ON POLY-COSECANT NUMBERS

MASANOBU KANEKO, MANEKA PALLEWATTA, AND HIROFUMI TSUMURA

Abstract

We introduce and study a "level two" generalization of the poly-Bernoulli numbers, which may also be regarded as a generalization of the cosecant numbers. We prove a recurrence relation, two exact formulas, and a duality relation for negative upperindex numbers.

1. Introduction

Poly-Bernoulli numbers were first introduced in [6] and later a slightly modified version was studied in [2]. They are, denoted $B_{n}^{(k)}$ and $C_{n}^{(k)}$ respectively, defined by using generating series, as follows. For an integer $k \in \mathbb{Z}$, let $\left\{B_{n}^{(k)}\right\}$ and $\left\{C_{n}^{(k)}\right\}$ be the sequences of rational numbers given respectively by

$$
\begin{equation*}
\frac{\operatorname{Li}_{k}\left(1-e^{-t}\right)}{1-e^{-t}}=\sum_{n=0}^{\infty} B_{n}^{(k)} \frac{t^{n}}{n!} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\operatorname{Li}_{k}\left(1-e^{-t}\right)}{e^{t}-1}=\sum_{n=0}^{\infty} C_{n}^{(k)} \frac{t^{n}}{n!} \tag{1.2}
\end{equation*}
$$

where $\operatorname{Li}_{k}(z)$ is the polylogarithm function (or rational function when $k \leq 0$) defined by

$$
\begin{equation*}
\operatorname{Li}_{k}(z)=\sum_{m=1}^{\infty} \frac{z^{m}}{m^{k}} \quad(|z|<1) \tag{1.3}
\end{equation*}
$$

In the sequel, we regard this or any other series only as a formal power series.
Since $\operatorname{Li}_{1}(z)=-\log (1-z)$, the generating functions on the left-hand sides of (1.1) and (1.2) when $k=1$ become

$$
\frac{t e^{t}}{e^{t}-1} \quad \text { and } \quad \frac{t}{e^{t}-1}
$$

respectively, and hence $B_{n}^{(1)}$ and $C_{n}^{(1)}$ are usual Bernoulli numbers, the only difference being $B_{1}^{(1)}=1 / 2$ and $C_{1}^{(1)}=-1 / 2$ and otherwise $B_{n}^{(1)}=C_{n}^{(1)}$.

Various properties of poly-Bernoulli numbers, including combinatorial applications, are known. Among them we mention the explicit formulas

$$
B_{n}^{(k)}=(-1)^{n} \sum_{i=0}^{n} \frac{(-1)^{i} i!\left\{\begin{array}{c}
n \\
i
\end{array}\right\}}{(i+1)^{k}}, \quad C_{n}^{(k)}=(-1)^{n} \sum_{i=0}^{n} \frac{(-1)^{i} i!\left\{\begin{array}{c}
n+1 \\
i+1
\end{array}\right\}}{(i+1)^{k}}
$$

for $k \in \mathbb{Z}, n \in \mathbb{Z}_{\geq 0}$ using the Stirling numbers of the second kind, and the dualities

$$
\begin{align*}
& B_{n}^{(-k)}=B_{k}^{(-n)} \tag{1.4}\\
& C_{n}^{(-k-1)}=C_{k}^{(-n-1)} \tag{1.5}
\end{align*}
$$

[^0]for $k, n \in \mathbb{Z}_{\geq 0}$ (see [6, Theorems 1 and 2] and $[7, \S 2]$). For combinatorial applications, see [3].

In this paper, we study the following "level 2 " analog of poly-Bernoulli numbers, denoted $D_{n}^{(k)}$, which we also call the poly-cosecant numbers. For each $k \in \mathbb{Z}$, define $D_{n}^{(k)}$ by

$$
\begin{equation*}
\frac{\mathrm{A}_{k}(\tanh (t / 2))}{\sinh t}=\sum_{n=0}^{\infty} D_{n}^{(k)} \frac{t^{n}}{n!}, \tag{1.6}
\end{equation*}
$$

where $\mathrm{A}_{k}(z)$ is the series

$$
\begin{equation*}
\mathrm{A}_{k}(z)=2 \sum_{n=0}^{\infty} \frac{z^{2 n+1}}{(2 n+1)^{k}} \tag{1.7}
\end{equation*}
$$

and $\tanh (z)$ and $\sinh (z)$ are the usual hyperbolic tangent and sine functions respectively. Since $\mathrm{A}_{k}(z), \tanh (z)$ and $\sinh (z)$ are all odd functions, we immediately see that $D_{2 n+1}^{(k)}=0$ for all $n \in \mathbb{Z}_{\geq 0}$. Note that $\mathrm{A}_{1}(z)=2 \tanh ^{-1}(z)$, and thus

$$
\sum_{n=0}^{\infty} D_{n}^{(1)} \frac{t^{n}}{n!}=\frac{t}{\sinh t}=\frac{i t}{\sin (i t)} \quad(i=\sqrt{-1}) .
$$

Hence, up to sign, $D_{n}^{(1)}$ is the cosecant number D_{n} (see Nörlund [10, p. 458]).
We should mention that our $D_{n}^{(k)}$ is (if slightly modified) a special case of a generalization of the poly-Bernoulli number introduced by Y. Sasaki in [11, Definition 5].

2. Recurrence and explicit formulas for poly-cosecant numbers

In this section, we obtain a recurrence and explicit formulas for poly-cosecant numbers.
We first give a recurrence. Note that $D_{0}^{(0)}=1$ and $D_{n}^{(0)}=0$ for all $n \geq 1$ because $\mathrm{A}_{0}(\tanh (t / 2))=\sinh (t)$. Starting from this, the following formula gives a way to compute $D_{n}^{(k)}$ recursively for any integer k.

