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Nippon Steel knows that mathematics is a very powerful language that can describe 

the essence of problems and has been creating an interdisciplinary platform for taking aim 
at technological innovation based on mathematics. For this platform, mathematicians and 
engineers have come together, contemplating social problems and taking voluntary actions. 

The scientific topic is the issue of anomalous diffusion in soil. The approach is highly 
diverse, with a boundary that encompasses mathematics, engineering, and industry. The 
ultimate objective is to determine the microstructure of soil through averaged spatial data 
analysis, such as contaminant concentration, and to predict the progress of soil 
contamination.  

Figure 1 shows that it is often the case with mass diffusion in a porous medium such as 
soil that the numerical simulations using traditional advection diffusion equations fail to 
predict the observation results of a real phenomenon observed in the field or in laboratory 
tests. The numerical experiments using CTRW says that the mean squared displacement of 
particles grows in proportion to the fractional power of time [1].  

Figure 2 shows that CTRW is linked with the fractional order PDE in terms of time [2]. 
This means that anomalous diffusion depends on the degree of history to be retained from 
the initial time to the current time. The smaller α is, the more history will be retained. We 
can combine the physical meaning of alpha (that stems from possible obstacles that delay 
the particle’s jump) with the mathematical reasoning.  

Thus, how do we combine the microstructure with the mechanism for determining the 
value? What are the geometric invariants? How do we combine the geometric invariants 
with the PDE in a mathematical framework? These are our next targets. The current 
progress of our discussion will be presented using the following methods. 
 
1. Analytical description for mathematically explaining the facts discovered by the 

experiments (a macro-scale viewpoint) 
2. Characterization of the geometric features of the specimens of a 3D CT-image (a 

micro-scale viewpoint) 
3. Deductive reasoning to derive a fractional differential equation using the 

homogenization method (a multi-scale viewpoint) 
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Fig.1 Prediction of soil contamination 

Fig.2 Outline of scientific topic
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Analysis for Anomalous Diffusion in Laboratory Experiments

CTRW (Continuous Time Random Walk) The waiting time function has been 
discovered by the experiments.
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1. Set uniform grids for calculation

2. Distribute the waiting time function
randomly on the grids

3. Carry out the random walk method with 
taking the waiting time function into account
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How do we combine the microstructure with the mechanism for determining the α value?  
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 From experiments

1. Description of CTRW with PDF 
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2. Determination of w(t) 
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Necessary condition
3. Analytic procedures 

1) Fourier transformation to x
and Laplace transformation to t

2) Approximation taken for only 
the first term of the infinite series 

3) Inverse Fourier transformation to x 
and Inverse Laplace transformation to t

We can combine the physical meaning of 
the α with the mathematical reasoning.
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１） PDF for particle gathering in time t and space x

２） PDF for particle staying by the duration  time t 
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Macro-scale viewpoint

Definition of fractional differential (Caputo)

・What are geometric invariants?

・How do we combine the 
geometric invariants with PDE
in a mathematical framework?
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An Approach for Inverse Problems from a Multi-scale Viewpoint Utilizing       
a Combination of Stochastic, Analytic, and Geometric Modeling

Mathematical reasoning behind           
the observed phenomena in macro-scale


