Analogues of the Aoki-Ohno and Le-Murakami relations for finite multiple zeta values

Masanobu Kaneko, Kojiro Oyama, and Shingo Saito

Abstract

We establish finite analogues of the identities known as the Aoki-Ohno relation and the Le-Murakami relation in the theory of multiple zeta values. We use an explicit form of a generating series given by Aoki and Ohno.

1 Introduction and statement of the results

For an index set of positive integers $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)$ with $k_{1}>1$, the multiple zeta value $\zeta(\mathbf{k})$ and the multiple zeta-star value $\zeta^{\star}(\mathbf{k})$ are defined respectively by the nested series

$$
\zeta(\mathbf{k})=\sum_{m_{1}>\cdots>m_{r}>0} \frac{1}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}}
$$

and

$$
\zeta^{\star}(\mathbf{k})=\sum_{m_{1} \geq \cdots \geq m_{r} \geq 1} \frac{1}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}} .
$$

We refer to the sum $k_{1}+\cdots+k_{r}$, the length r and the number of components k_{i} with $k_{i}>1$ as the weight, depth, and height of the index \mathbf{k} respectively.

For given k and s, let $I_{0}(k, s)$ be the set of indices $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)$ with $k_{1}>1$ of weight k and height s. We naturally have $k \geq 2 s$ and $s \geq 1$; otherwise $I_{0}(k, s)$ is empty.

Aoki and Ohno proved in [1] the identity

$$
\begin{equation*}
\sum_{\mathbf{k} \in I_{0}(k, s)} \zeta^{\star}(\mathbf{k})=2\binom{k-1}{2 s-1}\left(1-2^{1-k}\right) \zeta(k) . \tag{1.1}
\end{equation*}
$$

On the other hand, for $\zeta(\mathbf{k})$, the following identity is known as the Le-Murakami relation ([6]): for even k,

$$
\sum_{\mathbf{k} \in I_{0}(k, s)}(-1)^{\operatorname{dep}(\mathbf{k})} \zeta(\mathbf{k})=\frac{(-1)^{k / 2}}{(k+1)!} \sum_{r=0}^{k / 2-s}\binom{k+1}{2 r}\left(2-2^{2 r}\right) B_{2 r} \pi^{k},
$$

where B_{n} denotes the Bernoulli number. As Euler discovered, the right-hand side is a rational multiple of the Riemann zeta value $\zeta(k)$.

In this short article, we establish the analogous identities for finite multiple zeta values.
For an index set of positive integers $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)$, the finite multiple zeta value $\zeta_{\mathcal{A}}(\mathbf{k})$ and the finite multiple zeta-star value $\zeta_{\mathcal{A}}^{\star}(\mathbf{k})$ are elements in the quotient ring $\mathcal{A}:=\left(\prod_{p} \mathbb{Z} / p \mathbb{Z}\right) /\left(\bigoplus_{p} \mathbb{Z} / p \mathbb{Z}\right)$ (p runs over all primes) represented respectively by

$$
\left(\sum_{p>m_{1}>\cdots>m_{r}>0} \frac{1}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}} \bmod p\right)_{p} \quad \text { and } \quad\left(\sum_{p>m_{1} \geq \cdots \geq m_{r}>0} \frac{1}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}} \bmod p\right)_{p}
$$

Studies of finite multiple zeta(-star) values go back at least to Hoffman [2] (the preprint was available around 2004) and Zhao [10]. But it was only recently that Zagier proposed (in 2012 to the first-named author) considering them in the (characteristic 0) ring \mathcal{A} ([5], see also $[3,4]$). In \mathcal{A}, the naive analogue $\zeta_{\mathcal{A}}(k)$ of the Riemann zeta value $\zeta(k)$ is zero because $\sum_{n=1}^{p-1} 1 / n^{k}$ is congruent to 0 modulo p for all sufficiently large primes p. However, the "true" analogue of $\zeta(k)$ in \mathcal{A} is considered to be

$$
Z(k):=\left(\frac{B_{p-k}}{k}\right)_{p}
$$

We note that this value is zero when k is even because the odd-indexed Bernoulli numbers are 0 except B_{1}. It is still an open problem whether $Z(k) \neq 0$ for any odd $k \geq 3$.

We now state our main theorem, where the role of $Z(k)$ as a finite analogue of $\zeta(k)$ is evident.

Theorem 1.1. The following identities hold in \mathcal{A} :

$$
\begin{align*}
\sum_{\mathbf{k} \in I_{0}(k, s)} \zeta_{\mathcal{A}}^{\star}(\mathbf{k}) & =2\binom{k-1}{2 s-1}\left(1-2^{1-k}\right) Z(k), \tag{1.2}\\
\sum_{\mathbf{k} \in I_{0}(k, s)}(-1)^{\operatorname{dep}(\mathbf{k})} \zeta_{\mathcal{A}}(\mathbf{k}) & =2\binom{k-1}{2 s-1}\left(1-2^{1-k}\right) Z(k) . \tag{1.3}
\end{align*}
$$

We should note that the right-hand sides are exactly the same. In the next section, we give a proof of the theorem.

