QUASI-DERIVATION RELATIONS FOR MULTIPLE ZETA VALUES REVISITED

MASANOBU KANEKO, HIDEKI MURAHARA, AND TAKUYA MURAKAMI

Abstract

We take another look at the so-called quasi-derivation relations in the theory of multiple zeta values, by giving a certain formula for the quasiderivation operator. In doing so, we are not only able to prove the quasiderivation relations in a simpler manner but also give an analog of the quasiderivation relations for finite multiple zeta values.

1. Introduction

The quasi-derivation relations in the theory of multiple zeta values is a generalization, proposed by the first-named author and established by T. Tanaka, of a set of linear relations known as derivation relations, which we are first going to recall.

We use Hoffman's algebraic setup ([5]) with a slightly different convention. Let $\mathfrak{H}:=\mathbb{Q}\langle x, y\rangle$ be the noncommutative polynomial algebra in two indeterminates x and y. This was introduced in order to encode multiple zeta values in the way the monomial $y x^{k_{1}-1} y x^{k_{2}-1} \cdots y x^{k_{r}-1}$ corresponds to the multiple zeta value

$$
\zeta\left(k_{1}, k_{2}, \ldots, k_{r}\right):=\sum_{0<n_{1}<\cdots<n_{r}} \frac{1}{n_{1}^{k_{1}} n_{2}^{k_{2}} \cdots n_{r}^{k_{r}}}
$$

when $k_{r}>1$, which is a real number as the limiting value of a convergent series. If we denote by Z the \mathbb{Q}-linear map from $y \mathfrak{H} x$ to \mathbb{R} assigning each monomial $y x^{k_{1}-1} y x^{k_{2}-1} \ldots y x^{k_{r}-1}$ to $\zeta\left(k_{1}, \ldots, k_{r}\right)$, the derivation relations state that

$$
Z\left(\partial_{n}(w)\right)=0
$$

for all $n \geq 1$ and $w \in y \mathfrak{H} x$. Here the operator ∂_{n} is a \mathbb{Q}-linear derivation on \mathfrak{H} determined uniquely by $\partial_{n}(x)=y(x+y)^{n-1} x$ and $\partial_{n}(y)=-y(x+y)^{n-1} x$. Set $z=x+y$, so that $\partial_{n}(z)=0$. We use this repeatedly in the sequel.

In order to introduce the quasi-derivation relations, we first define a \mathbb{Q}-linear $\operatorname{map} \theta:=\theta^{(c)}: \mathfrak{H} \rightarrow \mathfrak{H}$ with a parameter $c \in \mathbb{Q}$ (we often drop c from the notation) by setting

$$
\theta(u)=u z=u(x+y) \text { for } u=x, y
$$

and requiring

$$
\theta\left(w w^{\prime}\right)=\theta(w) w^{\prime}+w \theta\left(w^{\prime}\right)+c H(w) \partial_{1}\left(w^{\prime}\right)
$$

for $w, w^{\prime} \in \mathfrak{H}$, where H is the \mathbb{Q}-linear map from \mathfrak{H} to itself defined by $H(w)=$ $\operatorname{deg}(w) \cdot w$ for any monomial $w \in \mathfrak{H}(\operatorname{deg}(w)$ is the degree of $w)$. This is well defined because H is a derivation on \mathfrak{H}. Now we define the quasi-derivation map $\partial_{n}^{(c)}$. Write $\operatorname{ad}(\theta)$ the adjoint operator by θ, i.e., $\operatorname{ad}(\theta)(\partial):=[\theta, \partial]=\theta \partial-\partial \theta$.

[^0]Definition 1.1. For each positive integer n and any rational number c, we define a \mathbb{Q}-linear map $\partial_{n}^{(c)}: \mathfrak{H} \rightarrow \mathfrak{H}$ by

$$
\partial_{n}^{(c)}:=\frac{1}{(n-1)!} \operatorname{ad}(\theta)^{n-1}\left(\partial_{1}\right) .
$$

Then the quasi-derivation relations of Tanaka [13] is stated as

$$
Z\left(\partial_{n}^{(c)}(w)\right)=0
$$

for all $n \geq 1, c \in \mathbb{Q}$, and $w \in y \mathfrak{H} x$. Our aim in this paper is to take another look at this relation, or rather at the operator $\partial_{n}^{(c)}$.

