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Abstract.

We first review our previous works of Arakawa and the
authors on two, closely related single-variable zeta functions.
Their special values at positive and negative integer arguments
are respectively multiple zeta values and poly-Bernoulli num-
bers. We then introduce, as a generalization of Sasaki’s work,
level 2 analogue of one of the two zeta functions and prove re-
sults analogous to those by Arakawa and the first named author.

§1. Introduction

In this (half expository) paper, we discuss some properties of
two single-variable functions ξk(s) and ηk(s), which are closely re-
lated with each other, and their generalizations. We are interested
in these functions because multiple zeta values and poly-Bernoulli
numbers appear as special values, respectively at positive and neg-
ative integer arguments.

The multiple zeta value (MZV) and its variant multiple zeta-
star value (MZSV), a vast amount of researches on which from
various points of view has been carried out in recent years, are
defined by

ζ(k1, . . . , kr) =
∑

1≤m1<···<mr

1

mk1
1 · · ·mkr

r
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and

ζ⋆(k1, . . . , kr) =
∑

1≤m1≤···≤mr

1

mk1
1 · · ·mkr

r

for k1, . . . , kr ∈ Z≥1 with kr > 1 (for convergence), respectively.
MZVs appear as special values of ξk(s) and MZSV as those of
ηk(s) (Theorem 2.2).

Poly-Bernoulli numbers, having also two versions B
(k)
n and

C
(k)
n , were defined by the first named author in [12] and in Arakawa-

Kaneko [2] by using generating series: For an integer k ∈ Z, define
sequences of rational numbers {B(k)

n } and {C(k)
n } by

Lik(1− e−t)

1− e−t
=

∞∑
n=0

B(k)
n

tn

n!
(1.1)

and

Lik(1− e−t)

et − 1
=

∞∑
n=0

C(k)
n

tn

n!
,(1.2)

where Lik(z) is the polylogarithm function (or rational function
when k ≤ 0) defined by

(1.3) Lik(z) =
∞∑
m=1

zm

mk
(|z| < 1).

Since Li1(z) = − log(1 − z), the generating functions on the left-
hand sides respectively become

tet

et − 1
and

t

et − 1

when k = 1, and hence B
(1)
n and C

(1)
n are usual Bernoulli numbers,

the only difference being B
(1)
n = 1/2 and C

(1)
n = −1/2. When

k ̸= 1, B
(k)
n ’s and C

(k)
n ’s are totally different numbers. We mention

in passing that B
(−k)
n (n, k ≥ 0) coincides with the number of

acyclic orientations of the complete bipartite graph Kn,k (see [5]),
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and is also equal to the number of ‘lonesum’ matrices of size n×k
(see [3]).

In [16] and [2], we showed that poly-Bernoulli numbers B
(k)
n

and C
(k)
n appear as special values at nonpositive integers of ηk(s)

and ξk(s) respectively. Multi-indexed version of these results were
established in [16] and will be reviewed in §2 ((2.6) and (2.8)).

In §3, we give formulas obtained in [16] relating ξ and η
(Proposition 3.2) and also an expression of ξ in terms of multiple
zeta functions (Theorems 3.6).

In §4, we focus on the duality properties of B
(k)
n and C

(k)
n ,

namely

B(−k)
n = B

(−n)
k ,(1.4)

C(−k−1)
n = C

(−n−1)
k(1.5)

for k, n ∈ Z≥0 (see [12, Theorems 1 and 2] and [13, § 2]). We can
interpret (1.4) and (1.5) as the identities

η−k(−n) = η−n(−k) and ξ̃−k−1(−n) = ξ̃−n−1(−k)

for k, n ∈ Z≥0, respectively, where ξ̃−k(s) is another type of func-

tion interpolating C
(k)
n (see (4.8)). These relations even hold if we

extend k and n to complex variables, as shown by Yamamoto [26]
and Komori-Tsumura [19] (see (4.17) and (4.20)).

In §5, we generalize Sasaki’s zeta function (see [22]) from the
viewpoint that it gives a level 2-version of ξ(k1, . . . , kr; s). Our
previous methods work well in this case and we obtain several
formulas related to multiple zeta values of level 2. This section is
substantially new.

§2. Multi-poly-Bernoulli numbers and related zeta func-
tions

Imatomi, Takeda, and the first named author [10] introduced
multi-index generalizations of poly-Bernoulli numbers (“multi-poly-
Bernoulli numbers”) as follows.
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Definition 1. For k1, . . . , kr ∈ Z, define two types of multiple
poly-Bernoulli numbers by

Lik1,...,kr(1− e−t)

1− e−t
=

∞∑
n=0

B(k1,...,kr)
n

tn

n!
(2.1)

and

Lik1,...,kr(1− e−t)

et − 1
=

∞∑
n=0

C(k1,...,kr)
n

tn

n!
,(2.2)

where

(2.3) Lik1,...,kr(z) =
∑

1≤m1<···<mr

zmr

mk1
1 m

k2
2 · · ·mkr

r

is the multiple polylogarithm.

Remark 2.1. In [10], the following relation between C
(k1,...,kr)
p−2

and the ‘finite multiple zeta value’ was proved:

(2.4)
∑

1≤m1<···<mr<p

1

mk1
1 · · ·mkr

r

≡ −C(k1,...,kr−1,kr−1)
p−2 mod p

for any prime number p.

In connection with these numbers, we consider the following
two types of zeta functions. The first one, ξ(k1, . . . , kr; s), was
defined in [2] as follows.