2 Proof of Theorem 1.1

Let $\operatorname{Li}_{\mathbf{k}}^{\star}(t)$ be the 'nonstrict' version of the multiple-polylogarithm:

$$
\operatorname{Li}_{\mathbf{k}}^{\star}(t)=\sum_{m_{1} \geq \cdots \geq m_{r} \geq 1} \frac{t^{m_{1}}}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}}
$$

Aoki and Ohno [1] computed the generating function

$$
\Phi_{0}:=\sum_{k, s \geq 1}\left(\sum_{\mathbf{k} \in I_{0}(k, s)} \mathrm{Li}_{\mathbf{k}}^{\star}(t)\right) x^{k-2 s} z^{2 s-2}
$$

and, in view of $\operatorname{Li}_{\mathbf{k}}^{\star}(1)=\zeta^{\star}(\mathbf{k})$ (if $k_{1}>1$), evaluated it at $t=1$ to obtain the identity (1.1). For our purpose, the function $\operatorname{Li}_{\mathbf{k}}^{\star}(t)$ is useful because the truncated sum

$$
\sum_{p>m_{1} \geq \cdots \geq m_{r} \geq 1} \frac{1}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}}
$$

used to define $\zeta_{\mathcal{A}}^{\star}(\mathbf{k})$ is the sum of the coefficients of t^{i} in $\operatorname{Li}_{\mathbf{k}}^{\star}(t)$ for $i=1, \ldots, p-1$. In [1, Section 3], Aoki and Ohno showed that

$$
\Phi_{0}=\sum_{n=1}^{\infty} a_{n} t^{n}
$$

where

$$
a_{n}=\sum_{l=1}^{n}\left(\frac{A_{n, l}(z)}{x+z-l}+\frac{A_{n, l}(-z)}{x-z-l}\right)
$$

and

$$
A_{n, l}(z)=(-1)^{l}\binom{n-1}{l-1} \frac{(z-l+1) \cdots(z-1) z(z+1) \cdots(z+n-l-1)}{(2 z-l+1) \cdots(2 z-1) 2 z(2 z+1) \cdots(2 z+n-l)} .
$$

The problem is then to compute the coefficient of $x^{k-2 s} z^{2 s-2}$ in $\sum_{n=1}^{p-1} a_{n}$ modulo p.
We proceed as follows:

$$
\begin{aligned}
\sum_{n=1}^{p-1} a_{n} & =\sum_{n=1}^{p-1} \sum_{l=1}^{n}\left(\frac{A_{n, l}(z)}{x+z-l}+\frac{A_{n, l}(-z)}{x-z-l}\right) \\
& =\sum_{l=1}^{p-1} \sum_{n=l}^{p-1}\left(\frac{A_{n, l}(z)}{x+z-l}+\frac{A_{n, l}(-z)}{x-z-l}\right) \\
& =\sum_{l=1}^{p-1} \sum_{n=0}^{p-l-1}\left(\frac{A_{n+l, l}(z)}{x+z-l}+\frac{A_{n+l, l}(-z)}{x-z-l}\right) .
\end{aligned}
$$

Writing $A_{n+l, l}(z)$ as

$$
A_{n+l, l}(z)=\frac{(-1)^{l}}{2 z} \frac{(z-l+1)_{l-1}}{(2 z-l+1)_{l-1}} \frac{(l)_{n}(z)_{n}}{(2 z+1)_{n} n!}
$$

where $(a)_{n}=a(a+1) \cdots(a+n-1)$, we have

$$
\sum_{n=0}^{p-l-1} A_{n+l, l}(z)=\frac{(-1)^{l}}{2 z} \frac{(z-l+1)_{l-1}}{(2 z-l+1)_{l-1}} \sum_{n=0}^{p-l-1} \frac{(l)_{n}(z)_{n}}{(2 z+1)_{n} n!}
$$

We view the sum on the right as

$$
\sum_{n=0}^{p-l-1} \frac{(l)_{n}(z)_{n}}{(2 z+1)_{n} n!} \equiv F(-p+l, z ; 2 z+1 ; 1)-\frac{(l)_{p-l}(z)_{p-l}}{(2 z+1)_{p-l}(p-l)!} \bmod p
$$

