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Mathematical Modeling for Anomalous Diffusion in Soil
-Creating an Interdisciplinary Platform for Taking Aim at Mathematical Innovation-

Junichi Nakagawa
Advanced Technology Research Laboratories, Nippon Steel Corporation

Nippon Steel knows that mathematics is a very powerful language that can describe
the essence of problems and has been creating an interdisciplinary platform for taking aim
at technological innovation based on mathematics. For this platform, mathematicians and
engineers have come together, contemplating social problems and taking voluntary actions.

The scientific topic is the issue of anomalous diffusion in soil. The approach is highly
diverse, with a boundary that encompasses mathematics, engineering, and industry. The
ultimate objective is to determine the microstructure of soil through averaged spatial data
analysis, such as contaminant concentration, and to predict the progress of soil
contamination.

Figure 1 shows that it is often the case with mass diffusion in a porous medium such as
soil that the numerical simulations using traditional advection diffusion equations fail to
predict the observation results of a real phenomenon observed in the field or in laboratory
tests. The numerical experiments using CTRW says that the mean squared displacement of
particles grows in proportion to the fractional power of time [1].

Figure 2 shows that CTRW is linked with the fractional order PDE in terms of time [2].
This means that anomalous diffusion depends on the degree of history to be retained from
the initial time to the current time. The smaller a is, the more history will be retained. We
can combine the physical meaning of alpha (that stems from possible obstacles that delay
the particle’s jump) with the mathematical reasoning.

Thus, how do we combine the microstructure with the mechanism for determining the
value? What are the geometric invariants? How do we combine the geometric invariants
with the PDE in a mathematical framework? These are our next targets. The current
progress of our discussion will be presented using the following methods.

1. Analytical description for mathematically explaining the facts discovered by the
experiments (a macro-scale viewpoint)

2. Characterization of the geometric features of the specimens of a 3D CT-image (a
micro-scale viewpoint)

3. Deductive reasoning to derive a fractional differential equation using the
homogenization method (a multi-scale viewpoint)
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New Mathematical Aspects Motivated by Mathematics-Industry Collaboration involving an engineer in academia

Analysis for Anomalous Diffusion in Laboratory Experiments
Dr. Yuko Hatano, Department of Risk Engineering, University of Tsukuba
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Fig.1 Prediction of soil contamination

An Approach for Inverse Problems from a Multi-scale Viewpoint Utilizing
a Combination of Stochastic, Analytic, and Geometric Modeling

How do we combine the microstructure with the mechanism for determining the a value?
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Fig.2 Outline of scientific topic