Definition 2. For r ∈ Z≥1, k1, . . . , kr ∈ Z≥1 and ℜs > 0,

(2.5) ξ(k1, . . . , kr; s) =
1

Γ(s)

∫ ∞

0
ts−1Lik1,...,kr(1− e−t)

et − 1
dt,

where Γ(s) is the gamma function. In the case r = 1, denote
ξ(k; s) by ξk(s). Note that ξ1(s) = sζ(s+ 1).

This can be analytically continued to an entire function for
s ∈ C, and satisfies the following (see [2, Remark 2.4]):

(2.6) ξ(k1, . . . , kr;−m) = (−1)mC(k1,...,kr)
m (m ∈ Z≥0)
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for (k1, . . . , kr) ∈ Zr≥1. This can be regarded as a poly-analogue of
the classical evaluation

ξ1(−m) = (−m)ζ(1−m) = (−1)mCm.

The second, η(k1, . . . , kr; s), is defined as follows (see [16]).

Definition 3. For r ∈ Z≥1, k1, . . . , kr ∈ Z≥1 and ℜs > 1− r,

(2.7) η(k1, . . . , kr; s) =
1

Γ(s)

∫ ∞

0
ts−1Lik1,...,kr(1− et)

1− et
dt

for s ∈ C with Re(s) > 1− r, In the case r = 1, denote η(k; s) by
ηk(s). Note that η1(s) = sζ(s+ 1).

Similar to ξ(k1, . . . , kr; s), we see that η(k1, . . . , kr; s) can be
analytically continued to an entire function for s ∈ C, and satisfies
the following (see [16, Theorem 2.3]):

(2.8) η(k1, . . . , kr;−m) = B(k1,...,kr)
m (m ∈ Z≥0)

for positive integers k1, . . . , kr ∈ Z≥1. This can be regarded as a
poly-analogue of

η1(−m) = (−m)ζ(1−m) = Bm.

As for their values at positive integers, we can obtain explicit
expressions in terms of multiple zeta/zeta-star values as follows.
We prepare several notations. For an index set k = (k1, . . . , kr) ∈
Zr≥1, put k+ = (k1, . . . , kr−1, kr + 1). The usual dual index of an
admissible index k is denoted by k∗. For j = (j1, . . . , jr) ∈ Zr≥0,
we set |j| = j1 + · · ·+ jr and call it the weight of j, and d(j) = r,
the depth of j. For two such indices k and j of the same depth,
we denote by k + j the index obtained by the component-wise
addition, k+ j = (k1 + j1, . . . , kr + jr), and by b(k; j) the quantity
given by

b(k; j) :=
r∏
i=1

(
ki + ji − 1

ji

)
.

Theorem 2.2 ([16] Theorem 2.5). For any index set k =
(k1, . . . , kr) ∈ Zr≥1 and any m ∈ Z≥1, we have

(2.9) ξ(k1, . . . , kr;m) =
∑

|j|=m−1, d(j)=n

b((k+)
∗; j) ζ((k+)

∗ + j)
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and

η(k1, . . . , kr;m) = (−1)r−1
∑

|j|=m−1, d(j)=n

b((k+)
∗; j)

× ζ⋆((k+)
∗ + j),

(2.10)

where both sums run over all j ∈ Zr≥0 of weight m − 1 and depth
n := d(k∗

+) (= |k|+ 1− d(k)).
In particular, we have

ξ(k1, . . . , kr; 1) = ζ(k+)

and

η(k1, . . . , kr; 1) = (−1)r−1ζ⋆((k+)
∗).

Here we have used the duality ζ((k+)
∗) = ζ(k+).

Remark 2.3. In [2, Theorem 9 (i)], we proved (2.9) in the case
when (k1, . . . , kr) = (1, . . . , 1, k). The above formulas generalize
this and give its η-version. In fact, these can be proved by the
same method as in [2], i.e., by considering the integral expressions

ζ(k1, . . . , kr) =
1∏r

j=1 Γ(kj)

∫ ∞

0
· · ·
∫ ∞

0

xk1−1
1 · · ·xkr−1

r

ex1+···+xr − 1

× 1

ex2+···+xr − 1
· · · 1

exr − 1
dx1 · · · dxr,

ζ⋆(k1, . . . , kr) =
1∏r

j=1 Γ(kj)

∫ ∞

0
· · ·
∫ ∞

0

xk1−1
1 · · ·xkr−1

r

ex1+···+xr − 1

× ex2+···+xr

ex2+···+xr − 1
· · · exr

exr − 1
dx1 · · · dxr

for k1, . . . , kr ∈ Z≥1 with kr ≥ 2.
We emphasize that the formulas (2.9) and (2.10) have remark-

able similarity in that one obtains (2.10) just by replacing multiple
zeta values in (2.9) with multiple zeta-star values.

Noting the duality (k + 1)∗ = (1, . . . , 1︸ ︷︷ ︸
k−1

, 2), we can obtain the

following two identities. The former is a special case of [2, Theo-
rem 9 (i)] and the latter is [16, Corollary 2.8].
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Corollary 2.4. For k,m ≥ 1, we have

ξk(m) =
∑

j1,...,jk−1≥1,jk≥2

j1+···+jk=k+m

(jk − 1)ζ(j1, . . . , jk−1, jk),(2.11)

ηk(m) =
∑

j1,...,jk−1≥1,jk≥2

j1+···+jk=k+m

(jk − 1)ζ⋆(j1, . . . , jk−1, jk).(2.12)

§3. Relations among ξ, η and multiple zeta functions

In this section, we give formulas describing relations among
ξ, η and multiple zeta functions by employing two types of con-
nection formulas for the multiple polylogarithm.

