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Abstract. We take another look at the so-called quasi-derivation relations in

the theory of multiple zeta values, by giving a certain formula for the quasi-
derivation operator. In doing so, we are not only able to prove the quasi-

derivation relations in a simpler manner but also give an analog of the quasi-

derivation relations for finite multiple zeta values.

1. Introduction

The quasi-derivation relations in the theory of multiple zeta values is a general-
ization, proposed by the first-named author and established by T. Tanaka, of a set
of linear relations known as derivation relations, which we are first going to recall.

We use Hoffman’s algebraic setup ([5]) with a slightly different convention. Let
H := Q ⟨x, y⟩ be the noncommutative polynomial algebra in two indeterminates x
and y. This was introduced in order to encode multiple zeta values in the way the
monomial yxk1−1yxk2−1 · · · yxkr−1 corresponds to the multiple zeta value

ζ(k1, k2, . . . , kr) :=
∑

0<n1<···<nr

1

nk1
1 nk2

2 · · ·nkr
r

when kr > 1, which is a real number as the limiting value of a convergent se-
ries. If we denote by Z the Q-linear map from yHx to R assigning each monomial
yxk1−1yxk2−1 · · · yxkr−1 to ζ(k1, . . . , kr), the derivation relations state that

Z(∂n(w)) = 0

for all n ≥ 1 and w ∈ yHx. Here the operator ∂n is a Q-linear derivation on H
determined uniquely by ∂n(x) = y(x + y)n−1x and ∂n(y) = −y(x + y)n−1x. Set
z = x+ y, so that ∂n(z) = 0. We use this repeatedly in the sequel.

In order to introduce the quasi-derivation relations, we first define a Q-linear
map θ := θ(c) : H → H with a parameter c ∈ Q (we often drop c from the notation)
by setting

θ(u) = uz = u(x+ y) for u = x, y

and requiring
θ(ww′) = θ(w)w′ + wθ(w′) + cH(w)∂1(w

′)

for w,w′ ∈ H, where H is the Q-linear map from H to itself defined by H(w) =
deg(w) ·w for any monomial w ∈ H (deg(w) is the degree of w). This is well defined

because H is a derivation on H. Now we define the quasi-derivation map ∂
(c)
n . Write

ad(θ) the adjoint operator by θ, i.e., ad(θ)(∂) := [θ, ∂] = θ∂ − ∂θ.
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Definition 1.1. For each positive integer n and any rational number c, we define

a Q-linear map ∂
(c)
n : H → H by

∂(c)
n :=

1

(n− 1)!
ad(θ)n−1(∂1).

Then the quasi-derivation relations of Tanaka [13] is stated as

Z(∂(c)
n (w)) = 0

for all n ≥ 1, c ∈ Q, and w ∈ yHx. Our aim in this paper is to take another look

at this relation, or rather at the operator ∂
(c)
n .

Remark 1.2. 1) We have changed the definition of θ = θ(c) by shifting the original
([8, 13]) by the derivation w → [z, w]/2 = (zw − wz)/2. However, we can check

that this does not change ∂
(c)
n (w). Note also that the convention of the order of the

product in H there is opposite from ours.
2) As noted in [6], the special case c = 0 gives the original derivation ∂n: ∂n =

∂
(0)
n . This together with works of Connes-Moscovicci [1, 2] motivated us to define

∂
(c)
n (w) in [8].

3) From θ(zr) = rzr+1 (r ≥ 1) and ∂n(z) = 0, we see that ∂
(c)
n (wz) = ∂

(c)
n (w)z

and ∂
(c)
n (zw) = z∂

(c)
n (w). We need to use this at several points later.