Proposition 2.1. For any integer k and $n \geq 0$, it holds

$$
D_{n}^{(k-1)}=\sum_{m=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n+1}{2 m+1} D_{n-2 m}^{(k)} .
$$

Proof. We differentiate the defining relation

$$
\mathrm{A}_{k}(\tanh (t / 2))=\sinh t \sum_{n=0}^{\infty} D_{n}^{(k)} \frac{t^{n}}{n!}
$$

to obtain

$$
\frac{\mathrm{A}_{k-1}(\tanh (t / 2))}{\sinh t}=\cosh t \sum_{n=0}^{\infty} D_{n}^{(k)} \frac{t^{n}}{n!}+\sinh t \sum_{n=1}^{\infty} D_{n}^{(k)} \frac{t^{n-1}}{(n-1)!}
$$

From this we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} D_{n}^{(k-1)} \frac{t^{n}}{n!} & =\sum_{m=0}^{\infty} \frac{t^{2 m}}{(2 m)!} \sum_{n=0}^{\infty} D_{n}^{(k)} \frac{t^{n}}{n!}+\sum_{m=0}^{\infty} \frac{t^{2 m+1}}{(2 m+1)!} \sum_{n=1}^{\infty} D_{n}^{(k)} \frac{t^{n-1}}{(n-1)!} \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{\left\lfloor\frac{n}{2}\right\rfloor} D_{n-2 m}^{(k)} \frac{t^{n}}{(2 m)!(n-2 m)!}+\sum_{n=1}^{\infty} \sum_{m=0}^{\left\lfloor\frac{n}{2}\right\rfloor} D_{n-2 m}^{(k)} \frac{t^{n}}{(2 m+1)!(n-2 m-1)!} \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{2 m} D_{n-2 m}^{(k)} \frac{t^{n}}{n!}+\sum_{n=1}^{\infty} \sum_{m=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{2 m+1} D_{n-2 m}^{(k)} \frac{t^{n}}{n!}
\end{aligned}
$$

$$
=\sum_{n=0}^{\infty} \sum_{m=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n+1}{2 m+1} D_{n-2 m}^{(k)} \frac{t^{n}}{n!}
$$

By equating the coefficients of t^{n} / n ! on both sides, we obtain the desired result.
When $k>0$, we may want to write this as

$$
(n+1) D_{n}^{(k)}=D_{n}^{(k-1)}-\sum_{m=1}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n+1}{2 m+1} D_{n-2 m}^{(k)} \quad(n>0) .
$$

Note that $D_{0}^{(k)}=1$ for all $k \in \mathbb{Z}$.
We proceed to give two explicit formulas for $D_{n}^{(k)}$. Recall that $\left[\begin{array}{l}n \\ m\end{array}\right]$ and $\left\{\begin{array}{l}n \\ m\end{array}\right\}$ are Stirling numbers of the first and the second kinds, respectively, and $B_{n}=B_{n}^{(1)}$ is the Bernoulli number. See [1, Chapter 2] for the precise definition and formulas we use in the proof. In [11], Sasaki gave a different formula, but one needs to define yet another sequences to describe the formula.

Theorem 2.2. For any $k \in \mathbb{Z}$ and $n \geq 0$, we have
1)

$$
D_{n}^{(k)}=4 \sum_{m=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{1}{(2 m+1)^{k+1}} \sum_{p=1}^{2 m+1} \sum_{q=0}^{n-2 m}\left(2^{p+q+1}-1\right)\binom{n}{q}\left[\begin{array}{c}
2 m+1 \\
p
\end{array}\right]\left\{\begin{array}{c}
n-q \\
2 m
\end{array}\right\} \frac{B_{p+q+1}}{p+q+1},
$$

and
2)

$$
D_{n}^{(k)}=\sum_{m=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{1}{(2 m+1)^{k+1}} \sum_{p=2 m}^{n} \frac{(-1)^{p}(p+1)!}{2^{p}}\binom{p}{2 m}\left\{\begin{array}{c}
n+1 \\
p+1
\end{array}\right\} .
$$

Proof. To prove 1), we need the following lemma. We may prove this in the same manner as in [1, Proposition 2.6 (4)] and we omit the proof here.

Lemma 2.3. For $n \geq 1$ we have,

$$
x^{n}\left(\frac{d}{d x}\right)^{n}=\sum_{m=1}^{n}(-1)^{n-m}\left[\begin{array}{c}
n \\
m
\end{array}\right]\left(x \frac{d}{d x}\right)^{m} .
$$

We write

$$
\begin{align*}
\sum_{n=0}^{\infty} D_{n}^{(k)} \frac{t^{n}}{n!} & =\frac{\mathrm{A}_{k}(\tanh (t / 2))}{\sinh t} \\
& =2 \sum_{m=0}^{\infty} \frac{(\tanh (t / 2))^{2 m+1}}{(2 m+1)^{k}} \frac{1}{\sinh t} \\
& =4 \sum_{m=0}^{\infty} \frac{1}{(2 m+1)^{k}} \frac{e^{t}\left(e^{t}-1\right)^{2 m}}{\left(e^{t}+1\right)^{2 m+2}} \tag{2.1}
\end{align*}
$$

Since

$$
\begin{equation*}
\frac{1}{(x+1)^{n+1}}=\frac{(-1)^{n}}{n!}\left(\frac{d}{d x}\right)^{n} \frac{1}{x+1}, \tag{2.2}
\end{equation*}
$$

we see by setting $x=e^{t}$ and using Lemma 2.3 that

$$
\frac{e^{n t}}{\left(e^{t}+1\right)^{n+1}}=\frac{1}{n!} \sum_{p=1}^{n}(-1)^{p}\left[\begin{array}{l}
n \tag{2.3}\\
p
\end{array}\right]\left(\frac{d}{d t}\right)^{p} \frac{1}{e^{t}+1}
$$