First we show that each of the functions η and ξ can be written
as a linear combination of the other in exactly the same way, us-
ing the so-called Landen-type connection formula for the multiple
polylogarithm Lik1,...,kr(z).

For two indices k and k′ of the same weight, we say k′ refines
k, denoted k ⪯ k′, if k is obtained from k′ by replacing some
commas by +’s. For example,

(3) = (1 + 1 + 1) ⪯ (1, 1, 1), (2, 3) = (2, 2 + 1) ⪯ (2, 2, 1)

etc. Using this notation, the Landen connection formula for the
multiple polylogarithm is as follows.

Lemma 3.1 (Okuda-Ueno [21] Proposition 9). For any index
k of depth r, we have

(3.1) Lik

(
z

z − 1

)
= (−1)r

∑
k⪯k′

Lik′(z).

Using (3.1) for the case z = 1 − e−t (resp. 1 − et), namely
z/(z − 1) = 1− et (resp. 1− e−t), we can prove the following.

Proposition 3.2 ([16] Proposition 3.2). Let k be any index
set and r its depth. We have the relations

(3.2) η(k; s) = (−1)r−1
∑
k⪯k′

ξ(k′; s)
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and

(3.3) ξ(k; s) = (−1)r−1
∑
k⪯k′

η(k′; s).

The reason of the symmetry is that the transformation z →
z/(z − 1) is involutive.

Here we recall a certain formula between ξ and the single-
variable multiple zeta function

(3.4) ζ(k1, . . . , kr; s) =
∑

1≤m1<···<mr<m

1

mk1
1 · · ·mkr

r ms

defined for integers k1, . . . , kr as follows.

Theorem 3.3 ([2] Theorem 8). For r, k ∈ Z≥1,

ξ(1, . . . , 1︸ ︷︷ ︸
r−1

, k; s)

(3.5)

= (−1)k−1
∑

a1+···+ak=r
∀aj≥0

(
s+ ak − 1

ak

)
ζ(a1 + 1, . . . , ak−1 + 1; ak + s)

+

k−2∑
j=0

(−1)jζ(1, . . . , 1︸ ︷︷ ︸
r−1

, k − j)ζ(1, . . . , 1︸ ︷︷ ︸
j

; s).

Concerning a generalization of this result, Arakawa and the
first named author posed the following question.

Problem 3.4 ([2] §8, Problem (i)). For a general index set
(k1, . . . , kr), is the function ξ(k1, . . . , kr; s) also expressed by mul-
tiple zeta functions as in Theorem 3.3 stated above?

An affirmative answer was given in [16]. To describe it, we
consider an Euler-type connection formula for the multiple poly-
logarithm.

Lemma 3.5 ([16] Lemma 3.5). Let k be any index. Then we
have

(3.6) Lik(1− z) =
∑

k′, j≥0

ck(k
′; j)Li1, . . . , 1︸ ︷︷ ︸

j

(1− z)Lik′(z),
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where the sum on the right-hand side runs over indices k′ and
integers j ≥ 0 that satisfy |k′|+j ≤ |k|, and ck(k′; j) is a Q-linear
combination of multiple zeta values of weight |k| − |k′| − j. We
understand Li∅(z) = 1 and |∅| = 0 for the empty index ∅, and the
constant 1 is interpreted as a multiple zeta value of weight 0.

From this, we can obtain formulas expressing ξ(k1, . . . , kr; s)
in terms of multiple zeta functions, which can be regarded as a
general answer to the above problem. However, we should note
that there are no closed formulas for the coefficients ck(k

′; j), and
we can only compute them inductively from low weights.

Theorem 3.6 ([16] Theorem 3.6). Let k be any index set. The
function ξ(k; s) can be written in terms of multiple zeta functions
as

(3.7) ξ(k; s) =
∑

k′, j≥0

ck(k
′; j)

(
s+ j − 1

j

)
ζ(k′; s+ j).

Here, the sum is over indices k′ and integers j ≥ 0 satisfying
|k′| + j ≤ |k|, and ck(k′; j) is a Q-linear combination of multiple
zeta values of weight |k| − |k′| − j. The index k′ may be ∅ and for
this we set ζ(∅; s+ j) = ζ(s+ j).

As an example, we used the identity

(3.8) Li2,1(1− z) = 2Li3(z)− log z · Li2(z)− ζ(2) log z − 2ζ(3),

obtained by integrating the well-known

(3.9) Li2(1− z) + Li2(z) = ζ(2)− log z log(1− z).

Applying (3.8) to the definition of ξ in (2.5), we obtained

(3.10) ξ(2, 1; s) = 2ζ(3; s)+sζ(2; s+1)+ζ(2)sζ(s+1)−2ζ(3)ζ(s).

Lemma 3.5 (and its proof in [16]) gives an inductive way to
compute the functional equation under z 7→ 1 − z. Here we give
a further example which implies a multiple version of (3.10). The
following identity is an example of Lemma 3.5 because (log z)n =
(−1)nn! Li1, . . . , 1︸ ︷︷ ︸

n

(1− z) (see e.g. [2, Lemma 1]).
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Lemma 3.7. For r ∈ Z≥0 and 0 < z < 1,

(−1)rLi2,1, . . . , 1︸ ︷︷ ︸
r

(1− z)(3.11)

= −(r + 1)Lir+2(z) + (log z)Lir+1(z)

+

r∑
j=0

r − j + 1

j!
ζ(r − j + 2)(log z)j .

