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Abstract

A Fuchsian system of rank 8 in 3 variables with 4 parameters is found. The singular locus
consists of six planes and a cubic surface. The restriction of the system onto the intersection
of two singular planes is an ordinary differential equation of order four with three singular
points. A middle convolution of this equation turns out to be the tensor product of two
Gauss hypergeometric equations, and another middle convolution sends this equation to the
Dotsenko-Fateev equation. Local solutions of these ordinary differential equations are found.
Their coefficients are sums of products of the Gamma functions. These sums can be expressed
as special values of the generalized hypergeometric series 4 F3 at 1.
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Introduction

In Part I, we find a Fuchsian system Z3(A) of rank 8 in 3 variables (¢1,to, t3) with 4 parameters
A = (Ao, A1, As, A3). The singular locus consists of six planes and a cubic surface (the Fricke
surface):

ti=+1 (i=1,2,3), 1—13 —t3 —t2+ 2t 1tat3 =0.

In general, we can have ordinary differential equations as we like, we have only to give polynomials
to coefficients, but to have a system in more than 2 variables of finite and non-zero rank, the
coefficients must satisfy the integrability condition (a system of non-linear differential equations).
Very few examples are known (most of them belong to the so-called hypergeometric family). Our
system Z3(A), which is not hypergeometric, is an important example.

The restriction of the system onto the plane, say t3 = 1, is a system Z5(A) of rank 6 in 2
variables. Its singular locus consists of

ti==41, (i=1,2) t =ty

which is equal to that of the well-known Appell’s hypergeometric system F.

In the future, we would like to study these systems; power series solutions, integral representa-
tions of the solutions, etc.

To understand these systems we begin with studying its several restrictions. The restriction of
the system onto the diagonal ¢; = t; = t3 is an ordinary differential equation Zag of order 8.

The restriction of the system Z>(A) onto the line, say, to = 1 is an ordinary differential equation
Z(A) of order 4 with three singular points t; = £1 and co. This equation Z(A) has not been studied
so far, to the authors knowledge.

While studying local solutions of Z(A), which are fully presented in Part II, we find a power-
series solution to Z(A) at ¢ = 1, which is very similar to the product of two Gauss hypergeometric
series. This leads to the discovery that a middle convolution sends the equation Z(A) to the
tensor product of two Gauss hypergeometric equations, with special parameters. We also find that
another middle convolution sends Z(A) to the Dotsenko-Fateev equation.

In Part II, we study local solutions for the ordinary differential equation Z(A) and for several
related ones around their singular points. We see the relation between Z(A) and the tensor
product of two specific Gauss hypergeometric equations. At a singular point of Z(A), say t = 1,
the coefficients of the holomorphic solution to Z(A) satisfy a 3-term difference equation Recg(A).
On the other hand, 4F5(*;1), special values at the unit argument of the terminating generalized
hypergeometric series 4F3, satisfy a linear difference equation of order 2, if the parameters are
carefully chosen. Comparing the invariant of this difference equation with that of Reg(A), we find
solutions of Reg(A) expressed in terms of 4F3(%;1). From the observation that the special values
4F3(x; 1) appear as the coefficients of the product of two Gauss hypergeometric series, we notice
that its product has relevance to the holomorphic solution to Z(A) at ¢t = 1, which leads to the
discovery stated above.

For most local solutions of the ordinary differential equations related to Z(A), we can make use
of middle convolutions connecting the equation and the tensor product of two Gauss equations to
get explicit expressions for the solutions. But in these cases also, we present a way to get them by
using the difference equations for 4F3(x; 1), because this method gives various expressions.

The coefficients of hypergeometric-type series are products of the Gamma functions. However
for our equation Z(A) and the related ones including the Dotsenko-Fateev equation, the coefficients
of local solutions are sums of products of the Gamma functions. These sums can be expressed as
special values 4 F5(*;1).

Solutions of the ordinary differential equations we studied in this paper admit Euler integral
representations, which will be discussed elsewhere.



Part 1
A Fuchsian system of rank 8 in 3
variables and its restrictions

In §1, we find a Fuchsian system Z3(A) of rank 8 in 3 variables (¢1,t2,¢3) with 4 parameters
A= (Ap, Ay, Az, A3).

In §2, the restriction Zag(A) of the system Z3(A) onto the diagonal t; = to = t3 is studied.

In §3, the restriction of the system Z3(A) onto the plane ¢35 = 1 is studied and the system Z5(A)
is found. The restriction of the system Z3(A) onto the diagonal t; = t5 is also studied.

In §4, the restriction of the system Z(A) onto the line t3 = 1 is studied and the system Z(A) is
found. This is an ordinary differential equation of order 4 with three singular points ¢t; = +1 and
00.

85 gives a relation between Z(A) and the tensor product of two specific Gauss hypergeometric
equations.

§6 gives a relation between Z(A) and the Dotsenko-Fateev equation.

87 illustrates the relation among the differential equations appeared above.

In §8, a Pfaffian form of Z3(A) is presented.

89 studies the tensor products of two Gauss hypergeometric equations.

1 A Fuchsian system of rank 8 in 3 variables Z5(A)

We treat ideals of the ring of differential operators Clag,...,t1,...,0/0t1,...]. We often call a
set of generators of an ideal simply as a system, which sometimes also means the corresponding
system of differential equations, after introducing an unknown, say F,u,....

In 2017, Don Zagier showed us a system generated by a differential operator
(1 —13)011 + 2(t3 — t1t2)O12 + (1 — t3)Daa + agt101 + agt20s

and those obtained by a succession of the cyclic permutation 1 — 2 — 3 — 1 with a parameter
ag, where 9; = 9/0t1, 015 = 0?/0t10t5, etc. This system in 3 variables (¢,ts,t3) is Fuchsian of
rank 8, and is highly reducible. Hoping to have less reducible system of rank 8, we considered a
bit general system with more parameters and got the following result.

Theorem 1.1 The system generated by the operator
Es = (1 —13)011 + 2(ts — t162)012 + (1 — 13)022 + as1t101 + asatads + azstzds + aso
and those obtained by a succession of the cyclic permutation 1 — 2 — 3 — 1 with constants
a;; (1=1,2,3, 7=0,1,2,3) is of rank 8 if and only if
apn =azy =agz =0, ajp=aj3=az = az = az = azz (=: ap).
Set a1 = a1g, az = asg, az = azg. Then the operators F1, F> and E3 are given as

E1 = (1 —t3)092 + 2(t1 — tat3)Oag + (1 — t3)Ds3 + aot202 + aotsds + aq,
Ey = (1 —13)0s3 + 2(t2 — t3t1)031 + (1 — t3)011 + aot30s + apt101 + az,
E; = (1 — t%)all + 2(t3 — t1t2)812 + (1 — t%)agg + aot181 + a0t282 + as,

with parameters a = (ag, a1, az,a3). We often use parameters A = (A, A1, Az, A3) related to a by
ap =2Ag — 3, a; = A? — (Ay — 1)? i=1,2,3,

and name the system as Z3(A).
By using b; = (a1 + a2 + a3)/2 — a; (i = 1,2,3) as parameters, F' as unknown, and writing
Fy =0,F, F15 = 012 F, etc, this system can be also written as

(t2 — 1)F11 = (t3 — tita) Fio + (t2 — tat1) Fiz — (t1 — tats) Fag + aot1 F1 + b1 F,

(t3 — 1) Fag = (t1 — tots) Fag + (t3 — tate) Fo1 — (t2 — t3t1)F31 + aoteF + bo F,
(t3 — 1) F33 = (ta — tat1)Fa1 + (t1 — tats) Fso — (t3 — tite) Fia + aots F3 + b3 F.



Proposition 1.2 The system Z3(A) is Fuchsian, and the singular locus in the finite space consists
of six planes and a cubic surface:

ti==+1 (i=1, 2, 3), 1 — 12 — 12 — 2 + 2t1tot3 = 0.
The local exponents along the divisors are given as

t; = +1: 0, 1, 2, 3,4, 5, 1/2+ A;,
the cubic surface : 0, 1, 2, 3, Ag, Ag+1, Ag+2, Ag+ 3,
t;i =00: 1-Ag+Aj, 1—Ag£ A, 2—Ag+ A, 2—-Aot A ({i,5,k} ={1,2,3}).

The local exponents along a divisor are defined as those of the ordinary differential equation obtained
by restricting the system onto a curve intersecting the divisor transversely at an ordinary point of
the divisor.

The singularities are known from the matrix 1-form w in the next subsection. If we restrict the
system onto a generic line to =constant, t3 =constant, we get an ordinary differential equation of
order 8 in t := t; with polynomial coefficients:

A3 F

(t+1)3(t - 131 - —t5 — 15 + 2t2t3t)5P(t)W +

.=0,

where P(t) is of degree 16, the number of apparent singular points, the local exponents at each
points are 0,1,2,3,4,5,6 and 8. Though we omit the explicit expression of the coefficients of the
ordinary equation above, we find the local exponents at the singular points as in the Proposition.

Remark 1.3 (Symmetry) The system Z3(A) is invariant under
(t1,t2,t3) = (e1t1,€2t2,e5t3), & = 1, 16263 =1,
Aj - _Aj (.7 = 1a273)7

(t1,t2,t3, A1, Ao, Az) = (to(1) to(2), to(3), A1), Ac(2) Aa(3))s

where o is a permutation of {1,2,3}.

1.1 Outline of the poof of Theorem 1.1

Several integrable systems of partial differential equations with many variables are known; for
example Appell-Lauricella’s hypergeometric system F'4 in n variables. The rank of F4 is known
to be 2. The form of the equations tells immediately the rank does not exceed 2™. But it would
be quite difficult to prove that the rank is exactly 2™ by manipulating the differential equations;
this is proved by finding 2™ linearly independent hypergeometric series at a singular point.

In our case, no local solutions are known; so, we are forced to check honestly the integrability
condition. We transform the system Z3(A) into a Pfaffian form of size 8, and show the integrability.

Let F be the unknown, Fj; ; the partial derivative of F' by t;,1;,...,1, and set

e =""(F,F1, F, F3, Fia, Fi3, Fo3, DF33), D= —1 412 412+ 12 — 2t1tots.

A computation shows that the derivatives Fj; j can be written as linear combinations of F, Fi,
Fy, F3, Fyo, Fi3, Fbs and Fio3, and thus we get a Pfaffian system of the form

de = we,

where w is an 8x8-matrix 1-form given in §8.1. The integrability condition of the system is written
as
dw =w A w,

and, by computation, we get Theorem 1.1.



2 Restriction of Z3(A) onto the diagonal ¢, =ty = t3

Let F(t1,tq,t3) be a solution of Z3(A). The function F'(¢,t,t) satisfies a Fuchsian ordinary differ-
ential equation. In this section, its singular points and the exponents are described. Proofs are
omitted.

2.1 Zas(A)

For generic parameters A = (Ay,...,As) the function F(¢,¢,t) satisfies an ordinary differential
equation Zag(A) of order 8 with regular singular points at —1, —1/2, 1, co and apparent singular
points at —2 and other 8 points. The local exponents are given as

t=—1: 0,1, 3§+ Ay, 1+ Ay L+ A5

t=—1: 0, 1, 2, 3, Ag, Ag+1, Ag+2, Ag+3,

t=1: 0, 240, Ao— 3, Ao+ 3, Ao+32, Ao+ 32, Ao+ 1, Ao+ 2,
t=o00: $(3— 340+ Ay £ Ay + Ay),

t=-2: 0,1, 3,4,5, 6, 8 9,

t = other 8 points: 0, 1, 2, 3, 4, 5, 6, 8.

2.2 Zag(A)

If A3 = As then F(t,t,t) satisfies an ordinary differential equation Zag of order 6 with regular
singular points at —1, —1/2, 1, 0o and apparent singular points at —2 and other 4 points. The local
exponents are given as

t=—1: 0,1, 3+ Ay, 3+ A4,

t=—%: 0, 1, 2, Ay, Ag+1, Ag+2,

t=1: 0, 240, Ag— 3, Ao+ 3, Ao+ 3, Ag+ 3,
t=o0: 1(3—34p £ A1 £245), 1(3—340+ 4y),
t=—2: 0,1, 3,4, 5, 6,

t = other 4 points: 0, 1, 2, 3, 4, 6.

2.3 Zai(A)

If A3 = Ay = A; then F(t,t,t) satisfies an ordinary differential equation Za4 of order 4 with
regular singular points at —1,—1/2,1, 00 and only one apparent singular point at —2. The local
exponents are given as

t=-1: 0,1, 2+ A,

0, 1, Ag, Ag+1,

t=1: 0, 24, Ag— 3, Ao+ 3,
1(3—340£34,), 1(3-340+ 4)),

t=-2: 0,1, 3, 4.

3 Restriction of Z3(A) onto the plane ¢35 =1 and Z3(A)

3.1 Equation Z(A)

The restriction Z3(A)|y,=1 of Z3(A) onto the plane ¢3 = 1 is, by definition, generated by the
operators P, where
P(t1,12,01,02) + (t3 — 1)@,  0;:=0/0t;



belongs to Z3(A) for some operator Q = Q(t1,t2,ts,01,02,03). We find two such operators P; and
P, as follows. Since

B3 = (1 —13)011 + 2(1 — t1t2)012 + (1 — t3) 02 + ag(t101 + tada) + az + 2(t3 — 1)0y2,
we cut off the last term, and define P; as
Pri= (1 —t1)011 +2(1 — t1t2)012 + (1 — 13)092 + ag(t101 + t202) + as.
We next express E7 and Fs as

E1 = G1+ (t3 — 1)Ry + 2(t1 — t2)023 + 03,
Ey =Gy + (tg — 1)R2 + 2(t2 — t1)313 + ap0s,

where
Gy = (1 — t%)agg + agteds + a1, Ry = —2t3023 — (1 + t3)833 + ag0s;

G5 and Ry are given by exchanging 1 and 2 in G; and Ry, respectively. Differentiate these:

E11=G11+ (ts — 1)R1,1 + 2023 + 2(t1 — t2)0123 + agO1s,
Es5 =Go2+ (t3 — 1)Ra o + 2013 + 2(t2 — t1)0123 + ag0as,

where E 1 := 01F1,G1,1 1= 01Gq, ete, for example,
Gi1 = (1 —t3)O122 + agt2012 + a10;.