2. Main Theorem

We present a formula for ∂
(c)
n (w) when w is in Hx. To describe the formula, we

define a product ⋄ on H introduced in Hirose-Murahara-Onozuka [3] by

(1) w1 ⋄ w2 := ϕ
(
ϕ(w1) ∗ ϕ(w2)

)
(w1, w2 ∈ H),

where ϕ is an involutive automorphism of H determined by

ϕ(x) = z = x+ y and ϕ(y) = −y,

and ∗ is the harmonic product on H (see [5, 4] for the precise definition of ∗). This
is an associative and commutative binary operation with 1 ⋄w = w ⋄ 1 = w for any
w ∈ H. In [3], the definition of ⋄ is given in an inductive manner like the definition
of ∗ in [4]. Later we only use the shuffle-type equality

(2) xw1 ⋄ yw2 = x(w1 ⋄ yw2) + y(xw1 ⋄ w2),

which holds for any w1, w2 ∈ H.

We define a specific element qn = q
(c)
n in H for each n ≥ 1 as follows.

Definition 2.1. Let θ̃ = θ̃(c) be the map from H to itself given by

θ̃(w) := θ(w) + cH(w)y (w ∈ H).

For each positive integer n, we define

qn :=
1

(n− 1)!
θ̃n−1(y).

We thus have q1 = y and qn = θ̃(qn−1)/(n− 1) for n ≥ 2.

Note that qn = q
(c)
n is in yH, as can be seen inductively by the definition. We

shall give an explicit formula for qn in the next section. Here is our main theorem.
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Theorem 2.2. For all n ≥ 1 and c ∈ Q, we have

∂(c)
n (wx) = (w ⋄ qn)x (w ∈ H).

Assuming the theorem, it is straightforward to deduce the quasi-derivation rela-
tions from Kawashima’s relations (strictly speaking, its “linear part”). Recall the
linear part of Kawashima’s relations [11] asserts that

Z(ϕ(w1 ∗ w2)x) = 0

for any w1, w2 ∈ yH. Using this and the definition (1) of ⋄, we see that

Z
(
∂(c)
n (ywx)

)
= Z

(
(yw ⋄ qn)x

)
= Z

(
ϕ
(
ϕ(yw) ∗ ϕ(qn)

)
x
)
= 0

because both ϕ(yw) and ϕ(qn) are in yH. This is the quasi-derivation relations.
Another immediate corollary to the theorem is the commutativity of the opera-

tors ∂
(c)
n , that is, ∂

(c1)
n1 and ∂

(c2)
n2 commute with each other for any n1, n2 ≥ 1 and

c1, c2 ∈ Q. This was proved in [13] but the argument was quite involved. Here we
may show

[∂(c1)
n1

, ∂(c2)
n2

](w) = 0

first for w ∈ Hx as

[∂(c1)
n1

, ∂(c2)
n2

](wx) = (∂(c1)
n1

∂(c2)
n2

− ∂(c2)
n2

∂(c1)
n1

)(wx)

= ((w ⋄ qn2) ⋄ qn1)x− ((w ⋄ qn1) ⋄ qn2)x

= 0

because the product ⋄ is associative and commutative, and then for the general

case by induction on the degree of w by noting ∂
(c)
n (wz) = ∂

(c)
n (w)z as remarked

before.

Proof of Theorem 2.2. We need some lemmas. Recall z = x+ y.

Lemma 2.3. For w1, w2 ∈ H, we have

zw1 ⋄ w2 = w1 ⋄ zw2 = z(w1 ⋄ w2).

Proof. This follows from ϕ(z) = x, ϕ(x) = z and xw1 ∗w2 = w1 ∗xw2 = x(w1 ∗w2).
See also [3]. □

Lemma 2.4. For w ∈ H, we have ∂1(w) = w ⋄ y − wy.

Proof. We proceed by induction on deg(w). The case deg(w) = 0 is obvious because
∂1(1) = 0. Suppose deg(w) ≥ 1. By linearity, it is enough to prove the equation
when w is of the form zw′ and xw′. If w = zw′, we have, by using the induction
hypothesis and Lemma 2.3,

∂1(w) = ∂1(zw
′) = z∂1(w

′) = z(w′ ⋄ y − w′y) = zw′ ⋄ y − zw′y = w ⋄ y − wy.

