-canonical

Gibbs measure if it satisfies the DLR equation: for each m ∈ N and µ-a.s. ξ =
∑

i δξi

µm
r,ξ(ds) =

1

Zm
r,ξ

e
−β{

∑m
i<j, si,sj∈Sr

Ψ(si−sj)+
∑m

si∈Sr,ξj∈Sc
r
Ψ(si−ξj)}

m∏
k=1

dsk, (1.3)

where s =
∑

i δsi , Sr = {|x| ≤ r}, πr(s) = s(· ∩ Sr), and ξ is the outer condition.

Furthermore, µm
r,ξ denotes the regular conditional probability:

µm
r,ξ(ds) = µ(πr(s) ∈ ds| s(Sr) = m, πc

r(s) = πc
r(ξ)).

Then µ is a reversible measure of the delabeled dynamics X such that Xt =
∑

i∈N δXi
t
.

If the number of particles is finite, N say, then SDE (1.1) becomes

dXN, i
t = dBi

t −
β

2

{
∇ΦN (XN, i

t ) +
N∑

j;j ̸=i

∇Ψ(XN, i
t −XN, j

t )

}
dt (1 ≤ i ≤ N), (1.4)

where ΦN is a confining free potential vanishing zero as N goes to infinity. The associated

labeled measure is then given by

µ̌N =
1

Z
e−β{

∑N
i=1 ΦN (xi)+

∑N
(i,j); i<j Ψ(xi−xj)}

N∏
k=1

dxk. (1.5)

The relation between (1.4) and (1.5) is as follows. We first consider the diffusion pro-

cess associated with the Dirichlet form with domain Dµ̌N

on L2((Rd)N , µ̌N ), called the

distorted Brownian motion, such that

E µ̌N

(f, g) =

∫
(Rd)N

1

2

N∑
i=1

∇if · ∇ig µ̌
N (dxN ),

where ∇i = (∂/∂xij)
d
j=1, xN = (x1, . . . , xN ) ∈ (Rd)N , and · denotes the inner product

in Rd. The generator −Lµ̌N

of E µ̌N

is then given by
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E µ̌N

(f, g) = (−Lµ̌N

f, g)L2((Rd)N ,µ̌N ).

Integration by parts yields the representation of the generator of the diffusion process

such that

Lµ̌N

=
1

2
∆− β

2

N∑
i=1

{
∇ΦN (xi) +

N∑
j; j ̸=i

∇Ψ(xi − xj)

}
· ∇i,

which together with Itô formula yields SDE (1.4).

For a finite or infinite sequence x = (xi), we set u(x) =
∑

i δxi
and call u a delabeling

map. For a point process µ, we say a measurable map ℓ = ℓ(s) defined for µ-a.s. s with

value S∞ ∪ {
∪∞

N=1 S
N} is called a label with respect to µ if u ◦ ℓ(s) = s. Let ℓN be a

label with respect to µN . We denote by ℓm and ℓN,m the first m-components of these

labels, respectively. We take ΦN such that the associated point process µN = µ̌N ◦ u−1

converges weakly to µ:

lim
N→∞

µN = µ weakly. (1.6)

The associated delabeling XN =
∑N

i=1 δXN, i is reversible with respect to µN . The labeled

process X = (Xi) and XN = (XN, i) can be recovered from X and XN by taking suitable

initial labels ℓ and ℓN , respectively. Choosing the labels in such a way that for each

m ∈ N

lim
N→∞

µN ◦ ℓ−1
N,m = µ ◦ ℓ−1

m weakly, (1.7)

we have the convergence of labeled dynamics XN to X such that for each m

lim
N→∞

(XN,1, . . . , XN,m) = (X1, . . . , Xm) in law in C([0,∞); (Rd)m). (1.8)

We expect this convergence because of the absolute convergence of the drift terms in (1.1)

and energy in the DLR equation (1.3) for well-behaved initial distributions although it

still requires some work to justify this rigorously even if Ψ ∈ C3
0 (Rd) [12].

If we take logarithmic functions as interaction potentials, then the situation changes

drastically. Consider the soft-edge scaling limit of Gaussian (orthogonal/unitary/

symplectic) ensembles. Then the N -labeled density is given by

µ̌N
Airy,β(dxN ) =

1

Z

{ N∏
i<j

|xi − xj |β
}
exp

{
− β

4

N∑
k=1

|2
√
N +N−1/6xk|2

}
dxN (1.9)

and the associated N -particle dynamics described by SDE

dXN,i
t = dBi

t +
β

2

N∑
j=1, j ̸=i

1

XN,i
t −XN,j

t

dt− β

2
{N1/3 +

1

2N1/3
XN,i

t }dt. (1.10)

The correspondence between (1.9) and (1.10) is transparent and same as above. Indeed,
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we first consider distorted Brownian motion (Dirichlet spaces with µ̌N
Airy,β as a common

time change and energy measure), then we obtain the generator of the associated diffusion

process by integration by parts. SDE (1.10) thus follows from the generator immediately.

It is known that the thermodynamic limit µAiry,β of the associated point process

µN
Airy,β exists for each β > 0 [27]. Its m-point correlation function is explicitly given as a

determinant of certain kernels if β = 1, 2, 4 [1], [15]. Indeed, if β = 2, then the m-point

correlation function of the limit point process µAiry,2 is

ρmAi,2(xm) = det[KAi,2(xi, xj)]
m
i,j=1,

where KAi,2 is the continuous kernel such that, for x ̸= y,

KAi,2(x, y) =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y
.

We set here Ai′(x) = dAi(x)/dx and denote by Ai(·) the Airy function given by

Ai(z) =
1

2π

∫
R
dk ei(zk+k3/3), z ∈ R.

For β = 1, 4 similar expressions in terms of the quaternion determinant are known

[1], [15].

From the convergence of equilibrium states, we may expect the convergence of solu-

tions of SDEs (1.10). The divergence of the coefficients in (1.10) and the very long-range

nature of the logarithmic interaction however prove to be problematic. Even an informal

representation of the limit coefficients is nontrivial but has been obtained in [26]. Indeed,

the limit ISDEs are given by

dXi
t = dBi

t +
β

2
lim
r→∞

{ ∑
|Xj

t |<r,j ̸=i

1

Xi
t −Xj

t

−
∫
|x|<r

ϱ(x)

−x
dx

}
dt (i ∈ N). (1.11)

Here ϱ(x) = 1(−∞,0)(x)
√
−x, which is the shifted and rescaled semicircle function at the

right edge.

As an application of our main theorem (Theorem 2.2), we prove the convergence

(1.8) of solutions from (1.10) to (1.11) for {µN
Airy,β} with β = 2. We also prove that the

limit points of solutions of (1.10) satisfy ISDE (1.11) with β = 1, 2, 4.

For general β ̸= 1, 2, 4, the existence and uniqueness of solutions of (1.11) is still an

open problem. Indeed, the proof in [26] relies on a general theory developed in [18], [19],

[20], [21], [25], which reduces the problem to the quasi-Gibbs property and the existence

of the logarithmic derivative of the equilibrium state. These key properties are proved

only for β = 1, 2, 4 at present. We refer to [20], [21] for the definition of the quasi-Gibbs

property and Definition 2.1 for the logarithmic derivative.

Another typical example is the Ginibre interacting Brownian motion, which is an

infinite-particle system in R2 (naturally regarded as C), whose equilibrium state is the

Ginibre point process µgin. The m-point correlation function ρmgin with respect to Gauss-

ian measure (1/π)e−|x|2dx on C is then given by
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ρmgin(xm) = det[exix̄j ]mi,j=1.

The Ginibre point process µgin is the thermodynamic limit of N -particle point process

µN
gin whose labeled measure is given by

µ̌N
gin(dxN ) =

1

Z

N∏
i<j

|xi − xj |2e−
∑N

i=1 |xi|2dxN .

The associated N -particle SDE is then given by

dXN,i
t = dBi

t −XN,i
t dt+

N∑
j=1,j ̸=i

XN,i
t −XN,j

t

|XN,i
t −XN,j

t |2
dt (1 ≤ i ≤ N). (1.12)

We shall prove that the limit ISDEs are

dXi
t = dBi

t + lim
r→∞

∑
|Xi

t−Xj
t |<r,j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |2
dt (i ∈ N) (1.13)

and

dXi
t = dBi

t −Xi
tdt+ lim

r→∞

∑
|Xj

t |<r,j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |2
dt (i ∈ N). (1.14)

In [19], [25], it is proved that these ISDEs have the same pathwise unique strong solution

for µgin ◦ ℓ−1-a.s. s, where ℓ is a label and s is an initial point. As an example of applica-

tions of our second main theorem (Theorem 2.2), we prove the convergence of solutions

of (1.12) to those of (1.13) and (1.14). This example indicates again the sensitivity of

the representation of the limit ISDE. Such varieties of the limit ISDEs are a result of the

long-range nature of the logarithmic potential.

The main purpose of the present paper is to develop a general theory for finite-

particle convergence applicable to logarithmic potentials, and in particular, the Airy and

Ginibre point processes. Our theory is also applicable to essentially all Gibbs measures

with Ruelle-class potentials such as the Lennard-Jones 6-12 potential and Riesz poten-

tials.

In the first main theorem (Theorem 2.1), we present a sufficient condition for a

kind of tightness of solutions of stochastic differential equations (SDE) describing finite-

particle systems, and prove that the limit points solve the corresponding ISDE. This

implies, if in addition the limit ISDE enjoy uniqueness of solutions, then the full sequence

converges. We treat non-reversible case in the first main theorem.

In the second main theorem (Theorem 2.2), we restrict to the case of reversible par-

ticle systems and simplify the sufficient condition. Because of reversibility, the sufficient

condition is reduced to the convergence of logarithmic derivative of µN with marginal

assumptions. We shall deduce Theorem 2.2 from Theorem 2.1 and apply Theorem 2.2

to all examples in the present paper.
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If Ψ(x) = − log |x|, β = 2 and d = 1, there exists an algebraic method to construct

the associated stochastic processes [7], [8], [9], [10], and to prove the convergence of

finite-particle systems [24], [23]. This method requires that interaction Ψ is the loga-

rithmic function with β = 2 and depends crucially on an explicit calculation of space-time

determinantal kernels. It is thus not applicable to β ̸= 2 even if d = 1.

As for Sineβ point processes, Tsai proved the convergence of finite-particle systems

for all β ≥ 1 [31]. His method relies on a coupling method based on monotonicity of

SDEs, which is very specific to this model.

The organization of the paper is as follows: In Section 2, we state the main theorems

(Theorem 2.1 and Theorem 2.2). In Section 3, we prove Theorem 2.1. In Section 4, we

prove Theorem 2.2 using Theorem 2.1. In Section 5, we present examples.