We have
E,—FE;

Ei1+Es9
modulo (¢35 — 1), and so

2(ty — tg)(ELl + Ez’g) — (24 a0)(Er — E3) =2(t1 — tg)(G1’1 +Ga2)—(2+ ap)(G1 — G2).
Now we define the second operator P» by the right hand-side of this identity:

G1 — Ga 4 2(t1 — t2)(D23 + Or3),
G111+ Gao+ (24 ag)(Oa3 + O13)

Py :=2(ty — t2){(1 — 13)D192 + aotadiz + a101 + (1 — t3)0112 + agt1012 + asds}

—(2 + ao){(l — t%)822 + a0t282 + a1 — (1 — t%)au — aotlal - az}.
Though we have no rigorous proof that P; and P, generate the ideal Z3(a)|t,—1, we study the
system Z5(A) in (¢1,t2) generated by Py and Ps.
Theorem 3.1 The system Zo(A) := (Py, Py) is of rank 6. The singular locus in P! x P! is given
by
tl:il, o0 (’L:l, 2), tl :tg.

Proposition 3.2 The local exponents along the divisors above are given as
1
th==+1: 0,1, 2, 3, -+ Ay,

=%1: 0,123 S+4,

tl :t22 0, 1, 2A0, 2A0+1, A():l:Ag,
t; =00: 17A0:|:Aj,27A0:|:A]‘,17A0:|:A3 ({Z,j}:{l, 2})

If we restrict the system Z;(A) further onto a generic line ¢t =constant, we get an ordinary
differential equation of order 6 in ¢ := t; with polynomial coefficients:
dSF
(t+1)%(t — 1)%(t — t2)4P(t)W 4+ =0,
where P(t) is of degree 6, the number of apparent singular points, whose local exponents are
0,1,2,3,4 and 6. Though we omit the explicit expression of the coefficients of the ordinary equation
above, we find the local exponents at the singular points as in the proposition.

Remark 3.3 Any set of siz independent solutions defines a map from (t1,t2)-space into the five
dimensional projective space, whose image is regarded as a surface. We remark that the operator
Py implies that the second jet-space of the surface is always degenerate; the system Z3(A) is not
general in this sense among those systems of rank 6.



3.2 Outline of the proof of Theorem 3.1
Using unknown F', we rewrite the system in Pfaffian form relative to a frame
e = " (F, F1, Fy, (t1 — ta) Fuy, (t — t2) Fia, (t1 — t2)* Fi1a).

This time, by using P, = 0 and P> = 0, and their higher-order derivatives, we can see that the
derivatives Fj; , 1,7,k = 1,2, can be written in terms of F', Fy, Fa, Fi1, Fi2 and Fii2. Thus, we
get a Pfaffian form wg such that deg = wgeg. It is a straightforward computation to see that the
integrability condition dwg = wg A wg holds. The 6x6-matrix 1-form wg is listed in §8.2.

3.3 Restriction of Z;(A) onto the diagonal ¢, = t,
Change the coordinates from (¢1,t2) to (¢,s) by t1 = t,to =t + s. Then the operator P; becomes
O — 2011 + aotdr + az + s {—s022 — 2t(D12 — Oa2) + agd — 2tDas} .
Thus the restriction of Z3(A) to the diagonal s = 0 is the ordinary differential equation
(1 —t*)Fi1 + aptFy + azF = 0, Fy = dF)/dt.

The local exponents at t = —1,1 and oo are

1

Oa AO_§1

1
O, AO_§ and 1—A0:|:A3,

respectively.

4 Restriction of Z;(A) onto the line ¢, =1 and Z(A)

4.1 Equation Z(A)
Express P; and P; as

P, Q1+ 2(1 —t1)012 + agOo,
P Q2+ 2(t1 — 1){apdi2 + (1 — t3)O112 + aot1012 + a202} — (2 + ag)agd-
Q2+ 2ao(t% — 1)812 — 2(t% — 1)(t1 — 1)8112 + {2&2(t1 — 1) — (2 + ao)ao}ag

mod (1 — t3), where

Q1= (1—1t1)011 + apt101 + as,
Qs = Q(tl — 1)&161 — (2 + ao){a1 — (1 — t%)an —agt101 — CLQ}.

Differentiate P;, and we have

P:=01P = Q11— 2012 —2(t1 —1)0112 + agOi2
= Q11+ (ap — 2)012 — 2(t1 — 1)O112,

where Ql,l = BlQl, 8112 = 51812. Set
Pyi= Py — (t] = 1)Pi1 = Qo — (1] — 1)Qu1 + (8] — 1)(ao + 2)012 + {2a2(ts — 1) — (2 + ao)ao} 0,
and differentiate:

Py = Q21— 2t1Q11 — (81 —1)Q111
+ 2t1(a0 + 2)312 + (t% - 1)(0,0 + 2)8112 + 2(1282 + {ZQQ(tl - ].) - (2 + ao)ao}alg.

By using Py, P; and P 1, express 0z, 012 and 0112 in terms of ()1, Q1,1. Substitute these expressions
into Ps 1, and we get an ordinary differential operator Z(a) of order four.

Proposition 4.1 The equation Z(a) is irreducible.

Proof: If Z(a) factors as Z;Zs, then the local exponents of Z5 at ¢ = +1 and oo are subsets of
those of Z(a). Riemann relation says that the sum of the local exponents of Z5 is an integer. The
Riemann scheme of Z(a) below shows that this can not happen if Z5 is of order 1 or 3. Assume
that the order of Zs is 2, and let k be the number of apparent singular points. Then Riemann
relation says that the sum of the local exponents of Zs is equal to 1 + k. On the other hand the
Riemann scheme shows that the sum is greater than 3 + k. O



This assures that Z(a) is the restriction of Z3(a) onto to = 1.
Theorem 4.2 The restriction Z(a) of Za(a) onto the line to = 1 is given by
Z(a) == pod* + p10° + p20® + p30 + pa,
where 0 = d/dt,t = t1, and

P = 2At+17(E— 1),
Po= A+ 1)(t— 12+ ao) + (a0 — 2)t},
py = 2(t—1){(ad —2a; +6ag + 2+ az + a3) + (3a3 + 4ag — 4 + 2a; )t
+ (ad —4ap + 2 — ag — a3)t?},
ps = (—4a3 — 8ag + dapa; + 4a; — (2ap + 4)(az + az))
+  (—2a3 — 6a3 — daga; — 4ay + 4(az + a3))t + 2ag(ap + az + a3)t?,
ps = Z2azast+ (0,1 — ag — a3)(ao + 2)2 — 2aqa3.

This equation has one accessory parameter; the local exponents do not change if we add a constant
to Pa-

We denote the operator Z(a) with parameters (Ao, A1, A, A3) by Z(A), the explicit form of which
will be given in §10. The Riemann scheme of Z(A) is given as

=1 t =00
— A 1—Ag+ Ay
A f% 0 1—Ag— A
Ag+ 5 1 1—Ag+ As
240 1+ A 1-49- 4

t=1

Remark 4.3 (Symmetry) Z(A) is invariant under
AJ‘ — —Aj (_j = 1,273) and A <> As.

Remark 4.4 The Dotsenko-Fateev equation (86.1) appears as the restriction on a divisor of the
Appell’s equation Fy in two variables (see [5]).

4.2 A small change Z(A) of Z(A)

To increase symmetry, we introduce an operator Z (A) as?t

. 1 1
Z(A) == Ad((t—1)"AF2)Z(A) = (t — 1) AF2 0 Z(A) o (t — 1)~ 2.
(Ad stands for addition which will be recalled in §5.1.) > We further change the variable ¢, used
for Z(A) and Z(A) etc, into the new variable

1t

T

In z-coordinate, the differential operator Z (A) changes into 3
Z(A) = 2(z — 1)20* + m1(2)0° + ma(2)0* + m3(x)d + my(zx), 0 :=d/dx, (1)
where
my = 4(x — a2z — 1),
my = i (4A5z — 4AT — 442 — 4A32° + 4A3x — 4A32” + 4A%x + 582% — 58z +9)

1
ms =5 (245 — 2A7 — 4432 + 2A3 — 4 A%z + 243 + 10z — 5),

- (-3) () (- ()

IEquivalent to changing the unknown z of the equation Z(A) to a new unknown w by z = (¢t — 1)

2Strictly speaking, Z(A) = 2(t — 1)"1Ad((t — 1)~ A0+ 3)Z(A).

3The equations Z(A) and Z(A) rewritten in the new variable = will be denoted by the same notation.

1
A0=F



The local exponents do not change if we add a constant to ms; the constant term of mg is called
the accessory parameter.

Remark 4.5 (Symmetry) Z(A) is invariant under
Aj — —Aj (j =0, 1,273) and As +— Ag

and
(w, Ag, Ay) +— (1 — 2, Ay, Ag).

The Riemann scheme of Z(A) is given as

r=0 =1 z=00
;-4 3—-4 %-&-AQ
0 0 ?_AQ
1 O
s+A 3+A41 5—As

4.3 Invariants of ordinary differential operators

For a differential operator L = pyd* + p19% + p20? + p3d + pa, the operator
L*=09*opy—9*op +9%*0py — dops+ pa, 0=d/dx

is called the adjoint operator.

Proposition 4.6 The equation Z(A) is self-adjoint.

To explain the meaning of this proposition, we recall some differential invariants of ordinary dif-
ferential operators. An ordinary differential operator

ot + Q183 + Q232 + Q30+ Q4
is transformed into the operator of the form
"+ 320° + 30+ @ (2)

which has no third-order term, by multiplying a non-zero function to the dependent variable. The
coefficients g; are given as

3 3
Q2:Q2—§Q/1—§ 1,

1 1
g3 = Q3 — §Q1Q2 + éQ‘;’ - Q,
— 1 i 2 i 4 1 / i 2 i /1\2 1 n
g4 = Q4 4Q1Q3 + 16@1@2 256Q1 4Q2Q1 + 32Q1Q1 + 16(Q1) 4Q1 :
It is known ([7]) that, for an appropriate choice of the dependent variable and the coordinate
y = y(x), the operator (2) can be transformed further into an operator
o' +r30+rs,  O=d/dy. (3)
Though r3 and r4 are not unique, the forms
1 1 9 1
03 = r3dy®> = (g3 — q4)dx®3, 0, := (7“4 - 2r§> dy®* = (q4 - §(J§ - mqg + 5(15/) dt®*

are unique and are called the fundamental invariants of the operator (2).
By an easy calculation, we see that the adjoint operator of (2) is

9" + 420% + (245 — 43)0 + qa + a5 — g5
Hence, we have:
Lemma 4.7 The operator (2) is self-adjoint if and only if 5 = 0.

Remark 4.8 The property that 83 = 0 is rephrased geometrically as follows: Let z1, ... , z4 be
linearly independent solutions of the equation and let us consider z = [z1, ..., 2z4] as a curve in the
projective space P3. Then, we can see that, when 63 = 0, the curve formed by the tangent vectors
to this curve z, which lies in the 5-dimensional projective space of all lines in P3, is degenerate in
the sense that it lives in a 4-dimensional hyperplane.
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5 Z(A) is related to the tensor product of two Gauss equa-
tions

In §10.4, we study local solutions of Z(A) at # = 0 and find that they are closely related to the
product of two specific Gauss hypergeometric series. In this section we show that an addition and
a middle convolution connects Z (A) with the tensor product of the two Gauss equations. We begin
with introducing two important operations for differential operators.

Detailed study of the tensor product of two Gauss equations in general is made in the last section
of Part 1.

5.1 Definition and fundamental properties of addition and middle con-
volution

For a differential operator P in = and a function f in z, the addition by f is defined as
Ad(f)P:=foPof

which is already appeared in §4.2; multiplying a non-zero function f to the dependent variable to
get a new one.

For a differential operator P in x and a complex number y, the middle convolution mc,P
with parameter p is defined symbolically (cf. Definition 2.3 in [6]) as

me,P:=0""oPod!, 0= i
dx

Actual procedure is as follows: Write the operator P in the form

Zpijxiﬁj.
Set r = max{i — j, p;; # 0}, and multiply 0" to P from the left, then substitute
2" =00-1)---(0—i+1), 6=2z0

to express 0" P as a linear combination of {#?97}. Then replace 6 by 6 — u, and finally divide the
operator by 0 from the left as many times as possible to obtain mc,P. Fundamental properties:

MCppr = MCy ©MCyr,  MC_y = MC,,", meyd =0 —p, me,d=0.

5.2 A middle convolution connects Z(A) with the tensor product of two
Gauss equations

Recall the Gauss equation:

E (a’cb;m> =2(r —1)0% + ((a + b+ 1)z — )0 + ab.

Let us consider the tensor product
K= K(A) = K(A7+7+7 A*++*a 1- AO? A****u A**++7 1- AO)

of the two Gauss equations

where
c0do + €141 +e2As +e345+1
A80,817€2763 = 5 g5 = =.

11



It is, by definition, the differential equation satisfied by the product of the solutions of the two
Gauss equations?, and is given as follows (see §9):

K(A) = 2°(x — 1)%0* + k1 (2)0® + k()0 + k3(2)0 + ka(x), 0 =d/dz,
where
ky = (1 —z)2*(4Apx — 4Ag — 102 + 5),
ko = 2(6A32% — 11 A%z + 5A3 — 24A02” + 3340z — 9A,
— Ax — A2 4 A3z — AZa? + Alx + 2527 — 252 + 4),
1
ks = 5(78A8x2 + 12437 — 4A3 + 36 A32® — 39A%x + 6 A7
+ 4AOA%1' + 4AOA§ 2 4AOA§ZL’ + 4AOA§ 2 4AOA§l’ - 56A0$2
+42A0x — 249 — 3A%x — 64322 + 3A2x — 6A322° + 3422 + 3022 — 151),
1
ky = 5(2,4335 — 245 — 8Ajx + 5AY — 24343 — 2A2 A%z
+2A2A3 — 2A3A%% + 2A2A% + 12427 — 4A3 + AgA3 + 4ApAdx
— AgA3 + 4Ag A3z — AgA3 — 8Aox + A + 245 A3z — 2A3x — 243 + 22).
To increase symmetry, we make a change (addition) as:
L(A) = Ad(z= ) K(A) = 274 0 K(A) oz,
which can be expressed as
L(A) = 2%(z — 1)%0* + 01 (2)0® + La(2)0? + £3(2)0 + Ly(x), 0=d/dz

where
6y =5(x — Dz(2x — 1),
by = Adx — A2 — A3z — A32® + ASz — A32® + Adx + 2527 — 25z + 4,
l3 = —g (A5 + AT + 2432 — A + 2452 — A} — 102 +5),
0= (A3 — 1)(As + 1)(A5 — 1)(A3 + 1).