Remark 1.2.1) We have changed the definition of $\theta=\theta^{(c)}$ by shifting the original ($[8,13]$) by the derivation $w \rightarrow[z, w] / 2=(z w-w z) / 2$. However, we can check that this does not change $\partial_{n}^{(c)}(w)$. Note also that the convention of the order of the product in \mathfrak{H} there is opposite from ours.
2) As noted in [6], the special case $c=0$ gives the original derivation $\partial_{n}: \partial_{n}=$ $\partial_{n}^{(0)}$. This together with works of Connes-Moscovicci [1, 2] motivated us to define $\partial_{n}^{(c)}(w)$ in [8].
3) From $\theta\left(z^{r}\right)=r z^{r+1}(r \geq 1)$ and $\partial_{n}(z)=0$, we see that $\partial_{n}^{(c)}(w z)=\partial_{n}^{(c)}(w) z$ and $\partial_{n}^{(c)}(z w)=z \partial_{n}^{(c)}(w)$. We need to use this at several points later.

2. Main Theorem

We present a formula for $\partial_{n}^{(c)}(w)$ when w is in $\mathfrak{H} x$. To describe the formula, we define a product \diamond on \mathfrak{H} introduced in Hirose-Murahara-Onozuka [3] by

$$
\begin{equation*}
w_{1} \diamond w_{2}:=\phi\left(\phi\left(w_{1}\right) * \phi\left(w_{2}\right)\right) \quad\left(w_{1}, w_{2} \in \mathfrak{H}\right) \tag{1}
\end{equation*}
$$

where ϕ is an involutive automorphism of \mathfrak{H} determined by

$$
\phi(x)=z=x+y \text { and } \phi(y)=-y
$$

and $*$ is the harmonic product on \mathfrak{H} (see $[5,4]$ for the precise definition of $*$). This is an associative and commutative binary operation with $1 \diamond w=w \diamond 1=w$ for any $w \in \mathfrak{H}$. In [3], the definition of \diamond is given in an inductive manner like the definition of $*$ in [4]. Later we only use the shuffle-type equality

$$
\begin{equation*}
x w_{1} \diamond y w_{2}=x\left(w_{1} \diamond y w_{2}\right)+y\left(x w_{1} \diamond w_{2}\right), \tag{2}
\end{equation*}
$$

which holds for any $w_{1}, w_{2} \in \mathfrak{H}$.
We define a specific element $q_{n}=q_{n}^{(c)}$ in \mathfrak{H} for each $n \geq 1$ as follows.
Definition 2.1. Let $\tilde{\theta}=\tilde{\theta}^{(c)}$ be the map from \mathfrak{H} to itself given by

$$
\tilde{\theta}(w):=\theta(w)+c H(w) y \quad(w \in \mathfrak{H})
$$

For each positive integer n, we define

$$
q_{n}:=\frac{1}{(n-1)!} \tilde{\theta}^{n-1}(y)
$$

We thus have $q_{1}=y$ and $q_{n}=\tilde{\theta}\left(q_{n-1}\right) /(n-1)$ for $n \geq 2$.
Note that $q_{n}=q_{n}^{(c)}$ is in $y \mathfrak{H}$, as can be seen inductively by the definition. We shall give an explicit formula for q_{n} in the next section. Here is our main theorem.

Theorem 2.2. For all $n \geq 1$ and $c \in \mathbb{Q}$, we have

$$
\partial_{n}^{(c)}(w x)=\left(w \diamond q_{n}\right) x \quad(w \in \mathfrak{H}) .
$$

Assuming the theorem, it is straightforward to deduce the quasi-derivation relations from Kawashima's relations (strictly speaking, its "linear part"). Recall the linear part of Kawashima's relations [11] asserts that

$$
Z\left(\phi\left(w_{1} * w_{2}\right) x\right)=0
$$

for any $w_{1}, w_{2} \in y \mathfrak{H}$. Using this and the definition (1) of \diamond, we see that

$$
Z\left(\partial_{n}^{(c)}(y w x)\right)=Z\left(\left(y w \diamond q_{n}\right) x\right)=Z\left(\phi\left(\phi(y w) * \phi\left(q_{n}\right)\right) x\right)=0
$$