2. Set up and the main theorems.

2.1. Configuration spaces and Campbell measures.

Let S be a closed set in Rd whose interior Sint is a connected open set satisfying

Sint = S and the boundary ∂S having Lebesgue measure zero. A configuration s =
∑

i δsi
on S is a Radon measure on S consisting of delta masses. We set Sr = {s ∈ S ; |s| ≤ r}.
Let S be the set consisting of all configurations of S. By definition, S is given by

S =

{
s =

∑
i

δsi ; s(Sr) <∞ for each r ∈ N
}
.

By convention, we regard the zero measure as an element of S. We endow S with the

vague topology, which makes S a Polish space. S is called the configuration space over

S and a probability measure µ on (S,B(S)) is called a point process on S.

A symmetric and locally integrable function ρn : Sn → [0,∞) is called the n-point

correlation function of a point process µ on S with respect to the Lebesgue measure if

ρn satisfies ∫
A

k1
1 ×···×Akm

m

ρn(x1, . . . , xn)dx1 · · · dxn =

∫
S

m∏
i=1

s(Ai)!

(s(Ai)− ki)!
dµ

for any sequence of disjoint bounded measurable sets A1, . . . , Am ∈ B(S) and a sequence

of natural numbers k1, . . . , km satisfying k1 + · · · + km = n. When s(Ai) − ki < 0,

according to our interpretation, s(Ai)!/(s(Ai)− ki)! = 0 by convention. Hereafter, we

always consider correlation functions with respect to Lebesgue measures.

A point process µx is called the reduced Palm measure of µ conditioned at x ∈ S if

µx is the regular conditional probability defined as

µx = µ(· − δx|s({x}) ≥ 1).

A Radon measure µ[1] on S ×S is called the 1-Campbell measure of µ if µ[1] is given by

µ[1](dxds) = ρ1(x)µx(ds)dx. (2.1)
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2.2. Finite-particle approximations (general case).

Let {µN} be a sequence of point processes on S such that µN ({s(S) = N}) = 1. We

assume:

(H1) Each µN has a correlation function {ρN,n} satisfying for each r ∈ N

lim
N→∞

ρN,n(x) = ρn(x) uniformly on Sn
r for all n ∈ N, (2.2)

sup
N∈N

sup
x∈Sn

r

ρN,n(x) ≤ cn1n
c2n, (2.3)

where 0 < c1(r) <∞ and 0 < c2(r) < 1 are constants independent of n ∈ N.
It is known that (2.2) and (2.3) imply weak convergence (1.6) [20, Lemma A.1]. As

in Section 1, let ℓ and ℓN be labels of µ and µN , respectively. We assume:

(H2) For each m ∈ N, (1.7) holds. That is,

lim
N→∞

µN ◦ ℓ−1
N,m = µ ◦ ℓ−1

m weakly in Sm. (1.7)

We shall later take µN ◦ ℓ−1
N as an initial distribution of a labeled finite-particle sys-

tem. Hence (H2) means convergence of the initial distribution of the labeled dynamics.

There exist infinitely many different labels ℓ, and we choose a label such that the initial

distribution of the labeled dynamics converges. (H2) will be used in Theorem 2.2 and

Theorem 2.1.

For X = (Xi)∞i=1 and XN = (XN,i)Ni=1, we set

X⋄i
t =

∞∑
j ̸=i

δXj
t
, and XN,⋄i

t =
N∑
j ̸=i

δXN,j
t
,

where XN,⋄i
t denotes the zero measure for N = 1. Let σN , σ : S × S → Rd2

and

bN , b : S ×S → Rd be measurable functions. We introduce the finite-dimensional SDE

of XN = (XN,i)Ni=1 with these coefficients such that for 1 ≤ i ≤ N

dXN,i
t = σN (XN,i

t ,XN,⋄i
t )dBi

t + bN (XN,i
t ,XN,⋄i

t )dt, (2.4)

XN
0 = s. (2.5)

We assume:

(H3) SDE (2.4) and (2.5) has a unique solution for µN ◦ ℓ−1
N -a.s. s for each N : this

solution does not explode. Furthermore, when ∂S is non-void, particles never hit the

boundary.

We set aN = σNtσN and assume:

(H4) σN are bounded and continuous on S×S, and converge uniformly to σ on Sr ×S

for each r ∈ N. Furthermore, aN are uniformly elliptic on Sr × S for each r ∈ N and

∇xa
N are uniformly bounded on S ×S.
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From (H4) we see that aN converge uniformly to a := σtσ on each compact set

Sr ×S, and that aN and a are bounded and continuous on S ×S. There thus exists a

positive constant c3 such that

||a||S×S, ||∇xa||S×S, sup
N∈N

||aN ||S×S, sup
N∈N

||∇xa
N ||S×S ≤ c3. (2.6)

Here ∥·∥S×S denotes the uniform norm on S×S. Furthermore, we see that a is uniformly

elliptic on each Sr × S. From these, we expect that SDEs (2.4) have a sub-sequential

limit.

lim
N→∞

{XN,i
t −XN,i

0 } = lim
N→∞

∫ t

0

σN (XN,i
t ,XN,⋄i

t )dBi
u + lim

N→∞

∫ t

0

bN (XN,i
t ,XN,⋄i

t )du

=

∫ t

0

σ( lim
N→∞

XN,i
t , lim

N→∞
XN,⋄i

t )dBi
u + lim

N→∞

∫ t

0

bN (XN,i
t ,XN,⋄i

t )du.

To identify the second term on the right-hand side and to justify the convergence, we

make further assumptions. As the examples in Section 1 suggest, the identification of

the limit is a sensitive problem, which is at the heart of the present paper.

We set the maximal module variable X
N,m

of the first m-particles by

X
N,m

=
m

max
i=1

sup
t∈[0,T ]

|XN,i
t |.

and by LN
r the maximal label with which the particle intersects Sr; that is,

LN
r = max{i ∈ N ∪ {∞} ; |XN,i

t | ≤ r for some 0 ≤ t ≤ T}.

We assume the following.

(I1) For each m ∈ N

lim
a→∞

lim inf
N→∞

PµN◦ℓ−1
N (X

N,m ≤ a) = 1 (2.7)

and there exists a constant c4 = c4(m, a) such that for 0 ≤ t, u ≤ T

sup
N∈N

m∑
i=1

EµN◦ℓ−1
N [|XN,i

t −XN,i
u |4;XN,m ≤ a] ≤ c4|t− u|2. (2.8)

Furthermore, for each r ∈ N

lim
L→∞

lim inf
N→∞

PµN◦ℓ−1
N (LN

r ≤ L) = 1. (2.9)

Let µN,[1] be the one-Campbell measure of µN defined as (2.1). Set c5(r,N) =

µN,[1](Sr × S). Then by (2.3) supN c5(r,N) < ∞ for each r ∈ N. Without loss of

generality, we can assume that c5 > 0 for all r,N . Let µ
N,[1]
r = µN,[1](· ∩ {Sr ×S}). Let

µ̄
N,[1]
r be the probability measure defined as µ̄

N,[1]
r (·) = µN,[1](· ∩ {Sr ×S})/c5. Let ϖr,s

be a map from Sr×S to itself such that ϖr,s(x, s) = (x,
∑

|x−si|<s δsi), where s =
∑

i δsi .
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Let Fr,s = σ[ϖr,s] be the sub-σ-field of B(Sr × S) generated by ϖr,s. Because Sr is a

subset of S, we can and do regard Fr,s as a σ-field on S × S, which is trivial outside

Sr ×S.

We set a tail-truncated coefficient bNr,s of bN and their tail parts bN,tail
r,s by

bNr,s = Eµ̄N,[1]
r [bN |Fr,s], bN = bNr,s + bN,tail

r,s . (2.10)

We can and do take a version of bNr,s such that

bNr,s(x, y) = 0 for x ̸∈ Sr, (2.11)

bNr,s(x, y) = bNr+1,s(x, y) for x ∈ Sr. (2.12)

We next introduce a cut-off coefficient bNr,s,p of bNr,s. Let bNr,s,p be a continuous and

Fr,s-measurable function on S ×S such that

bNr,s,p(x, y) = 0 for x ̸∈ Sr (2.13)

bNr,s,p(x, y) = bNr+1,s,p(x, y) for x ∈ Sr−1 (2.14)

and that, for (S×S)r,p = {(x, y) ∈ Sr×S; |x−yi| ≤ 1/2p for some yi}, where y =
∑

i δyi ,

bNr,s,p(x, y) = 0 for (x, y) ∈ (S ×S)r,p+1, (2.15)

bNr,s,p(x, y) = bNr,s(x, y) for (x, y) ̸∈ (S ×S)r,p. (2.16)

The main requirements for bN and bNr,s,p are the following:

(I2) There exists a p̂ such that 1 < p̂ and that for each r ∈ N

lim sup
N→∞

∫
Sr×S

|bN |p̂dµN,[1] <∞. (2.17)

Furthermore, for each r, i ∈ N, there exists a constant c6 such that

sup
p∈N

sup
N∈N

EµN◦ℓ−1
N

[ ∫ T

0

|bNr,s,p(X
N,i
t ,XN,⋄i

t )|p̂dt
]
≤ c6. (2.18)

We set Sm
r = {s ; s(Sr) = m}. Let ∥ · ∥S×Sm

r
denote the uniform norm on S ×Sm

r

and set Lp̂(µ
N,[1]
r ) = Lp̂(Sr × S, µN,[1]). For a function f on S × Sm

r we denote by

∇f = (∇xf̌ ,∇yi f̌), where f̌ is a function on Sr×Sm
r such that f̌(x, (yi)

m
i=1) is symmetric

in (yi)
m
i=1 for each x and f(x,

∑
i δyi) = f̌(x, (yi)

m
i=1). We decompose bNr,s as

bNr,s = bNr,s,p + bNr,s − bNr,s,p (2.19)

and we assume:

(I3) For each m, p, r, s ∈ N such that r < s, there exists br,s,p such that

lim
N→∞

∥bNr,s,p − br,s,p∥S×Sm
s
= 0. (2.20)
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Moreover, bNr,s,p are differentiable in x and satisfying the bounds:

sup
N∈N

∥∇bNr,s,p∥S×Sm
s
<∞, (2.21)

lim
p→∞

sup
N∈N

∥bNr,s,p − bNr,s∥Lp̂(µ
N,[1]
r )

= 0. (2.22)

Furthermore, we assume for each i, r < s ∈ N

lim
p→∞

lim sup
N→∞

EµN◦ℓ−1
N

[ ∫ T

0

|{bNr,s,p − bNr,s}(X
N,i
t ,XN,⋄i

t )|p̂dt
]
= 0, (2.23)

lim
p→∞

Eµ◦ℓ−1

[ ∫ T

0

|{br,s,p − br,s}(Xi
t ,X

⋄i
t )|p̂dt

]
= 0, (2.24)

where br,s is such that

br,s(x, y) = lim
N→∞

bNr,s(x, y) for each (x, y) ∈
∪
p∈N

(S ×S)cr,p. (2.25)

Remark 2.1. We see that
∪

p∈N(S ×S)cr,p = {Sc
r ×S} ∪ {(x, y);x ̸= yi for all i}

by definition and br,s(x, y) = 0 for x ̸∈ Sr by (2.11). The limit in (2.25) exists because

of (2.15), (2.16), and (2.20).

