On uniqueness of Dirichlet forms related to interacting systems with an infinite number of particles

HIDEKI TANEMURA, CHIBA UNIVERSITY (joint work with Yusuke Kawamoto and Hirofumi Osada, Kyushu University)

An infinite system of interacting Brownian motions in \mathbb{R}^d can be represented by a stochastic process on the (unlabeled) configuration space S , the set of integer valued radon measures on \mathbb{R}^d . This process can be constructed by means of several probabilistic argument. Among them, Osada [2] constructed the processes in general setting by using Dirichlet form technique. For a suitable probability measure μ on S , the Dirichlet form ($\mathcal{E}^{upr}, \mathcal{D}^{upr}$) introduced in [2] is obtained by the smallest extension of the bilinear form ($\mathcal{E}^{\mu}, \mathcal{D}^{\mu}_{\circ}$) on $L^2(\mathsf{S}, \mu)$ with domain $\mathcal{D}^{\mu}_{\circ}$ defined by

$$\mathcal{E}^{\mu}(f,g) = \int_{\mathsf{S}} \mathbb{D}[f,g](\mathsf{s})\,\mu(d\mathsf{s}), \quad \mathbb{D}[f,g](\mathsf{s}) = \frac{1}{2}\sum_{i=1}^{\infty} \nabla_{s_i}\check{f} \cdot \nabla_{s_i}\check{g},$$
$$\mathcal{D}^{\mu}_{\circ} = \{f \in \mathcal{D}_{\circ} \cap L^2(\mathsf{S},\mu)\,;\,\mathcal{E}^{\mu}(f,f) < \infty\},$$

where \mathcal{D}_{\circ} is the set of all local smooth functions on S , \check{f} is a symmetric function such that $\check{f}(s_1, s_2, \ldots) = f(\mathsf{s})$, \cdot is the inner product in \mathbb{R}^d , and $\mathsf{s} = \sum_i \delta_{s_i}$ denotes a configuration. This Dirichlet form is the decreasing limit of the Dirichlet forms associated with finite systems of interacting Brownian motions in bounded domains $S_R = \{x \in \mathbb{R}^d; |x| \leq R\}$ with a boundary condition. Because of the boundary condition, when a particle touches the boundary, it disappears. And particles enter the domain from the boundary according to the reversible measure μ .

On the other hand, Lang [1] constructed the infinite system of Brownian motions as a limit of stochastic dynamics in bounded domains S_R by taking the finite systems with another boundary condition. In his finite systems when a particle hits the boundary, it reflects and the number of particles in the domain are invariant. His process associated with the Dirichlet forms ($\mathcal{E}^{\mathsf{lwr}}, \mathcal{D}^{\mathsf{lwr}}$) the increasing limit of the Dirichlet forms associated with them.

In this talk, we discuss the relation between these Dirichlet forms $(\mathcal{E}^{upr}, \mathcal{D}^{upr})$ and $(\mathcal{E}^{lwr}, \mathcal{D}^{lwr})$. The main purpose of this paper is to give a sufficient condition for

$$(\mathcal{E}^{\mathsf{lwr}}, \mathcal{D}^{\mathsf{lwr}}) = (\mathcal{E}^{\mathsf{upr}}, \mathcal{D}^{\mathsf{upr}}).$$

References

- Lang, R., Unendlich-dimensionale Wienerprocesse mit Wechselwirkung I, II, Z. Wahrschverw. Gebiete 38, 39 (1977) 55-72, (1978) 277-299.
- [2] Osada, H., Dirichlet form approach to infinite-dimensional Wiener processes with singular interactions, Commun. Math. Phys. 176 (1996) 117-131.