Proof. We proceed by induction on r. When r = 0, (3.11)
is nothing but (3.9). For the case r ≥ 1, if we differentiate the
right-hand side of (3.11), the result is equal to

(−1)rLi2,1, . . . , 1︸ ︷︷ ︸
r−1

(1− z)
1

z
= (−1)rLi2,1, . . . , 1︸ ︷︷ ︸

r−1

,0(1− z),

by the induction hypothesis for the case of r − 1. Integrating it
again, we obtain the assertion for the case of r. Thus we complete
the proof. Q.E.D.

Applying (3.11) with z = e−t (t > 0) to (2.5), we obtain the
following generalization of (3.10).

Theorem 3.8. For r ∈ Z≥1,

(−1)rξ(2, 1, . . . , 1︸ ︷︷ ︸
r

; s)(3.12)

= −(r + 1)ζ(r + 2; s)− sζ(r + 1; s+ 1)

+
r∑
j=0

(−1)j(r − j + 1)ζ(r − j + 2)

(
s+ j − 1

j

)
ζ(s+ j).

Example 3.9. The case r = 1 is (3.10) and the case r = 2 is

ξ(2, 1, 1; s) = −3ζ(4; s) + 3ζ(4)ζ(s)− sζ(3; s+ 1)

− 2sζ(3)ζ(s+ 1) +
s(s+ 1)

2
ζ(2)ζ(s+ 2).

These coincide with the formula in [16, Example 3.8].
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§4. The function η(k1, . . . , kr; s) for nonpositive indices
and related topics

In this section, we consider multi-polylogarithms with nonpos-
itive indices.

Lemma 4.1 ([16] Lemma 4.1). For k1, . . . , kr ∈ Z≥0, there
exists a polynomial P (x; k1, . . . , kr) ∈ Z[x] such that

Li−k1,...,−kr(z) =
P (z; k1, . . . , kr)

(1− z)k1+···+kr+r
,(4.1)

degP (x; k1, . . . , kr)(4.2)

=

{
r (k1 = · · · = kr = 0)

k1 + · · ·+ kr + r − 1 (otherwise),

xr | P (x; k1, . . . , kr).(4.3)

Specifically, P (x; 0, 0, . . . , 0︸ ︷︷ ︸
r

) = xr.

The case of r = 1 is well-known (see, for example, Shimura
[23, Equations (2.17), (4.2) and (4.6)]). For example,

Li0(z) =
z

1− z
, Li−1(z) =

z

(1− z)2
.

However, even if we apply this definition to (2.5) as well as in
the case of positive indices, we cannot define the function ξ with
nonpositive indices. In fact, if we set, for example,

ξ0(s) =
1

Γ(s)

∫ ∞

0
ts−1Li0(1− e−t)

et − 1
dt =

1

Γ(s)

∫ ∞

0
ts−1dt,

ξ−1(s) =
1

Γ(s)

∫ ∞

0
ts−1Li−1(1− e−t)

et − 1
dt =

1

Γ(s)

∫ ∞

0
ts−1etdt,

we see that these integrals are divergent for any s ∈ C.
On the other hand, we can define the function η with nonpos-

itive indices as follows.

Definition 4. For k1, . . . , kr ∈ Z≥0, define

(4.4) η(−k1, . . . ,−kr; s) =
1

Γ(s)

∫ ∞

0
ts−1Li−k1,...,−kr(1− et)

1− et
dt
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for s ∈ C with Re(s) > 1 − r. In the case r = 1, denote η(−k; s)
by η−k(s).

We can easily check that the integral on the right-hand side
of (4.4) is absolutely convergent for Re(s) > 1 − r. Similar to
the case with positive indices, we can see that η(−k1, . . . ,−kr; s)
can be analytically continued to an entire function on the whole
complex plane, and satisfies

(4.5) η(−k1, . . . ,−kr;−m) = B(−k1,...,−kr)
m (m ∈ Z≥0)

for k1, . . . , kr ∈ Z≥0. In particular when r = 1, we have

(4.6) η−k(−m) = B(−k)
m (k ∈ Z≥0, m ∈ Z≥0).

Furthermore, we modify the definition (2.5) as follows.

Definition 5. For k1, . . . , kr ∈ Z≥0 with (k1, . . . , kr) ̸= (0, . . . , 0),
define

(4.7) ξ̃(−k1, . . . ,−kr; s) =
1

Γ(s)

∫ ∞

0
ts−1Li−k1,...,−kr(1− et)

e−t − 1
dt

for s ∈ C with Re(s) > 1 − r. In the case r = 1, denote ξ̃(−k; s)
by ξ̃−k(s) for k ≥ 1.

We see that ξ̃(−k1, . . . ,−kr; s) can be analytically continued
to an entire function on the whole complex plane, and satisfies

(4.8) ξ̃(−k1, . . . ,−kr;−m) = C(−k1,...,−kr)
m (m ∈ Z≥0)

for k1, . . . , kr ∈ Z≥0 with (k1, . . . , kr) ̸= (0, . . . , 0). In particular,

ξ̃−k(−m) = C
(−k)
m (k ∈ Z≥1, m ∈ Z≥0).