(I4) There exists a btail ∈ C(S;Rd) independent of r ∈ N and s ∈ S such that

lim
s→∞

lim sup
N→∞

∥bN,tail
r,s − btail∥

Lp̂(µ
N,[1]
r )

= 0. (2.26)

Furthermore, for each r, i ∈ N:

lim
s→∞

lim sup
N→∞

EµN◦ℓ−1
N

[ ∫ T

0

|(bN,tail
r,s − btail)(XN,i

t ,XN,⋄i
t )|p̂dt

]
= 0. (2.27)

We remark that btail is automatically independent of r for consistency (2.16). By

assumption, btail = btail(x) is a function of x. From (2.10) and (2.19) we have

bN = bNr,s,p + btail + {bNr,s − bNr,s,p}+ {bN,tail
r,s − btail}. (2.28)

In (I3) and (I4), we have assumed that the last two terms {bNr,s − bNr,s,p} and {bN,tail
r,s −

btail} in (2.28) are asymptotically negligible.

Under these assumptions, we prove in Lemma 3.1 that there exists b such that for

each r ∈ N

lim
s→∞

∥br,s − b∥
Lp̂(µ

N,[1]
r )

= 0. (2.29)

We assume:

(I5) For each i, r ∈ N
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lim
s→∞

Eµ◦ℓ−1

[ ∫ T

0

|(br,s − b)(Xi
t ,X

⋄i
t )|p̂dt

]
= 0. (2.30)

We say a sequence {XN} of C([0, T ];SN )-valued random variables is tight if for

any subsequence we can choose a subsequence denoted by the same symbol such that

{XN,m}N≥m is convergent in law in C([0, T ];Sm) for each m ∈ N. With these prepara-

tions, we state the main theorem in this section.

Theorem 2.1. Assume (H1)–(H4) and (I1)–(I5). Then, {XN}N∈N is tight in

C([0, T ];SN) and, any limit point X = (Xi)i∈N of {XN}N∈N is a solution of the ISDE

dXi
t = σ(Xi

t ,X
⋄i
t )dBi

t + {b(Xi
t ,X

⋄i
t ) + btail(Xi

t)}dt. (2.31)

Remark 2.2. If diffusion processes are symmetric, we can dispense with (2.8),

(2.18), (2.23), (2.24), (2.27), and (2.30) as we see in Subsection 2.3. Indeed, using the

Lyons-Zheng decomposition we can derive these from static conditions (H4), (2.17),

(2.20), (2.22), (2.26), and (2.29). We remark that we can apply Theorem 2.1 to non-

symmetric diffusion processes by assuming these dynamical conditions.

2.3. Finite-particle approximations (reversible case).

For a subset A, we set πA : S → S by πA(s) = s(· ∩ A). We say a function f on

S is local if f is σ[πK ]-measurable for some compact set K in S. For a local function f

on S, we say f is smooth if f̌ is smooth, where f̌(x1, . . .) is a symmetric function such

that f̌(x1, . . .) = f(x) for x =
∑

i δxi . Let D◦ be the set of all bounded, local smooth

functions on S. We write f ∈ Lp
loc(µ

[1]) if f ∈ Lp(Sr × S, µ[1]) for all r ∈ N. Let

C∞
0 (S) ⊗ D◦ = {

∑N
i=1 fi(x)gi(y) ; fi ∈ C∞

0 (S), gi ∈ D◦, N ∈ N} denote the algebraic

tensor product of C∞
0 (S) and D◦.

Definition 2.1. A Rd-valued function dµ ∈ L1
loc(µ

[1]) is called the logarithmic

derivative of µ if, for all φ ∈ C∞
0 (S)⊗D◦,∫

S×S

dµ(x, y)φ(x, y)µ[1](dxdy) = −
∫
S×S

∇xφ(x, y)µ
[1](dxdy).

Remark 2.3. (1) The logarithmic derivative dµ is determined uniquely (if ex-

ists).

(2) If the boundary ∂S is nonempty and particles hit the boundary, then dµ would

contain a term arising from the boundary condition. For example, if the Neumann

boundary condition is imposed on the boundary, then there would be local time-

type drifts. We shall later assume that particles never hit the boundary, and the

above formulation is thus sufficient in the present situation.

(3) A sufficient condition for the explicit expression of the logarithmic derivative of

point processes is given in [19, Theorem 45]. Using this, one can obtain the log-

arithmic derivative of point processes appearing in random matrix theory such as

sineβ , Airyβ , (β = 1, 2, 4), Bessel2,α (1 ≤ α), and the Ginibre point process (see
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Examples in Section 5). For canonical Gibbs measures with Ruelle-class interac-

tion potentials, one can easily calculate the logarithmic derivative employing DLR

equation [25, Lemma 10.10].

We assume:

(J1) Each µN has a logarithmic derivative dN , and the coefficient bN is given as

bN =
1

2
{∇xa

N + aNdN}. (2.32)

Furthermore, the vector-valued functions {∇xa
N}N are continuous and converge to ∇xa

uniformly on each Sr ×S, where ∇xa
N is the d-dimensional column vector such that

∇xa
N (x, y) = t

( d∑
i=1

∂

∂xi
aN1i(x, y), . . . ,

d∑
i=1

∂

∂xi
aNdi(x, y)

)
. (2.33)

Remark 2.4. From (J1) we see that the delabeled dynamics XN =
∑N

i=1 δXi

of XN is reversible with respect to µN . Thus (J1) relates the measure µN with the

labeled dynamics XN . For each N < ∞, XN has a reversible measure. Indeed, the

symmetrization (µN ◦ ℓ−1
N )sym of µN ◦ ℓ−1

N is a reversible measure of XN as we see for µ̌N

in Introduction, where (µN ◦ ℓ−1
N )sym = (1/N !)

∑
σ∈Sym(N)(µ

N ◦ ℓ−1
N ) ◦ σ−1 and Sym(N)

is the symmetric group of order N . When N = ∞, X does not have any reversible

measure in general. For example, infinite-dimensional Brownian motion B = (Bi)i∈N on

(Rd)N has no reversible measures. We also remark that the Airyβ (β = 1, 2, 4) interacting

Brownian motion defined by (1.11) has a reversible measure given by µAiry,β ◦ ℓ−1 with

label ℓ(s) = (s1, s2, . . .) such that si > si+1 for all i ∈ N because ℓ gives a bijection from

(a subset of) S to RN defined for µAiry,β-a.s. s, and thus the relation Xt = ℓ(Xt) holds

for all t.

We prove that convergence of the logarithmic derivative implies weak convergence

of the solutions of the associated SDEs. Each logarithmic derivative dN belongs to a

different Lp-space Lp(µN,[1]), and µN,[1] are mutually singular. Hence we decompose dN

to define a kind of Lp-convergence.

Let u, uN , w : S → Rd and g, gN , v, vN : S2 → Rd be measurable functions. We

set

gs(x, y) =

∫
S

χs(x− y)v(x, y)dy +
∑
i

χs(x− yi)g(x, yi),

gNs (x, y) =

∫
S

χs(x− y)vN (x, y)dy +
∑
i

χs(x− yi)g
N (x, yi),

wN
s (x, y) =

∫
S

{1− χs(x− y)}vN (x, y)dy +
∑
i

(1− χs(x− yi))g
N (x, yi), (2.34)

where y =
∑

i δyi
and χs ∈ C∞

0 (S) is a cut-off function such that 0 ≤ χs ≤ 1, χs(x) = 0

for |x| ≥ s+ 1, and χs(x) = 1 for |x| ≤ s. We assume the following.
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(J2) Each µN has a logarithmic derivative dN such that

dN (x, y) = uN (x) + gNs (x, y) +wN
s (x, y). (2.35)

Furthermore, we assume that

(1) uN are in C1(S). Furthermore, uN and ∇uN converge uniformly to u and ∇u,
respectively, on each compact set in S.

(2) For each s ∈ N,
∫
S
χs(x − y)vN (x, y)dy are in C1(S). Furthermore, func-

tions
∫
S
χs(x− y)vN (x, y)dy and ∇x

∫
S
χs(x− y)vN (x, y)dy converge uniformly to∫

S
χs(x− y)v(x, y)dy and ∇x

∫
S
χs(x− y)v(x, y)dy, respectively, on each compact

set in S.

(3) gN are in C1(S2 ∩ {x ̸= y}). Furthermore, gN and ∇xg
N converge uniformly to g

and ∇xg, respectively, on S
2∩{|x− y| ≥ 2−p} for each p > 0. In addition, for each

r ∈ N,

lim
p→∞

lim sup
N→∞

∫
x∈Sr,|x−y|≤2−p

χs(x− y)|gN (x, y)|p̂ ρN,1
x (y)dxdy = 0, (2.36)

where ρN,1
x is a one-correlation function of the reduced Palm measure µN

x .

(4) There exists a continuous function w : S → R such that

lim
s→∞

lim sup
N→∞

∫
Sr×S

|wN
s (x, y)− w(x)|p̂dµN,[1] = 0, w ∈ Lp̂

loc(S, dx). (2.37)

Let p be such that 1 < p < p̂. Assume (H1) and (J2). Then from [19, Theorem

45] we see that the logarithmic derivative dµ of µ exists in Lp
loc(µ

[1]) and is given by

dµ(x, y) = u(x) + g(x, y) + w(x). (2.38)

Here g(x, y) = lims→∞ gs(x, y) and the convergence of lim gs takes place in Lp
loc(µ

[1]).

We now introduce the ISDE of X = (Xi)i∈N:

dXi
t = σ(Xi

t ,X
⋄i
t )dBi

t +
1

2
{∇xa(X

i
t ,X

⋄i
t ) + a(Xi

t ,X
⋄i
t )dµ(Xi

t ,X
⋄i
t )}dt (2.39)

X0 = s. (2.40)

Here ∇xa is defined similarly as (2.33). If σ is the unit matrix and (J2) is satisfied, we

have

dXi
t = dBi

t +
1

2
{u(Xi

t) + w(Xi
t) + g(Xi

t ,X
⋄i
t )}dt. (2.41)

In the sequel, we give a sufficient condition for solving ISDE (2.39) (and (2.41)).

Let D be the standard square field on S such that for any f, g ∈ D◦ and s =
∑

i δsi

D[f, g](s) =
1

2
{
∑
i

∇if̌ · ∇iǧ} (s),
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where · is the inner product in Rd. Since the function
∑

i ∇if̌(s) ·∇iǧ(s), where s = (si)i
and s =

∑
i δsi , is symmetric in (si)i, we regard it as a function of s. We set L2(µ) =

L2(S, µ) and let

Eµ(f, g) =

∫
S

D[f, g](s)µ(ds),

Dµ
◦ = {f ∈ D◦ ∩ L2(µ) ; Eµ(f, f) <∞}.