The constant term £39 of ¢3(x) = €31x + f30 is the accessory parameter. The Riemann scheme of
L(A) is given as

z=0 z=1 =00 z=0 z=1 z=00
g~ Ao 0 0 A, _, »x 0 0 A____
Ao A A Ao A Ay
z=0 z=1 T =00 =0 =1 z=00
0 0 —Ayg— Ay +1 —Ap —-A; 1+ A,
=g~ 4o A Ay —Ag+A3+1 0 0 1—A;
Ag+1 Ay —Ag— A3 +1 1 1 1+ As
240 1 Ao+ A2 +1 Ay Aq 1— A,

Remark 5.1 (Symmetry) L is invariant under
Aj — —Aj (] =0, 1,273) and Ag +— A3

and
(x,A07A1) — (1 — {,C7A1,A0).

This operator L is connected with the operator Z (A), introduced in §4.2, by the middle convolution
as follows.

Theorem 5.2 m07%Z(A) = L(A).

4Do not confuse this and the product of two operators
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We first express the operator Z(A) defined in §4.2 (1) as a polynomial in § = 28, and § = d,:

5 1 1 1 1
Z(A) = (045 A)(0+ 5+ 42)(0 + 5 = 43)(0 + 5 + 43)
—(0+1)(20% + 460 + AT — A5 — A3 — A3 + g)a

+(0 + g + Ao)(0 + ; — Ag)0*.
Then, replacing 6 by 6 + 1/2, we have
me_12Z(A) = (O+1—A)(0+1+As)(0+1— A3)(0+ 1+ As)
—(6+ g)(202 +60 4+ A? — A2 — A2 — A3 +5)0
+(0+2 4 Ag)(0 + 2 — Ag)d?,
which turns out to be L(A). This expression leads to

Corollary 5.3 Assume As is a positive integer: Ay = m + 1 for m > 0. (or a negative integer
As = —m — 1, m > 0; namely, As a non-zero integer). Then, the equation L(A)u = 0 has a
polynomial solution of degree m.

Proof. For an integer k, we see that

L(A)xk = ppa® + g1 g2t

where
pr = ((k+1)>=A3) ((k+1)> - A3),
rhey = k(k—1)(K* — A7),

and ¢ = ro = r1 = 0. This implies that the operator L(A) sends the space of polynomials of
degree smaller than or equal to m, into itself. Since p,, = 0 by assumption, the image is a proper
subspace; hence, there exists a polynomial solution.

Let uw =37 , arx® be such a solution. Then, we see
k=0 )

Gm—1Pm—1 + AGmGm—-1 = 0,

Um—2Pm—2 1+ Gm—1Gm—2 + AmTm—2 = 07
akPk + k+1qk + apt2rr = 0,

aopo + aiqo + azrg = 0.

If A3 ¢ Z, for a given value a,,, the other aj are uniquely determined as follows. Let M be a lower
triple-triangular matrix defined as

Pm—1
dm—-2 Pm—2
"Tm—-3 4dm-3 Pm-3

M = "Tm—4 dm—-4 Pm—4 ’
To qo Po
and @ = "(amym_1,am_2,--.,00) be a column vector. Then, the linear equations above are written

as
t
Ma =" (=amqm—1, =@mTm—2,0,...,0).

12



Hence, multiplying the inverse of M yields the solution a; note that, since Az ¢ Z, the determinant
of M is non-vanishing. First few terms of a are given as
—m(m?+m -2+ )

m? — A3 ’

am =1, am_1=

m(m —1) {(2m — 1)(m? + m — 2a)((m — 1)2 + m — 3+ a) — (m? — A3)(m? — A3)}
2(2m + 1)((m — 1)2 — A2)(m? — A%) '

Am—2 =

6 Relation between Z(A) and the Dotsenko-Fateev equation

6.1 The Dotsenko-Fateev equation
The Dotsenko-Fateev operator ([2]) is an operator of order 3 defined as
S =S(a,b,c,g) =2*(x — 1)?0% + 5,0° 4+ 520 + 53, 0 :=d/dx
where
s1 = —(=14x)z(3ax + 3bz + 6¢cx + 29z — 3a — 3¢ — g),
sy = 2a’z? + 4abz® + 12acz® + 3agr? + 20222 + 12bcx® + 3bgx? + 12¢222 + Scga?
+g22? — 4a’x — 4abx — 16acx — 4agx + ax? — S8bcx — 2bgx + bx? — 12c%x — Scgx + 6ca?
—g%x + gx? + 2a® + 4ac + ag — 2ax + 2¢% + cg — 6cx — gr +a +c,
s3 = —c(2a4+2+2b+ 2c+ g)(2ax + 2bx + 4cx + 2gx — 2a — 2¢ — g + 2z — 1).

The constant term of s3 is the accessory parameter. The Riemann scheme is

z=0 rz=1 T =00
0 0 —2c
a+c+1 b+c+1 —a—b—2c—g—-1

2a+2c+g+2 2b+2c+g+2 —2a—20—2c—g—2
Remark 6.1 (Symmetry) The adjoint operator of S(a,b,c,g) is given by S with the change:
(a7 ba C,g) — (_1 - a, —-1- b7 —-1- C, _g)

6.2 A middle convolution and an addition send Z(A) to the Dotsenko-
Fateev equation

The equation Z(A) = 2?(z — 1)29* + - - has the Riemann scheme

=0 r=1 =00
0 0 1_ 4,
1 1 i+A2
3t4 s+41 5+ 4

Proposition 6.2 A middle convolution with parameter *%7142 sends Z(A) to the equation defined
by ®
Q(A) =me_1_4,(Z(A)) = 2*(x = 1)°0° + q1(2)9* + g2(2)0 + g3(2)

5Tt is known (cf. [6]) that if we choose the parameter 1 of a middle convolution as

1+ 1 = one of the local exponents of Z(A) at oo,

1_

say, p=1—A3—1=-1

Az, the resulting equation is of order 3; for generic parameter it is of order 4.
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of order 8, where
¢1 = (242 4+ 3)(z — 1)z (22 — 1),
qe = Adx — A2 — A2x + 5A32% — 5AZx 4+ A3 + 124527 — 12400 + 24,
— A22® 4 A3z 4 T2® —Tx + 1,
1
g3 = 5(242 +1) (A} — A + 243z — A3 + 4400 — 245 — 2437+ A5+ 22— 1).

The Riemann scheme of Q(A) is

z=0 rz=1 T =00

0 0 1+2A4,
—Ag— Ay —A;—Ay 1+ Ay— A3
Ag — Ay Al — Ay 1+ As+ As

The coefficients are determined by the local exponents except g3, where g3(x) = gs12 + g30, which
is the accessory parameter.

Remark 6.3 (Symmetry) Q(A) is invariant under
Aj — —Aj (]ZO71,3) and (l‘,Ao,Al) — (I—I,Al,Ao).
Moreover, the change (z, Ao, A1, Aa, As) — (1, A3, A1, Ag, Ag) takes Q(A) into Ad(z'+242)Q(A).

Remark 6.4 The symmetry of Q(A) under x — 1/x and its Riemann scheme determine the acces-
sory parameter as above, and so characterize the equation Q(A).

Proposition 6.5 The operator R(A) defined by
R(4) := Ad(a 4 (z — 1)1 H42)Q(4)
has an expression:
R(A) = R(Ao, Ay, A, A3) = 2%(x — 1)20° + 71 (2)0? + ro(2)0 + r3(x),
where
r = (1 —2)z(340x — 340 + 3412 + 2420 — Ay — 62 + 3),
ry = 3A32% — 5A2x + 2A% + 6AgA 12 — 640 Az + 4AgAya?
— 6A9Asx +240Ay — 9Agx? + 12402 — 3Ag + 34327 — A2z + 44, Apa?
— 241457 — 9A 2% + 6417 + A§x2 — Agx — 64522 + 6A0x — Ay — A§x2
+ A2z 4+ T2® —Tx + 1,
Ty = 73(21409: —240+2412 —2x 4+ 1)(Ag+ A1 + Az — A3 — 1)(Ao + A1 + A2 + A3 — 1).

The Riemann scheme of R(A) is

z=0 rz=1 T = 00

0 0 1—Ag— A

24, 24, 1—Ag— Ay — Ay — Az (°
Ag+Ay A +Ay 1-Ag— A1 — A+ A3

and the constant term of rs is the accessory parameter.
Proposition 6.6 Change the parameters {Ag, A1, A, A3} to {a,b,c,g} by

2a+2c+g+2 2b+2c+g+2 —g 2a+2b+g+2
= ) Al = ) A2 = 5 A3 = .
2 2 2 2
Then R(Ap, A1, Aa, A3) ezactly coincides with the Dotsenko-Fateev equation S(a,b,c,g).

Ao

Remark 6.7 (Symmetry) R(A) is invariant only under
Aj —)—Aj (j:?)) and (1‘7A0,A1)<—>(1—.’1?,A1,A0).
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7 Table of related differential equations

Though the equations Z(A), K(A) and R(A) have origin in the Zagier system Z3(A), the hyperge-
ometric equations and the Dotsenko-Fateev equation, respectively, the equations Z(A), L(A) and
Q(A) are more accessible. They are related as in the table below:

Z3(A) Ey, E,
rest (3 =1) | I ®
Z5(A) K(A) = E, ® B,
rest (ty =1) | ! Ady
Z(A) L(A)
Ad, ! i mey
Z(A) ~ Z(A) in z=1;
! me_y_a,
Q(A)
1 Ads;
R(A) = S(a,b,c,g): DF

Here F7 and E5 are Gauss hypergeometric equations:

B = E (A++7A++;x> . Ey=FE <A7A++;$> .
1— A

The additions Ad; are given as
Ady = Ad(z749),  Ady = Ad((t — 1)274),  Ads = Ad(z 042 (z — 1)41142)

are used just for cosmetic changes. Since a middle convolution is additive and invertible, from

mc_%_Az(Z) =Q, Ady(Q) =R, Ad(K)=L, mey(L)=2Z,

we have
1

Q=me_y_4,(Z) = (me_y_4, omey ) (L) = me_, (D),

and
R = Adg(Q) = (Ad3 o mC_A2) (L) = (Ad3 OMmc—A, © Adl) (K),

and conversely,
K = (Ad; " omea, 0 Ad3") (R).

Relation of the system of parameters: a., A., At+++ and (a,b,c,g):
ap =240 —3, a;=A? — (A —1)% i=1,2,3,

Acoerienes = (€0Ao + €141 + 242 + €343+ 1)/2, €5 = =,
2 T 2 T 2 ’

2a+2c+g+2 A 2b4+2c+g+2

= 5 1= 5
2 2

Ar p—1 A_ -1 A —1
0= ot p— Aottt o= Dt g=—24,,
 2a+2b+g+2

A= 9 A, .

Ao

1A



8 Explicit expressions of matrix 1-forms

8.1 8 x 8&matrix form w = Mldtl + MthQ + Mgdtg

In §1.1 the system Z3(a) is transformed into the Pfaffian form de = we with the frame
e ="(F, Fy,Fy, F3, Flo, F13, Fa3, DF193), D= —1+13 + 13+ 12 — 2t1tats.

We express in this subsection the 8 x 8matrix 1-form w = Mydt; + Madts + Msdts. We use
parameters

by = (—a1 +a2—|—a3)/2, by = (a1 —a2—|—a3)/2, by = (Cl,l + as —Cl3)/2.

M, =
0 1 0 0 0 0 0 0
by 131 —(ti1ta—t3) —(t1tz—t2) tots—t;
@5 w5 Y 0 @0 0D (o 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 pl152 p153 pl154 pl55 1 pl57 (ta—tst1)
(t3-1)D  (tf-1)D  (t—-1)D (t1—1)D ti-1) (tf-1)D (ti-1)D ’
0 pl62 pl63 pl64 1 pl66 pl67 —(t1ta—t3)
(#i-1HD  (t1-1)D  (t1-1)D -1 (ti-1)D (t1-1)D (ti-1)D
1
0 0 0 0 0 0 0 ol
m181 m182 m183 m184 m185 m186 m187 m188
(t1-1)D D (t3-1)D  (t1-1)D t3-1) (ti-1) (t1-1)D (ti-1)D
p152 = _bQ(tth - tg) + b3t1(t1t3 — tg),
p153 = bl(tg — ].) - (bl + b3)t1(t2t3 — tl),
pl54 = bo(tats —t1) — bits(tits — ta),
plbd = —ao(t% - 1)(t2t3 - tl) + (fltg — lfg)(tltg — t2),
p157 = —(1 + ao)(tztg — tl)(tltg — tg),
p162 = 0923 Op152 = —b3(t1t3 - tg) + bgtl(tltg — tg),
p163 = 0923 Op154 = b3(t2t3 — tl) — bltg(tltg — tg),
pl64d = 0930pl53 =Dby(t: — 1) — (by + bo)ty(tats — t1),
p166 = 023 Op155 = p155 = 7ao(t% — 1)(t2t3 — tl) + (tltg — tg)(tltg — tz),
p167 = 0923 Op157 = —(1 + ao)(tgtg - tl)(t1t2 - tg),

where we use the permutation 0923 (0'23 o P)(tl,tg,tg, bl, b27 b3) = P(tl,tg,tg,bl, bg, bg)

ml8l = —bobs(t] — 1)(tats — t1) + b1 (b2 + b3)(trta — t3)(trts — ta2),

ml82 = by(1—12) +bo(l —t3),

m183 = agbita(tita — t3)(tits — ta) — agbs(tits — ta)(tats — t1) + bits(t3 — 1)(t2 — 1),

m184 = agbits(tits — t2)(tita — t3) — agba(tits — t3)(tats — t1) + byt (t3 — 1)(t2 — 1),

m185 = ag(ty — tsty) + bz(ta — taty) + ba(tald — tsty),

ml86 = ag(ts —tita) + by(tits — tita) + bo(ts — titz),

m187 = aj(tats — t1)(tits — ta)(tite — t3) — (ag + by + b3)t1(tats — t1)D + by (t; — 1)D
HE — 1) - 1) - 1),

m188 = ag(—tit3 + 2otz — t3t; + 13 —t1) + 2(t7 — 1)(tats — t1).