From

$$
\frac{t}{e^{t}-1}=\sum_{q=0}^{\infty} B_{q} \frac{t^{q}}{q!}
$$

and

$$
\frac{1}{e^{t}+1}=\frac{1}{e^{t}-1}-\frac{2}{e^{2 t}-1}
$$

we have

$$
\frac{1}{e^{t}+1}=\sum_{q=0}^{\infty}\left(1-2^{q}\right) B_{q} \frac{t^{q-1}}{q!}
$$

By taking the p-th derivative of both sides, we get

$$
\left(\frac{d}{d t}\right)^{p}\left(\frac{1}{e^{t}+1}\right)=\sum_{q=p+1}^{\infty}\left(1-2^{q}\right) \frac{B_{q}}{q} \frac{t^{q-p-1}}{(q-p-1)!}=\sum_{q=p+1}^{\infty}\left(1-2^{p+q+1}\right) \frac{B_{p+q+1}}{p+q+1} \frac{t^{q}}{q!}
$$

and we substitute this in (2.3) to obtain

$$
\begin{aligned}
\frac{e^{n t}}{\left(e^{t}+1\right)^{n+1}} & =\frac{1}{n!} \sum_{p=1}^{n}(-1)^{p}\left[\begin{array}{c}
n \\
p
\end{array}\right] \sum_{q=0}^{\infty}\left(1-2^{p+q+1}\right) \frac{B_{p+q+1}}{p+q+1} \frac{t^{q}}{q!} \\
& =\frac{1}{n!} \sum_{q=0}^{\infty} \sum_{p=1}^{n}(-1)^{p}\left[\begin{array}{c}
n \\
p
\end{array}\right]\left(1-2^{p+q+1}\right) \frac{B_{p+q+1}}{p+q+1} \frac{t^{q}}{q!}
\end{aligned}
$$

From this, we have

$$
\begin{aligned}
\frac{e^{t}}{\left(e^{t}+1\right)^{2 m+2}} & =\frac{e^{-(2 m+1) t}}{\left(e^{-t}+1\right)^{2 m+2}} \\
& =\frac{1}{(2 m+1)!} \sum_{q=0}^{\infty} \sum_{p=1}^{2 m+1}(-1)^{p+q}\left[\begin{array}{c}
2 m+1 \\
p
\end{array}\right]\left(1-2^{p+q+1}\right) \frac{B_{p+q+1}}{p+q+1} \frac{t^{q}}{q!}
\end{aligned}
$$

Together with the well-known generating series ([1, Proposition $2.6(7)]$, note that $\left\{\begin{array}{c}s \\ 2 m\end{array}\right\}=$ 0 if $s<2 m$)

$$
\left(e^{t}-1\right)^{2 m}=(2 m)!\sum_{s=0}^{\infty}\left\{\begin{array}{c}
s \\
2 m
\end{array}\right\} \frac{t^{s}}{s!}
$$

we obtain

$$
\begin{aligned}
& \frac{e^{t}\left(e^{t}-1\right)^{2 m}}{\left(e^{t}+1\right)^{2 m+2}} \\
& =\frac{1}{2 m+1} \sum_{q=0}^{\infty} \sum_{s=0}^{\infty} \sum_{p=1}^{2 m+1}(-1)^{p+q}\left(1-2^{p+q+1}\right)\left[\begin{array}{c}
2 m+1 \\
p
\end{array}\right]\left\{\begin{array}{c}
s \\
2 m
\end{array}\right\} \frac{B_{p+q+1}}{p+q+1} \frac{t^{q+s}}{q!s!} \\
& =\frac{1}{2 m+1} \sum_{n=0}^{\infty} \sum_{q=0}^{n} \sum_{p=1}^{2 m+1}(-1)^{p+q}\left(1-2^{p+q+1}\right)\binom{n}{q}\left[\begin{array}{c}
2 m+1 \\
p
\end{array}\right]\left\{\begin{array}{c}
n-q \\
2 m
\end{array}\right\} \frac{B_{p+q+1}}{p+q+1} \frac{t^{n}}{n!} .
\end{aligned}
$$

Substituting this into (2.1), we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} D_{n}^{(k)} \frac{t^{n}}{n!} \\
& =4 \sum_{m=0}^{\infty} \frac{1}{(2 m+1)^{k+1}} \sum_{n=0}^{\infty} \sum_{q=0}^{n} \sum_{p=1}^{2 m+1}(-1)^{p+q}\left(1-2^{p+q+1}\right)\binom{n}{q}\left[\begin{array}{c}
2 m+1 \\
p
\end{array}\right]\left\{\begin{array}{c}
n-q \\
2 m
\end{array}\right\} \frac{B_{p+q+1}}{p+q+1} \frac{t^{n}}{n!} \\
& =4 \sum_{n=0}^{\infty} \sum_{m=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{1}{(2 m+1)^{k+1}} \sum_{p=1}^{2 m+1} \sum_{q=0}^{n-2 m}\left(2^{p+q+1}-1\right)\binom{n}{q}\left[\begin{array}{c}
2 m+1 \\
p
\end{array}\right]\left\{\begin{array}{c}
n-q \\
2 m
\end{array}\right\} \frac{B_{p+q+1}}{p+q+1} \frac{t^{n}}{n!} .
\end{aligned}
$$

(We have used the facts that $B_{p+q+1}=0$ if $p+q \geq 1$ is even and $\left\{\begin{array}{c}n-q \\ 2 m\end{array}\right\}=0$ if $n-q<2 m$.) By equating the coefficients of t^{n} / n ! on both sides, we obtain the desired result,
To prove 2), we employ the following formula ([4, Proposition 9]) for the numbers $T_{n, m}$ ("higher order tangent numbers") defined by

$$
\begin{equation*}
\frac{\tan ^{m} t}{m!}=\sum_{n=m}^{\infty} T_{n, m} \frac{t^{n}}{n!}, \tag{2.4}
\end{equation*}
$$

namely

$$
T_{n, m}=\frac{i^{n-m}}{m!} \sum_{p=m}^{n}(-2)^{n-p} p!\binom{p-1}{m-1}\left\{\begin{array}{l}
n \tag{2.5}\\
p
\end{array}\right\} .
$$