We assume:

(J3) (Eµ,Dµ
◦ ) is closable on L2(µ).

From (J3) and the local boundedness of correlation functions given by (H1), we

deduce that the closure (Eµ,Dµ) of (Eµ,Dµ
◦ ) becomes a quasi-regular Dirichlet form [16,

Theorem 1]. Hence, using a general theory of quasi-regular Dirichlet forms, we deduce

the existence of the associated S-valued diffusion (P,X) [14]. By construction, (P,X)

is µ-reversible.

If one takes µ as Poisson point process with Lebesgue intensity, then the diffusion

(P,X) thus obtained is the standard S-valued Brownian motion B such that Bt =∑
i∈N δBi

t
, where {Bi}i∈N are independent copies of the standard Brownian motions on

Rd. This is the reason why we call D the standard square field.

Let Capµ denote the capacity given by the Dirichlet space (Eµ,Dµ, L2(µ)) [4]. Let

Ss.i. = {s ∈ S ; s(x) ≤ 1 for all x ∈ S, s(S) = ∞}

and assume:

(J4) Capµ({Ss.i.}c) = 0.

Let Erf(t) = (1/
√
2π)

∫∞
t
e−|x|2/2 dx be the error function. Let Sr = {|x| < r} as before.

We assume:

(J5) There exists a Q > 0 such that for each R > 0

lim inf
r→∞

sup
N∈N

{∫
Sr+R

ρN,1(x) dx

}
Erf

(
r√

(r +R)Q

)
= 0. (2.42)

We write si = ℓN (s)i and assume for each r ∈ N

lim
L→∞

lim sup
N→∞

∑
i>L

∫
S

Erf

(
|si| − r
√
c3T

)
µN (ds) = 0. (2.43)

We remark that (2.43) is easy to check. Indeed, we prove in Lemma 4.6 that, if

si = ℓN (s)i is taken such that

|s1| ≤ |s2| ≤ · · · , (2.44)

then (2.43) follows from (H1) and (2.45) below.
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lim
q→∞

lim sup
N→∞

∫
S\Sq

Erf

(
|x| − r
√
c3T

)
ρN,1(x)dx = 0. (2.45)

Let ℓ be the label as before. Let X = (Xi)i∈N be a family of solution of (2.39)

satisfying X0 = s for µ ◦ ℓ−1-a.s. s. We call X satisfies µ-absolute continuity condition if

µt ≺ µ for all t ≥ 0, (2.46)

where µt is the distribution of Xt and µt ≺ µ means µt is absolutely continuous with

respect to µ. Here Xt =
∑

i∈N δXi
t
, for Xt = (Xi

t)i∈N. By definition X = {Xt} is the

delabeled dynamics of X and by construction X0 = µ in distribution.

We say ISDE (2.39) has µ-uniqueness of solutions in law if X and X′ are solutions

with the same initial distributions satisfying the µ-absolute continuity condition, then

they are equivalent in law. We assume:

(J6) ISDE (2.39) has µ-uniqueness of solutions in law.

Let XN be a solution of (2.4). From (2.32) we can rewrite (2.4) as

dXN,i
t = σN (XN,i

t ,XN,⋄i
t )dBi

t +
1

2
{∇xa

N + aNdN}(XN,i
t ,XN,⋄i

t )dt. (2.47)

We set XN,m = (XN,1, XN,2, . . . , XN,m) 1 ≤ m ≤ N and Xm = (X1, X2, . . . , Xm). We

say {XN} is tight in C([0,∞);SN) if each subsequence {XN ′} contains a subsequence

{XN ′′} such that {XN ′′,m} is convergent weakly in C([0,∞);Sm) for each m ∈ N.

Theorem 2.2. Assume (H1)–(H4) and (J1)–(J5). Assume that XN
0 = µN ◦ℓ−1

N

in distribution. Then {XN} is tight in C([0,∞);SN) and each limit point X of {XN} is

a solution of (2.39) with initial distribution µ ◦ ℓ−1. Furthermore, if we assume (J6) in

addition, then for any m ∈ N

lim
N→∞

XN,m = Xm weakly in C([0,∞), Sm). (2.48)

Remark 2.5. To prove (2.48) it is sufficient to prove the convergence in

C([0, T ];Sm) for each T ∈ N. We do this in the following sections.

Remark 2.6. (1) A sufficient condition for (J3) is obtained in [20], [21]. In-

deed, if µ is a (Φ,Ψ)-quasi-Gibbs measure with upper semi-continuous potential

(Φ,Ψ), then (J3) is satisfied. This condition is mild and is satisfied by all exam-

ples in the present paper. We refer to [20], [21] for the definition of quasi-Gibbs

property.

(2) From the general theory of Dirichlet forms, we see that (J4) is equivalent to the

non-collision of particles [4]. We refer to [6] for a necessary and sufficient condition

of this non-collision property of interacting Brownian motions in finite-dimensions,

which gives a sufficient condition of non-collision in infinite dimensions. We also

refer to [17] for a sufficient condition for non-collision property of interacting Brow-

nian motions in infinite-dimensions applicable to, in particular, determinantal point

processes.
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(3) From (2.42) of (J5), we deduce that each tagged particle Xi does not explode [4],

[18]. We remark that the delabeled dynamics X =
∑

i δXi are µ-reversible, and

they thus never explode. Indeed, as for configuration-valued diffusions, explosion

occurs if and only if infinitely many particles gather in a compact domain, so the

explosion of tagged particle does not imply that of the configuration-valued process.

(4) It is known that, if we suppose (H1), (J1)–(J5), then ISDE (2.39) has a solution

for µ ◦ ℓ−1-a.s. s satisfying the non-collision and non-explosion property [19].

Indeed, let X = (Xi) be the SN-valued continuous process consisting of tagged

particles Xi of the delabeled diffusion process X =
∑

i∈N δXi given by the Dirichlet

form of (J3). Then from (J4) and (J5) (2.42) we see X is uniquely determined

by its initial starting point. It was proved that X is a solution of (2.39) in [19].

Remark 2.7. Assumption (J6) follows from tail triviality of µ [25], where tail

triviality of µ means that the tail σ-field T =
∩∞

r=1 σ[πSc
r
] is µ-trivial. Indeed, from tail

triviality of µ and marginal assumptions ((E1), (F1), and (F2) in [25]), we obtain (J6).

Tail triviality holds for all determinantal point processes [22] and grand canonical Gibbs

measures with sufficiently small inverse temperature β > 0.

3. Proof of Theorem 2.1.

The purpose of this section is to prove Theorem 2.1. We assume the same assump-

tions as Theorem 2.1 throughout this section. We begin by proving (2.29).

Lemma 3.1. (2.29) holds.

Proof. From (H1) and (2.20), we obtain

lim
N→∞

bNr,s,p = br,s,p for µ̄[1]
r -a.s. and in Lp̂(µ̄[1]

r ). (3.1)

We next prove the convergence of {br,s,p} as p → ∞. Note that

∥br,s,p − br,s,q∥Lp̂(µ̄
[1]
r )

≤ ∥br,s,p − bNr,s,p∥Lp̂(µ̄
[1]
r )

+ ∥bNr,s,p − bNr,s,q∥Lp̂(µ̄
[1]
r )

+ ∥bNr,s,q − br,s,q∥Lp̂(µ̄
[1]
r )
. (3.2)

From (2.22) for each ϵ there exists a p0 such that for all p, q ≥ p0

sup
N∈N

∥bNr,s,p − bNr,s,q∥Lp̂(µ
N,[1]
r )

< ϵ. (3.3)

By (3.1) there exists an N = Np,q such that

∥br,s,p − bNr,s,p∥Lp̂(µ̄
[1]
r )

< ϵ, ∥br,s,q − bNr,s,q∥Lp̂(µ̄
[1]
r )

< ϵ. (3.4)

Putting (3.3) and (3.4) into (3.2), we deduce that {br,s,p}p∈N is a Cauchy sequence in

Lp̂(µ̄
[1]
r ). Hence from (2.16), (2.22), and (2.25) we see

lim
p→∞

br,s,p = br,s in Lp̂(µ̄[1]
r ). (3.5)
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Recall that bNr,s = Eµ̄N,[1]
r [bN |Fr,s] by (2.10). Then, because Fr,s ⊂ Fr,s+1, we have

bNr,s = Eµ̄N,[1]
r [bNr,s+1|Fr,s]. (3.6)

From bNr,s = Eµ̄N,[1]
r [bN |Fr,s] we have

∥bNr,s∥Lp̂(µ̄
N,[1]
r )

≤ ∥bN∥
Lp̂(µ̄

N,[1]
r )

.

From this and (2.17) we obtain

sup
r<s

lim sup
N→∞

∥bNr,s∥Lp̂(µ̄
N,[1]
r )

≤ lim sup
N→∞

∥bN∥
Lp̂(µ̄

N,[1]
r )

<∞. (3.7)

Combining (2.25), (3.6) and (3.7), we have

br,s = lim
N→∞

bNr,s = lim
N→∞

Eµ̄N,[1]
r [bNr,s+1|Fr,s] = Eµ̄[1]

r [br,s+1|Fr,s]. (3.8)

From (H1), (2.25), (3.7), and Fatou’s lemma, we see that

sup
r<s

∥br,s∥Lp̂(µ̄
[1]
r )

≤ sup
r<s

lim inf
N→∞

∥bNr,s∥Lp̂(µ̄
N,[1]
r )

<∞. (3.9)

From (3.8) we deduce that {br,s}∞s=r+1 is martingale in s. Applying the martingale

convergence theorem to {br,s}∞s=r+1 and using (3.9), we deduce that there exists a br
such that

br,s = Eµ̄[1]
r [br|Fr,s] (3.10)

and that

lim
s→∞

br,s = br for µ̄[1]
r -a.s. and in Lp̂(µ̄[1]

r ).