Note that m181, m182, m187 and m188 are goz-invariant, and 93 0 m183 = m184, o093 o m185 =
m186.
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0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 p252 p253 p254 p255 p256 1 —(tatz—t1)
(t3-1)D  (t3-1)D  (t3-1)D (t3-1)D (t3-1)D (t3—-1) (t3-1)D
0 0 0 0 0 0 0 »
0 p272 p273 p274 1 p276 p277 —(t1ta—t3)
(t3-1)D  (t3-1)D  (t3-1)D (t3-1) (t3-1)D (t3-1)D (t3-1)D
m281 m282 m283 m284 m285 m286 m287 m288
@-DD @B-uDb D  ®@-1)D  (B-1) (@-DD (-1  (B-1D
p252 = o9 0plhH3, p272 = o019 0pl63,
p253 = 0120 ])].527 p273 = 0120 p162,
p254 = o012 0plH4, p274 = o012 0pl64,
p255 = o012 0plh5, p276 = 019 0 pl67,
p256 = o019 0pldT7 = pl57, p277 = o013 0pl66 = p255,
m281 = o019 0ml8l1, m285 = o012 0ml85,
m282 = o013 0ml183, m286 = o019 0m187,
m283 = o013 0ml182, m287 = o012 0ml186,
m284 = o190 0ml184, m288 = o012 0m188,
where (0'12 o P)(tl, tQ, t3, bl, b2, bg) = P(tg,tl, tg, bg, bl, bg)
Ms =
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
@y 0 0 @ W TEe @ O
0 0 0 0 0 0 0 %
0 p362 p363 p364 p365 p366 1 —(tats—t1)
(t2-1)D  (t2-1)D (2-1)D  (t2-1)D (t2-1)D (t2-1) (t2-1)D
0 p372 p373 p374 p375 1 p377 —(t1ts—to)
(t3-1)D  (t3-1)D  (t3-1)D  (t5-1)D (t3-1) (t3-1)D (t3-1)D
m381 m382 m383 m384 m385 m386 m387 m388
(t2-1)D  (t2-1)D  (t2-1)D D (t2-1)D (t2-1) (t2-1) (t2—-1)D
p362 = oq30pl64, p372 = o0130plhd,
p363 = o130pl63, p373 = o013 0plh3,
p364 = o130pl62, p374 = o130plH2,
p365 = o013 0pl67 = pl67, p375 = o0130plHT,
p366 = o013 0pl66, p377 = o130 plbd = p366,
m381 = o013 0ml8l, m385 = o013 0ml87,
m382 = o130ml&4, m386 = o013 0m186,
m383 = o013 0m183, m387 = o013 0ml85,
m384 = 013 © ’ITL].82, m388 = 013 © m188.

where (0130)P(t1,t2,13,b1,b2,b3) = P(ts,t2,t1,b3,b2,b1).

Remark 8.1 Though all the poles of the entries of M; are simple, dw # 0 .
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8.2 6 x 6-matrix form wg = Nidt; + Nadts

In §3.1 the system Z5(A) is transformed into the Pfaffian form deg = wgeg with the frame
es = " (F, F1, Py, (ti — t2) Fi1, (1 — t2) Fio, (t1 — t2)* Fi12).

We express in this subsection the 6 x 6-matrix 1-form wg = Nidt; + Naodts.

Ny =
0 1 0 0 0 0
0 0 0 5 0 0
1
0 0 0 0 R 0
—b1(24a0) nl42 —(b1+b3)(t1—t2) nld4 nlds 1—2t1ta+t7
t7—1 t7—1 t7—1 -1 (ti—t2) (@EF-1)(t1—t2) (FF—1)(t1—t2)
1 1
0 0 0 0 t1—t2 t1—ta
nl6l nl62 nl63 nl64 nl65 n166
71 (T -1)(t1—t2) (T -1)(t1—t2) -1 (ti—t2) (@EF-D(ti—t2) (EF-1)(t1—t2)
nl142 —G,o(tl + tQ) — agtl + (bl - bg)(tl - tz),
nldd = 154 2t1ty — 3+ ag(2t3 — tity — 1),
nld45 = 2(t3 —1) —ao(t? — 2t1t2 + 1),
nleél = (2 + ao)b1 — (bl + bg)(bl + bg),
nle2 = —CLo(bl + bg)tl(tl — tg) + a0(2 + ao)tl(tl — tz) — aobg(t% — 2t1ts + 1) + ng(t% — 1) + 2b3(t1 — t2)2,
nl6d = —a0b3t2(t1 - t2) + 2b3(t1 - t2)2 + 2b1(1 - 2t1t2 + t%) + a(]b1(1 — tltg),
n164 = 2 —2t2 +ag(l —t2) + 2bsty (1 — ta) + ba(1 — 2t1ty + t2) — by (1 — 12),
nl65 = 2 —2t2+ ao(3t? — 41ty — t2 +2) 4+ a(1 — tita) + by(t? — t2) + by (2 + 12 — 2),
n166 —2t2 + Atyty — 2+ ag(t? + tity — 2),
Ny =
0 0 1 0 0 0
1
0 0 0 P 0
b1+b2 apty apta —(t3-1) 2(1—t1t2) 0
t2—-1 t2—1 t2—1 (t2—1)(t1—t2) (t3—1)(t1—t2)
—1 —1
0 0 0 P—— 0 P
by (24ag) n252 (b14b3)(t1—t2)  —(24ao)(t3—1) n255 —(t1-1)
t3—1 t5—1 t3—1 (t3-D)(t1i—t2)  (t5—1)(t1—t2) (t3-1)(t1—t2)
n261 n262 n263 n264 n265 —2(t3—1)+a0(2—;—#3)
t3—1 B3-1)(t1—t2)  (t3-1)(t1—t2) (B-1)(t1i—t2)  (E5-1(t1—t2) (t3-1)(t1—t2)
n252 (2 + ao)aotl + (bg + bg)(tl — tg),
n255 = —t3— 2ito+ 3+ ap(t] — 15 + 1 — tits),
n261 = (2 -+ ag)a0b1 + (bl —+ bg)(bl + bg),
n262 = (2 + ao)agtl(lﬁ — tg) + agbity (tl — tg) + a0b2(1 — 2t1tg + t?) + Clobg(Qt% — 3t1te + t%) + 2b2(1 — t%),
n263 = aobgtl(tl — t2> — 2b1(1 — t%) + agby (t% + t% —1- tltg),
n264 = (2a0+ a4+ by +b3)(1 —t3) — (by + b3)(1 — 3),
n265 = ao(ti —2t1ta + 1) + adti(ty — to) — 2bsta(ty — ta) 4+ 2by (1 — tyity).

Remark 8.2 Though all the poles of the entries of N; are simple, dwg # 0 .
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9 Tensor product of two Gauss equations
Consider two differential equations
2 =81z and  z) = Spze (2 :=dz/dx),

with dependent variables z; and z. If S # Ss, the product w = 2125 satisfies the fourth-order
differential equation Kg, s,w =0, where

Ks,5, 1= 0"+ f30° + f20° + 10+ fo, (0 :=d/dx)

and
_ 515 .
f3 = _Sl_SQ’ .f2 = _2(51+52)a
[ SIS 5.8 45(5,) - 5i5)
1 - Sl — Sg ’
I\2 1\2
fO = _Sil _ Sé"" (Sl _ 52)2 4 (Sl) (52) .

S1— 5

If S; = Sy = S, w = 22 satisfies the third-order equation Kgw = 0, where

Kg =0 —480 — 29’ (4)
For two Gauss equations
i —(a; +b;+1)x a;b; )
/" ) s =0 -:Cj (a] J = ——1 :1,2

Yy +py; + a4y, =0, pj (1= 1) S A g (U )

we let
v =Nz, A= a9 @ — )l
Then, z; satisfies the equation
1 1
2 =8z,  Sj=—q+ Zp? + 5P

with the Riemann scheme

ci/2 (aj +bj—c;+1)/2 (a; —b; —1)/2
l—Cj/Q (cj—aj—bj+1)/2 (bj—aj—l)/Z

From the equation Kg, g, satisfied by z; 22, we get the differential equation
K = K(al, bl, C1,02, b2, CQ) = Ad(AlAz)K517SQ
satisfied by y1y2 = (A1 A2)2z122. Though we omit the explicit form of K, if (a1, b1,¢1) # (az, ba, c2),

it is of order four and has generically two apparent singular points say {1, x2} other than {0, 1, 0o},
and the Riemann scheme is given as

z=0 r=1 T =00 z=0 r=1 T =00
0 0 ay X 0 0 a
1—61 cl—al—bl bl 1—62 Cg—az—bg bg
z=0 r=1 =00 T=X1 X=X
0 0 ai + as 0 0
= 1—¢c c1L—a; —b a1 + by 1 1
1762 CQ*GQ*Z)Q bl+a2 2 2
2701702 Cl+627a17b17(127b2 b1+b2 4 4
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Note that though the Gauss equations have no accessory parameters, K has one. The two apparent
singular points {x1, x5} are the roots of the following quadratic form:

App(x) := (a1 + az — by — ba)(a1 —az — by + b2):172
—+ 2(20,11)1 — 20,2[)2 —+ (]. —ay; — bl)Cl — (1 —ag — bQ)CQ)x —+ (Cl — 62)(01 —+ Co — 2)

If for example, ¢; = ¢o, then App is divisible by z, and so we set x5 = 0, and if the other parameters
remain generic, the Riemann scheme becomes

z=0 =1 r=00 T =21
0 0 ai + as 0
l1—c1 c1—ay— by a1 + by 1
2—c1 c1— as — by b1 + as 2
27261 26170,171)170,271)2 b1+b2 4

9.1 Tensor product without apparent singularities

There are several choices of parameters that the tensor product has no apparent singularities, that
is the cases App reduces to constant times

22, (x—1)3% 1, and -1, =z, a(zx—1),
corresponding to
{331,582} _>O717007 and {1‘1,.1‘2} - {0700}7{1700}3{031}3

respectively. Thanks to the symmetry of the Gauss equations on the three singular points, we
consider only two cases: 22 and x(x — 1). The first case occurs only when

(1.1)  {e1 =2, a1 = (2a2b2 — azca + bica — baca) /(201 — c2)},  or
(1.2)  {e1 =2 —ca, a1 = (2a2b2 — agcag — bycy — baca +2by +2¢0 — 2)/(2b1 +¢2 — 2) 15
and the second case,
1) {e1 =co, a1 =—by +2¢3 —ay —bs}, or (thisis used below)
2) {c1 =co, ag =az—by +b2}, or
B3) {aa=2-—co a3 =—by —2c3+2+ay+by}, or
4) {c1=2—co, a1 = —ag — by — by + 2}.

For the first case, two of the local exponents at z = 0 differ by 2, and for the second case, two of
the local exponents at x = 0 and at x = 1 differ by 1. Thanks to the adjoint symmetry (cf. §4.3)

G(a,B,7)+— G(l—a,1—5,2—7)
of the Gauss equation®, we study only two cases (1.1) and (2.1); in these cases we have
€1 =cg =:c.
For each case, in the following, we consider the renormalized equation (addition by z¢~!)
L:=Ad(z" ) K) =2t o Koaz!™®.

After cancelling the common factor (denoted also by L), it is of the form

I 23(x —1)30* + - - in case (1.1),
a 2?(x —1)%0% + - - in case (2.1).

6 Adjoint equation of G(a, 8,7) is G(1 —a,1 — 3,2 — 7).
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9.2 Tensor product without apparent singularities Case 1

In this subsection we assume
a1 = (Zagbg — agco + by — bgcz)/(2b1 - 02)7 C1 = Ca,
and study the middle convolution of L. The local exponents of L are given as follows:

x=0: [0,2,c0—1,—co+1],
r=1: [O,Cl—Cll—thg—(12—bQ,Cl—Cll—b1‘|‘62—CL2—b2}7
=00 : [a1+a2—02+1,a1+b2—02+1,b1+b2—02+1,b1+a2—02+1],

where a; = (2a2b2 — asca + bica — baca)/(2b1 — ¢2) and ¢; = ¢ should be assumed. We follow
the recipe of making the middle convolution: we consider L6 := 0% o L, and express it in terms
of (x0,)" o (9,)7 with constant coefficients and replace 29, by xd, — m, where m is a constant
(parameter of middle convolution). The resulting operator M6 is of order 6, with parameter m,
written as

M6 = emgd® 4+ ems0° + emad* + ecm3zd® + emad? + emi 8 + emo,

where
emg = (2b) — )’ (z — 1)3,
ems = x?(x—1)%(2by — ¢2)(4xb? — 8xbycy + dxagby + 44ab;
—12axbym + 4xboby + 40333 + 4dasbox — deobox — degasx — 22¢ox
+6xmca — 20b1 4+ 6bym + 10cy — 3mecs),
emy = x(x—1)P(x), cmz=Ps(x), cmg= Py(x), cmy=(m—1)P(x),
emg = (m—1)(m—2)(by+bs—co+1—m)(by+as—co+1—m)

><(—2b1m + mcg + 2by — co — bicg + Cg + 2a9b1 — 2c9a0 + 2a9by — Czbg)
><(—2b1m —+ mcy + 2b1 — Cg — b1€2 + C% — C2a9 + 2b2b1 - 202b2 + 20,2[)2),

where Py (x) denotes symbolically a polynomial of degree k in z. The local exponents of 9% o L are

z=0: [O, 17 2, 2,02—1, —Cg—i—l],
x=1: 1[0,1,2,c5 —ag —ba,c1 —ay —bi,c1 —ay — by + c2 — ag — b,
r =00 [1,2,1+b1+b2—02,1+b1+a2—02,1+a1+a2—02,1+a1+bg—02],

and those of M6 are

x=0: [0,1,2, m+2 coc—1+m, 1—co+m,

x=1: [0,1,2 m+co—as—by,m+cy —ay —by,m+c1 —a; —by +c2—as — by,

r=00: [-m+1, —m+2, —m+14+b;+by—co, —m~+1+b +as—ca,
—m+14+a;+az—co, —m+1+a3+b—ca.

The difference is

[anaovma m, mL [0,0,0,m,m,m}, [7m7 —m,=m,—m, —m, 7m]'

Though L would be generically irreducible, since the local exponents at © = 0 are [0,2,co —
1, —c2 + 1], the resulting M6 might be reducible (cf. [6]). In fact M6 breaks as

M6 =Y o M5, M5 =u50°+ us0* +u30® + u20* 4+ u10 + o,

where Y is a first order operator, and uy, ..., us are polynomials in x and the parameters, and us
is given as

Us = (2b1 — 02)21'2($ - 1)3(b1 — C2 + bg)(bl — Co + G,Q)(ZL’ + (m - 1))\),
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where
2b1 — C2

(b1—62+b2)(b1—02+a2).
This shows that M5 has one apparent singularity at p := —(m — 1)X. The local exponents of M5
are
x=0: 10,1, 2 co—14+m, —co+1+m,
r=1: [0,1,—b2—|—02+m—a2,01—al—bl—l—m,cl—al—bl—i—cQ—aQ—bg—i—m],
x=o00: [Il=myby+by—co+1l—myby+as—co+1—mya;+by—co+1—m,a3+as—ca+1—m,
x=p: [0,1, 2, 3, 5]

A=—

9.2.1 Why M6 is divisible from the left by a first-order operator
Note first that the operator L = 23(z — 1)39* + - -+ can be written as
L= szl(Qa a) + {)\(9 - 1) + $}Q2(0, a)a 0 = z0.