When w = xw′, we similarly compute (using equation (2))

∂1(w) = ∂1(xw
′) = yxw′ + x∂1(w

′) = yxw′ + x(w′ ⋄ y − w′y)

= y(xw′ ⋄ 1) + x(w′ ⋄ y)− xw′y = xw′ ⋄ y − xw′y

= w ⋄ y − wy. □

Lemma 2.5. For u ∈ Qx+Qy, we have

θ̃(uw) = u
(
θ̃(w) + zw + c(w ⋄ y)

)
.
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Proof. We only need to show the equation for u = x and y. By the definition of θ̃,
we have

θ̃(uw) = θ(uw) + cH(uw)y

= uzw + uθ(w) + cu∂1(w) + cuwy + cuH(w)y

= u
(
θ̃(w) + zw + c(∂1(w) + wy)

)
.

From Lemma 2.4, we complete the proof. □
We need one more preparatory result, which may be of interest in its own right.

Proposition 2.6. The Q-linear map θ̃ is a derivation on H with respect to the
product ⋄, i.e., the equation

(3) θ̃(w1 ⋄ w2) = θ̃(w1) ⋄ w2 + w1 ⋄ θ̃(w2)

holds for any w1, w2 ∈ H.

Proof. We prove this by induction on deg(w1) + deg(w2). The case deg(w1) +
deg(w2) = 0 holds trivially:

θ̃(1 ⋄ 1) = θ̃(1) = 0 = θ̃(1) ⋄ 1 + 1 ⋄ θ̃(1).
When deg(w1) + deg(w2) ≥ 1, we first prove when w1 is of the form w1 = zw′

1. By

the definition of θ̃ and Lemmas 2.3 and 2.5, we have

θ̃(zw′
1 ⋄ w2) = θ̃(z(w′

1 ⋄ w2)) = z
(
θ̃(w′

1 ⋄ w2) + z(w′
1 ⋄ w2) + c(w′

1 ⋄ w2 ⋄ y)
)
.

On the other hand, we have

θ̃(zw′
1) ⋄ w2 + zw′

1 ⋄ θ̃(w2)

= z
(
θ̃(w′

1) + zw′
1 + c(w′

1 ⋄ y)
)
⋄ w2 + z

(
w′

1 ⋄ θ̃(w2)
)

= z
(
θ̃(w′

1) ⋄ w2 + w′
1 ⋄ θ̃(w2) + z(w′

1 ⋄ w2) + c(w′
1 ⋄ w2 ⋄ y)

)
.

Hence by the induction hypothesis we obtain

θ̃(zw′
1 ⋄ w2) = θ̃(zw′

1) ⋄ w2 + zw′
1 ⋄ θ̃(w2).

Since the binary operator ⋄ is commutative and bilinear, it suffices then to prove
equation (3) only in the case where w1 = xw′

1 and w2 = yw′
2. By using equation (2)

and Lemma 2.5, we have

θ̃(xw′
1 ⋄ yw′

2)

= θ̃ (x(w′
1 ⋄ yw′

2) + y(xw′
1 ⋄ w′

2))

= x
(
θ̃(w′

1 ⋄ yw′
2) + z(w′

1 ⋄ yw′
2) + c(w′

1 ⋄ yw′
2 ⋄ y)

)
+ y

(
θ̃(xw′

1 ⋄ w′
2) + z(xw′

1 ⋄ w′
2) + c(xw′

1 ⋄ w′
2 ⋄ y)

)
and

θ̃(xw′
1) ⋄ yw′

2 + xw′
1 ⋄ θ̃(yw′

2)