By the consistency of {µ̄[1]
r }r∈N in r, the function br in (3.10) can be taken to be inde-

pendent of r. This together with (3.5) completes the proof of (2.29). □

We proceed with the proof of the latter half of Theorem 2.1. Recall SDE (2.4). Then

XN,i
t −XN,i

0 =

∫ t

0

σN (XN,i
u ,XN,⋄i

u )dBi
u +

∫ t

0

bN (XN,i
u ,XN,⋄i

u )du. (3.11)

Using the decomposition in (2.28), we see from (3.11) that

XN,i
t −XN,i

0 =

∫ t

0

σN (XN,i
u ,XN,⋄i

u )dBi
u +

∫ t

0

{bNr,s,p + btail}(XN,i
u ,XN,⋄i

u )du

+

∫ t

0

[
{bNr,s − bNr,s,p}+ {bN,tail

r,s − btail}
]
(XN,i

u ,XN,⋄i
u )du. (3.12)
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Let ∂i,j = ∂/∂xi,j , xi = (xi,j)
d
j=1 ∈ Rd, and xm = (xi)

m
i=1 ∈ (Rd)m. Set ∇i =

(∂i,j)
d
j=1. Let ψ ∈ C∞

0 (Sm) and aNi ∇i∇iψ(xm) =
∑d

k,l=1 a
N
kl(xi)∂i,k∂i,lψ(xm). Applying

the Itô formula to ψ and (3.12), and putting XN,m
t = (XN,1

t , . . . , XN,m
t ), we deduce that

ψ(XN,m
t )− ψ(XN,m

0 ) =

m∑
i=1

(∫ t

0

∇iψ(X
N,m
u ) · σN (XN,i

u ,XN,⋄i
u )dBi

u

+

∫ t

0

1

2
aNi ∇i∇iψ(X

N,m
u ) + {bNr,s,p + btail}(XN,i

u ,XN,⋄i
u ) · ∇iψ(X

N,m
u )du

)
+

m∑
i=1

∫ t

0

∇iψ(X
N,m
u ) · {bNr,s − bNr,s,p}(XN,i

u ,XN,⋄i
u )du

+
m∑
i=1

∫ t

0

∇iψ(X
N,m
u ) · {bN,tail

r,s − btail}(XN,i
u ,XN,⋄i

u )du. (3.13)

We set

QN
r,s,p =

m∑
i=1

∫ T

0

∣∣∣{bNr,s − bNr,s,p}(XN,i
u ,XN,⋄i

u )
∣∣∣du,

RN
r,s =

m∑
i=1

∫ T

0

∣∣∣{bN,tail
r,s − btail}(XN,i

u ,XN,⋄i
u )

∣∣∣du.
Lemma 3.2. For each m, r < s ∈ N

lim
p→∞

lim sup
N→∞

EµN◦ℓ−1
N

[
(QN

r,s,p)
p̂
]
= 0,

lim
s→∞

lim sup
N→∞

EµN◦ℓ−1
N

[
(RN

r,s)
p̂
]
= 0.

Proof. Lemma 3.2 follows from (2.23) and (2.27) immediately. □

Let Ξ = Sm×(Rd2

)m×(Rd)m and ψ ∈ C∞
0 (Sm). Let F : C([0, T ]; Ξ) → C([0, T ];R)

such that

F (ξ, η, ζ)(t) = ψ(ξ(t))− ψ(ξ(0))−
∫ t

0

m∑
i=1

ζi(u) · ∇iψ(ξ(u))du

−
∫ t

0

m∑
i=1

(1
2
ηi(u)∆iψ(ξ(u)) + btail(ξi(u)) · ∇iψ(ξ(u))

)
du, (3.14)

where ξ = (ξi)
m
i=1, η = (ηi)

m
i=1, ηi = (ηi,kl)

d
k,l=1, ζ = (ζi)

m
i=1, and ∆i =

∑d
j=1 ∂

2
i,j .

As ψ ∈ C∞
0 (Sm) and btail ∈ C(Sm) by definition, we see that F satisfies the follow-

ing.

(1) F is continuous.

(2) F (ξ, η, ζ) is bounded in (ξ, η) for each ζ, and linear in ζ for each (ξ, η).
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Let AN,m = (AN,i)mi=1 and BN,m
r,s,p = (BN,i

r,s,p)
m
i=1 such that

AN,i(t) = aN (XN,i
t ,XN,⋄i

t ), BN,i
r,s,p(t) = bNr,s,p(X

N,i
t ,XN,⋄i

t ). (3.15)

Then we see from (3.13)–(3.15) that for each m ∈ N∣∣∣F (XN,m,AN,m,BN,m
r,s,p)−

m∑
i=1

∫ ·

0

∇iψ(X
N,m
u ) · σN (XN,i

u ,XN,⋄i
u )dBi

u

∣∣∣
≤ c7{QN

r,s,p +RN
r,s}, (3.16)

where c7 = c7(ψ) is the constant such that c7 = maxmi=1 ∥∇iψ∥Sm (∥ · ∥A is the uniform

norm over A as before). We take the limit of each term in (3.16) in the sequel.

Lemma 3.3. {XN,i}N∈N, {AN,i}N∈N and {BN,i
r,s,p}N∈N are tight for each i, r, s,

p ∈ N.

Proof. The tightness of {XN,i}N∈N is clear from (I1).

We note that {∇xa
N}N is uniformly bounded on Sr ×S for each r ∈ N by (H4).

Hence from this and (I1) there exists a constant c8 independent of N such that for all

0 ≤ u, v ≤ T

EµN◦ℓ−1
N [|AN,i(u)− AN,i(v)|4; sup

t∈[0,T ]

|XN,i
t | ≤ a] ≤ c8|u− v|2.

By (I1) we see that {AN,i(0)}N∈N is tight. Combining these deduces the tightness of

{AN,i}N∈N.

Recall that BN,i
r,s,p(t) = bNr,s,p(X

N,i
t ,XN,⋄i

t ) and that bNr,s,p is Fr,s-measurable by as-

sumption. By construction

PµN◦ℓ−1
N (XN,j

t ∈ Sr for all 1 ≤ j ≤ m, 0 ≤ t ≤ T | LN
r+s ≤ m) = 1. (3.17)

Let c9 = supN∈N ∥∇bNr,s,p∥S×Sm−1
s

. From (3.15), (2.21), (3.17), and (2.8) we see

EµN◦ℓ−1
N [|BN,i

r,s,p(u)−BN,i
r,s,p(v)|4; sup

t∈[0,T ]

|XN,i
t | ≤ a, LN

r+s ≤ m]

= EµN◦ℓ−1
N [|bNr,s,p(XN,i

u ,XN,⋄i
u )− bNr,s,p(X

N,i
v ,XN,⋄i

v )|4; sup
t∈[0,T ]

|XN,i
t | ≤ a, LN

r+s ≤ m]

≤ EµN◦ℓ−1
N [

m∑
j=1

c49|XN,j
u −XN,j

v |4; sup
t∈[0,T ]

|XN,i
t | ≤ a, LN

r+s ≤ m]

≤ c49c6|u− v|2 for all 0 ≤ u, v ≤ T .

From this, (2.7), and (2.9), we deduce the tightness of {BN,i
r,s,p}N∈N. □

Lemma 3.4. {((XN,i,AN,i,BN,i
r,s,p))

m
i=1}N∈N is tight in C([0, T ],Ξm) for each

m, r, s, p ∈ N.
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Proof. Lemma 3.4 is obvious from Lemma 3.3. Indeed, the tightness of the

probability measures on a countable product space follows from that of the distribution

of each component. □

Assumption (I1) and Lemma 3.4 combined with the diagonal argument imply that

for any subsequence of {((XN,i,AN,i,BN,i
r,s,p))

m
i=1}N, p∈N, r<s<∞, there exists a convergent-

in-law subsequence, denoted by the same symbol. That is, for each p, s, r,m ∈ N,

lim
N→∞

(XN,i,AN,i,BN,i
r,s,p)

m
i=1 = (Xi,Ai,Bi

r,s,p)
m
i=1 in law. (3.18)

We thus assume (3.18) in the rest of this section.

Let Am = (Ai)mi=1, B
N,m
r,s,p = (BN,i

r,s,p)
m
i=1, and Xm = (Xi)mi=1 for X = (Xi)i∈N in

Theorem 2.1.

Lemma 3.5. For each m ∈ N

lim
N→∞

F (XN,m,AN,m,BN,m
r,s,p) = F (Xm,Am,Bm

r,s,p) in law. (3.19)

Moreover, Ai and Bi
r,s,p are given by

Ai(t) = a(Xi
t ,X

⋄i
t ), Bi

r,s,p(t) = br,s,p(X
i
t ,X

⋄i
t ). (3.20)

Proof. Recall that F (ξ, η, ζ) is continuous. Hence (3.19) follows from (3.18). By

(H4) we see {aN} converges to a uniformly on each Sr×S. Then, from this, (2.20), and

(3.15) we obtain (3.20). □

Lemma 3.6. For each m ∈ N

lim
N→∞

m∑
i=1

∫ ·

0

∇iψ(X
N,m
u ) · σN (XN,i

u ,XN,⋄i
u )dBi

u

=
m∑
i=1

∫ ·

0

∇iψ(X
m
u ) · σ(Xi

u,X
⋄i
u )dB̂i

u in law,

where (B̂i)mi=1 is the first m-components of a (Rd)N-valued Brownian motion (B̂i)i∈N.

Proof. By the calculation of quadratic variation, we see⟨∫ ·

0

∂i,kψ(X
N,m
u )

d∑
n=1

σN
kn(X

N,i
u ,XN,⋄i

u )dBi,n
u ,

∫ ·

0

∂j,lψ(X
N,m
u )

d∑
n=1

σN
ln(X

N,j
u ,XN,⋄j

u )dBj,n
u

⟩
u

= δij

∫ ·

0

aNkl(X
N,i
u ,XN,⋄i

u )∂i,kψ(X
N,m
u )∂i,lψ(X

N,m
u )du.

From (H4), we see that aN converges to a uniformly on Sr for each r ∈ N. Hence we

deduce from (I1) and ψ ∈ C∞
0 (Sm) the convergence in law such that



941(63)

Finite-particle approximations for interacting Brownian particles 941

lim
N→∞

m∑
i=1

∫ ·

0

aNkl(X
N,i
u ,XN,⋄i

u )∂i,kψ(X
N,m
u )∂i,lψ(X

N,m
u )du

=
m∑
i=1

∫ ·

0

akl(X
i
u,X

⋄i
u )∂i,kψ(X

m
u )∂i,lψ(X

m
u )du.

Then the right-hand side gives the quadratic variation of
∑m

i=1

∫ ·
0
∇iψ(X

m
u ) ·

σ(Xi
u,X

⋄i
u )dB̂i

u. This completes the proof. □

We are now ready for the proof of Theorem 2.1.

Proof of Theorem 2.1. From Lemma 3.2 and (3.16) we deduce that

lim sup
N→∞

EµN◦ℓ−1
N

[
sup

0≤t≤T

∣∣∣∣F (XN,m,AN,m,BN,m
r,s,p)(t)

−
m∑
i=1

∫ t

0

∇iψ(X
N,m
u ) · σN (XN,i

u ,XN,⋄i
u )dBi

u

∣∣∣∣p̂]
≤ lim sup

N→∞
EµN◦ℓ−1

N

[
(QN

r,s,p)
p̂ + (RN

r,s)
p̂
]
=: c10(s, p),

where 0 ≤ c10(s, p) = c10(s, p, ψ) ≤ ∞ is a constant depending on s, p, ψ. Applying

Lemma 3.5 and Lemma 3.6 to (3.16), we then deduce that

Eµ◦ℓ−1

[
sup

0≤t≤T

∣∣∣∣F (Xm,Am,Bm
r,s,p)(t)−

m∑
i=1

∫ t

0

∇iψ(X
m
u ) · σ(Xi

u,X
⋄i
u )dB̂i

u

∣∣∣∣p̂] ≤ c10(s, p).