Remark 4.2. Note that we cannot define ξ̃(k1, . . . , kr; s) by
replacing (−k1, . . . ,−kr) with (k1, . . . , kr) in (4.7). In fact, if we
set, for example,

ξ̃1(s) =
1

Γ(s)

∫ ∞

0
ts−1Li1(1− et)

e−t − 1
dt = sζ(s+ 1) +

1

Γ(s)

∫ ∞

0
tsdt,

which is not convergent for any s ∈ C.
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Here we extend definitions of poly-Bernoulli numbers (1.1) and
(1.2) as follows. For s ∈ C, we define

Lis(1− e−t)

1− e−t
=

∞∑
n=0

B(s)
n

tn

n!
,(4.9)

Lis(1− e−t)

et − 1
=

∞∑
n=0

C(s)
n

tn

n!
,(4.10)

where

(4.11) Lis(z) =
∞∑
m=1

zm

ms
(|z| < 1).

Using
(4.12)
r∏
j=1

e
∑r

ν=j xν (1− et)

1− e
∑r

ν=j xν (1− et)
=

∑
k1,...,kr≥0

Li−k1,...,−kr(1− et)
xk11 · · ·xkrr
k1! · · · kr!

,

we have the following.

Theorem 4.3 ([16] Theorem 4.7). For k ∈ Z≥0,

(4.13) η(−k; s) = B
(s)
k .

Setting s = −n ∈ Z≤0 in (4.13) in the case r = 1 and using

(4.6), we obtain the duality relation B
(−k)
n = B

(−n)
k in (1.4), which

can be written as

(4.14) η−k(−n) = η−n(−k).

Similarly, we can prove that

(4.15) ξ̃−k−1(−n) = ξ̃−n−1(−k) (n, k ∈ Z≥0),

namely the duality relation C
(−k−1)
n = C

(−n−1)
k in (1.5).

On the other hand, for n, k ∈ Z≥1, we found experimentally
the identities ([16, Eq. (36)])

(4.16) ηk(n) = ηn(k),
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which was soon proved and generalized by Yamamoto [26]. In
particular when r = 1, he showed

(4.17) ηu(s) = ηs(u)

for s, u ∈ C, where

(4.18) ηu(s) =
1

Γ(s)

∫ ∞

0
ts−1Liu(1− et)

1− et
dt (s, u ∈ C; ℜ(s) > 1),

which can be analytically continued to (s, u) ∈ C2. More recently
Kawasaki and Ohno gave an alternative proof of (4.16) in [18].

Inspired by Yamamoto’s result, Komori and the second named
author [19] consider a more general type of zeta function denoted
by ξD(u, s; y, w; g) (u, s, y, w ∈ C; g ∈ GL(2,C)) which satisfies

(4.19) ξD(u, s; y, w − 1; g) = − 1

det g
ξD(s, u;w, y − 1; g−1).

When g =

(
−1 1
0 1

)
, we have ξD(u, s; 1, 0; g) = ηu(s). Hence

(4.19) in this case implies (4.17). Also, we have ξD(u, s; 1,−1; g) =

ξ̃u(s) which is defined by replacing −k with u in the definition of

ξ̃−k(s) (see Definition 5). Hence (4.19) in this case implies

(4.20) ξ̃u−1(s) = ξ̃s−1(u),

which includes (4.15).
Furthermore, Yamamoto proved the identity ([26, §1])

ηk(n) =
∑

0<a1≤···≤ak=bn≥···≥b1>0

1

a1 · · · akb1 · · · bn
(k, n ∈ Z≥1),

which directly reveals the symmetry (4.16). Similar expression for
ξk(n) is

ξk(n) =
∑

0<a1=···=ak=bn≥···≥b1>0

1

a1 · · · akb1 · · · bn
(k, n ∈ Z≥1),

which unfortunately is not symmetric. We do not know if any
duality property holds for ξk(s).
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In addition, recall that we mention at the end of §3 in [16] the
identity

ηk(m) =

(
m+ k

k

)
ζ(m+ k)

(4.21)

−
∑

2≤r≤k+1
j1+···+jr=m+k−r−1

(
j1 + · · ·+ jr−1

k − r + 1

)
· ζ(j1 + 1, · · · , jr−1 + 1, jr + 2),

without proof. Recently Shingu proved

ηk(m) =
∑

k1+···+kr=k+n
1≤r≤k, kr≥2

kr−1∑
i=1

(
k + n− r − i

n− i

)
ζ(k1, . . . , kr)(4.22)

in his master’s thesis [24] by using Yamamoto’s multiple integrals
introduced in [25]. It is easy to derive (4.21) from (4.22).

At the end of this section, we consider an application of the
duality relation η(k;n) = η(n; k) in (4.16). By combining Propo-
sition 3.2 and Theorem 3.6, we obtain, for k, n ∈ Z≥1,

η(k;n) =
∑

(k)⪯k′

ξ(k′;n)

=
∑

(k)⪯k′

∑
k′′, j≥0

ck′(k′′; j)

(
n+ j − 1

j

)
ζ(k′′;n+ j),

where the sum is over indices k′′ and integers j ≥ 0 satisfying
|k′′|+ j ≤ |k′|, and ck′(k′′; j) is a Q-linear combination of multiple
zeta values of weight |k′| − |k′′| − j determined by (3.7).

We see that Proposition 3.2 and Theorem 3.6 were given by the
connection formulas of Euler type and Landen type, respectively.
From (4.16), we obtain the following.

Theorem 4.4. With the above notation, for k, n ∈ Z≥1,∑
(k)⪯k′

∑
k′′, j≥0

ck′(k′′; j)

(
n+ j − 1

j

)
ζ(k′′;n+ j)(4.23)
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=
∑

(n)⪯n′

∑
n′′, j≥0

cn′(n′′; j)

(
k + j − 1

j

)
ζ(n′′; k + j).