Since

P2 =0+1)0+2), PNO-1)+2}={O0+1)N0+1)+1}0,
L6 = %L is written in terms of # and 0:
L6 = (0 +1)(0+2)Q1(8,0) + {(0 + 1)(A\9 + 1) + 1}0Q2(0, 9).
So M6 can be obtained from L6 by replacing 6 by 6 — m:
M6=0+1-—m)0+2-—m)Qi(0 —m,0)+{(0+1—m)(A0+1)+1}0Q2(0 —m, D).

On the other hand we have the following formulae:

@+1—m)0+2—m) = 0+1m+x> (0+2mw) for any constant u,
r+u T+ u
x A
0+1— AMM+1H)+1 =(60+1- — ) [ M+l - — ] .
(O+1=m)(A0+1)+ * m+x+(mfl))\ ( + er(ml))\)
Applying these by putting u = (m — 1)\, we see that M6 can be divisible from the left by
x
Y=0+1- _
+ m+x+(m—1))\

9.2.2 When M5 has no apparent singular point

Further to forget the singularity p, we assume, for example, by = c; — bs. Then we also have
ay = ¢z — ag, namely, the two Gauss are equal up to a Euler transformation: F'(a,b,c;z) =
(1 —-2)"% P F(c—a,c—b,c;z). But M5 remains to be an equation of order 5 (see §9.3.1 for an
analogous phenomenon), with the local exponents

x=0: 1[0, 1,2 co—14+m,—ca+1+m],
x=1: [0, 1, m, ba 4+ az — ca +m,ca — ba + m — as],
r=00: [2—m, 1—=m, 1—=m, 1 —by+as—m,1—as+ by —m)],

and is reducible of type [14]7. We have [1] = —z(xz — 1)*(z(z — 1)0 — (m — 6)x — 2), and
2?(z — 1)*[4] = 22(z — 1)20* + m30® + m20% + m10" + my,

where
ms = —xz(2x—1)(xz—1)(2m —5),
me = 2eobox + 2a9box? + 2coasr + 3 + 2532 — x2b§ — 24mz? — ang + 6m2z?
—2cox — 4dasbox — cg +2¢o — 4m + m? — 24z — 6m3x + 24mz,
m; = (=34 2m)(—2m2x +m? — 3m + 6mx — cabs + xag — oo + 2 — 2a0box + 2a0by + o + xbg —5z),
mo = —(=14+m)*(aa—1+m—by)(az+1—m—by).

7An operator P decomposes (is reducible) for example of type [14] means P can be written as P; o Py, where
Py is of order 1 and P» is of order 4. [4] part means P». The decomposition is not necessarily an irreducible
decomposition, which is not unique.
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The local exponents are
x=0: [0,1, co—1+m, —co+1+m],

x=1: 1[0, 1, —ag+co — by +m, —cg + b + as + m],
x=o00: [1—=-m,1—m, —az+1—m+bg, ap+1—m—by].

9.3 Tensor product without apparent singularities Case 2
In this section we assume
a1 =—by+c1+cy—as—by, c¢1=cy=:c,

and study the middle convolution of L. This case happens to connect Gauss equations and the
equation Z(A), because the above assumption exactly fits the parameter change (see §5.2):

a1 = A_+_+, b1 = A_++_, a9 = A____, b2 = A__++, c=1-— AQ.

The middle convolution M L4(m) of L with parameter m is now computed without multiplying 9
from the left, and we get

MLA(m) := z2(z — 1)20" + ml30° + mls0* + ml10 + mly,

where

mly = —x(2z—1)(x—1)(2m —5),

mbs = 34 2byxby + 2b1xas + 2522 — 24x + 2¢ — ¢ — dm + 2xb% + 2casa®
+2cbyx? — 2anbox — 2cx + 272 — 22207 — 2%a3 — 2%b2 — 2c%2?
—4cbyx + 6m2a? — 24ma? — 6m2z + 24ma + m? — 22%b1by — 22%b1as + 4z2blc,

mly = (=3+2m)(m? —2m?z — 3m + 6mx + 2 + 2c%x + 2b1zas + 2byxby + ¢ — ¢ + azby
—bx — b% + 2xb§ — 2casx + 2bic — 2¢boyx — bras — biby — 4ebix + mb% + xag),

mly = (bi—14+m+b—c)(b1+1—m+by—c)(b1+1—c—m+az)(by —1—c+m+as).

The local exponents of M L4(m) are

z=0: [0,1,c—14m,1—c+m],
x=1: [0,1,bo —c+m+as,—by —as+c+m],
x=00: [-b1+14+c—bo—mbi+1+by—c—m,—by+14+c—m—as,1+b —c—m+as

Recall that L(A) = Ad(z=4°)(K(A)). Since ¢ — 1 = —Ay, our L just agrees with L(A). The
middle convolution M L4(m) of L = L(A) is given by

mly = =222z —1)(x —1)(=2+ (m —1/2)),

mly = 29/2x% —29/2x —3(m —1/2) +9/4 — 6x(m — 1/2)* + 18z(m — 1/2) + 62%(m — 1/2)?
—182%(m — 1/2) + (m — 1/2)* — A2 + 2 A2 + 1A% — 2 A? + 2 A3 — 22 A3 — 2% A2,

mly = —1/2(~1+ (m —1/2))(10z + 8(m — 1/2) — 5+ 8z(m — 1/2)* — 162(m — 1/2) — 4(m — 1/2)?
+2A3 4+ 243 + 243 — 243 — 4z A3 — 4z A3),

mly = 1/16(242 —1+2(m —1/2))(—24; — 1 +2(m — 1/2))(—243 — 1 + 2(m — 1/2))

X (243 — 1+ 2(m —1/2)).

Thus we rediscovered Theorem 5.2: ML4(1/2) = Z(A).

9.3.1 Kg, 5, when Ay =0

The quadratic form App giving the two apparent singularities of K and Kg, g, reduces to —4AsAsx(x—
1); note that
AsAs
S1—8=——"—""—.
! 2 z(x —1)
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The coefficients of Kg, 5, = 8% + fsda® + -+ are given as

fa =02z —-1)/(z(-1+2x)),
fo = (—A32? — A2 + A3z — A2z + A3z + Ax — A2+ 2% — 2+ 1)/ (2?(—1 + 2)?),
fi = —(—2A323 — 24323 + 5A%22 — 5A30? + 34322 + 34222 — 9A%x + Alx
—Adx — Az + 223 + 4A% — 32 + 9z — 4) /(223 (—1 + )3),
fo = (243A22% — 4A3A323 + 2A3A%02 — 2A%2% — 24221 + 64223
—6A%x3 + 44323 + 4A323 — 15A32% + 3A22? — 3A%2% — 3A3%2% + 221 + 1343z
—Alx + Az + A3z — 43 — 4A% + 1522 — 132 + 4) /(224 (—1 + 2)?).
When Ay =0, Kg, s, decomposes of type [13]:
=90+ 2zx-1)/(x(-1+x)),
3] = 8% + (—A32? + A3z — Az + A3z — A3 + 2% — 2+ 1)0/(2%(—1 + 2)?)
—(—2A%23 + 3A%2? — 3A322 + 3A%22 — 5A%w + A3z — Adx + 223
+2A3 — 32% + 5z — 2)/(223(—1 + 2)3).

When A; = A3 =0 ((a1,b1,c¢1) = (ag,bs, c2)), the 3rd order operator [3] above is nothing but the
equation (4): Kg = 9% — 450 —25".
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Part 11

Local solutions of ordinary differential
equations related to the Dotsenko-Fateev
equation

In Part I, we found a Fuchsian system of rank 8 in 3 variables with 4 parameters, and an ordinary
differential equation Z(A) of order 4 with three singular points by restricting the system on a
projective line. In Part II, we study the ordinary differential equation Z(A) and several related
ones, around their singular points.

In §10, we study a linear difference equation Rcg(A) of order 2, which is the recurrence relation
satisfied by the coefficients of a power series solution to Z(A) at x = 0.

§10.1 introduces the invariant of such a difference equation.

§10.3 introduces special values 4F3(x; 1) of terminating generalized hypergeometric series 4F5 at 1
satisfying a linear difference equation Rc(®) of order 2.

In §10.4, by studying the invariant of this difference equation and that of Reg(A), we find solutions
of Reg(A) expressed in terms of 4 F5(*; 1). This expression is very near to the product of two Gauss
hypergeometric series. This observation leads to the discovery: A middle convolution sends Z(A)
to the product of two Gauss hypergeometric equation.

In §10.5 and 6, invariants of the difference equations are used to get local solutions of Z(A) at
z=0,1 and oo.

In §10.7, Riemann-Liouville transformation is recalled.

In §10.8 and 9, we get local solutions of Z(A) at x = 0,1 and co by using middle convolution.

In §11, we study a linear difference equation Rci(A) of order 2, which is the recurrence relation
satisfied by the coefficients of difference equation a solution to Z(A) at x = 0 with exponents
Ay £1/2.

§11.2 introduces special values 4F3(x; 1) of non-terminating generalized hypergeometric series 4F3
at 1 satisfying a linear difference equations of order 2.

§11.3 studies the difference equation Re(!) satisfied by this special values.

In §11.4, by studying the invariant of this difference equation and that of Rcq(A), we find solutions
of Req(A) expressed in terms of non-terminating 4 F3(%; 1).

§12and 13 give a set of local solutions of Q(A) and the Dotsenko-Fateev equation.

10 Local solutions of Z(A) at = 0 with exponent 0 and 2A4,,
and those at infinity

The explicit form of the differential equation in question is given as
Z(A) = P00t + p10® + p20? + p30 +py, 0= d/dz,

where

Po = xd(x - 1)27

p1 = —22%(x —1)(24px — 24y — 52 + 3),

p2 = z(p2z?® 4+ pa1z + pa),
pao = 6AZ — A2 — A2 — 2444 + 25,
pa1 = —11A4% — A? + A3 + A2 + 364 — 59/2,
p20 = (1049 —9)(240 — 3)/4,

ps = p32x? + P31z + pao,
p3a = —(24¢ — 3)(245 — A5 — A3 — 64, +5),
p31 = (Ao — 1)(643 +2A3 — 242 — 242 — 164, + 11),
pso = —((240 — 3)(240 — 1)*)/4,

P4 = DP41T + pao,
p41 = (AQ — ]. + Ag)(AO — ]. — Ag)(A() — ]. + AQ)(AQ — ]. — 142)7
pao = —(240 — 1)%(AF + AT — A3 — A3 — 24, +1)/4,
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its Riemann scheme is given as

rz=0 r=1 T = 00
0 %—Al 1— A+ Ay
Ay — 1 0 1—Ay— A
Ao+§ 1 1—Ap+ As
240 1+A; 1-49- 4

In this section we give the two local solutions around the point z = 0, whose exponents are 0
and 2A4y. The other local solutions around z = 0, whose exponents are Ay + 1/2, will be given
in the next section. The coefficients of the power series satisfy a 3-term recurrence relation (a
homogeneous linear difference equation of order 2), say Rco(A).

On the other hand, under some condition, special values of the terminating generalized hypergeo-
metric series 4 F3 at 1 satisfy a linear difference equation of order 2. By making use of this fact, we
solve the equation Reg(A) in terms of the special values of 4F3 at 1. The result suggests a relation
between Z(A) and the tensor product of two Gauss hypergeometric differential equations: they
are connected by a middle convolution. This method will be applied to other equations at other
singular points.

The local exponents of the equation Z(A) at 2 = 0 are

07 1, 1/2+A03 1/27140,

the holomorphic solution of Z(A) at z = 0 corresponds to the solution of Z(A) with local exponent
1/2 — Ay, so the solution of Z(A) at 2 = 0 with exponent 24, corresponds to the solution of Z(A)
with exponent 1/2 + Ay, which can be obtained from that with exponent 1/2 — Ay by changing
the sign of Ag.

But for the other exponents Ag +1/2 of Z(A) at x =0 ({0,1} for Z(A)), we need to make use
of non-terminating series 4F3. These are studied in the next section.

10.1 Invariants of linear difference equations

In this subsection, we introduce the invariants of linear difference equations following [3]. Let us
consider a homogeneous linear difference equation of order 2

P:Cp=p1(n)Cp1+p2(n)Cpn_2,
where p; and py are rational functions in n. The quantity

g .- prmpi(n+1)
' p2(n+1)

is called the invariant of the difference equation P. Consider another such equation
Q:Dp=qi(n)Dp_1+ q2(n)Dy .

The two equations are said to be essentially the same if there is a homogeneous linear difference
equation of order 1:

A(n —1) = p(n)A(n), p(n): a rational function in n

and a solution A\(n) so that
{Cn} = A(n){Dn},
where {C),} is the set of solutions of P, and {D,} that of solutions of Q.

Proposition 10.1 The two equations P and @) are essentially the same if and only if the two
mvariants agree.

o7



In fact, substituting
Cn = A(’I’L)Dn, Cn—l = >\(n - 1)Dn—17 Cn—Z = )\(Tl - 2)Dn—27
into P and equalizing with ), we have

q1(n)

p1(n)

— ), U — (ot~ )

and, by eliminating u,
pi(m)pi(n—1)  q(n)qi(n—1)

p2(n) q2(n)

On the other hand if we assume the last identity, we can trace back the argument up to C, =
A(n)D,,.

Corollary 10.2 For two essentially the same equations P and Q, the spaces of solutions {C}
and {D,} are related as

1 ILT(+v+1)

C/, = ' 1D )
Gl wrtl [, T(n+u; + 1) {Dn}
where the rational function Zi EZ; is factorized as
a(n) =w- M, w : independent of n.
pi(n) [L;(n+vj)

10.2 Recurrence relation Rc¢y(A) for the coefficients of a holomorphic
solution of Z(A) at + =0

Let -
o4 z) = Z Cpz"™, Cop=1
n=0

be the (normalized) power series solution to Z(A) at z = 0. Substituting this expression into Z(A),
we see that the coefficients C), satisfy the following recurrence relation Reg(A) (C—1 =0,Cp = 1):

o _ 20— 40) - 1Y {2n2 — 4Agn + A2+ A2 — A3 — A +1—2(n — Ag)}
Reo(A) - " n(n —240)(2n — 240 — 1)(2n — 240 + 1)
. 4(7171407A271)(TL7A0+AQ71)(717A07A371)(7’L*A0+A371)

B n(n — 2140)(2’[’1, — 2A0 — 1)(27’L — 2A0 + 1) Cn_2.