From the definition we have

$$
\begin{align*}
\sum_{n=0}^{\infty} D_{n}^{(k)} \frac{t^{n}}{n!} & =\frac{\mathrm{A}_{k}(\tanh (t / 2))}{\sinh t}=\frac{d}{d t} \mathrm{~A}_{k+1}(\tanh (t / 2)) \\
& =2 \frac{d}{d t} \sum_{m=0}^{\infty} \frac{(\tanh (t / 2))^{2 m+1}}{(2 m+1)^{k+1}} \tag{2.6}
\end{align*}
$$

By using $\tanh t=-i \tan (i t)$ and equations (2.4) and (2.5), we can write

$$
\begin{aligned}
(\tanh (t / 2))^{m} & =(-i)^{m} m!\sum_{n=m}^{\infty} T_{n, m} \frac{i^{n}}{2^{n}} \frac{t^{n}}{n!} \\
& =(-i)^{m}(-1)^{\frac{n-m}{2}} \sum_{n=m}^{\infty} \sum_{p=m}^{n}(-2)^{n-p} p!\binom{p-1}{m-1}\left\{\begin{array}{l}
n \\
p
\end{array}\right\} \frac{i^{n}}{2^{n}} \frac{t^{n}}{n!} \\
& =(-1)^{m} \sum_{n=m}^{\infty} \sum_{p=m}^{n}(-1)^{p} \frac{p!}{2^{p}}\binom{p-1}{m-1}\left\{\begin{array}{l}
n \\
p
\end{array}\right\} \frac{t^{n}}{n!} .
\end{aligned}
$$

We therefore have

$$
\begin{aligned}
\sum_{n=0}^{\infty} D_{n}^{(k)} \frac{t^{n}}{n!} & =\sum_{m=0}^{\infty} \frac{1}{(2 m+1)^{k+1}} \sum_{n=2 m+1}^{\infty} \sum_{p=2 m+1}^{n}(-1)^{p+1} \frac{p!}{2^{p-1}}\binom{p-1}{2 m}\left\{\begin{array}{l}
n \\
p
\end{array}\right\} \frac{t^{n-1}}{(n-1)!} \\
& =\sum_{m=0}^{\infty} \frac{1}{(2 m+1)^{k+1}} \sum_{n=2 m}^{\infty} \sum_{p=2 m}^{n}(-1)^{p} \frac{(p+1)!}{2^{p}}\binom{p}{2 m}\left\{\begin{array}{c}
n+1 \\
p+1
\end{array}\right\} \frac{t^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{1}{(2 m+1)^{k+1}} \sum_{p=2 m}^{n} \frac{(-1)^{p}(p+1)!}{2^{p}}\binom{p}{2 m}\left\{\begin{array}{c}
n+1 \\
p+1
\end{array}\right\} \frac{t^{n}}{n!} .
\end{aligned}
$$

By equating the coefficients of $t^{n} / n!$, we complete the proof of the theorem.

3. Duality

We now prove the duality property of $D_{n}^{(k)}$ similar to (1.4) and (1.5).
Theorem 3.1. For $n, k \in \mathbb{Z}_{\geq 0}$, it holds

$$
\begin{equation*}
D_{2 n}^{(-2 k-1)}=D_{2 k}^{(-2 n-1)} \tag{3.1}
\end{equation*}
$$

We give two proofs using a generating function. The first proof gives a closed, symmetric formula for the generating function, whereas the second is more indirect and a little involved. We however think the second way may be of independent interest and decided to include it here.

Consider the following generating function of $D_{2 n}^{(-2 k-1)}$:

$$
F(x, y)=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} D_{2 n}^{(-2 k-1)} \frac{x^{2 n}}{(2 n)!} \frac{y^{2 k}}{(2 k)!}
$$

We establish the closed formula of $F(x, y)$ as follows. The theorem follows immediately from the symmetry of the formula.

Proposition 3.2. Set

$$
G(x, y)=\frac{e^{x+y}}{\left(1+e^{x}+e^{y}-e^{x+y}\right)^{2}}
$$

Then we have

$$
F(x, y)=G(x, y)+G(x,-y)+G(-x, y)+G(-x,-y) .
$$

In other words, $F(x, y)$ is the sub-series of $4 G(x, y)$ which is even both in x and y.
Proof. We first compute the generating function of all $D_{n}^{(-k)}$,

$$
\begin{equation*}
f(x, y)=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} D_{n}^{(-k)} \frac{x^{n}}{n!} \frac{y^{k}}{k!} \tag{3.2}
\end{equation*}
$$

Proposition 3.3. We have

$$
\begin{equation*}
f(x, y)=\frac{e^{x}\left(e^{y}-1\right)}{1+e^{x}+e^{y}-e^{x+y}}+\frac{e^{-x}\left(e^{y}-1\right)}{1+e^{-x}+e^{y}-e^{-x+y}} \tag{3.3}
\end{equation*}
$$

Proof. By definition

$$
\begin{aligned}
f(x, y) & =\sum_{k=0}^{\infty} \frac{\mathrm{A}_{-k}(\tanh (x / 2))}{\sinh x} \frac{y^{k}}{k!} \\
& =\frac{2}{\sinh x} \sum_{k=0}^{\infty} \sum_{n=0}^{\infty}(2 n+1)^{k}(\tanh (x / 2))^{2 n+1} \frac{y^{k}}{k!}
\end{aligned}
$$