Example 4.5. For example, set (k, n) = (3, 2) in (4.23). Then,
by [16, Example 3.8], we have

ζ(1, 2, 2) + ζ(2, 1, 2) + 2ζ(1, 1, 3)− ζ(2)ζ(1, 2) + ζ(3, 2)− 3ζ(1, 4)

+ 2ζ(2)ζ(3) + 4ζ(5) = 6ζ(5)− 3ζ(1, 4)− ζ(2, 3) + ζ(2)ζ(3).

This can of course be checked by known identities, for example,
double shuffle relations. We do not pursue here connections be-
tween identities of MZVs obtained by η(k;n) = η(n; k) as above
and known sets of identities. Are there some interesting aspects?

§5. Zeta functions interpolating multiple zeta values of
level 2

In this section, we define a certain level 2-version of the func-
tion ξ(k1, . . . , kr; s) which interpolates multiple zeta values of level
2 at positive integers. Here, we mean by MZVs of level 2 the quan-
tities essentially equivalent to those often referred to as the Euler
sums. But we only look at a special subclass of them. Specifically,
we look at the quantity ∑

0<m1<···<mr
mi≡i mod 2

1

mk1
1 · · ·mkr

r

,

i.e., the sum is restricted to m1,m2,m3, . . . with odd, even, odd,
. . . in alternating manner. These numbers in depth 2 were consid-
ered in [15] in connection to modular forms of level 2, establishing
a generalization of the work by Gangle-Kaneko-Zagier [6].

In [22, Section 4], Sasaki considered the polylogarithm of level
2 defined by

Athk(z) =
∞∑
n=0

z2n+1

(2n+ 1)k
= Lik(z)−

1

2k
Lik(z

2)

for k ∈ Z. When k = 1, this becomes the well-known

Ath1(z) = tanh−1 z =

∞∑
n=0

z2n+1

2n+ 1
= Li1(z)−

1

2
Li1(z

2).
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We generalize this to a multiple version. For k1, . . . , kr ∈ Z,
define

Ath(k1, . . . , kr; z) =
∑

0<m1<···<mr
mi≡i mod 2

zmr

mk1
1 · · ·mkr

r

(5.1)

=

∞∑
n1,...,nr=0

z
∑r

ν=1(2nν+1)∏r
j=1

(∑j
ν=1(2nν + 1)

)kj .
Note that since Ath(1; z) = tanh−1 z, we have

(5.2) Ath(1; tanh t) = t.

Similar to [2, Lemma 1], we can easily obtain the following.

Lemma 5.1. (i) For k1, . . . , kr ∈ Z≥1,

d

dz
Ath(k1, . . . , kr; z)

=

{
1
zAth(k1, . . . , kr−1, kr − 1; z) (kr ≥ 2),
1

1−z2Ath(k1, . . . , kr−1; z) (kr = 1).

(ii) Ath(1, . . . , 1︸ ︷︷ ︸
r

; z) =
1

r!
(Ath(1; z))r.

We define a kind of multiple zeta function of level 2 as follows.

Definition 6. For k1, . . . , kr−1 ∈ Z≥1 and ℜs > 1, let

T (k1, . . . , kr−1, s) =
∑

0<m1<···<mr
mi≡i mod 2

1

mk1
1 · · ·mkr−1

r−1 m
s
r

(5.3)

=
∑

n1,...,nr≥0

r−1∏
j=1

(
j∑

ν=1

(2nν + 1)

)−kj

×

(
r∑

ν=1

(2nν + 1)

)−s

.

Furthermore, as its normalized version, let

T̂ (k1, . . . , kr−1, s) = 2rT (k1, . . . , kr−1, s).(5.4)
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When kr > 1, we see that

Ath(k1, . . . , kr; 1) = T (k1 . . . , kr).

Corresponding to these functions, we define a level 2-version of
ξ(k1, . . . , kr; s).

Definition 7. For k1, . . . , kr ∈ Z≥1, let

ψ(k1, . . . , kr; s)(5.5)

=
2r

Γ(s)

∫ ∞

0
ts−1Ath(k1, . . . , kr; tanh(t/2))

sinh(t)
dt (ℜs > 0).

Remark 5.2. In [22, Section 4], Sasaki essentially considered
(5.3), and also ψ(k1; s) . In fact, Sasaki considered a little more
general function ψk(s, a) (0 < a < 1), and our ψ(k; s) coincides
with his 2s+2ψk(s, 1/2).

Similar to [2, Theorem 6], we can see that ψ(k1, . . . , kr; s) can
be continued to C as an entire function. Further we can prove the
following theorem which is exactly a level 2-analogue of [2, Theo-
rem 8]. Note that this theorem for the case r = 1 was essentially
proved by Sasaki (see [22, Theorem 7]).

Theorem 5.3. For r, k ∈ Z≥1,

ψ(1, . . . , 1︸ ︷︷ ︸
r−1

, k; s)

= (−1)k−1
∑

a1,...,ak≥0
a1+···+ak=r

(
s+ ak − 1

ak

)
· T̂ (a1 + 1, . . . , ak−1 + 1, ak + s)

+
k−2∑
j=0

(−1)j T̂ (1, . . . , 1︸ ︷︷ ︸
r−1

, k − j) · T̂ (1, . . . , 1︸ ︷︷ ︸
j

, s).

In order to prove this theorem, we prepare the following lemma
which is a level 2-version of [2, Theorem 3 (i)]. The proof is
completely similar and is omitted.