= x
((
θ̃(w′

1) + zw′
1 + c(w′

1 ⋄ y)
)
⋄ yw′

2

)
+ y

(
θ̃(xw′

1) ⋄ w′
2

)
+ x

(
w′

1 ⋄ θ̃(yw′
2)
)
+ y

(
xw′

1 ⋄
(
θ̃(w′

2) + zw′
2 + c(w′

2 ⋄ y)
))

= x
(
θ̃(w′

1) ⋄ yw′
2 + w′

1 ⋄ θ̃(yw′
2) + z(w′

1 ⋄ yw′
2) + c(w′

1 ⋄ yw′
2 ⋄ y)

)
+ y

(
θ̃(xw′

1) ⋄ w′
2 + xw′

1 ⋄ θ̃(w′
2) + z(xw′

1 ⋄ w′
2) + c(xw′

1 ⋄ w′
2 ⋄ y)

)
.
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From these, we see by the induction hypothesis that

θ̃(xw′
1 ⋄ yw′

2) = θ̃(xw′
1) ⋄ yw′

2 + xw′
1 ⋄ θ̃(yw′

2)

holds. □

Now we prove Theorem 2.2 by induction on n. When n = 1, we have

∂
(c)
1 (wx) = ∂1(wx) = ∂1(w)x+ wyx = (∂1(w) + wy)x = (w ⋄ y)x = (w ⋄ q1)x

by Lemma 2.4. When n ≥ 2, we have

∂(c)
n (wx) =

1

n− 1
ad(θ)(∂

(c)
n−1)(wx)

=
1

n− 1

(
θ∂

(c)
n−1(wx)− ∂

(c)
n−1θ(wx)

)
.

By the induction hypothesis, we have

θ∂
(c)
n−1(wx) = θ((w ⋄ qn−1)x)

= θ(w ⋄ qn−1)x+ (w ⋄ qn−1)xz + cH(w ⋄ qn−1)yx

= θ̃(w ⋄ qn−1)x+ (w ⋄ qn−1)xz

and

∂
(c)
n−1θ(wx) = ∂

(c)
n−1 (θ(w)x+ wxz + cH(w)yx)

= (θ(w) ⋄ qn−1)x+ (w ⋄ qn−1)xz + c(H(w)y ⋄ qn−1)x

= (θ̃(w) ⋄ qn−1)x+ (w ⋄ qn−1)xz.

We therefore obtain by Proposition 2.6

∂(c)
n (wx) =

1

n− 1

(
θ̃(w ⋄ qn−1)− (θ̃(w) ⋄ qn−1)

)
x =

1

n− 1

(
w ⋄ θ̃(qn−1)

)
x

= (w ⋄ qn)x,
which completes the proof. □

3. Explicit formula for qn

We now describe the element qn = q
(c)
n in an explicit manner. For any index

l = (l1, . . . , ls) ∈ Ns, we define a(l) = a(l1, . . . , ls) ∈ Q (or ∈ Z[c] if we view c as a
variable) inductively by a(1) := 1 and

a(l) :=

s∑
i=1

(
li − 1− (l1 + · · ·+ li−1)c

)
a(l(i)),

where

l(i) =

{
(l1, . . . , li−1, li+1, . . . , ls) if li = 1,

(l1, . . . , li−1, li − 1, li+1, . . . , ls) if li > 1.

Proposition 3.1. For n ≥ 1, we have

qn = − 1

(n− 1)!

∑
|l|=n

a(l)w(l),(4)

where the sum runs over all indices l = (l1, . . . , ls) ∈ Ns of any length s and of
weight |l| := l1+· · ·+ls = n, and w(l) = ϕ(yxl1−1 · · · yxls−1) = (−1)syzl1−1 · · · yzls−1.
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Proof. Let q′n denote the right-hand side of (4). We prove (4) by induction on n.
When n = 1, we easily see q′1 = y.