We note that

$$
2 \sum_{n=0}^{\infty}(2 n+1)^{k} t^{2 n+1}=2\left(t \frac{d}{d t}\right)^{k} \frac{t}{1-t^{2}}=\left(t \frac{d}{d t}\right)^{k}\left(\frac{1}{1-t}-\frac{1}{1+t}\right)
$$

and by using the standard formula (cf., e.g., [1, Proposition 2.6 (4)])

$$
\left(t \frac{d}{d t}\right)^{k}=\sum_{m=1}^{k}\left\{\begin{array}{c}
k \\
m
\end{array}\right\} t^{m}\left(\frac{d}{d t}\right)^{m}
$$

we see the right-hand side is equal to

$$
\sum_{m=1}^{k}\left\{\begin{array}{c}
k \\
m
\end{array}\right\} t^{m}\left(\frac{d}{d t}\right)^{m}\left(\frac{1}{1-t}-\frac{1}{1+t}\right)
$$

$$
=\sum_{m=1}^{k}\left\{\begin{array}{c}
k \\
m
\end{array}\right\} m!\left(\frac{t^{m}}{(1-t)^{m+1}}-\frac{(-t)^{m}}{(1+t)^{m+1}}\right)
$$

Hence, by setting $t=\tanh (x / 2)$ and noting $t /(1-t)=\left(e^{x}-1\right) / 2,-t /(1+t)=\left(e^{-x}-1\right) / 2$, $(\sinh x)(1-t)=e^{-x}\left(e^{x}-1\right),(\sinh x)(1+t)=e^{x}-1$, we have

$$
\begin{aligned}
f(x, y) & =\frac{1}{\sinh x} \sum_{k=0}^{\infty} \sum_{m=1}^{k}\left\{\begin{array}{l}
k \\
m
\end{array}\right\} m!\left(\frac{t^{m}}{(1-t)^{m+1}}-\frac{(-t)^{m}}{(1+t)^{m+1}}\right) \frac{y^{k}}{k!} \quad(t=\tanh (x / 2)) \\
& =\sum_{k=0}^{\infty} \sum_{m=1}^{k}\left\{\begin{array}{l}
k \\
m
\end{array}\right\} m!\left\{\frac{e^{x}}{e^{x}-1}\left(\frac{e^{x}-1}{2}\right)^{m}-\frac{1}{e^{x}-1}\left(\frac{e^{-x}-1}{2}\right)^{m}\right\} \frac{y^{k}}{k!} \\
& =\sum_{m=1}^{\infty}\left(e^{y}-1\right)^{m}\left\{\frac{e^{x}}{e^{x}-1}\left(\frac{e^{x}-1}{2}\right)^{m}-\frac{1}{e^{x}-1}\left(\frac{e^{-x}-1}{2}\right)^{m}\right\} \\
& =\frac{e^{x}}{e^{x}-1} \cdot \frac{\left(e^{y}-1\right)\left(e^{x}-1\right)}{2-\left(e^{y}-1\right)\left(e^{x}-1\right)}-\frac{1}{e^{x}-1} \cdot \frac{\left(e^{y}-1\right)\left(e^{-x}-1\right)}{2-\left(e^{y}-1\right)\left(e^{-x}-1\right)} \\
& =\frac{e^{x}\left(e^{y}-1\right)}{1+e^{x}+e^{y}-e^{x+y}}+\frac{e^{-x}\left(e^{y}-1\right)}{1+e^{-x}+e^{y}-e^{-x+y}} .
\end{aligned}
$$

From (3.3) we see that $f(x, y)$ is even in x, and so we have

$$
\frac{f(x, y)-f(x,-y)}{2}=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} D_{2 n}^{(-2 k-1)} \frac{x^{2 n}}{(2 n)!} \frac{y^{2 k+1}}{(2 k+1)!}
$$

Our generating function $F(x, y)$ is the derivative of this with respect to y, and Proposition 3.2 follows from a straightforward calculation. Theorem 3.1 is thus proved.

Remark 3.4. We recall that

$$
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} C_{n}^{(-k-1)} \frac{x^{n}}{n!} \frac{y^{k}}{k!}=\frac{e^{x+y}}{\left(e^{x}+e^{y}-e^{x+y}\right)^{2}}
$$

(see [7, Section 2]), which is remarkably similar to $G(x, y)$. The general coefficients of $4 G(x, y)$ not necessarily even either in x or y may worth studying. The first several terms are given as

$$
\begin{aligned}
4 G(x, y)= & 1+\frac{x}{1!}+\frac{y}{1!}+\frac{x^{2}}{2!}+2 \frac{x}{1!} \frac{y}{1!}+\frac{y^{2}}{2!}+\frac{x^{3}}{3!}+4 \frac{x^{2}}{2!} \frac{y}{1!}+4 \frac{x}{1!} \frac{y^{2}}{2!}+\frac{y^{3}}{3!} \\
& +\frac{x^{4}}{4!}+8 \frac{x^{3}}{3!} \frac{y}{1!}+13 \frac{x^{2}}{2!} \frac{y^{2}}{2!}+8 \frac{x}{1!} \frac{y^{3}}{3!}+\frac{y^{4}}{4!}+\cdots .
\end{aligned}
$$

For the second proof of Theorem 3.1, we need several lemmas.
Lemma 3.5.

$$
F(x, y)=2 \sum_{n=0}^{\infty} \frac{\partial}{\partial x}\left(\tanh ^{2 n+1}(x / 2)\right) \cosh ((2 n+1) y)
$$

Proof. By (1.6), we have

$$
\begin{aligned}
F(x, y) & =2 \sum_{k=0}^{\infty} \frac{\mathrm{A}_{-2 k-1}(\tanh (x / 2))}{\sinh (x)} \frac{y^{2 k}}{(2 k)!} \\
& =\frac{2}{\sinh (x)} \sum_{k=0}^{\infty} \sum_{n=0}^{\infty}(2 n+1)^{2 k+1} \tanh ^{2 n+1}(x / 2) \frac{y^{2 k}}{(2 k)!}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2}{\sinh (x)} \sum_{n=0}^{\infty}(2 n+1) \tanh ^{2 n+1}(x / 2) \cosh ((2 n+1) y) \\
& =\frac{1}{\sinh (x / 2) \cosh (x / 2)} \sum_{n=0}^{\infty}(2 n+1) \tanh ^{2 n}(x / 2) \frac{\sinh (x / 2)}{\cosh (x / 2)} \cosh ((2 n+1) y) \\
& =2 \sum_{n=0}^{\infty} \frac{\partial}{\partial x}\left(\tanh ^{2 n+1}(x / 2)\right) \cosh ((2 n+1) y)
\end{aligned}
$$