because both $\phi(y w)$ and $\phi\left(q_{n}\right)$ are in $y \mathfrak{H}$. This is the quasi-derivation relations.
Another immediate corollary to the theorem is the commutativity of the operators $\partial_{n}^{(c)}$, that is, $\partial_{n_{1}}^{\left(c_{1}\right)}$ and $\partial_{n_{2}}^{\left(c_{2}\right)}$ commute with each other for any $n_{1}, n_{2} \geq 1$ and $c_{1}, c_{2} \in \mathbb{Q}$. This was proved in [13] but the argument was quite involved. Here we may show

$$
\left[\partial_{n_{1}}^{\left(c_{1}\right)}, \partial_{n_{2}}^{\left(c_{2}\right)}\right](w)=0
$$

first for $w \in \mathfrak{H} x$ as

$$
\begin{aligned}
{\left[\partial_{n_{1}}^{\left(c_{1}\right)}, \partial_{n_{2}}^{\left(c_{2}\right)}\right](w x) } & =\left(\partial_{n_{1}}^{\left(c_{1}\right)} \partial_{n_{2}}^{\left(c_{2}\right)}-\partial_{n_{2}}^{\left(c_{2}\right)} \partial_{n_{1}}^{\left(c_{1}\right)}\right)(w x) \\
& =\left(\left(w \diamond q_{n_{2}}\right) \diamond q_{n_{1}}\right) x-\left(\left(w \diamond q_{n_{1}}\right) \diamond q_{n_{2}}\right) x \\
& =0
\end{aligned}
$$

because the product \diamond is associative and commutative, and then for the general case by induction on the degree of w by noting $\partial_{n}^{(c)}(w z)=\partial_{n}^{(c)}(w) z$ as remarked before.

Proof of Theorem 2.2. We need some lemmas. Recall $z=x+y$.
Lemma 2.3. For $w_{1}, w_{2} \in \mathfrak{H}$, we have

$$
z w_{1} \diamond w_{2}=w_{1} \diamond z w_{2}=z\left(w_{1} \diamond w_{2}\right) .
$$

Proof. This follows from $\phi(z)=x, \phi(x)=z$ and $x w_{1} * w_{2}=w_{1} * x w_{2}=x\left(w_{1} * w_{2}\right)$. See also [3].

Lemma 2.4. For $w \in \mathfrak{H}$, we have $\partial_{1}(w)=w \diamond y-w y$.
Proof. We proceed by induction on $\operatorname{deg}(w)$. The case $\operatorname{deg}(w)=0$ is obvious because $\partial_{1}(1)=0$. Suppose $\operatorname{deg}(w) \geq 1$. By linearity, it is enough to prove the equation when w is of the form $z w^{\prime}$ and $x w^{\prime}$. If $w=z w^{\prime}$, we have, by using the induction hypothesis and Lemma 2.3,

$$
\partial_{1}(w)=\partial_{1}\left(z w^{\prime}\right)=z \partial_{1}\left(w^{\prime}\right)=z\left(w^{\prime} \diamond y-w^{\prime} y\right)=z w^{\prime} \diamond y-z w^{\prime} y=w \diamond y-w y .
$$

When $w=x w^{\prime}$, we similarly compute (using equation (2))

$$
\begin{aligned}
\partial_{1}(w) & =\partial_{1}\left(x w^{\prime}\right)=y x w^{\prime}+x \partial_{1}\left(w^{\prime}\right)=y x w^{\prime}+x\left(w^{\prime} \diamond y-w^{\prime} y\right) \\
& =y\left(x w^{\prime} \diamond 1\right)+x\left(w^{\prime} \diamond y\right)-x w^{\prime} y=x w^{\prime} \diamond y-x w^{\prime} y \\
& =w \diamond y-w y .
\end{aligned}
$$

Lemma 2.5. For $u \in \mathbb{Q} x+\mathbb{Q} y$, we have

$$
\tilde{\theta}(u w)=u(\tilde{\theta}(w)+z w+c(w \diamond y)) .
$$

Proof. We only need to show the equation for $u=x$ and y. By the definition of $\tilde{\theta}$, we have

$$
\begin{aligned}
\tilde{\theta}(u w) & =\theta(u w)+c H(u w) y \\
& =u z w+u \theta(w)+c u \partial_{1}(w)+c u w y+c u H(w) y \\
& =u\left(\tilde{\theta}(w)+z w+c\left(\partial_{1}(w)+w y\right)\right) .
\end{aligned}
$$