Here, $F(a, b ; c ; z)$ is the Gauss hypergeometric series

$$
F(a, b ; c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n} n!} z^{n}
$$

where $(a)_{n}$ for $n \geq 1$ is as before and $(a)_{0}=1$. Note that if a (or b) is a nonpositive integer $-m$, then $F(a, b ; c ; z)$ is a polynomial in z of degree at most m, and the renowned formula of Gauss

$$
F(a, b ; c ; 1)=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}
$$

becomes

$$
F(-m, b ; c ; 1)=\frac{(c-b)_{m}}{(c)_{m}}
$$

Hence

$$
F(-p+l, z ; 2 z+1 ; 1)=\frac{(z+1)_{p-l}}{(2 z+1)_{p-l}} \equiv \frac{z^{p-1}-1}{(2 z)^{p-1}-1} \frac{(2 z-l+1)_{l-1}}{(z-l+1)_{l-1}} \bmod p .
$$

We also compute

$$
\frac{(l)_{p-l}(z)_{p-l}}{(2 z+1)_{p-l}(p-l)!} \equiv(-1)^{l-1} \frac{z\left(z^{p-1}-1\right)}{(2 z)^{p-1}-1} \frac{(2 z-l+1)_{l-1}}{(z-l)_{l}} \bmod p .
$$

Since we only need the coefficient of $z^{2 s-2}$, we may work modulo higher powers of z and, in particular, we may replace $\left(z^{p-1}-1\right) /\left((2 z)^{p-1}-1\right)$ by 1 , assuming p is large enough. (We may assume this because an identity in \mathcal{A} holds true if the p-components on both sides agree in $\mathbb{Z} / p \mathbb{Z}$ for all large enough p.) Hence,

$$
\begin{aligned}
\sum_{n=1}^{p-1} a_{n} \equiv \sum_{l=1}^{p-1}\left\{\frac{(-1)^{l}}{2 z}\right. & \left(\frac{1}{x+z-l}-\frac{1}{x-z-l}\right) \\
& \left.+\frac{1}{2}\left(\frac{1}{(x+z-l)(z-l)}-\frac{1}{(x-z-l)(z+l)}\right)\right\} \bmod p
\end{aligned}
$$

By the binomial expansion,

$$
\begin{aligned}
\sum_{l=1}^{p-1} \frac{(-1)^{l}}{x+z-l} & =\sum_{l=1}^{p-1} \frac{(-1)^{l-1}}{l} \sum_{m=0}^{\infty}\left(\frac{x+z}{l}\right)^{m} \\
& =\sum_{l=1}^{p-1} \frac{(-1)^{l-1}}{l} \sum_{m=0}^{\infty} \frac{1}{l^{m}} \sum_{i=0}^{m}\binom{m}{i} x^{m-i} z^{i} \\
& =\sum_{m \geq i \geq 0}\binom{m}{i}\left(\sum_{l=1}^{p-1} \frac{(-1)^{l-1}}{l^{m+1}}\right) x^{m-i} z^{i}
\end{aligned}
$$

From this we obtain

$$
\sum_{l=1}^{p-1} \frac{(-1)^{l}}{2 z}\left(\frac{1}{x+z-l}-\frac{1}{x-z-l}\right)=\sum_{m \geq 2 i+1 \geq 0}\binom{m}{2 i+1}\left(\sum_{l=1}^{p-1} \frac{(-1)^{l-1}}{l^{m+1}}\right) x^{m-2 i-1} z^{2 i}
$$

and, by letting $i \rightarrow s-1$ and $m \rightarrow k-1$, the coefficient of $x^{k-2 s} z^{2 s-2}$ in this is

$$
\binom{k-1}{2 s-1} \sum_{l=1}^{p-1} \frac{(-1)^{l-1}}{l^{k}}
$$

This is known to be congruent modulo p to

$$
2\binom{k-1}{2 s-1}\left(1-2^{1-k}\right) \frac{B_{p-k}}{k}
$$

(see for example, [11, Theorem 8.2.7]). Concerning the other term,

$$
\begin{aligned}
& \sum_{l=1}^{p-1} \frac{1}{2}\left(\frac{1}{(x+z-l)(z-l)}-\frac{1}{(x-z-l)(z+l)}\right) \\
= & \frac{1}{2} \sum_{l=1}^{p-1}\left\{\frac{1}{x}\left(\frac{1}{z-l}-\frac{1}{x+z-l}\right)-\frac{1}{x}\left(\frac{1}{z+l}+\frac{1}{x-z-l}\right)\right\},
\end{aligned}
$$

every quantity that appears as a coefficient in the expansion into power series in x and z is a multiple of the sum of the form $\sum_{l=1}^{p-1} 1 / l^{m}$, and all are congruent to 0 modulo p. This concludes the proof of (1.2).

We may prove (1.3) in a similar manner by using the generating series of Ohno-Zagier [7], but we deduce (1.3) from (1.2) by showing that the left-hand sides of both formulas are equal up to sign.