Thus we have the assertion.
We write

$$
F(x, y)=\sum_{m=0}^{\infty} g_{m}(x) \frac{y^{2 m}}{(2 m)!}=\sum_{m=0}^{\infty} h_{m}(y) \frac{x^{2 m}}{(2 m)!}
$$

Then if we could prove $g_{m}(x)=h_{m}(x)$ for any $m \geq 0$, we are done.
First, we look at $g_{m}(x)$. Using Lemma 3.5, we have

$$
g_{m}(x)=\left.\left(\frac{\partial}{\partial y}\right)^{2 m} F(x, y)\right|_{y=0}=2 \frac{d}{d x} \sum_{n=0}^{\infty}(2 n+1)^{2 m} \tanh ^{2 n+1}(x / 2)
$$

Here we note that

$$
\begin{equation*}
\sum_{n=0}^{\infty}(2 n+1)^{2 m} t^{2 n+1}=\left(t \frac{d}{d t}\right)^{2 m} \sum_{n=0}^{\infty} t^{2 n+1}=\left(t \frac{d}{d t}\right)^{2 m} \frac{t}{1-t^{2}} \tag{3.4}
\end{equation*}
$$

Setting $t=\tanh (x / 2)$ and noting

$$
d t=\frac{1}{2} \frac{1}{\cosh ^{2}(x / 2)} d x, \quad \frac{t}{1-t^{2}}=\frac{\tanh (x / 2)}{1-\tanh ^{2}(x / 2)}=\frac{1}{2} \sinh x
$$

we have

$$
t \frac{d}{d t}=\tanh (x / 2) \cdot 2 \cosh ^{2}(x / 2) \frac{d}{d x}=\sinh x \frac{d}{d x}
$$

Therefore we obtain

$$
\begin{equation*}
g_{m}(x)=\frac{d}{d x}\left(\sinh x \frac{d}{d x}\right)^{2 m} \sinh x \tag{3.5}
\end{equation*}
$$

We can explicitly write down the right-hand side by using the following lemma.
For $m \in \mathbb{Z}_{\geq 0}$, we define sequences $\left\{a_{i}^{(m)}\right\}_{0 \leq i \leq m} \subset \mathbb{Q}$ inductively by

$$
\begin{align*}
& a_{0}^{(0)}=1 \\
& a_{i}^{(m)}=\frac{1}{2}\left\{i(2 i-1) a_{i-1}^{(m-1)}-(2 i+1)^{2} a_{i}^{(m-1)}+(i+1)(2 i+3) a_{i+1}^{(m-1)}\right\} \quad(m \geq 1) \tag{3.6}
\end{align*}
$$

where we formally interpret $a_{i}^{(m)}=0$ for $i<0$ or $i>m$.
Lemma 3.6. For $m \in \mathbb{Z}_{\geq 0}$,

$$
\begin{equation*}
\left(\sinh x \frac{d}{d x}\right)^{2 m} \sinh x=\sum_{i=0}^{m} a_{i}^{(m)} \sinh ((2 i+1) x) \tag{3.7}
\end{equation*}
$$

Proof. We give the proof by induction on m. For $m=0$, the identity trivially holds. We assume

$$
\left(\sinh x \frac{d}{d x}\right)^{2(m-1)} \sinh x=\sum_{i=0}^{m-1} a_{i}^{(m-1)} \sinh ((2 i+1) x)
$$

Using

$$
\cosh (k x) \sinh (x)=\frac{1}{2}(\sinh ((k+1) x)-\sinh ((k-1) x)),
$$

we have

$$
\left(\sinh x \frac{d}{d x}\right)^{2 m-1} \sinh x=\frac{1}{2} \sum_{i=0}^{m-1}(2 i+1) a_{i}^{(m-1)}(\sinh ((2 i+2) x)-\sinh (2 i x)),
$$

and

$$
\begin{aligned}
& \left(\sinh x \frac{d}{d x}\right)^{2 m} \sinh x \\
& =\sum_{i=0}^{m-1}(2 i+1) a_{i}^{(m-1)}\left\{\frac{i+1}{2}(\sinh ((2 i+3) x)-\sinh ((2 i+1) x))\right. \\
& \left.\quad \quad-\frac{i}{2}(\sinh ((2 i+1) x)-\sinh ((2 i-1) x))\right\} \\
& =\frac{1}{2} \sum_{i=1}^{m} i(2 i-1) a_{i-1}^{(m-1)} \sinh ((2 i+1) x) \\
& \quad-\frac{1}{2} \sum_{i=0}^{m-1}(2 i+1)^{2} a_{i}^{(m-1)} \sinh ((2 i+1) x) \\
& \quad+\frac{1}{2} \sum_{i=0}^{m-2}(i+1)(2 i+3) a_{i+1}^{(m-1)} \sinh ((2 i+1) x) .
\end{aligned}
$$

Hence, using (3.6), we complete the proof by induction.
Using this lemma, we obtain

$$
\begin{equation*}
g_{m}(x)=\sum_{i=0}^{m}(2 i+1) a_{i}^{(m)} \cosh ((2 i+1) x) . \tag{3.8}
\end{equation*}
$$