Lemma 5.4. For l1, . . . , lm−1 ∈ Z≥1 and ℜs > 1,

T̂ (l1, . . . , lm−1, s)
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=
1

Γ(l1) · · ·Γ(lm−1)Γ(s)

∫ ∞

0
· · ·
∫ ∞

0
xl1−1
1 · · ·xlm−1−1

m−1 xs−1
m

×
m∏
j=1

1

sinh(xj + · · ·+ xm)
dx1 · · · dxm.

Proof of Theorem 5.3. The method of the proof is similar to
that in [2, Theorem 8] (see also [22, Theorem 7]). Given r, k ≥ 1,
introduce the following integrals

I(r,k)ν (s) =
2r

Γ(s)

∫ ∞

0
· · ·
∫ ∞

0

Ath(

r−1︷ ︸︸ ︷
1, . . . , 1, ν; tanh((xν + · · ·+ xk)/2))∏k

l=ν sinh(xl + · · ·+ xk)

× xs−1
k dxν · · · dxk.

We compute I
(r,k)
1 (s) in two different ways. First, since

Ath(1, . . . , 1︸ ︷︷ ︸
r

; tanh((x1 + · · ·+ xk)/2)) =
1

r!

(
x1 + · · ·+ xk

2

)r
by Lemma 5.1 (ii) and (5.2), we have

I
(r,k)
1 (s)

=
1

Γ(s) r!

∫ ∞

0
· · ·
∫ ∞

0

(x1 + · · ·+ xk)
rxs−1

k∏k
l=1 sinh(xl + · · ·+ xk)

dx1 · · · dxk

=
1

Γ(s)

∑
a1+···+ak=r

1

a1! · · · ak!

∫ ∞

0
· · ·
∫ ∞

0
xa11 · · ·xak−1

k−1 x
s+ak−1
k

× 1∏k
l=1 sinh(xl + · · ·+ xk)

dx1 · · · dxk

=
∑

a1+···+ak=r

Γ(s+ ak)

Γ(s)ak!
× 1

Γ(a1 + 1) · · ·Γ(ak−1 + 1)Γ(s+ ak)

×
∫ ∞

0
· · ·
∫ ∞

0

xa11 · · ·xak−1

k−1 x
s+ak−1
k∏k

l=1 sinh(xl + · · ·+ xk)
dx1 · · · dxk.

Using Lemma 5.4 for the last integral, we obtain

I
(r,k)
1 (s) =

∑
a1+···+ak=r

(
s+ ak − 1

ak

)
×(5.6)
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T̂ (a1 + 1, . . . , ak−1 + 1, s+ ak).

Secondly, by using

∂

∂xν
Ath(1, . . . , 1︸ ︷︷ ︸

r−1

, ν + 1; tanh((xν + · · ·+ xk)/2))(5.7)

=
Ath(

r−1︷ ︸︸ ︷
1, . . . , 1, ν; tanh((xν + · · ·+ xk)/2))

sinh(xν + · · ·+ xk)

(see Lemma 5.1) and Lemma 5.4, we compute

I(r,k)ν (s)

=
2r

Γ(s)

∫ ∞

0
· · ·
∫ ∞

0

Ath(1, . . . , 1︸ ︷︷ ︸
r−1

, ν + 1; tanh((xν + · · ·+ xk)/2))

∞

xν=0

× 1∏k
l=ν+1 sinh(xl + · · ·+ xk)

xs−1
k dxν+1 · · · dxk

= 2rT (1, . . . , 1︸ ︷︷ ︸
r−1

, ν + 1) · T̂ (1, . . . , 1︸ ︷︷ ︸
k−ν−1

, s)− I
(r,k)
ν+1

= T̂ (1, . . . , 1︸ ︷︷ ︸
r−1

, ν + 1) · T̂ (1, . . . , 1︸ ︷︷ ︸
k−ν−1

, s)− I
(r,k)
ν+1 .

Therefore, using this relation repeatedly, we obtain

I
(r,k)
1 (s)

=
k−1∑
ν=1

(−1)ν−1T̂ (1, . . . , 1︸ ︷︷ ︸
r−1

, ν + 1) · T̂ (1, . . . , 1︸ ︷︷ ︸
k−ν−1

, s) + (−1)k−1I
(r,k)
k

=
k−2∑
j=0

(−1)k−jT̂ (1, . . . , 1︸ ︷︷ ︸
r−1

, k − j) · T̂ (1, . . . , 1︸ ︷︷ ︸
j

, s) + (−1)k−1I
(r,k)
k .

By definition, we have

I
(r,k)
k (s) = ψ(1, . . . , 1︸ ︷︷ ︸

r−1

, k; s),
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and thus

I
(r,k)
1 (s) =

k−2∑
j=0

(−1)k−jT̂ (1, . . . , 1︸ ︷︷ ︸
r−1

, k − j) · T̂ (1, . . . , 1︸ ︷︷ ︸
j

, s)(5.8)

+ (−1)k−1ψ(1, . . . , 1︸ ︷︷ ︸
r−1

, k; s).

Comparing (5.6) and (5.8), we obtain the assertion. Q.E.D.

Next, we show a level 2-version of [2, Theorem 9 (i)].

Theorem 5.5. For r, k ∈ Z≥1 and m ∈ Z≥0,

ψ(1, . . . , 1︸ ︷︷ ︸
r−1

, k;m+ 1)

(5.9)

=
∑

a1,...,ak≥0
a1+···+ak=m

(
ak + r

r

)
· T̂ (a1 + 1, . . . , ak−1 + 1, ak + r + 1).

Proof. By (5.7), we have

ψ(1, . . . , 1, k;m+ 1)

=
2r

m!