From this and (3.14), we obtain that

Eµ◦ℓ−1

[
sup

0≤t≤T

∣∣∣∣ψ(Xm
t )− ψ(Xm

0 )−
m∑
i=1

∫ t

0

∇iψ(X
m
u ) · σ(Xi

u,X
⋄i
u )dB̂i

u

−
m∑
i=1

∫ t

0

1

2
a(Xi

u,X
⋄i
u )∇i∇iψ(X

m
u ) + btail(Xi

u) · ∇iψ(X
m
u )du

−
m∑
i=1

∫ t

0

br,s,p(X
i
u,X

⋄i
u ) · ∇iψ(X

m
u )du

∣∣∣∣p̂]
≤ c10(s, p). (3.21)

Take ψ = ψR ∈ C0(S
m) such that ψ(x1, . . . , xm) = xi for {|xj | ≤ R; j = 1, . . . ,m}

while keeping |∇iψ| bounded in such a way that

c10(p, s) = sup
R
c10(p, s, R) = o(p, s).

Then we deduce from (3.21) that
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Eµ◦ℓ−1

[
sup

0≤t≤T

∣∣∣∣Xi
t∧τR −Xi

0 −
∫ t∧τR

0

σ(Xi
u,X

⋄i
u )dB̂i

u

−
∫ t∧τR

0

{br,s,p(Xi
u,X

⋄i
u ) + btail(Xi

u)}du
∣∣∣∣p̂] ≤ c10(s, p), (3.22)

where τR is a stopping time such that, for Xm = (Xi,X⋄i)mi=1 ∈ C([0, T ]; (S ×S)m),

τR = inf{t > 0; |Xi
t | ≥ R for some i = 1, . . . ,m}.

As R > 0 is arbitrary, (3.22) holds for all R > 0. Taking R→ ∞, we thus obtain

Eµ◦ℓ−1

[
sup

0≤t≤T

∣∣∣∣Xi
t −Xi

0 −
∫ t

0

σ(Xi
u,X

⋄i
u )dB̂i

u

−
∫ t

0

{br,s,p(Xi
u,X

⋄i
u ) + btail(Xi

u)}du
∣∣∣∣]

≤ lim inf
R→∞

Eµ◦ℓ−1

[
sup

0≤t≤T

∣∣∣∣Xi
t∧τR −Xi

0 −
∫ t∧τR

0

σ(Xi
u,X

⋄i
u )dB̂i

u

−
∫ t∧τR

0

{br,s,p(Xi
u,X

⋄i
u ) + btail(Xi

u)}du
∣∣∣∣]

≤ c10(s, p)
1/p̂. (3.23)

We note here that the integrands in the first and second lines of (3.23) are uniformly in-

tegrable because of (3.22). Taking p → ∞, then s→ ∞ in (3.23), and using assumptions

(2.24) and (2.30) we thus obtain

Eµ◦ℓ−1

[
sup

0≤t≤T

∣∣∣∣Xi
t −Xi

0 −
∫ t

0

σ(Xi
u,X

⋄i
u )dB̂i

u −
∫ t

0

{b(Xi
u,X

⋄i
u ) + btail(Xi

u)}du
∣∣∣∣] = 0.

This implies for all 0 ≤ t ≤ T

Xi
t −Xi

0 −
∫ t

0

σ(Xi
u,X

⋄i
u )dB̂i

u −
∫ t

0

{b(Xi
u,X

⋄i
u ) + btail(Xi

u)}du = 0. (3.24)

We deduce (2.31) from (3.24), which completes the proof of Theorem 2.1. □

4. Proof of Theorem 2.2.

Is this section we prove Theorem 2.2 using Theorem 2.1. (H1)–(H4) are commonly

assumed in Theorem 2.2 and Theorem 2.1. Hence our task is to derive condition (I1)–

(I5) from conditions stated in Theorem 2.2. From (J2) we easily deduce that

lim
N→∞

uN = u in Lp̂
loc(S, dx), (4.1)

lim
N→∞

gNs = gs in Lp̂
loc(µ

[1]) for all s. (4.2)

Lemma 4.1. µ has a logarithmic derivative dµ in Lp
loc(µ

[1]), where 1 ≤ p < p̂.
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Proof. We use a general theory developed in [19]. (H1) corresponds to (4.1)

and (4.2) in [19]. (4.1), (4.2), (2.35), and (2.37) correspond to (4.15), (4.30), (4.29),

and (4.31) in [19]. Then all the assumptions of [19, Theorem 45] are satisfied. We thus

deduce Lemma 4.1 from [19, Theorem 45]. □

Let {XN}N∈N be a sequence of solutions in (2.4) and (2.5). We set the m-labeling

XN,[m] =

(
XN,1, . . . , XN,m,

N∑
j=1+m

δXN,j

)
. (4.3)

It is known [18], [19] that XN,[m] is a diffusion process associated with the Dirichlet form

EµN,[m]

on L2(Sm ×S, µN,[m]) such that

EµN,[m]

(f, g) =

∫
Sm×S

1

2

{ m∑
i=1

∇if · ∇ig

}
+ D[f, g]dµN,[m], (4.4)

where the domain D[m] is taken as the closure of D[m]
0 = C∞

0 (Sm) ⊗ D◦. Note that the

coordinate function xi = xi ⊗ 1 is locally in D[m]. From this we can regard {XN,i
t } as

a Dirichlet process of the m-labeled diffusion XN associated with the Dirichlet space as

above. In other words, we can write

XN,i
t −XN,i

0 = fi(X
N
t )− fi(X

N
0 ) =: A

[fi]
t ,

where fi(x, s) = xi ⊗ 1, xi ∈ Rd, and x = (xj)
m
j=1 ∈ (Rd)m. By the Fukushima decom-

position of XN,i
t , there exist a unique continuous local martingale additive functional

MN,i = {MN,i
t } and an additive functional of zero energy NN,i = {NN,i

t } such that

XN,i
t −XN,i

0 = MN,i
t +NN,i

t .

We refer to [4, Chapter 5] for the Fukushima decomposition. Because of (2.4), we then

have

MN,i
t =

∫ t

0

σN (XN,i
u ,XN,⋄i

u )dBi
u, NN,i

t =

∫ t

0

bN (XN,i
u ,XN,⋄i

u )du.

Lemma 4.2. Let rT : C([0, T ];S) → C([0, T ];S) be such that rT (X)t = XT−t.

Suppose that X
N,[m]
0 = µN,[m] in law. Then

XN,i
t −XN,i

0 =
1

2
MN,i

t +
1

2
(MN,i

T−t(rT )−MN,i
T (rT )) almost surely. (4.5)

Proof. Applying the Lyons-Zheng decomposition [4, Theorem 5.7.1] to additive

functionals A[fi] for 1 ≤ i ≤ m, we obtain (4.5). □

Lemma 4.3. (I1) holds.
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Proof. Although MN,i is a d-dimensional martingale by definition, we assume

d = 1 here and prove only this case for simplicity. The general case d ≥ 1 can be proved

in a similar fashion. Let c3 be the constant in (2.6) (under the assumption d = 1). Then

we note that for u ≥ v

0 ≤ ⟨MN,i⟩u − ⟨MN,i⟩v =

∫ u

v

AN,i(t)dt ≤ c3(u− v) (4.6)

We begin by proving (2.8). From a standard calculation of martingales and (4.6),

we obtain

EµN◦ℓ−1
N [|MN,i

u −MN,i
v |4] = EµN◦ℓ−1

N [|B⟨MN,i⟩u −B⟨MN,i⟩v |
4]

= 3EµN◦ℓ−1
N

[
|⟨MN,i⟩u − ⟨MN,i⟩v|2

]
≤ c11|u− v|2,

where c11 = 3c23 and {Bt} is a one-dimensional Brownian motion. Applying the same

calculation to MN,i
T−t(rT )−MN,i

T (rT ), we have

EµN◦ℓ−1
N [|MN,i

T−t(rT )−MN,i
T−u(rT )|

4] ≤ c11|t− u|2 for each 0 ≤ t, u ≤ T . (4.7)

Combining (4.5) and (4.7) with the Lyons-Zheng decomposition (4.5), we thus obtain

EµN◦ℓ−1
N [|XN,i

t −XN,i
u |4] ≤ 2c11|t− u|2 for each 0 ≤ t, u ≤ T . (4.8)

Taking a sum over i = 1, . . . ,m in (4.8), we deduce (2.8).

We next prove (2.7). From (4.5) we have

2|XN,i
t −XN,i

0 | ≤ |MN,i
t |+ |MN,i

T−t(rT )−MN,i
T (rT )| almost surely.

From this and a representation theorem of martingales, we obtain

PµN◦ℓ−1
N ( sup

t∈[0,T ]

|XN,i
t −XN,i

0 | ≥ a)

≤ PµN◦ℓ−1
N ( sup

t∈[0,T ]

|MN,i
t | ≥ a) + PµN◦ℓ−1

N ( sup
t∈[0,T ]

|MN,i
T−t(rT )−MN,i

T (rT )| ≥ a)

= 2PµN◦ℓ−1
N ( sup

t∈[0,T ]

|MN,i
t | ≥ a)

= 2PµN◦ℓ−1
N ( sup

t∈[0,T ]

|B⟨MN,i⟩t | ≥ a). (4.9)

A direct calculation shows

PµN◦ℓ−1
N ( sup

t∈[0,T ]

|B⟨MN,i⟩t | ≥ a) ≤ PµN◦ℓ−1
N ( sup

t∈[0,
√
c3T ]

|Bt| ≥ a) ≤ Erf

(
a

√
c3T

)
(4.10)

From (4.9), (4.10), and (H2), we obtain (2.7).

We proceed with the proof of (2.9). Similarly as (4.9) and (4.10), we deduce
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PµN◦ℓ−1
N ( inf

t∈[0,T ]
|XN,i

t | ≤ r) ≤ PµN◦ℓ−1
N ( sup

t∈[0,T ]

|XN,i
t −XN,i

0 | ≥ |XN,i
0 | − r)

≤ 2PµN◦ℓ−1
N ( sup

t∈[0,T ]

|MN,i
t | ≥ |XN,i

0 | − r)

≤ 2

∫
S

Erf

(
|si| − r
√
c3T

)
µN (ds), (4.11)

where si = ℓN (s)i. We note that XN,i
0 = si by construction. From (4.11) and (2.43), we

deduce

lim sup
N→∞

PµN◦ℓ−1
N (LN

r > L) ≤ lim sup
N→∞

∑
i>L

PµN◦ℓ−1
N ( inf

t∈[0,T ]
|XN,i

t | ≤ r)

≤ 2 lim sup
N→∞

∑
i>L

∫
S

Erf

(
|si| − r
√
c3T

)
µN (ds)

→ 0 (L→ ∞).