Secondly, we compute $h_{m}(y)$. Again by using Lemma 3.5, we have

$$
\begin{align*}
h_{m}(y) & =\left.\left(\frac{\partial}{\partial x}\right)^{2 m} F(x, y)\right|_{x=0} \\
& =\left.2 \sum_{n=0}^{\infty}\left(\frac{d}{d x}\right)^{2 m+1}\left(\tanh ^{2 n+1}(x / 2)\right) \cosh ((2 n+1) y)\right|_{x=0} \\
& =\left.2 \sum_{n=0}^{m}\left(\frac{d}{d x}\right)^{2 m+1} \tanh ^{2 n+1}(x / 2)\right|_{x=0} \cdot \cosh ((2 n+1) y) \tag{3.9}
\end{align*}
$$

because

$$
\tanh ^{2 n+1}(x / 2)=\frac{x^{2 n+1}}{2^{2 n+1}}+O\left(x^{2 n+2}\right)(x \rightarrow 0) .
$$

We write down the right-hand side of (3.9) by using the following lemma.
Lemma 3.7. For $n, l \in \mathbb{Z}_{\geq 0}$, there exist sequences $\left\{b_{j}^{(n, l)}\right\}_{0 \leq j \leq l} \subset \mathbb{Q}$ such that

$$
\begin{equation*}
\left(\frac{d}{d x}\right)^{l} \tanh ^{2 n+1}(x / 2)=\sum_{j=0}^{l} b_{j}^{(n, l)} \tanh ^{2 n+1-l+2 j}(x / 2), \tag{3.10}
\end{equation*}
$$

where $b_{j}^{(n, l)}=0$ if $2 n+1-l+2 j<0$. In particular,

$$
\begin{equation*}
\left.\left(\frac{d}{d x}\right)^{2 m+1} \tanh ^{2 n+1}(x / 2)\right|_{x=0}=b_{m-n}^{(n, 2 m+1)} . \tag{3.11}
\end{equation*}
$$

Proof. For each n, we can immediately obtain the form (3.10) by induction on l, using the relation

$$
\frac{d}{d x} \tanh ^{2 n+1}(x / 2)=\frac{2 n+1}{2}\left(\tanh ^{2 n}(x / 2)-\tanh ^{2 n+2}(x / 2)\right)
$$

Combining this lemma and (3.9), we obtain

$$
\begin{equation*}
h_{m}(y)=2 \sum_{n=0}^{m} b_{m-n}^{(n, 2 m+1)} \cosh ((2 n+1) y) . \tag{3.12}
\end{equation*}
$$

Now we are going to show $2 b_{m-n}^{(n, 2 m+1)}=(2 i+1) a_{i}^{(m)}$, which implies $g_{m}(x)=h_{m}(x)$. For $m, n \in \mathbb{Z}_{\geq 0}$ with $n \leq m$, set $\widetilde{b}_{n}^{(m)}=2 b_{m-n}^{(n, 2 m+1)}$. Then, by (3.11), we have $\widetilde{b}_{0}^{(0)}=1$. Furthermore the following lemma holds.

Lemma 3.8. For $m \in \mathbb{Z}_{\geq 1}$, we have the recursion

$$
\begin{equation*}
\widetilde{b}_{n}^{(m)}=\frac{2 n+1}{2}\left\{n \widetilde{b}_{n-1}^{(m-1)}-(2 n+1) \widetilde{b}_{n}^{(m-1)}+(n+1) \widetilde{b}_{n+1}^{(m-1)}\right\} \quad(n \leq m) \tag{3.13}
\end{equation*}
$$

where we interpret $b_{i}^{(k)}=0$ for $i<0$ or $i>k$.
Proof. It follows from (3.10) that

$$
\begin{equation*}
\left(\frac{d}{d x}\right)^{2 m+1} \tanh ^{2 n+1}(x / 2)=\sum_{j=0}^{2 m+1} b_{j}^{(n, 2 m+1)} \tanh ^{2 n-2 m+2 j}(x / 2) \tag{3.14}
\end{equation*}
$$

Differentiating twice and using (3.10), we see that the left-hand side is equal to

$$
\begin{aligned}
& \left(\frac{d}{d x}\right)^{2 m}\left(\frac{2 n+1}{2} \tanh ^{2 n}(x / 2)-\tanh ^{2 n+2}(x / 2)\right) \\
& =\frac{2 n+1}{2}\left(\frac{d}{d x}\right)^{2 m-1}\left\{n \tanh ^{2 n-1}(x / 2)-(2 n+1) \tanh ^{2 n+1}(x / 2)+(n+1) \tanh ^{2 n+3}(x / 2)\right\} \\
& =\frac{2 n+1}{2}\left\{n \sum_{j=0}^{2 m-1} b_{j}^{(n-1,2 m-1)} \tanh ^{2 n-2 m+2 j}(x / 2)\right. \\
& \quad-(2 n+1) \sum_{j=0}^{2 m-1} b_{j}^{(n, 2 m-1)} \tanh ^{2 n-2 m+2+2 j}(x / 2) \\
& \left.\quad+(n+1) \sum_{j=0}^{2 m-1} b_{j}^{(n+1,2 m-1)} \tanh ^{2 n-2 m+4+2 j}(x / 2)\right\}
\end{aligned}
$$

If we let $x \rightarrow 0$, this goes to

$$
\begin{aligned}
& \frac{2 n+1}{2}\left\{n b_{m-n}^{(n-1,2 m-1)}-(2 n+1) b_{m-n-1}^{(n, 2 m-1)}+(n+1) b_{m-n-2}^{(n+1,2 m-1)}\right\} \\
& =\frac{2 n+1}{4}\left\{n \widetilde{b}_{n-1}^{(m-1)}-(2 n+1) \widetilde{b}_{n}^{(m-1)}+(n+1) \widetilde{b}_{n+1}^{(m-1)}\right\}
\end{aligned}
$$

On the other-hand, the right-hand side of equation (3.14) tends to $b_{m-n}^{(n, 2 m+1)}=\widetilde{b}_{n}^{(m)} / 2$ as $x \rightarrow 0$. Thus we obtain (3.13).
Proof of Theorem 3.1. For $\left\{a_{i}^{(m)}\right\}$ defined by (3.6), set $\widetilde{a}_{i}^{(m)}=(2 i+1) a_{i}^{(m)}$. Then (3.6) can be written as $\widetilde{a}_{0}^{(0)}=1$ and

$$
\widetilde{a}_{i}^{(m)}=\frac{2 i+1}{2}\left\{i \widetilde{a}_{i-1}^{(m-1)}-(2 i+1)^{2} \widetilde{a}_{i}^{(m-1)}+(i+1) \widetilde{a}_{i+1}^{(m-1)}\right\}
$$

which has exactly the same form as (3.13) for $\widetilde{b}_{n}^{(m)}$, namely $\widetilde{a}_{n}^{(m)}=\widetilde{b}_{n}^{(m)}$. Comparing (3.8) and (3.12), we obtain $g_{m}(x)=h_{m}(x)$. Thus we complete our second proof of Theorem 3.1.