Cn—l

Thus we see that the invariant of Reg(A) is given as

—{4(n — Ap)? — 1} {(2n2 —4Agn + A2+ A2 — A2 — A3+ 1)° —d(n— AO)Q}

Hy(n; A) = dn(n —240)(n — Ag — Ag)(n — Ag + As)(n — Ag — As)(n — Ag + As)

Remark 10.3 (Symmetry) Rco(A) is invariant under

Aj — —Aj (] = 1,273) and A < Ag.

10.3 3-term relation for the special values (at 1) of balanced terminating
hypergeometric series 4F3

We consider the special value (at 1) of the generalized hypergeometric series:

1y = (@0)k(an)k(az)k(as), T o @01 02,08
4F3(a’1)_k220 BorBo)r (Bl RV _( B1, B2, Bs )
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Here we assume «y is a non-positive integer (the series terminates), and also assume it is balanced:

Br+ P2+ B3 —ayg—oyg —az—az =1

_(1,0,0,0 ~/0,1,0,0 ~(1,1,0,0
=\ 100 ) ®2=\o10 ) 271,10/
We have

Proposition 10.4 ([1] (§3.7), see also [8])

Set

4F3(C!; 1) = UI(O) (a)4F3(a +e1; 1) + ‘/1(0) (Ot)4F3((X + eq9; 1),
4F3(a; 1) = UQ(O) (a)4F3(a + es; 1) + ‘/é(o) (Ot)4F3(O’, + eq9; 1),

where
0,  _ —(B1— al) (B1+ B2 — ax — ag) ©), . —a1(Ba—az) (B2 —a3)
(e = B (B3 —ap —1) ’ Vi(e) = B1B2(Bs—ag—1)
(0) = (Be— ) (B1+ P2 —az —a3) (0) o (B — a2) (B — az)
U2 () = B2 (B3 —a1—1) ’ Vo(e) = Bif2 (B3 —on —1)

Perform a change o — a + e;2 in (5), and we have
4F3(a + e19; 1) = Ul(o) (a + 612)4F3(a + 2eq + es; 1) + Vl(o) (OL + 612)4F3(a + 2eq9; 1),
and a change a — a + e in (6) to get

sFs(ote;1) = U (a+ e))sFs(a+ ern; 1) + Vi (o + €1)aFs (o + 2e1 + e3;1).

(9)

(10)

Eliminating 4 F5(a + 2e1 + e3;1) and 4F5(a + e1;1) from (5), (9) and (10), we eventually get

Lemma 10.5

4F3(e;1) = qio)(a)éng(a +eio;1) + qéo) ()4 F3(a + 2eq2; 1),
where
U1 (V" (e + 1)

0" (@) = U (@)U3" (@ + e1) + V" (@) + ==
Ul (a + 812)

U (e )V(O)(a +en)Vi(a+ er)

(0)( )= U (a+e )

If we change a into

~ —n,o; —n,02,03 ~ ~ 0,041,042,a3
n; &) = = —nejzx + &, where &=
(n; &) (51-”:52—71”33) ’ ( b1, B2, B3 )

in the lemma above, we get
Proposition 10.6

—_n,a; —n,02, Qa3
ﬁl _nvﬁQ —TL,B;}

satisfies the homogeneous linear difference equation

D(n;d)5:4F3< ;1> with B1+ B2+ B3 —a1 —as —ag =1

R(8) : Dy = 1" (m:6) Doy + 3" (0 6) Dy
The invariant of the difference equation Rc(®) (&) is

0)/ . Ay (0) A
H(O)(n’ d) = 41 (naa) q1 (TL+ 1,a)

¢ (n+1;&)

Remark 10.7 (Symmetry) Rc(9 (&) is invariant under

as <> a3 and [ < Ba.

20

(11)



10.4 Local solutions at zero I: solving Rcy(A)

Proposition 10.8 The two invariants Ho(n; A) and H®) (n; &) of the difference equations Reo(A)
and Rc®) (&) agree, as functions in n, if and only if

& — <07a1,0¢2,043) _ < 0, A0, Ay, A 44— > (13)
ﬂ1>627/83 A++77,A++++,1 _A() ’
(0 Ay~ A A A
o= <A++»A+++» 1—-Ap—A)”’ (14)

up to the symmetries of the two difference equations. Thus Rco(A) and Rc®) (&) are essentially
the same in these cases.

This can be obtained by solving the system
Ho(n; A) = HO(n;&) n=1,2,..

with unknown é&. Actual process is as follows: The numerator of Hy(n; A) — HO(n; &) is a
polynomial in n of degree 14. The coefficient of the top term decomposes as

constant X (ag — 81 — Ba+1—A1)(a1 — 1 — B2+ 1+ Ay).
If we set ay = 81 + B2 — 1 £ Ay, then the second top term decomposes as
constant x (24; — 1)(241 4+ 1)(a2 + ag — 81 — B2 + 24p).
Since we assume A; is a free parameter, we have
ag +asz — 1 — P2 + 240 = 0. (15)

Eliminating 8 and f3 from H(®(n;&) by making use of this equality and the balance condition

Pr+Pe+Ps—ar—ar—az=1 (16)
in Proposition 10.6, we get an expression
HO(n;&) = V0 <(n - AO)Q) ,

70 + 0 ((n = 40)°)

where
7O = Af(ar — Ao)*(a2 — B1 + Ao)?(as — B1 + Ag)*. (17)
Now, assume 7(?) # 0. Then, H® (Ag; &) = —1, whereas Hy(Ap; A) is parameter dependent:

— (A2 A2+ A2+ A2—1)°

Hy (Ag; A) =
4AZAZA2

So it does not happen that Hy(n; A) = H®(n;&) in the case v(*) # 0. Therefore, v(*) must be
equal to 0. Thanks to the symmetry of Re(® (&) (cf. Remark 10.3), we have only to study two
cases:

Casel: ay = Ag and Case2: 1 = az+ Aop.

Case 1: Eliminating B and B3 from H( (n; &) by (15) and (16), we have

—{4(n— Ap)? -1} M) (n+1)
dn(n —2A0)(n+ az — B1)(n — az + B1 — 240)(n + oz — f1)(n — az + B1 — 24¢)’
where ego)(n) =2 (n2 —2Aon + 240B1 + azas + aaf +azf — B —as —az+ 1 — n) .

HO (n; &) =

Equating this and Hy(n; A), we conclude that & satisfies
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o V(0)= A2+ A2 — A2 A2+ 240 +1,

o {£(—ag+P1—Ag) — Ay, £(—a3+ 1 —Ag) — Ao} = {—Ao £ Az, —Ap £ A3}.
These lead to (13), up to the symmetries of Rco(A) and Re(®(&).
Case 2: In the same way we have
—{4(n— 40)2 = 1} e ()l (n+ 1)
dn(n —240)(n — a1)(n + a1 — 2Ag)(n — ag + az — Ag)(n + as — az — Ag)’
where eéo)(n) =2(n* — 2A4on + 245 — Ao + 24pas + 24003

HO (n;&) =

— a1 — araz + 2asa3 + o —Ozz—Otg—l—l—Ao—n),
and the conditions
o 0)(0) = A2+ A7 — A3 — A3+ 24p+1,

[ {:l: (O[l — Ao) — AQ, + (012 — ag) — Ao} = {—AO + AQ, —AO + A3},

which lead to (14), up to the symmetries of Rco(A) and Rel® (&).
These conclude the proof the proposition.

This proposition together with Corollary 10.2 implies

Proposition 10.9
(A ) (Ays),
(3= 4o),
_(0-A0—A49), (A ), (A1)
?’L' (1 — Ao)n (% — Ao)n

Picking the solutions with initial condition C_; = 0,Cy = 1 up from the right hand-sides, we get

(Solutions of Reo(A)) = (Solutions of Rc\9) (&) with & as (13) )

n (Solutions of Re\” (&) with & as (14) ).

Theorem 10.10 The solution {9 (A;z) of Z(A) holomorphic at x = 0 (with normalization
fO01(A;0) = Cy = 1) can be expressed as
FO(A; )

LS (), ( iAo —m A A )
=) z aF3 i1
rd n! (3 —A), Ajppe = Ay —n 1= A

_ i (1- AO - A2) (A—v-), (A++)n4F3< —n,Ag— Ay —m, Ay A4 .1>
1 7A0) ( 7A0)n A++77 —TL7A++,+ —n,l —A(] _AQ’ '
(19)

(18)

n=0

It is invariant under the symmetry of Reo(A) in Remark 10.3.

Remark 10.11 (Another way of deriving (19) from (18)) By the way, the following identity is known:

-n,a,b,c \ (e—a), (f—a), —-n,a,d—b,d—c )
4F3( dye, f ’1>_ (), (), 4F3(d,a—|—1—n—e,a—i—l—n—f’1>7 (20)

where a+b+c—n+1=d+e+ f (see Theorem 3.3.3 in [1]). Applying this transformation
formula to the expression (18) by putting

a,b,c o A7+7+7A() — 'I’L,A,++,
doe, f)  \Aps—— —n,Apiiy —n,1— A

we get the expression (19).
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Remark 10.12 It is easily seen that

a, B = (@) n,l—c—n,a,f
2F1< - ;$>2 ( ) Z © nn| ey 3(1—a—n1—b—n'y.1>’ (21)

which implies

_ A_yq- A____JA__
+—+> ++ ) ++
F .
( 1- 4 )2 1( 1- A4 x)
i (A——), (A——41), E —n, Ao —n, Ay A 1
- n! ( 1—Ao) A A 1= Ay )

Compare this with (18). It leads the authors to the discovery of the relationship between Z(A) and
L(A): Z(A) = mcy/2(L(A)) in Theorem 5.2 (see also §10.7).

Let us define the following operation to state the above discovery impressively.

Definition 10.13 The operation [X™] is defined to pick up the coefficient of X™ from a series
Yort o CuX™, that is,

(X" CuX™ = C.
n=0
Then, the expression (18) can be rephrased as

oo

0,0)( 4. ) — n (L= A0)n on Ay Agy A A4y
f (A,x) 7;)1' (%_AO)”[X ]2Fl 1— A, 1 X o F1 1— Ay ;X (22)

Remark 10.14 By combining (19) and (21), we can also obtain another expression of f(O0)(A;x):

oo

1= Ag — Ao)n(1 — Ao + As)n Ay Ay A A
(0,0) A: — ( 0 2 0 2 X", F ( +—+> + X) F < +—> ++ X)
f ( ,ZZ?) T;I (1—A0)n(§—A0)n [ ]2 1 1—A0—A2 ) 241 1—A0+A2 )
10.5 Other local solutions expressed in terms of f(00
Recall
5 Ao+l Atz Ao—1
Z(A):Ad(x 0 2)Z(A):x 0+3 6 Z(A) 0 02
and that Z(A) has symmetries
Aj——4; (1=0,1,2,3); A «— As; (23)
(,’1,‘7140,141) — (1 — .’177141,140). (24)

In particular, the symmetry Ay — —Aq for Z(A) implies that if f(A;z) is a solution of Z(A), then
= A0T1/2 f(A: z) and x40t /2 f(— Ay, Ay, Ay, As; ) satisfy Z(A), that is, 2240 f(— Ao, A1, Ag, As; z)
also solves Z(A). Therefore, we get the following:

Proposition 10.15 Let f(0:240)(A;z) be the normalized local solution of Z(A) at x = 0 with
exponent 2Ag. Then, f(0240)(A;z) is expressible as

FORA)(A32) = 2240 fOO (= Ao, Ay, A, Ag; ),
Similarly, the symmetry (24) leads to the following;:

Proposition 10.16 Let f(:+41)(A; z) be the normalized local solutions of Z(A) at x = 1 with
exponents % + A1, respectively. Then, f(l’iAl)(A;x) are expressed as

JEER (Az) = 2072 (1= 2) 254 fOO(F A, Ag, Az, Ass 1 — ),
respectively.

Thus, we have obtained the normalized local solutions at x = 0 with exponents 0,24, and at
x = 1 with exponents 1/2 £+ A;.
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10.6 Local solutions at infinity I: using invariants of the difference equa-
tions

In this section, we start to find the normalized local solutions of Z(A) at x = co. Recall that the
local exponents at x = oo are
1—-Agx Ay, 1—-A)=+ As.

We find the normalized local solution with exponent 1 — Ag + A,. By substituting the expression

(OO A ) 1 1—-Ag+Az o0 1 n
floma)(Asr) = | — ZC" —) , where Cp=1.
x
0

T
n=

into Z(A), we see that coefficients C,, satisfy the following 3-term recurrence relation

o {2(n+ Ag) — 1} {2n +4Am — A2+ A3 + A3 — A3+ 1 - 2(n+ As)}
RCOO(A) . o 47’L(7’l+ 2A2)(n—|—A2 +A3)(’I’L—|—A2 — Ag)
(QTL + 2A2 - 1)(27’7, + 2A2 — 3)(7’1 + AO + A2 — 1)(7’L — AO + A2 — 1)

_ Ch_o.
An(n + 245)(n+ Az + As)(n+ Ay — Aj) 2

Cnfl

Thus the invariant Ho(n; A) of Reoo(A) is given by
Heo(n; A) = Ho(n; — Az, Ay, Ao, As).

Remark 10.17 (Symmetry) Rcoo(A) is invariant under A; — —A; (j = 0,1,3), not under Ay <
As.

Hence, Proposition 10.8 yields the following proposition;

Proposition 10.18 The two invariants H®) (n; &) and Huo(n; A) of the difference equations Rc(®) (&)
and Reso(A), respectively, agree if and only if

g (Qanazaz) (0, —Ag Ay Ay (25)
5131827[33 A_+__,A++_+,].+A2 ’
_ (0, A=Ay A Ay
T (A—+——? A—+—+a 1- AO +Ay)’ (26)
_ 07 _A2 - A37 A+++—7 A7++,
o <A+»A++’ 14+ Ay —As)’ (27)

up to the symmetries of the difference equations.

In a similar way to §10.4, by computing the ratio of the coefficients of the two difference equations
Reoo(A) and Re® (&), we get

Proposition 10.19

(Solutions of Rceo(A))

(5 A) (A ), (Armii),
Tonl(1+Ax— A3), (1+ Ax + A3),
(534+A42), (1— Ao+ A2), (Ay 1), (A1),

_ . )/ A oA
UL+ Ag) (1 Ay — Ag), (1+ A 1 A3). (Solutions of Rc\™ (&) with & as (26) )

(5+42), (A1), (Ar 1), _ o
= (4 ) (Lt Ay + Ay (Solutions of Re(®) (&) with & as (27)).