This completes the proof. □

Lemma 4.4. (I2) holds.

Proof. (2.17) follows from (4.1), (4.2), and (2.37). For each i ∈ N we deduce

that

EµN◦ℓ−1
N

[ ∫ T

0

|bNr,s,p(X
N,i
t ,XN,⋄i

t )|p̂dt
]
≤

N∑
i=1

EµN◦ℓ−1
N

[ ∫ T

0

|bNr,s,p(X
N,i
t ,XN,⋄i

t )|p̂dt
]

= EµN◦ℓ−1
N

[ N∑
i=1

∫ T

0

|bNr,s,p(X
N,i
t ,XN,⋄i

t )|p̂dt
]

= EµN,[1]

[ ∫ T

0

|bNr,s,p(X
N,[1]
t )|p̂dt

]
. (4.12)

Diffusion process XN,[1] in (4.3) with m = 1 given by the Dirichlet form EµN,[1]

in (4.4)

is µN,[1]-symmetric. Hence we see that for all 0 ≤ t ≤ T

EµN,[1]

[|bNr,s,p(X
N,[1]
t )|p̂] ≤

∫
S×S

|bNr,s,p|p̂dµN,[1].

This yields ∫ T

0

dtEµN,[1]

[|bNr,s,p(X
N,[1]
t )|p̂] ≤ T

∫
S×S

|bNr,s,p|p̂dµN,[1]. (4.13)

From (4.12) and (4.13) we obtain (2.18). □

Lemma 4.5. (I3)–(I5) hold.

Proof. Conditions (2.20), (2.21), and (2.22) follow from (J1), (J2), (I1), (I2),
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and (2.34). Similarly, as Lemma 4.4, we obtain for each i ∈ N

EµN◦ℓ−1
N

[ ∫ T

0

|(bNr,s − bNr,s,p)(X
N,i
t ,XN,⋄i

t )|p̂dt
]
≤ T

∫
S×S

|bNr,s − bNr,s,p|p̂dµN,[1]. (4.14)

Hence (2.23) follows from (4.14) and (2.22). (2.24) follows from (3.5) and an inequality

similar to (4.14). We have thus obtained (I3). Condition (2.26) follows from (J1) and

(J2). Similarly, as Lemma 4.4, we obtain for each i ∈ N

EµN◦ℓ−1
N

[ ∫ T

0

|(bN,tail
r,s − btail)(XN,i

t ,XN,⋄i
t )|p̂dt

]
≤ T

∫
S×S

|bN,tail
r,s − btail|p̂dµN,[1].

This together with (2.26) implies (2.27). Hence we have (I4). Similarly as Lemma 4.4,

we obtain (2.30) from (2.29). We have thus obtained (I5). □

Proof of Theorem 2.2. (I1)–(I5) follows from Lemma 4.3–Lemma 4.5. Hence

we deduce Theorem 2.2 from Theorem 2.1. □

We finally present a sufficient condition of (2.43).

Lemma 4.6. Assume (H1) and (2.45) for each r ∈ N as Section 2. We take the

label ℓN as (2.44). Then (2.43) holds.

Proof. Let c12 = c12(N) be such that

c12 =

∫
S

Erf

(
|x| − r
√
c3T

)
ρN,1(x)dx.

Let c13 = lim supN→∞ c12(N). Then from (H1) and (2.45), we see that for each large r

c13 ≤ lim
N→∞

∫
Sr

Erf

(
|x| − r
√
c3T

)
ρN,1(x)dx+ lim sup

N→∞

∫
S\Sr

Erf

(
|x| − r
√
c3T

)
ρN,1(x)dx

<∞. (4.15)

From (H1) we see that {µN}N∈N converges to µ weakly. Hence {µN}N∈N is tight.

This implies that there exists a sequence of increasing sequences of natural numbers

an = {an(m)}∞m=1 such that an < an+1 and that for each m

lim
n→∞

lim sup
N→∞

µN (s(Sm) ≥ an(m)) = 0.

Without loss of generality, we can take an(m) > m for all m,n ∈ N. Then from this, we

see that there exists a sequence {p(L)}L∈N converging to ∞ such that p(L) < L for all

L ∈ N and that

lim
L→∞

lim sup
N→∞

µN (s(Sp(L)) ≥ L) = 0. (4.16)

Recall that the label ℓN (s) = (si)i∈N satisfies |s1| ≤ |s2| ≤ · · · . Using this, we divide

the set S as in such a way that
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{sL ∈ Sp(L)} and {sL ̸∈ Sp(L)}.

Then s ∈ {sL ∈ Sp(L)} if and only if s(Sp(L)) ≥ L. Hence we easily see that

∑
i>L

∫
S

Erf(
|si| − r
√
c3T

)µN (ds)

≤ c12(N)µN ({s(Sp(L)) ≥ L}) +
∫
S\Sp(L)

Erf

(
|x| − r
√
c3T

)
ρN,1(x)dx.

Taking the limits on both sides, we obtain

lim
L→∞

lim sup
N→∞

∑
i>L

∫
S

Erf

(
|si| − r
√
c3T

)
µN (ds) ≤

c13 lim
L→∞

lim sup
N→∞

µN ({s(Sp(L)) ≥ L}) + lim
L→∞

lim sup
N→∞

∫
S\Sp(L)

Erf

(
|x| − r
√
c3T

)
ρN,1(x)dx.

Applying (4.15) and (4.16) to the second term, and (2.45) to the third, we deduce (2.43).

□

5. Examples.

The finite-particle approximation in Theorem 2.2 contains many examples such as

Airyβ point processes (β = 1, 2, 4), Bessel2,α point process, the Ginibre point process,

the Lennard-Jones 6-12 potential, and Riesz potentials. The first three examples are

related to random matrix theory and the interaction Ψ(x) = − log |x|, the logarithmic

function. We present these in this section. For this we shall confirm the assumptions in

Theorem 2.2, that is, assumptions (H1)–(H4) and (J1)–(J6).

Assumption (H1) is satisfied for the first three examples [15], [29]. As for the last

two examples, we assume (H1). We also assume (H2). (H3) can be proved in the same

way as given in [25]. In all examples, a is always a unit matrix. Hence it holds that

(H4) is satisfied and that (2.32) in (J1) becomes bN = dN/2. From this we see that

SDEs (2.47) and (2.39) become

dXN,i
t = dBN,i

t +
1

2
dN (XN,i

t ,XN,⋄i
t ) dt (1 ≤ i ≤ N), (5.1)

dXi
t = dBi

t +
1

2
dµ(Xi

t ,X
⋄i
t ) dt (i ∈ N), (5.2)

where dµ is the logarithmic derivative of µ given by (2.38). Assumption (J6) for the first

three examples with β = 2 can be proved in the same way as [25] as we explained in

Remark 2.7. Thus, in the rest of this section, our task is to check assumptions (J2)–(J5).

5.1. The Airyβ interacting Brownian motion (β = 1, 2, 4).

Let µN
Airy,β and µAiry,β be as in Section 1. Recall SDEs (1.10) and (1.11) in Section 1.

Let XN = (XN,i)Ni=1 and X = (Xi)i∈N be solutions of
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dXN,i
t = dBi

t +
β

2

N∑
j=1, j ̸=i

1

XN,i
t −XN,j

t

dt− β

2

{
N1/3 +

1

2N1/3
XN,i

t

}
dt, (1.10)

dXi
t = dBi

t +
β

2
lim
r→∞

{ ∑
|Xj

t |<r,j ̸=i

1

Xi
t −Xj

t

−
∫
|x|<r

ϱ(x)

−x
dx

}
dt (i ∈ N). (1.11)

Proposition 5.1. If β = 1, 4, then each sub-sequential limit of solutions XN of

(1.10) satisfies (1.11). If β = 2, then the full sequence converges to (1.11).

Proof. Conditions (J2)–(J5) other than (2.36) can be proved in the same way

as given in [26]. In [26], we take χs(x) = 1Ss(x); its adaptation to the present case is

easy.

We consider estimates of correlation functions such that

inf
N∈N

ρN,1
Airy,β(x) ≥ c14 for all x ∈ Sr, (5.3)

sup
N∈N

ρN,2
Airy,β(x, y) ≤ c15|x− y| for all x, y ∈ Sr, (5.4)

where c14(r) and c15(r) are positive constants. The first estimate is trivial because ρN,1
Airy,β

converges to ρ1Airy,β uniformly on Sr and, all these correlation functions are continuous

and positive. The second estimate follows from the determinantal expression of the cor-

relation functions and bounds on derivative of determinantal kernels. Estimates needed

for the proof can be found in [26] and the detail of the proof of (5.4) is left to the reader.

Equation (2.36) follows from (5.3) and (5.4). Indeed, the integral in (2.36) is taken

on the bounded domain and the singularity of integral of gN (x, y) = β/(x − y) near

{x = y} is logarithmic. Furthermore, the one-point correlation function ρN,1
Airy,β,x of the

reduced Palm measure conditioned at x is controlled by the upper bound of the two-point

correlation function and the lower bound of one-point correlation function because

ρN,1
Airy,β,x(y) =

ρN,2
Airy,β(x, y)

ρN,1
Airy,β(x)

.

Using these facts, we see that (5.3) and (5.4) imply (2.36). □

5.2. The Bessel2,α interacting Brownian motion.

Let S = [0,∞) and α ∈ [1,∞). We consider the Bessel2,α point process µbes,2,α and

their N -particle version. The Bessel2,α point process µbes,2,α is a determinantal point

process with kernel

Kbes,2,α(x, y) =
Jα(

√
x)
√
yJ ′

α(
√
y)−

√
xJ ′

α(
√
x)Jα(

√
y)

2(x− y)

=

√
xJα+1(

√
x)Jα(

√
y)− Jα(

√
x)
√
yJα+1(

√
y)

2(x− y)
, (5.5)

where Jα is the Bessel function of order α [29], [5]. The densitymN
α (x)dx of the associated

N -particle systems µN
bes,2,α is given by



949(71)

Finite-particle approximations for interacting Brownian particles 949

mN
α (x) =

1

ZN
α

e−
∑N

i=1 xi/4N
N∏
j=1

xαj

N∏
k<l

|xk − xl|2. (5.6)

It is known that µN
bes,2,α is also determinantal [29, p.945] and [2, p.91] The Bessel2,α

interacting Brownian motion is given by the following [5].

dXN,i
t = dBi

t +

{
− 1

8N
+

α

2XN,i
t

+
N∑

j=1,j ̸=i

1

XN,i
t −XN,j

t

}
dt (1 ≤ i ≤ N), (5.7)

dXi
t = dBi

t +

{
α

2Xi
t

+

∞∑
j ̸=i

1

Xi
t −Xj

t

}
dt (i ∈ N). (5.8)

This appears at the hard edge of one-dimensional systems.

Proposition 5.2. Assume α > 1. Then (2.48) holds for (5.7) and (5.8).