From Lemma 2.4, we complete the proof.
We need one more preparatory result, which may be of interest in its own right.
Proposition 2.6. The \mathbb{Q}-linear map $\tilde{\theta}$ is a derivation on \mathfrak{H} with respect to the product \diamond, i.e., the equation

$$
\begin{equation*}
\tilde{\theta}\left(w_{1} \diamond w_{2}\right)=\tilde{\theta}\left(w_{1}\right) \diamond w_{2}+w_{1} \diamond \tilde{\theta}\left(w_{2}\right) \tag{3}
\end{equation*}
$$

holds for any $w_{1}, w_{2} \in \mathfrak{H}$.
Proof. We prove this by induction on $\operatorname{deg}\left(w_{1}\right)+\operatorname{deg}\left(w_{2}\right)$. The case $\operatorname{deg}\left(w_{1}\right)+$ $\operatorname{deg}\left(w_{2}\right)=0$ holds trivially:

$$
\tilde{\theta}(1 \diamond 1)=\tilde{\theta}(1)=0=\tilde{\theta}(1) \diamond 1+1 \diamond \tilde{\theta}(1) .
$$

When $\operatorname{deg}\left(w_{1}\right)+\operatorname{deg}\left(w_{2}\right) \geq 1$, we first prove when w_{1} is of the form $w_{1}=z w_{1}^{\prime}$. By the definition of $\tilde{\theta}$ and Lemmas 2.3 and 2.5, we have

$$
\tilde{\theta}\left(z w_{1}^{\prime} \diamond w_{2}\right)=\tilde{\theta}\left(z\left(w_{1}^{\prime} \diamond w_{2}\right)\right)=z\left(\tilde{\theta}\left(w_{1}^{\prime} \diamond w_{2}\right)+z\left(w_{1}^{\prime} \diamond w_{2}\right)+c\left(w_{1}^{\prime} \diamond w_{2} \diamond y\right)\right)
$$

On the other hand, we have

$$
\begin{aligned}
& \tilde{\theta}\left(z w_{1}^{\prime}\right) \diamond w_{2}+z w_{1}^{\prime} \diamond \tilde{\theta}\left(w_{2}\right) \\
& =z\left(\tilde{\theta}\left(w_{1}^{\prime}\right)+z w_{1}^{\prime}+c\left(w_{1}^{\prime} \diamond y\right)\right) \diamond w_{2}+z\left(w_{1}^{\prime} \diamond \tilde{\theta}\left(w_{2}\right)\right) \\
& =z\left(\tilde{\theta}\left(w_{1}^{\prime}\right) \diamond w_{2}+w_{1}^{\prime} \diamond \tilde{\theta}\left(w_{2}\right)+z\left(w_{1}^{\prime} \diamond w_{2}\right)+c\left(w_{1}^{\prime} \diamond w_{2} \diamond y\right)\right) .
\end{aligned}
$$

Hence by the induction hypothesis we obtain

$$
\tilde{\theta}\left(z w_{1}^{\prime} \diamond w_{2}\right)=\tilde{\theta}\left(z w_{1}^{\prime}\right) \diamond w_{2}+z w_{1}^{\prime} \diamond \tilde{\theta}\left(w_{2}\right) .
$$

Since the binary operator \diamond is commutative and bilinear, it suffices then to prove equation (3) only in the case where $w_{1}=x w_{1}^{\prime}$ and $w_{2}=y w_{2}^{\prime}$. By using equation (2) and Lemma 2.5, we have