(Solutions of Rc\9) (&) with & as (25) )

Picking the solutions with initial condition C_; = 0,Cy = 1 up from the right hand-sides, we get
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Theorem 10.20 f(>+t42)(A;z) is given as

FlootA2) (4 2y = <1)1_A0+A2 > (1>" (3+42), (A1), (Ar—1y),
' "0 n! (1+A2 —Ag)n (1+A2—|—A3)n

T
—n,—Ay = A Ao
;1
x 4F3 (A_+__ — TL,A++_+ —n, ]. + A27
(1 ) t-dotds 20 ( 1 ) (3+42), (1= Ao+ As), (As—14), (Ar—1-),
ne0 TL' (1+A2)n (1+A2*A3)n (1+A2+A3)n

% 4F3< —n,—Ag—As—mn, Ay Ay 1>

X

X

A_+__ - n,A__,___,_ —n, 1-— AO + AQ’
(1)1“‘0“‘2 - ( 1 ) (3+42) (A1), (A yy),
ne0 Tl' (1 —|— Ag)n (1 —|— AQ + A3)n

% 4F —n,—Ay —As—n, Ay A 1
SNAL,__—n Ay —n 14+ Ay — A )

X

The function x'~A0tA2 (00t 42)(A: 1) is invariant under the change of parameters Aj—-—-4A; (=
0,1,3).

Note that one of these three expressions yield the other two by the help of the transformation
formula (20) as stated before. Note also that these expressions are rephrased in terms of products

of o Fy using (21):
Theorem 10.21 f(>+42)(A; x) is expressible as

(OO,+A2) A — —
/ (A;z) (w x 14+ Ay —As), (14+ Ax + A3),

1>1—A0+A2 0o (1>n (%+A2)n(1+A2)n
n=0 (

Ay A Ap g Ay
X" F i X o F i X
< [X7]2 1( 1+4, )0 1+4,

B <1>I—A°+A2 > (1)n (3 +A42) (1—Ag+ As), (1+ Ag+ Ap),
X
n=0

x (1+A2)n(1+A2 —Ag)n(l-f—AQ-l-Ag)n

% [Xn]2F1 (A—+++7 A—++— 7)( 2F1 <A+—++7 A+—+— ,X)

1— Ag + Ay 14 Ao+ A,
_<1>1‘A"+A2§:(1>"(5+A2)n
A\ —\x) (14 Az2)n
Appy— Ay Appr Ay
X"y F (X )oF (X ).
X7z 1( 1+ A4;—As 7 )2 14404+ 4;

The other three local solutions at * = oo are easily obtained from Theorem 10.20 by recalling

symmetries of Z(A)
Aj — —Aj (] = 1,2,3) and A2 4 A3.

Theorem 10.22 Let f(o=42)(A;z) , f(o>+43)(A;2) be normalized local solutions of Z(A) at
x = oo with exponents 1 — Ay — Aa, 1 — Ay + Az, respectively. Then, these can be expressed as

T (Asw) = fOOHA) (Ag, Ay, — Ay, Ag; ),
fOEEA) (As ) = fOOHA) (Ao, Ar, 43, As; ),

where f(+42)(A:z) are given in Theorem 10.20 and 10.21.
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10.7 Correspondence of solutions via the Riemann-Liouville transfor-
mation

For a linear differential operator P, the middle convolution mc, P of P with parameter u is defined
in §5.1 as the linear differential operator 97* o P o O*.

On the other hand, for a function u(z), the notion of Riemann-Liouville transformation of u
with parameter p is defined as the function in x:

() (2) = 55 / u(s)(z — 5)~1ds,

1)
where v is a cycle.

It is known ([Hara2]) that if u is a solution of P, then the function given by the integral above
is a solution of mc, P.

If u(z) is given locally around = = 0 as

u= xo‘chx" (a ¢ Z),
7=0

and if ;1 ¢ Z, then we can choose 7 as a path from 0 to x:

(tho) @ = i [ o) =5 s

Since we assume «, pu ¢ Z, we can apply the beta function formula to get

I'l+a) = (1+a),
t0) s
([01] (z) = F(l—i—oz—l—,u Z (I+a+pn o

10.8 Partial correspondence of local solutions at =z = 0,1

Recall Theorem 5.2: ~
Z(A) = g~ Aot 2 7(A)gpAo—1/2 = mc%L(A).

This suggests us to apply the above transformation formula for
@ = _AOa n= 1/2

and for u the product of the two Gauss hypergeometric series multiplied by z~4o:

A_ Ay A A _
A n _ivn =t At ++ .
u=x E cnx™, ¢ =X ]2F1( 14, >2F1< 1— 4, ,x).

We get a solution of Z(A):

1—Ap) (1-A4y)
11/2 _ I'( 0 o~ Aot1/2 0 n
( [O,ﬂ“) (z) = T(3/2 — Ay) Z (3/2 — Ao it

which is, by the definition of f(®:°)(A,z), equal to

F(l — AO) —Ap+1/2 £(0,0)
. A— ? A .

This rediscovers the expression (22), and we have

Proposition 10.23 Via the Riemann-Liouville transformation I[o/

x =0 to L(A), the product of two Gauss equation, of exponent £Aq is sent to the local solution at
=0 to Z(A) of exponent § + Ag.

] above, the local solution at

Since the equation is stable under the change
(LU, A07 A17 A2a A3) — (1 -, Al; A0> A27 AB)

as in Remark 4.5, the happening at x = 1 reduces to that at x = 0.
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10.9 Local solutions at infinity II: using middle convolution

Since the local exponents
a:_].:l:AQ, 1:|:A3

of L(A) at 0o are non integral, the corresponding solutions with exponents
a=—1/2+ A5, 3/2+ A3

of Z(A) are obtained via the Riemann-Liouville transformation with parameter 1/2 from those of
L(A). Just apply to the local solution at infinity

0 0
u(x) = 2 Z cna" = Z Cpa e a€{-1+A4s 1+ A3}

to get
0 1
I 1 1 -0 — 3)p
(0‘+3)xa+2 2 : Cn( 3) "
Mo+ 35) . (Fa)

11 Local solutions of Z(A) at x = 0 with exponent Ay £+ 1/2

In this section, local solutions of Z(A) at « = 0 with exponent Ay & % are constructed.

11.1 Recurrence relation Rci(A)

The coefficients of a local solution

o
_1
o2 g Cpa”

n=0
satisfy
o (n—1)2(2n2—4n—A%+A%—A§—A§+g)C
n — — 1 — 1 n—1
Rex(A) n(n=1) (n+ 4o = 5) (n— Ao - 5) (n=23,..)

A= 3 (= Ae = (et Ay~ ) (0= 4 )

n(n—1) (n+ 49— 3) (n— 49— 1) Crz-

For arbitrary given Cy and C1, remaining coefficients Cy,(n > 2) are uniquely determined. The
invariant of Rci(A) is given by

—n(n—1) (2n? —4n — A3+ A7 — A3 — A3+ 2) (2n® — A3+ A7 — A3 — A3+ 1)
(n+do—3) (n=Ap—3) (n+A2—3) (n—A2—3) (n+ A3 —3) (n—As — 3)

Hy(n; A) =

Remark 11.1 (Symmetry) Req(A) is invariant under

Aj — —Aj (] =0, ]., 2, 3) and A2 4 Ad (28)

11.2 Special values of non-terminating ,F3 at x =1

The difference equation Reg(A) for holomorphic solutions at 2 = 0 was solved by special values
of the terminating series 4 F3(x; 1), which satisfy the difference equation Rc(®)(&). The key was to
find the parameters & so that the invariants of the two difference equations

Ho(n; A) and HO(n; &)

agree.

For the difference equation Rep(A) for general parameters A = (Ag, A1, A, A3), we can not
find & so that the invariants Hi(n; A) and H®) (n; &) agree. In other words, the terminating series
1F5(x; 1) can not solve our equation Req(A).
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We introduce some special values of non-terminating 4 F3 at 1: We first introduce

- <a07a17a27a3. ) _ i I'(ap +n)'(a1 + n)I'(az + n)I'(as +n) ,

3L x,
1fs bo, b1, ba, b3 or F(bo + n)F(b1 + n)F(b2 + ’I’L)F(bg + n)
and®
~ T r r T
4f3<a01;a1b,a2b,a3;x) — 4f3<a0,a1,a2,a3;x> _ (ao) (al) (ag) (a3)4F3<a0,a1,a2,a3;x>.
1,b2,b3 1,b1,b2,03 L'(b1)L(b2)L(b3) b1,b2, b3
For
Qp, a1, Q2,3
o= ,
< 51752763 )
we define
Qp, a1, Q2,3
) = a;l) = i1,
Yo(a) := 4 f3(a; 1) 4f3< By By, s >
3 1- () 1- ) 1- ) 1—-5; .
yi(a):=4f3(ao+ Bi, a1 + Bi,an + Bi, a3 + 61;1>7 (i=1,2,3)
2B, 1 +1—Bi, B+ 18,83+ 1—p;
= a0 +1— B0 +1— B0 +1— B3 )

: — 1), =0,1,2,3

y+4<a) 4f3<ai+1040,041‘4’10[1,0&1‘4’10(2,0@4’1043 (Z )
From now on we always assume that the parameters are balanced:

Br+ B2+ B3 —ap—a; —ax —az =1, (29)

so all the infinite series above are convergent.

11.3 Difference equation Rc(V)(a) : an extension of Rc(¥ (&)

o _ (10,00 (0,1,00) _ (1,100
=\ 100 /) 2" \Voz10 /)27 1,10 )"

as in §10.3. We have

Set

Proposition 11.2 ([4])

.
ao(ﬁg — g — ].)7
-
061(53 — 01 — 1)

yi(e) = UV (@)yi(a + e1) + Vi (a)yi(a + ern) +
yi(e) = UV (@)yi(a + e) + Vi ()yi(a + ern) +

hold for any i (i =0,1,...,7). Here,

W, —(Br—a)(BiL+ B2 — as — az) W, —(B2—a2)(f2 — a3)
Uil = ao(fs —ap — 1) ’ Ve = ap(Bs —ap—1) 7
USY () = UV () g 51 55 Vi () = VY (@)|agerar 810

As Proposition 10.4 led to Lemma 10.5 and Proposition 10.6, we have

Lemma 11.3 Assume condition (29). Set (n; ) := —neia+a. yi(n;a) (i =0,1,...,7) satisfies
the non-homogeneous linear difference equation

D, =¢"(n;a)Dy 1 + ¢V (n; @)Dy s + g8 (n; @),

8This series is known to be convergent at = = 1 if

§R(bo+b1+52+b3—ao—a1—a2—a3)>1.
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where

UM (@ (a+e)
Ul(l)(a + 612)

¢tV (@) = U (@)U (o + e1) + V() +

_ U@V (@t en)Vy (@t e

Ul(l)(a + e12)

q(()l)(a) _ (Br—a2+1)(B1 —ag +1)(B1 + P2 — g — 3) apar — B1(f1 + P2 — az — az) '
a1 (Bs —ag —1)(f3 —a1 —1)(B1 + B2 —az —az3 +2)  apar(fs — g —1)(f3 — a1 — 1)

)

Proposition 11.4 Assume condition (29).
D (i) = yi(ni) —ys(mia)  ij e {0,1,2,...,7)
satisfies the homogeneous linear difference equation
RWM(a): D, = qgl)(n; a)D, 1+ qél)(n; a)D,,_s.

The invariant of Re™ () is

O P ! )
H(l) (n’a) = 51 (n7a)ql (Tl + 17a)

& (n+1;a)

Note that this invariant is a generalization of the former one:
HY(n; @) ag=o = HO (n; &).

Remark 11.5 (Symmetry) The homogeneous linear difference equation Rc™Y) (ax) has symmetries

ag oy, axéraz, f[e B, (30)
a— (a+1—-PF3,a1+1—=pF3,00+1—B3,a3+1—p3,61+1—p03,024+1—03,2—03), (31)
(14)(010,040+17ﬂ3,0&0+17ﬂ1,0&0+17[32,040+17012,040+170[3,0404’170[1). (32)

11.4 Local solutions at zero II: solving Rci(A)
We eventually find a to solve Rey(A).

Proposition 11.6 The invariant Hy(n; A) of the equation Rci(A) and the invariant H® (n; o)
of the equation RcM) () agree if and only if o = (o, a1, o, a3; By, P2, B3) is equal to

1 1 1 1
a= (27A0 + §,A+,,,,A+,++;A+,,+ + §7A+*+7 + iaAO + 1) ; (33)
1 1 1 1
or = 5,142 + 5,A77+,,A+,++;A,,++ + §,A+7+7 + §,A2 +1), (34)
1 1 1 1
or = (Ao todet o A A Ay + 5 A+ 5, Ao+ Ao+ 1) , o (35)
1 1 1 1
or = <A2 + §,A3 + §7A+—++7A——++;A+—++ + §,A——++ + §,A2 + Az + 1) ; (36)

up to the symmetries (28), (30), (31), (32) of the difference equations.

Proof is parallel to that of Proposition 10.8, and goes as follows: The numerator of H;(n;A) —
H® (n; a) is a polynomial in n of degree 14. The coefficient of the top term decomposes as

constant X (g + a1 — 1 —fPo+1— A1)+ a1 — B1 — P2+ 1 + Ay).
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If we set ag = —a; + 81 + B2 — 1 &= A4, then the second top term decomposes as
constant x (247 — 1)(24; + 1)(aa + a3 — f1 — B2 + 1).
Since we assume A; is a free parameter, we have
ast+a3—F1—B2+1=0. (37)

Eliminating B and 33 from H(™)(n; ) by making use of the condition (29) and the relation (37),
we get an expression

—®+0((n-1)?)
+1 4+ 0 ((n - %)2) ’

HY(n;a) =

where
AU = (200 — 1)2(201 — 1)2(2a — 2681 + 1)%(203 — 261 4+ 1)%.

Now, assume 7(!) # 0. Then, H® (%, a) = —1, whereas H; (%, A) is parameter dependent:

o (L (A A1)
! B 4AZAZA2 '

So it does not happen that H; (n; A) = H®(n;a) in the case 4 # 0. Thus ) must be 0.
Thanks to the symmetry (30) of Re)) (), we have only to consider two cases:

~—

1
and Case2: [y =as+ —.

Case 1: ap = 5

|~

Case 1: Eliminating 8, and B3 from H™ (n; a) by the condition (29) and the relation (37), we get

an expression

—n(n = De{ (n)el’ (n + 1)
m—a))(n+a;—D(n+as—pF1)n—a+B —(n+as—pF1)n—az+ 5 —1)

(1

where ¢ /(n) =2 (n2 —2n — ajas — ayaz + asas + asf + azf — 5% + o1 —ag —ag+ B+ 1) .

HY (n;a) =

Equating this and H;(n; A), we conclude that « satisfies

)
o V)= AT+ AT AT A3

° {:I:(Oq-é)—; :t(—ag-i-ﬁl—;)—;, :I:(—Oz;g—i—ﬁl—;)—;}

1 1 1
—{iAO—Z, +4; - 3, j:Ag—Q}.