Suppose n ≥ 2. We want to show that q′n = θ̃(q′n−1)/(n − 1). Since θ(zm) =
mzm+1 and ∂1(z) = 0, we have

θ(yzk−1) = yzk + (k − 1)yzk = kyzk,

and so

θ(yzk1−1 · · · yzkr−1)

=

r∑
j=1

yzk1−1 · · · yzkj−1−1 · kjyzkj · yzkj+1−1 · · · yzkr−1

+ c
∑

1≤i<j≤r

yzk1−1 · · ·H(yzki−1) · · · ∂1(yzkj−1) · · · yzkr−1

=

r∑
j=1

kj yz
k1−1 · · · yzkj−1−1yzkjyzkj+1−1 · · · yzkr−1

− c
∑

1≤i<j≤r

yzk1−1 · · · (kiyzki−1) · · · y(z − y)zkj−1yzkj+1−1 · · · yzkr−1

=

r∑
j=1

kj yz
k1−1 · · · yzkj−1−1yzkjyzkj+1−1 · · · yzkr−1

− c

r∑
j=2

(k1 + · · ·+ kj−1)yz
k1−1 · · · yzkj−1−1y(z − y)zkj−1yzkj+1−1 · · · yzkr−1.

Since cH(yzk1−1 · · · yzkr−1)y = c(k1+ · · ·+kr)yz
k1−1 · · · yzkr−1y, we finally obtain

for k = (k1, . . . , kr)

θ̃(w(k))

= (−1)r θ̃(yzk1−1 · · · yzkr−1)

= (−1)r
r∑

j=1

(
kj − c(k1 + · · ·+ kj−1)

)
yzk1−1 · · · yzkj−1−1yzkjyzkj+1−1 · · · yzkr−1

− (−1)r+1c

r∑
j=1

(k1 + · · ·+ kj)yz
k1−1 · · · yzkj−1 · y · yzkj+1−1 · · · yzkr−1.

If we write

θ̃(q′n−1) = − 1

(n− 2)!

∑
|l|=n

a′(l)w(l),

we see from this that the coefficient a′(l) of w(l) = (−1)syzl1−1 · · · yzls−1 is given
exactly by a(l) as defined recursively. □

4. Quasi-derivation relations for finite multiple zeta values

In this section, we briefly discuss how the quasi-derivation relations look like for
“finite” multiple zeta values. There are two versions, denoted ζA(k1, . . . , kr) and
ζS(k1, . . . , kr), of “finite” analogues of multiple zeta values. The former lives in the
Q-algebra A :=

∏
p Fp/

⊕
p Fp and the latter the quotient Q-algebra of classical

multiple zeta values modulo the ideal generated by ζ(2). It is conjectured that
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the two versions satisfy completely the same relations, and there is a conjectural
isomorphism between two Q-algebras generated by those two versions. For more
on finite multiple zeta values, see for instance [9].

Denote by ZF the Q-linear map from yH to either algebra assigning the monomial
yxk1−1 · · · yxkr−1 to ζA(k1, . . . , kr) or ζS(k1, . . . , kr). Then the derivation relations
for finite multiple zeta values established by the second-named author [12] is the
relation

(5) ZF (∂n(w)x
−1) = 0

that holds for all w ∈ yHx.
As a consequence of our Theorem 2.2, we have the following.

Theorem 4.1 (Quasi-derivation relations for finite multiple zeta values). For all
n ≥ 1 and c ∈ Q, we have

ZF (∂
(c)
n (w)x−1) = ZF (wx

−1)ZF (q
(c)
n ) (w ∈ yHx).

Proof. This is almost immediate from Theorem 2.2 if one notes ZF ◦ ϕ = ZF and
ZF is a ∗-homomorphism (for these, see [7, 9, 10]). □

Remark 4.2. When c = 0, we can easily compute that q
(0)
n = yzn−1. Since

ZF (yz
n−1) = ZF

(
ϕ(yzn−1)

)
= −ZF (yx

n−1) = −ζF (n) = 0 for F = A or S,
we see that Theorem 4.1 generalizes the derivation relations (5).
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