$$
\begin{aligned}
& \tilde{\theta}\left(x w_{1}^{\prime} \diamond y w_{2}^{\prime}\right) \\
& =\tilde{\theta}\left(x\left(w_{1}^{\prime} \diamond y w_{2}^{\prime}\right)+y\left(x w_{1}^{\prime} \diamond w_{2}^{\prime}\right)\right) \\
& =x\left(\tilde{\theta}\left(w_{1}^{\prime} \diamond y w_{2}^{\prime}\right)+z\left(w_{1}^{\prime} \diamond y w_{2}^{\prime}\right)+c\left(w_{1}^{\prime} \diamond y w_{2}^{\prime} \diamond y\right)\right) \\
& \quad+y\left(\tilde{\theta}\left(x w_{1}^{\prime} \diamond w_{2}^{\prime}\right)+z\left(x w_{1}^{\prime} \diamond w_{2}^{\prime}\right)+c\left(x w_{1}^{\prime} \diamond w_{2}^{\prime} \diamond y\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \tilde{\theta}\left(x w_{1}^{\prime}\right) \diamond y w_{2}^{\prime}+x w_{1}^{\prime} \diamond \tilde{\theta}\left(y w_{2}^{\prime}\right) \\
& =x\left(\left(\tilde{\theta}\left(w_{1}^{\prime}\right)+z w_{1}^{\prime}+c\left(w_{1}^{\prime} \diamond y\right)\right) \diamond y w_{2}^{\prime}\right)+y\left(\tilde{\theta}\left(x w_{1}^{\prime}\right) \diamond w_{2}^{\prime}\right) \\
& \quad+x\left(w_{1}^{\prime} \diamond \tilde{\theta}\left(y w_{2}^{\prime}\right)\right)+y\left(x w_{1}^{\prime} \diamond\left(\tilde{\theta}\left(w_{2}^{\prime}\right)+z w_{2}^{\prime}+c\left(w_{2}^{\prime} \diamond y\right)\right)\right) \\
& =x\left(\tilde{\theta}\left(w_{1}^{\prime}\right) \diamond y w_{2}^{\prime}+w_{1}^{\prime} \diamond \tilde{\theta}\left(y w_{2}^{\prime}\right)+z\left(w_{1}^{\prime} \diamond y w_{2}^{\prime}\right)+c\left(w_{1}^{\prime} \diamond y w_{2}^{\prime} \diamond y\right)\right) \\
& \quad+y\left(\tilde{\theta}\left(x w_{1}^{\prime}\right) \diamond w_{2}^{\prime}+x w_{1}^{\prime} \diamond \tilde{\theta}\left(w_{2}^{\prime}\right)+z\left(x w_{1}^{\prime} \diamond w_{2}^{\prime}\right)+c\left(x w_{1}^{\prime} \diamond w_{2}^{\prime} \diamond y\right)\right) .
\end{aligned}
$$

From these, we see by the induction hypothesis that

$$
\tilde{\theta}\left(x w_{1}^{\prime} \diamond y w_{2}^{\prime}\right)=\tilde{\theta}\left(x w_{1}^{\prime}\right) \diamond y w_{2}^{\prime}+x w_{1}^{\prime} \diamond \tilde{\theta}\left(y w_{2}^{\prime}\right)
$$

holds.
Now we prove Theorem 2.2 by induction on n. When $n=1$, we have

$$
\partial_{1}^{(c)}(w x)=\partial_{1}(w x)=\partial_{1}(w) x+w y x=\left(\partial_{1}(w)+w y\right) x=(w \diamond y) x=\left(w \diamond q_{1}\right) x
$$

by Lemma 2.4. When $n \geq 2$, we have

$$
\begin{aligned}
\partial_{n}^{(c)}(w x) & =\frac{1}{n-1} a d(\theta)\left(\partial_{n-1}^{(c)}\right)(w x) \\
& =\frac{1}{n-1}\left(\theta \partial_{n-1}^{(c)}(w x)-\partial_{n-1}^{(c)} \theta(w x)\right)
\end{aligned}
$$

By the induction hypothesis, we have

$$
\begin{aligned}
\theta \partial_{n-1}^{(c)}(w x) & =\theta\left(\left(w \diamond q_{n-1}\right) x\right) \\
& =\theta\left(w \diamond q_{n-1}\right) x+\left(w \diamond q_{n-1}\right) x z+c H\left(w \diamond q_{n-1}\right) y x \\
& =\tilde{\theta}\left(w \diamond q_{n-1}\right) x+\left(w \diamond q_{n-1}\right) x z
\end{aligned}
$$

and

$$
\begin{aligned}
\partial_{n-1}^{(c)} \theta(w x) & =\partial_{n-1}^{(c)}(\theta(w) x+w x z+c H(w) y x) \\
& =\left(\theta(w) \diamond q_{n-1}\right) x+\left(w \diamond q_{n-1}\right) x z+c\left(H(w) y \diamond q_{n-1}\right) x \\
& =\left(\tilde{\theta}(w) \diamond q_{n-1}\right) x+\left(w \diamond q_{n-1}\right) x z .
\end{aligned}
$$