4. Multi-index case

We may define the multi-poly-cosecant numbers $D_{n}^{\left(k_{1}, \ldots, k_{r}\right)}$ by

$$
\frac{\mathrm{A}\left(k_{1}, \ldots, k_{r} ; \tanh (t / 2)\right)}{\sinh t}=\sum_{n=0}^{\infty} D_{n}^{\left(k_{1}, \ldots, k_{r}\right)} \frac{t^{n}}{n!},
$$

where the function

$$
\mathrm{A}\left(k_{1}, \ldots, k_{r} ; z\right)=2^{r} \sum_{\substack{0<m_{1}<\ldots<m_{r} \\ m_{i} \equiv i \bmod 2}} \frac{z^{m_{r}}}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}}
$$

for $k_{1}, \ldots, k_{r} \in \mathbb{Z}$ is 2^{r} times $\operatorname{Ath}\left(k_{1}, \ldots, k_{r} ; z\right)$ which was introduced in [9, §5]. (Our $\mathrm{A}_{k}(z)$ is A $(k ; z)$.) We can regard $D_{n}^{\left(k_{1}, \ldots, k_{r}\right)}$ as a level 2-version of the multi-poly-Bernoulli numbers $B_{n}^{\left(k_{1}, \ldots, k_{r}\right)}$ and $C_{n}^{\left(k_{1}, \ldots, k_{r}\right)}$ defined in [5].

In [9], we introduced the function

$$
\psi\left(k_{1}, \ldots, k_{r} ; s\right)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1} \frac{\mathrm{~A}\left(k_{1}, \ldots, k_{r} ; \tanh (t / 2)\right)}{\sinh (t)} d t \quad(\Re s>0),
$$

which can be analytically continued to \mathbb{C} as an entire function. In the same manner as in the "level 1 " case (ξ - and η-functions reviewed in the same paper), we see that the numbers $D_{n}^{\left(k_{1}, \ldots, k_{r}\right)}$ appear as special values of $\psi\left(k_{1}, \ldots, k_{r} ; s\right)$ at non-positive integer arguments:

$$
\psi\left(k_{1}, \ldots, k_{r} ;-n\right)=(-1)^{n} D_{n}^{\left(k_{1}, \ldots, k_{r}\right)} \quad(n=0,1,2, \ldots) .
$$

Also, we can obtain a similar recurrence relation for multi-poly-cosecant numbers as

$$
D_{n}^{\left(k_{1}, \ldots, k_{r-1}, k_{r}-1\right)}=\sum_{m=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n+1}{2 m+1} D_{n-2 m}^{\left(k_{1}, \ldots, k_{r}\right)}
$$

for any $r \geq 1, k_{i} \in \mathbb{Z}$ and $n \geq 0$.
Acknowledgements. This work was supported by Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research (S) 16H06336 (M. Kaneko), and (C) 18K03218 (H. Tsumura).

References

[1] T. Arakawa, T. Ibukiyama and M. Kaneko, Bernoulli Numbers and Zeta Functions, Springer, Tokyo, 2014.
[2] T. Arakawa and M. Kaneko, Multiple zeta values, poly-Bernoulli numbers, and related zeta functions, Nagoya Math. J., 153 (1999), 189-209.
[3] B. Bényi and P. Hajnal, Combinatorial properties of poly-Bernoulli relatives, Integers 17 (2017), No. A31.
[4] D. Cvijovic, Higher-order tangent and secant numbers, Comp. and Math. with Appl., 62 (2011), 1879-1886.
[5] K. Imatomi, M. Kaneko and E. Takeda, Multi-poly-Bernoulli numbers and finite multiple zeta values, J. Integer Seq., 17 (2014), Article 14.4.5.
[6] M. Kaneko, Poly-Bernoulli numbers, J. Théor. Nombres Bordeaux, 9 (1997), 199-206.
[7] M. Kaneko, Poly-Bernoulli numbers and related zeta functions, Algebraic and Analytic Aspects of Zeta Functions and L-functions, MSJ Mem., 21, pp. 73-85, Math. Soc. Japan, Tokyo, 2010.
[8] M. Kaneko and H. Tsumura, Multi-poly-Bernoulli numbers and related zeta functions, Nagoya Math. J., 232 (2018), 19-54.
[9] M. Kaneko and H. Tsumura, Zeta functions connecting multiple zeta values and poly-Bernoulli numbers, to appear in Adv. Stud. Pure Math. (arXiv: 1811.07736).
[10] N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924.
[11] Y. Sasaki, On generalized poly-Bernoulli numbers and related L-functions, J. Number Theory, 132 (2012), 156-170.
M. Kaneko: Faculty of Mathematics, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, JAPAN

Email address: mkaneko@math.kyushu-u.ac.jp
M. Pallewatta: Graduate School of Mathematics, Kyushu University, Motooka 744, Nishiku, Fukuoka 819-0395, Japan

Email address: maneka.osh@gmail.com
H. Tsumura: Department of Mathematical Sciences, Tokyo Metropolitan University, 1-1, Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan

Email address: tsumura@tmu.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 11B68, Secondary 11M32, 11M99.
 Key words and phrases. Poly-Bernoulli number, multiple zeta value, multiple zeta function, polylogarithm.