Set $S_{k, s}:=\sum_{\mathbf{k} \in I_{0}(k, s)}(-1)^{\operatorname{dep}(\mathbf{k})} \zeta_{\mathcal{A}}(\mathbf{k})$ and $S_{k, s}^{\star}:=\sum_{\mathbf{k} \in I_{0}(k, s)} \zeta_{\mathcal{A}}^{\star}(\mathbf{k})$.
Lemma 2.1. $S_{k, s}^{\star}=(-1)^{k-1} S_{k, s}$.
Proof. We use the well-known identity (see, for instance, [8, Corollary 3.16])

$$
\begin{equation*}
\sum_{i=0}^{r}(-1)^{i} \zeta_{\mathcal{A}}\left(k_{i}, \ldots, k_{1}\right) \zeta_{\mathcal{A}}^{\star}\left(k_{i+1}, \ldots, k_{r}\right)=0 \tag{2.1}
\end{equation*}
$$

Taking the sum of this over all $\mathbf{k} \in I_{0}(k, s)$ and separating the terms corresponding to $i=0$ and $i=r$, we obtain

$$
S_{k, s}^{\star}+\sum_{\substack{k^{\prime}+k^{\prime \prime}=k \\ s^{\prime}+s^{\prime \prime}=s}}\left(\sum_{\substack{\mathbf{k}^{\prime} \in I_{0}\left(k^{\prime}, s^{\prime}\right)}}(-1)^{\operatorname{dep}\left(\mathbf{k}^{\prime}\right)} \zeta_{\mathcal{A}}\left(\overleftarrow{\mathbf{k}^{\prime}}\right)\right)\left(\sum_{\substack{\mathbf{k}^{\prime \prime} \in I\left(k^{\prime \prime}, s^{\prime \prime}\right)}} \zeta_{\mathcal{A}}^{\star}\left(\mathbf{k}^{\prime \prime}\right)\right)+(-1)^{k} S_{k, s}=0
$$

Here, $\overleftarrow{\mathbf{k}^{\prime}}$ denotes the reversal of \mathbf{k}^{\prime}, and the set $I\left(k^{\prime \prime}, s^{\prime \prime}\right)$ consists of all indices (no restriction on the first component) of weight $k^{\prime \prime}$ and height $s^{\prime \prime}$. We have used $\zeta_{\mathcal{A}}(\overleftarrow{\mathbf{k}})=$ $(-1)^{k} \zeta_{\mathcal{A}}(\mathbf{k})$ in computing the last term $(i=r)$. Since the second sum in the middle is symmetric and hence 0 (by Hoffman [2, Theorem 4.4] and $\zeta_{\mathcal{A}}(k)=0$ for all $k \geq 1$), the lemma follows.

Since $Z(k)=0$ if k is even, we see from Lemma 2.1 that the formula for $S_{k, s}$ is the same as that for $S_{k, s}^{\star}$. This concludes the proof of our theorem.
Remark 2.2. K. Yaeo [9] proved the lemma in the case $s=1$ and T. Murakami (unpublished) in general for all odd k.

3 Acknowledgements

The authors would like to thank Shin-ichiro Seki for his valuable comments on an earlier version of the paper. This work was supported by JSPS KAKENHI Grant Numbers JP16H06336 and JP18K18712.

References

[1] T. Aoki and Y. Ohno, Sum relations for multiple zeta values and connection formulas for the Gauss hypergeometric functions, Publ. RIMS, Kyoto Univ., 41 (2005), 329337.
[2] M. Hoffman, Quasi-symmetric functions and mod p multiple harmonic sums, Kyushu J. Math., 69 (2015), 345-366.
[3] M. Kaneko, Finite multiple zeta values (in Japanese), RIMS Kôkyûroku Bessatsu, B68 (2017), 175-190.
[4] M. Kaneko, An introduction to classical and finite multiple zeta values, to appear in Publications Matématiques de Besançon.
[5] M. Kaneko and D. Zagier, Finite multiple zeta values, in preparation.
[6] T. Q. T. Le and J. Murakami, Kontsevich's integral for the Homfly polynomial and relation betwee values of multiple zeta functions, Topology Appl., 62 (1995), 193-206.
[7] Y. Ohno and D. Zagier, Multiple zeta values of fixed weight, depth, and height, Ingag. Math., 12 (2001), 483-487.
[8] K. Sakugawa and S. Seki, On functional equations of finite multiple polylogarithms, J. Algebra, 469 (2017), 323-357.
[9] K. Yaeo, Consideration on relations among finite multiple zeta values (in Japanese), Master's thesis, Tohoku University, 2017.
[10] J. Zhao, Wolstenholme type theorem for multiple harmonic sums Int. J. Number Theory, 4-1 (2008), 73-106.
[11] J. Zhao, Multiple zeta functions, multiple polylogarithms and their special values, Series on Number Theory and Its Applications, 12, World Sciendific, (2016).