We therefore obtain by Proposition 2.6

$$
\begin{aligned}
\partial_{n}^{(c)}(w x) & =\frac{1}{n-1}\left(\tilde{\theta}\left(w \diamond q_{n-1}\right)-\left(\tilde{\theta}(w) \diamond q_{n-1}\right)\right) x=\frac{1}{n-1}\left(w \diamond \tilde{\theta}\left(q_{n-1}\right)\right) x \\
& =\left(w \diamond q_{n}\right) x
\end{aligned}
$$

which completes the proof.

3. EXPLICIT FORMULA FOR q_{n}

We now describe the element $q_{n}=q_{n}^{(c)}$ in an explicit manner. For any index $\boldsymbol{l}=\left(l_{1}, \ldots, l_{s}\right) \in \mathbb{N}^{s}$, we define $a(\boldsymbol{l})=a\left(l_{1}, \ldots, l_{s}\right) \in \mathbb{Q}($ or $\in \mathbb{Z}[c]$ if we view c as a variable) inductively by $a(1):=1$ and

$$
a(\boldsymbol{l}):=\sum_{i=1}^{s}\left(l_{i}-1-\left(l_{1}+\cdots+l_{i-1}\right) c\right) a\left(\boldsymbol{l}^{(i)}\right)
$$

where

$$
\boldsymbol{l}^{(i)}= \begin{cases}\left(l_{1}, \ldots, l_{i-1}, l_{i+1}, \ldots, l_{s}\right) & \text { if } l_{i}=1 \\ \left(l_{1}, \ldots, l_{i-1}, l_{i}-1, l_{i+1}, \ldots, l_{s}\right) & \text { if } l_{i}>1\end{cases}
$$

Proposition 3.1. For $n \geq 1$, we have

$$
\begin{equation*}
q_{n}=-\frac{1}{(n-1)!} \sum_{|\boldsymbol{l}|=n} a(\boldsymbol{l}) w(\boldsymbol{l}) \tag{4}
\end{equation*}
$$

where the sum runs over all indices $\boldsymbol{l}=\left(l_{1}, \ldots, l_{s}\right) \in \mathbb{N}^{s}$ of any length s and of weight $|\boldsymbol{l}|:=l_{1}+\cdots+l_{s}=n$, and $w(\boldsymbol{l})=\phi\left(y x^{l_{1}-1} \cdots y x^{l_{s}-1}\right)=(-1)^{s} y z^{l_{1}-1} \cdots y z^{l_{s}-1}$.

Proof. Let q_{n}^{\prime} denote the right-hand side of (4). We prove (4) by induction on n. When $n=1$, we easily see $q_{1}^{\prime}=y$.

Suppose $n \geq 2$. We want to show that $q_{n}^{\prime}=\tilde{\theta}\left(q_{n-1}^{\prime}\right) /(n-1)$. Since $\theta\left(z^{m}\right)=$ $m z^{m+1}$ and $\partial_{1}(z)=0$, we have