∫ ∞

0

tmk
sinh tk

∫ tk

0

Ath(

r−1︷ ︸︸ ︷
1, . . . , 1, k − 1; tanh(tk−1/2))

sinh tk−1
dtk−1dtk

=
2r

m!

∫ ∞

0

tmk
sinh tk

∫ tk

0

1

sinh tk−1

∫ tk−1

0

Ath(

r−1︷ ︸︸ ︷
1, . . . , 1, k − 2; tanh(tk−2/2))

sinh tk−2
dtk−2dtk−1dtk

= · · ·

=
2r

m!

∫ ∞

0

∫ tk

0
· · ·
∫ t2

0

tmk Ath(

r︷ ︸︸ ︷
1, . . . , 1; tanh(t1/2))

sinh(tk) · · · sinh(t1)
dt1 · · · dtk

=
1

m!r!

∫ ∞

0

∫ tk

0
· · ·
∫ t2

0

tmk t
r
1

sinh(tk) · · · sinh(t1)
dt1 · · · dtk.
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By the change of variables

t1 = xk, t2 = xk−1 + xk, . . . , tk = x1 + · · ·+ xk,

we obtain

ψ(1, . . . , 1, k;m+ 1)

=
1

m!r!

∫ ∞

0

∫ ∞

0

(x1 + · · ·+ xk)
m xrk∏k

l=1 sinh(xl + · · ·+ xk)
dt1 · · · dtk

=
∑

a1+···+ak=m

(
ak + r

r

)
· T̂ (a1 + 1, . . . , ak−1 + 1, ak + r + 1).

Q.E.D.

Corollary 5.6. For r, k ≥ 1, we have the “height one” duality

(5.10) T̂ (1, . . . , 1︸ ︷︷ ︸
r−1

, k + 1) = T̂ (1, . . . , 1︸ ︷︷ ︸
k−1

, r + 1).

Proof. If we set m = 0 in (5.9), we have

(5.11) ψ(1, . . . , 1︸ ︷︷ ︸
r−1

, k; 1) = T̂ (1, . . . , 1︸ ︷︷ ︸
k−1

, r + 1).

On the other hand, from the definition we have in general

ψ(k1, . . . , kr; 1) = 2r
∫ ∞

0

Ath(k1, . . . , kr; tanh(t/2))

sinh t
dt

= 2r
∫ ∞

0

d

dt
Ath(k1, . . . , kr−1, kr + 1; tanh(t/2)) dt

= T̂ (k1, . . . , kr−1, kr + 1)

and in particular

(5.12) ψ(1, . . . , 1︸ ︷︷ ︸
r−1

, k; 1) = T̂ (1, . . . , 1︸ ︷︷ ︸
r−1

, k + 1).

Thus from (5.11) and (5.12) we obtain (5.10). Q.E.D.
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We remark that, by computing ξ(1, ..., 1︸ ︷︷ ︸
r−1

, k; 1) in two ways as

above, we obtain an alternative proof of the usual height one du-
ality ζ(1, ..., 1︸ ︷︷ ︸

r−1

, k + 1) = ζ(1, ..., 1︸ ︷︷ ︸
k−1

, r + 1).

In the forthcoming paper [17], we extend the duality (5.10) in
full generality.

By setting s = m + 1 in Theorem 5.3 and comparing with
Theorem 5.5, we obtain a level 2-version of [2, Corollary 11] as
follows.

Theorem 5.7. For m, r ≥ 1 and k ≥ 2,∑
a1,...,ak≥0

a1+···+ak=m

(
ak + r

r

)
· T̂ (a1 + 1, . . . , ak−1 + 1, ak + r + 1)

+ (−1)k
∑

a1,...,ak≥0
a1+···+ak=r

(
ak +m

m

)
· T̂ (a1 + 1, . . . , ak−1 + 1, ak +m+ 1)

=

k−2∑
j=0

(−1)jT̂ (1, . . . , 1︸ ︷︷ ︸
r−1

, k − j) · T̂ (1, . . . , 1︸ ︷︷ ︸
j

,m+ 1).

If we use the duality T̂ (1, . . . , 1︸ ︷︷ ︸
j

,m+ 1) = T̂ (1, . . . , 1︸ ︷︷ ︸
m−1

, j + 2),

the right-hand side becomes the exact analogue of the one in [2,
Corollary 11].

Example 5.8. We recall

ζo(s) (= T (s)) =
∞∑
n=0

1

(2n+ 1)s
=
(
1− 2−s

)
ζ(s),

ζoe(k, s) (= T (k, s)) =
∞∑
m=0

∞∑
n=1

1

(2m+ 1)k(2m+ 2n)s

(see Kaneko-Tasaka [15]). Since

T̂ (s) = 2T (s) = 2ζo(s),

T̂ (k, s) = 22T (k, s) = 22ζoe(k, s),
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Theorem 5.7 for the case k = 2 and r = 1 gives

a∑
a=0

(a+ 1)ζoe(a− a+ 1, a+ 2)

+ ζoe(2, a+ 1) + (a+ 1)ζoe(1, a+ 2) = ζo(2)ζo(a+ 1).

Remark 5.9. We have introduced the function ψ(k1, . . . , kr; s)
as a level 2-version of ξ(k1, . . . , kr; s), and proved results corre-
sponding to those in [2]. In the forthcoming paper [17], we will
further discuss level 2-versions of poly-Bernoulli numbers and mul-
tiple zeta values in connection to ψ(k1, . . . , kr; s), and hopefully, a
version corresponding to η(k1, . . . , kr; s)
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