Proof. (J2)–(J5) except (2.43) are proved in [5]. We easily see that the assump-

tions of Lemma 4.6 hold and yield (2.43). We thus obtain (J5). □

Remark 5.1. There exist other natural ISDEs and N -particle systems related to

the Bessel point processes. They are the non-colliding square Bessel processes and their

square root. The non-colliding square Bessel processes are reversible to the Bessel2,α
point processes, but the associated Dirichlet forms are different from the Bessel2,α in-

teracting Brownian motion. Indeed, the coefficients aN and a in Section 2 are taken to

be aN (x.y) = a(x.y) = 4x. On the other hand, each square root of the non-colliding

Bessel processes is not reversible to the Bessel2,α point processes, but has the same type

of Dirichlet forms as the Bessel2,α interacting Brownian motion. In particular, the coef-

ficients aN and a in Section 2 are taken to be aN (x.y) = a(x.y) = 1. That is, they are

constant time change of distorted Brownian motion with the standard square field.

We refer to [10], [11], [24] for these processes. For reader’s convenience we provide

an ISDE describing the non-colliding square Bessel processes and their square root. We

note that SDE (5.10) is a constant time change of that in [11], [24]. Let YN = (Y N,i)Ni=1

and Y = (Y i)i∈N be the non-colliding square Bessel processes. Then for 1 ≤ i ≤ N

dY N,i
t = 2

√
Y N,i
t dBi

t + 4

{
− Y N,i

t

8N
+
α+ 1

2
+

N∑
j=1,j ̸=i

Y N,i
t

Y N,i
t − Y N,j

t

}
dt, (5.9)

dY i
t = 2

√
Y i
t dB

i
t + 4

{
α+ 1

2
+

∞∑
j ̸=i

Y i
t

Y i
t − Y j

t

}
dt (i ∈ N). (5.10)

Let ZN = (ZN,i)Ni=1 and Z = (Zi)i∈N be square root of the non-colliding square Bessel

processes. Then applying Itô formula we obtain from (5.9) and (5.10)
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dZN,i
t = dBi

t +

{
− ZN,i

t

4N
+
α+ (1/2)

ZN,i
t

+

N∑
j=1,j ̸=i

2ZN,i
t

(ZN,i
t )2 − (ZN,j

t )2

}
dt (1 ≤ i ≤ N),

(5.11)

dZi
t = dBi

t +

{
α+ (1/2)

Zi
t

+
∞∑
j ̸=i

2ZN,i
t

(Zi
t)

2 − (Zj
t )

2

}
dt (i ∈ N). (5.12)

We remark that Theorem 2.2 can be applied to the non-colliding square Bessel

processes because the equilibrium states are the same as the Bessel interacting Brownian

motion and coefficients are well-behaved as aN (x.y) = a(x.y) = 4x.

5.3. The Ginibre interacting Brownian motion.

Let S = R2. Let µN
gin and µgin be as in Section 1. Let ΦN = |x|2 and Ψ(x) = − log |x|.

Then the N -particle systems are given by

dXN,i
t = dBi

t −XN,i
t dt+

N∑
j=1,j ̸=i

XN,i
t −XN,j

t

|XN,i
t −XN,j

t |2
dt (1 ≤ i ≤ N). (1.12)

The limit ISDEs are

dXi
t = dBi

t + lim
r→∞

∑
|Xi

t−Xj
t |<r,j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |2
dt (i ∈ N) (1.13)

and

dXi
t = dBi

t −Xi
tdt+ lim

r→∞

∑
|Xj

t |<r,j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |2
dt (i ∈ N). (1.14)

Proposition 5.3. (2.48) holds for (1.12) and both (1.13) and (1.14).

Proof. (J2)–(J5) except (2.43) are proved in [20], [19]. (2.43) is obvious for a

Ginibre point process because their one-correlation functions with respect to the Lebesgue

measure have a uniform bound such that ρN,1
gin ≤ 1/π. This estimate follows from (6.4)

in [19] immediately. Let d1 and d2 be the logarithmic derivative associated with ISDEs

(1.13) and (1.14). Then d1 = d2 a.s. [19]. Hence we conclude Proposition 5.3 □

5.4. Gibbs measures with Ruelle-class potentials.

Let µΨ be Gibbs measures with Ruelle-class potential Ψ(x, y) = Ψ(x − y) that

are smooth outside the origin. Let ΦN ∈ C∞(S) be a confining potential for the N -

particle system. We assume that the correlation functions of µΦN ,Ψ satisfy bounds

supN ρN,m ≤ cm16 for some constants c16; see the construction of [28]. Then one can

see in the same fashion as [25] that µΨ satisfy (J2)–(J5) except (2.43). Under the con-

dition supN ρN,m ≤ cm16, (2.43) is obvious. Moreover, if µΨ is a grand canonical Gibbs

measure with sufficiently small inverse temperature β, then µΨ is tail trivial. Hence we
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can obtain (J6) in the same way as [25] in this case. We present two concrete examples

below.

5.4.1. Lennard-Jones 6-12 potentials.

Let S = R3 and β > 0. Let Ψ6−12(x) = |x|−12 − |x|−6 be the Lennard-Jones

potential. The corresponding ISDEs are given by the following.

dXN,i
t = dBi

t +
β

2

{
∇ΦN (XN,i

t ) +
N∑

j=1,
j ̸=i

12(XN,i
t −XN,j

t )

|XN,i
t −XN,j

t |14
− 6(XN,i

t −XN,j
t )

|XN,i
t −XN,j

t |8

}
dt

(1 ≤ i ≤ N),

dXi
t = dBi

t +
β

2

∞∑
j=1,j ̸=i

{
12(Xi

t −Xj
t )

|Xi
t −Xj

t |14
− 6(Xi

t −Xj
t )

|Xi
t −Xj

t |8

}
dt (i ∈ N).

5.4.2. Riesz potentials.

Let d < a ∈ N and β > 0. Let Ψa(x) = (β/a)|x|−a the Riesz potential. The

corresponding SDEs are given by

dXN,i
t = dBi

t +
β

2

{
∇ΦN (XN,i

t ) +
N∑

j=1,j ̸=i

XN,i
t −XN,j

t

|XN,i
t −XN,j

t |2+a

}
dt (1 ≤ i ≤ N),

dXi
t = dBi

t +
β

2

∞∑
j=1,j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |2+a
dt (i ∈ N).
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[14] Z.-M. Ma and M. Röckner, Introduction to the theory of (non-symmetric) Dirichlet forms,

Springer-Verlag, 1992.

[15] M. L. Mehta, Random Matrices, 3rd edition, Amsterdam, Elsevier, 2004.

[16] H. Osada, Dirichlet form approach to infinite-dimensional Wiener processes with singular inter-

actions, Commun. Math. Phys., 176 (1996), 117–131.

[17] H. Osada, Non-collision and collision properties of Dyson’s model in infinite dimensions and other

stochastic dynamics whose equilibrium states are determinantal random point fields: In Stochastic

Analysis on Large Scale Interacting Systems, (eds. T. Funaki and H. Osada), Adv. Stud. Pure

Math., 39 (2004), 325–343.

[18] H. Osada, Tagged particle processes and their non-explosion criteria, J. Math. Soc. Japan, 62

(2010), 867–894.

[19] H. Osada, Infinite-dimensional stochastic differential equations related to random matrices, Prob-

ability Theory and Related Fields, 153 (2012), 471–509.

[20] H. Osada, Interacting Brownian motions in infinite dimensions with logarithmic interaction po-

tentials, Ann. of Probab., 41 (2013), 1–49.

[21] H. Osada, Interacting Brownian motions in infinite dimensions with logarithmic interaction po-

tentials II: Airy random point field, Stochastic Processes and their applications, 123 (2013),

813–838.

[22] H. Osada and S. Osada, Discrete approximations of determinantal point processes on continuous

spaces: tree representations and tail triviality, J. Stat. Phys., 170 (2018), 421–435.

[23] H. Osada and H. Tanemura, Cores of Dirichlet forms related to Random Matrix Theory, Proc.

Jpn. Acad., Ser. A, 90 (2014), 145–150.

[24] H. Osada and H. Tanemura, Strong Markov property of determinantal processes with extended

kernels, Stochastic Processes and their Applications, 126 (2016), 186–208.

[25] H. Osada and H. Tanemura, Infinite-dimensional stochastic differential equations and tail σ-fields,

arXiv:1412.8674.

[26] H. Osada and H. Tanemura, Infinite-dimensional stochastic differential equations related to Airy

random point fields, arXiv:1408.0632.

[27] J. A. Ramı́rez, B. Rider and B. Virág, Beta ensembles, stochastic Airy spectrum, and a diffusion,

J. Amer. Math. Soc., 24 (2011), 919–944.

[28] D. Ruelle, Superstable interactions in classical statistical mechanics, Commun. Math. Phys., 18

(1970), 127–159.

[29] A. Soshnikov, Determinantal random point fields, Russian Math. Surveys, 55 (2000), 923–975.

[30] H. Tanemura, A system of infinitely many mutually reflecting Brownian balls in Rd, Probab.

Theory Relat. Fields, 104 (1996), 399–426.

[31] L. C. Tsai, Infinite dimensional stochastic differential equations for Dyson’s model, Probab. The-

ory Relat. Fields, 166 (2016), 801–850.

Yosuke Kawamoto

Faculty of Mathematics

Kyushu University

Fukuoka 819-0395, Japan

E-mail: y-kawamoto@math.kyushu-u.ac.jp

Hirofumi Osada

Faculty of Mathematics

Kyushu University

Fukuoka 819-0395, Japan

E-mail: osada@math.kyushu-u.ac.jp

https://doi.org/10.1007/BF01877496
https://doi.org/10.1007/BF01877496
https://doi.org/10.1007/978-3-642-77739-4
https://doi.org/10.1016/S0079-8169(13)62913-X
https://doi.org/10.1007/BF02099365
https://doi.org/10.2969/jmsj/06230867
https://doi.org/10.2969/jmsj/06230867
https://doi.org/10.1007/s00440-011-0352-9
https://doi.org/10.1007/s00440-011-0352-9
https://doi.org/10.1214/11-AOP736
https://doi.org/10.1016/j.spa.2012.11.002
https://doi.org/10.1016/j.spa.2012.11.002
https://doi.org/10.1007/s10955-017-1928-2
https://doi.org/10.3792/pjaa.90.145
https://doi.org/10.3792/pjaa.90.145
https://doi.org/10.1016/j.spa.2015.08.003
https://doi.org/10.1090/S0894-0347-2011-00703-0
https://doi.org/10.1007/BF01646091
https://doi.org/10.1007/BF01646091
https://doi.org/10.1070/RM2000v055n05ABEH000321
https://doi.org/10.1007/BF01213687
https://doi.org/10.1007/BF01213687
https://doi.org/10.1007/s00440-015-0672-2
https://doi.org/10.1007/s00440-015-0672-2