$$
\theta\left(y z^{k-1}\right)=y z^{k}+(k-1) y z^{k}=k y z^{k},
$$

and so

$$
\begin{aligned}
& \theta\left(y z^{k_{1}-1} \cdots y z^{k_{r}-1}\right) \\
& =\sum_{j=1}^{r} y z^{k_{1}-1} \cdots y z^{k_{j-1}-1} \cdot k_{j} y z^{k_{j}} \cdot y z^{k_{j+1}-1} \cdots y z^{k_{r}-1} \\
& \quad+c \sum_{1 \leq i<j \leq r} y z^{k_{1}-1} \cdots H\left(y z^{k_{i}-1}\right) \cdots \partial_{1}\left(y z^{k_{j}-1}\right) \cdots y z^{k_{r}-1} \\
& =\sum_{j=1}^{r} k_{j} y z^{k_{1}-1} \cdots y z^{k_{j-1}-1} y z^{k_{j}} y z^{k_{j+1}-1} \cdots y z^{k_{r}-1} \\
& \quad-c \sum_{1 \leq i<j \leq r} y z^{k_{1}-1} \cdots\left(k_{i} y z^{k_{i}-1}\right) \cdots y(z-y) z^{k_{j}-1} y z^{k_{j+1}-1} \cdots y z^{k_{r}-1} \\
& =\sum_{j=1}^{r} k_{j} y z^{k_{1}-1} \cdots y z^{k_{j-1}-1} y z^{k_{j}} y z^{k_{j+1}-1} \cdots y z^{k_{r}-1} \\
& \quad-c \sum_{j=2}^{r}\left(k_{1}+\cdots+k_{j-1}\right) y z^{k_{1}-1} \cdots y z^{k_{j-1}-1} y(z-y) z^{k_{j}-1} y z^{k_{j+1}-1} \cdots y z^{k_{r}-1} .
\end{aligned}
$$

Since $c H\left(y z^{k_{1}-1} \cdots y z^{k_{r}-1}\right) y=c\left(k_{1}+\cdots+k_{r}\right) y z^{k_{1}-1} \cdots y z^{k_{r}-1} y$, we finally obtain for $\boldsymbol{k}=\left(k_{1}, \ldots, k_{r}\right)$

$$
\begin{aligned}
& \tilde{\theta}(w(\boldsymbol{k})) \\
& =(-1)^{r} \tilde{\theta}\left(y z^{k_{1}-1} \cdots y z^{k_{r}-1}\right) \\
& =(-1)^{r} \sum_{j=1}^{r}\left(k_{j}-c\left(k_{1}+\cdots+k_{j-1}\right)\right) y z^{k_{1}-1} \cdots y z^{k_{j-1}-1} y z^{k_{j}} y z^{k_{j+1}-1} \cdots y z^{k_{r}-1} \\
& \quad-(-1)^{r+1} c \sum_{j=1}^{r}\left(k_{1}+\cdots+k_{j}\right) y z^{k_{1}-1} \cdots y z^{k_{j}-1} \cdot y \cdot y z^{k_{j+1}-1} \cdots y z^{k_{r}-1}
\end{aligned}
$$

If we write

$$
\tilde{\theta}\left(q_{n-1}^{\prime}\right)=-\frac{1}{(n-2)!} \sum_{|\boldsymbol{l}|=n} a^{\prime}(\boldsymbol{l}) w(\boldsymbol{l})
$$

we see from this that the coefficient $a^{\prime}(\boldsymbol{l})$ of $w(\boldsymbol{l})=(-1)^{s} y z^{l_{1}-1} \cdots y z^{l_{s}-1}$ is given exactly by $a(\boldsymbol{l})$ as defined recursively.

4. QUASI-DERIVATION RELATIONS FOR FInite multiple zeta values

In this section, we briefly discuss how the quasi-derivation relations look like for "finite" multiple zeta values. There are two versions, denoted $\zeta_{\mathcal{A}}\left(k_{1}, \ldots, k_{r}\right)$ and $\zeta_{\mathcal{S}}\left(k_{1}, \ldots, k_{r}\right)$, of "finite" analogues of multiple zeta values. The former lives in the \mathbb{Q}-algebra $\mathcal{A}:=\prod_{p} \mathbb{F}_{p} / \bigoplus_{p} \mathbb{F}_{p}$ and the latter the quotient \mathbb{Q}-algebra of classical multiple zeta values modulo the ideal generated by $\zeta(2)$. It is conjectured that
the two versions satisfy completely the same relations, and there is a conjectural isomorphism between two \mathbb{Q}-algebras generated by those two versions. For more on finite multiple zeta values, see for instance [9].

Denote by $Z_{\mathcal{F}}$ the \mathbb{Q}-linear map from $y \mathfrak{H}$ to either algebra assigning the monomial $y x^{k_{1}-1} \cdots y x^{k_{r}-1}$ to $\zeta_{\mathcal{A}}\left(k_{1}, \ldots, k_{r}\right)$ or $\zeta_{\mathcal{S}}\left(k_{1}, \ldots, k_{r}\right)$. Then the derivation relations for finite multiple zeta values established by the second-named author [12] is the relation

$$
\begin{equation*}
Z_{\mathcal{F}}\left(\partial_{n}(w) x^{-1}\right)=0 \tag{5}
\end{equation*}
$$

that holds for all $w \in y \mathfrak{H} x$.
As a consequence of our Theorem 2.2, we have the following.
Theorem 4.1 (Quasi-derivation relations for finite multiple zeta values). For all $n \geq 1$ and $c \in \mathbb{Q}$, we have

$$
Z_{\mathcal{F}}\left(\partial_{n}^{(c)}(w) x^{-1}\right)=Z_{\mathcal{F}}\left(w x^{-1}\right) Z_{\mathcal{F}}\left(q_{n}^{(c)}\right) \quad(w \in y \mathfrak{H} x) .
$$

Proof. This is almost immediate from Theorem 2.2 if one notes $Z_{\mathcal{F}} \circ \phi=Z_{\mathcal{F}}$ and $Z_{\mathcal{F}}$ is a $*$-homomorphism (for these, see $[7,9,10]$).

Remark 4.2. When $c=0$, we can easily compute that $q_{n}^{(0)}=y z^{n-1}$. Since $Z_{\mathcal{F}}\left(y z^{n-1}\right)=Z_{\mathcal{F}}\left(\phi\left(y z^{n-1}\right)\right)=-Z_{\mathcal{F}}\left(y x^{n-1}\right)=-\zeta_{\mathcal{F}}(n)=0$ for $\mathcal{F}=\mathcal{A}$ or S, we see that Theorem 4.1 generalizes the derivation relations (5).

Acknowledgement

This work was supported by JSPS KAKENHI Grant Numbers JP16H06336.

REFERENCES

[1] A. Connes and H. Moscovici, Modular Hecke algebras and their Hopf symmetry, Mosc. Math. J. 4 (2004), 67-109.
[2] A. Connes and H. Moscovici, Rankin - Cohen brackets and the Hopf algebra of transverse geometry, Mosc. Math. J. 4 (2004), 111-130.
[3] M. Hirose, H. Murahara, and T. Onozuka, \mathbb{Q}-linear relations of specific families of multiple zeta values and the linear part of Kawashima's relation, preprint.
[4] M. Hirose and N. Sato, Algebraic differential formulas for the shuffle, stuffle and duality relations of iterated integrals, preprint.
[5] M. E. Hoffman, The algebra of multiple harmonic series, J. Algebra 194 (1997), 477-495.
[6] K. Ihara, M. Kaneko and D. Zagier, Derivation and double shuffle relations for multiple zeta values, Compositio Math. 142 (2006), 307-338.
[7] D. Jarossay, Double mélange des multizêtas finis et multizêtas symétrisés, C. R. Math. Acad. Sci. Paris 352 (2014), 767-771.
[8] M. Kaneko, On an extension of the derivation relation for multiple zeta values, The Conference on L-Functions, 89-94, World Sci. Publ., Hackensack, NJ (2007).
[9] M. Kaneko, An introduction to classical and finite multiple zeta values, Publications mathématiques de Besançon. Algèbre et théorie des nombres (to appear).
[10] M. Kaneko and D. Zagier, Finite multiple zeta values, in preparation.
[11] G. Kawashima, A class of relations among multiple zeta values, J. Number Theory 129 (2009), 755-788.
[12] H. Murahara, Derivation relations for finite multiple zeta values, Int. J. Number Theory 13 (2017), 419-427.
[13] T. Tanaka, On the quasi-derivation relation for multiple zeta values, J. Number Theory 129 (2009), 2021-2034.
(Masanobu Kaneko) Faculty of Mathematics, Kyushu University 744, Motooka, Nishiku, Fukuoka, 819-0395, Japan

E-mail address: mkaneko@math.kyushu-u.ac.jp
(Hideki Murahara) Nakamura Gakuen University Graduate School, 5-7-1, Befu, Jonanku, Fukuoka, 814-0198, Japan

E-mail address: hmurahara@nakamura-u.ac.jp
(Takuya Murakami) Graduate School of Mathematics, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan

E-mail address: tak_mrkm@icloud.com

[^0]: 2010 Mathematics Subject Classification. Primary 11M32; Secondary 05A19.
 Key words and phrases. Multiple zeta values, Finite multiple zeta values, Derivation relations, Quasi-derivation relations.