These lead to (33) and (34), up to the symmetries (28) and (30).
Case 2: In the same way we have

—n(n — el (n)es” (n+1)

W (n;a) =
A (nie) (n—ao)(n+a0—1)(n—a1)(n+a1—1)(n—a2+a3—%)(n—&—ag—ag—%)’

where eél)(n) =2 (n2 —2n + oo — QpQa — Qi3 — L Oy — QL O + 2009003 + ? + % + 1) ,

and the conditions
5

o V(0)=—AZ+ A2 — A2 A2+ 5
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1 1 1 1 1 1 1
[ ] {:l:<0102>27 :t(a12>2, Zt(OlQO{g)Q}{iAOQ, ZI:A27§7

which lead to (35) and (36), up to the symmetries (28) and (30).
These complete the proof of the proposition.

This proposition together with Corollary 10.2 implies

Proposition 11.7

(Solutions of Rei(A))

()

= n'"(Solutions of Re™W () with o as (33) )

1 —_A 1 A 1
= (jz)'TEEAO 14_1)2)7&1510 1—’_1)2)"(Solutions of Re™W () with o as (34) )
' 2/n 2/n

Az'f'l)

" (Solutions of Re™ () with o as (35) )

A2 +3), (A3 +3), (As+5)
(%n( Ao+3), (Ao +3),

1
:tA3—§

n(Solutions of Re™ (a) with o as (36) ).

So far we got many solutions of the difference equation Req(A), whose solution space is two
dimensional. Among these, there are many linearly independent pairs, but it is not so obvious to

pick two independent ones. Set

0 3)n )
Wi i 4) = ~22 D (n; )|

n! a=(33)’
1 1
(1) A (5)7}, (_A2 + §)n (A2 + §)n D(l) .
T = D e D e

(—A2 + l)

l
ngll)](n,A) = )"DS)(n;a)‘

a=(35)

—As + ) Ay +3) (As+3), (As+3)
) = e A D, (D), Py
and
Q:={(k,i,j) | k=1,2,3,4; i,7=0,1,...,7; i £ j}.
We have

Theorem 11.8 For (k,i,j) € 2,

fko Ao— 1/2)(14 x) = g2 Znglm (n; A)x

is a solution of Z(A) at x = 0 with ezponent Ag — 3.

Examples of linearly independent pairs:

{f(O,A0—1/2 fl(OAo 1/2)} {f10A0 1/2) (0,A0—1/2} {f(vo 1/2) (0,A0—1/2)}'

1,01 ) J1,54 »J 2,54

12 Local solutions of Q(A)

Let Pg(A;x) (= Pg(Ap, A1, A, As;x)) denote the space of solutions of Q(A) appeared in §6.2.

Remark 6.3 implies the following equivalence.

A0
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Proposition 12.1

Pq (Ao, Ay, Az, Az;x) = Po(£Ao, £A;, Ag, +A3; 1) (38)
:PQ(:EAl,:l:AQ,AQ,:l:Ag;].—(E) (39)
1 14+2A5 1
= (—) PQ (:l:Ag, :l:Al, AQ, :tAo, ) (40)
X X
—(1-z) ' P, (iAo, A3, A, £A1; — 1) (41)

To help understand the following propositions, we tabulate several expressions of the Riemann
scheme of Q(A):

x=0 z=1 =00 N %:OO %:1 %:0
14+2A
0 0 1+24, | _ (_1) ) 1404, 0 0
_AO_A2 _Al_A2 1+A2_A3 xT 1+A2*A0 7A17A2 7A37A2
AO_AZ Al_A2 1+A2+A3 1+A2+A0 Al—Ag A3—A2
1=0 = =1
— (1—1‘)_(1+2A2) 0 1+2A2 0

—Ap—As 14+A43— A1 —A5— A
Ag—As 1+A:+A;1 As—As

Thanks to the identities (39) and (40), three linearly independent local solutions at z = 0 give those

at other singular points. We find a holomorphic solution f (A x) and a solution f (©. j[)(A x) of
local exponent +£Ag — Ay at x = 0 as follows.

12.1 Holomorphic solution fcg)’o)(A;x) to Q(A) at z =0
Set

(00 7 ZCJ? 0:1.

The coefficients C,, satisfy the recurrence relation

(n+ A2 — %) (2n? +2(24; — 1)n — AJ + AT + A5 — A3 — 24, +1)

Cn = n—1
ReQ(A4) : (n+ 245 — 1)(n+ Zi”++£0f1’§‘<2,3(1‘22"5) A+3Af)1) .
- n(n+ Ao + Az)(n — Ao + As) e
whose invariant will be called Hg(n; A).
Remark 12.2 (Symmetry) RcQ(A) is invariant under
A; = —-4; (G=0,1,3). (42)

Proposition 12.3 Let A be generic. Then, the two invariants Hg(n; A) and H®) (n;&) of the
difference equations RcQ(A) and Rc®) (&) agree as functions in n if and only if

& = <070417a27043) _ ( 0,Ag— Ao, Ay AL >
B, B2, B3 Af L Ar 14+ Ag+ Ay )

_ <0, —Ax+ A3, A4, A+++>

or A777+,A+,,+,1+A2+A3
or = (A Ay A
A A 144

up to the symmetries of two difference equations, that is, (42) and Remark 10.3.
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Doing the same as we got Theorem 10.10 from Proposition 10.8, we can obtain the following
theorem:

Theorem 12.4 The holomorphic solution f(o 0 (A;2) to Q(A) at x = 0 has the following expres-
sions:

15" (Asz)
_ i n(14242), (A tiy), (A*++*)n4F < Ao = Ao = Ay Ay ~1> (43)
(1+ Az) (1—Ap+ Az)pn! NAjo o —n A —n 1+ Ag+ Ay

_ Z 1+245), (1+ A+ A3), (Apiq ), (Agim )y, r ( —n,—Ap+ Az —n, A AL 4y .1>
(1+ AQ) (1—Ag+ A2)p(1+ A+ Ag)n! " P\A___ L —n, A —n, 1+ Ay + As’
(44)

i n(1+245), (A4i44), (Agi ), F< —ny = Ap = A A '1> (45)

1—A0+A2) (T+Ag+ Ag)un! ™ P\A____ —m A —n 1+ A4

Remark 12.5 By the help of the transformation formula (20), one of the three (43), (44), (45)
implies the other two.

Remark 12.6 By using the formula (21), the expressions (43), (44), (45) can be written also as

1" (A )
— . (1+24,) (A—+++,A—++— > (A+ 4o Ayyy >
N lisia TN /A3 N AN 7 46
;“” (4, 2P a4 4, P 1440+ 4, (46)
> (1+2A2)n(1+A2+A3)n(1+A2_AS)TL <A+++7A++ ) <A++,A+ ++ )
N 7", F 7 )oF 7
;::()m (1+A2)n(1—A0+A2)n(1+Ao+A2)n[ R 1+ Ay — A3 I 1+ 4+ 4
(47)
= (14 A2), (1+2A,) <A++++,A ++— > (A++7A++ )
= n Z™)o F' APy 1 4.
Z (1—Ap+ Ay), (1+A0+A2)n[ J2F 1+ Ay 2t 1+A,
(48)

Remark 12.7 Applying the trivial symmetry (38)) to féo,o) (A;x), we have
1" (As) = J 0 (£ A0, £41, Ap, £45: ).

12.2 Local solution to Q(A) at x = 0 with exponent A; — A,
Set

féo’—'_)(A;x) = gAo—42 Z Cpa™, Co=1.
n=0

The coefficients C,, satisfy the recurrence relation:

(n+Ag—3) (2n® +2(240 — 1)n + A3 + A3 — A3 — A — 24, + 1)

n(n+24p) (n+ Ag — As)
_ (”+A0+A2—1)(n+A0+A3—1)(n+A0—A3—1)O
’I’L(’I’L—f—2A0) (n+A0 —AQ) ne

Cn = Cnfl

The same argument as in the previous section leads to
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Theorem 12.8 The local solution ng’H(A; x) to Q(A) at x = 0 with exponent Ag — As has the
following expressions:

1§ (45)

do—As N~ n(L+ Ao+ As), (A+——+7A+——— > (A++++7A+++— >
x nz:%x 1+ 4o, [Z")2FY 14 Ag — Ay 2 W (49)
e N~ (L Ag — Ag)n(1+ Ao + A3)n A Ap App— Appq— |
- ;::ox L+ Ao+ A= A), 2 a2 )0 14—,
(50)
— A0—A2 - ’rbm—AO)n n A+*+*7 AJr**Jr . A++**7 A++++ .
- ,;)x (1+A0—A2)n[z J2Fy 1+ Ag 2 )2k 1+ Ao 12 (51)

Remark 12.9 As in the previous section, the formula (21) changes the expressions (49) , (50) and
(51) into those in terms of 4F3(1).

Remark 12.10 Applying the trivial symmetry (38) to fg)’Jr)(A; x), we have

FOP(Asz) = [§ (Ao, £A1, Az, £ 435 2).

12.3 Pfaff transforms of the solutions of Q(A)

From formula (41) we get the following Pfaff transformations:

Proposition 12.11

00 (A z) = (1 — )= 0F242) pOO (4 AL LAy Ay, £ Ay ——
fQ ( ,LIJ) ( .’IT) fQ ( 05 3y 412, 111.71 )
x

(01+) . — _ _(1+2A2) (01+) .
fQ (A,l‘) C x (1 (,C) fQ (AU7:|:A3,A2,:|:A1, T 1) s

where C' is a constant depending on the choice of the branch of x40=42.

12.4 Local solutions of Q(A)

Applying the symmetries (38), (39) and (40) to local solutions fg)’o)(A;x) and fégo’H(A;x) of
Q(A), we obtain series expressions of other local solutions.

Proposition 12.12 Local solutions of Q(A) are tabulated in Table 1.

13 Local solutions of the Dotsenko-Fateev equation

The Dotsenko-Fateev equation S is obtained (Propositions 6.5 ) from the equation Q(A) by the
change of unknown

z =g Ao (g — )T AT A2y (52)

where z: solution of Q(A), w: solution of S, and the parameter change given in Propositions 6.6.
So we get expressions of local solutions of Dotsenko-Fateev (D-F for short) equation from those
obtained in the previous section.

Table 2 tabulates the local solutions of Q(A) appeared in the previous section, and names

g I’:)(a, b, ¢, g; x) of the corresponding solutions of the Dotsenko-Fateev equation.
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names of solutions

(00

(OO7A2 — A3 + 1)

JAs+ A3+ 1)

series expression

Theorem 12.4, Remark 12.6, 12.7, Proposition 12.11
Theorem 12.8, Remark 12.10, Proposition 12.11
FO (= A, £A1, As, £ A5 1)

FOO (AL £Ag, Ay, £4551 — x)

FO (AL, £A0, Ay, £A5:1 — )

FO(~ AL, £ A0, Ag, £ A45;1 — x)

(=)
()
)

14+2A-
OO) <:|:A37:l:A17A27:tA07 )

&HRH

1+2A5
f(o +) <A37iA13A27:tA07 )

1
T

1+2A5
0 +) <_A3a :l:Aly A27 iAO? >
X

-

Table 1: Names of local solutions of Q(A) and their series expressions

solutions of Q(A)

)
o (4
187 (As)
1o (A )
fo " (4;)
o7 (Asw)
150 (As )
5° 7 (4sa)
15° 7 (Asa)

solutions of D-F equation | (point, exponent)
(01)((1 b,c,g;x) (0,a+c+1)
(02(a b,c,g;x) (0,2a +2c+ g+ 2)
b (abe.gir) | (0,0)
(11(a b,c,g;x) (Lb+c+1)
(12(a b,c,g;x) (1,26 4+ 2c+g+2)
o1 (a,b,¢, g ) (1,0)
(001)(61 b,c, g;x) (c0,—a—b—2c—g—1)
(OO 0)(a b, ¢, g;x) (00, —2¢)
(wz)(a b, ¢, g;x) (00, —2a — 2b—2¢c — g — 2)

Table 2: Names of local solutions of D-F equations corresponding to those of Q(A)

13.1 Local solutions of the Dotsenko-Fateev equation at z =0

Proposition 13.1 (1)

bir (@b, g:w)/(1— )" +F!

. (—a—c— e—a—b—c—9_1 bt1l,—a—9
:an( a—c g)n[zanl( ¢, —a c—4 ;Z)2F1( +1,—a 2;Z>

= (-a—c—9%), —a—c —a—c—g

2 (“2a—-b—c—g—Dnlb—c+1)n —e,—c— ¢ —a,—a—12
:an( a c—4g )( gc+ ) [Zn]2F1< ¢ —c¢ Q;Z)2F1< @, —a—73 ,Z>
o (—a—¢), (—ra—c—9%) b—c+1 —2a—-b—c—g—1
0 —a—c—14 —b—c—g-—1 b+1
Sy 2)"{2”121%( R ;Z)2F1< i q;Z>.

= (—a—c), —a—c— 1% —a—c—1%
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(2)

w”Osz%xvf”H% — )ttt

> g) b+1,—a—4 a+1,-b—4
T 7, R 2.7Z),F 2.7
=S e gren (P B (0

2 —b— l,—a—2 l,—c— 4
S S A Db gy (L (e )
-4) (—a—c—g), (a+c+2), —a—b—yg a+b+2

N 1-9),(- —a—b—c—g— Le+l
T I

(—a—c—g),(a+c+2), -4 1-4

g)j,?)(a,b,c,g;x):x2“+20+g+2fg);9)( 0—5—1 a+b+c+2+1 —a—§ 1,9 )

Proof: By the relation (52) and Proposition 12.12, we get (1) and (3). From the expressions (46),
(47), (48) of the holomorphic solution f(0 0)(A x) of Q(A), we have (2). O

Remark 13.2 By using the trivial symmetry (38) of the equation Q(A), we can obtain other ex-
pressions of fg)lﬁ) (a,b,c,g;x) (i =0,1,2), which we omit.

Relation (52) between Q(A) and D-F, and the Pfaff transformation (41) lead to other expressions
(0,0) (0,1),
of fpr’ and fhp':

Proposition 13.3
¢ (0,0 z
W) 150 @b egia) = 0= o150 (00 -b—c—g-2eg ).

0,1 0,1 X
(2) (DF)(aab7cvg;x):CX(]‘7x)2c I(DF) (a7ab69236,g;x_1)»
where C' is a constant depending on the choice of a branch around x = 0; or more precisely,

g)ﬁl)(a, b,c,g:z)/z* (1 — )bete

oo n _ g _ _g
:Z x (1-9), 270 Fy c+1,-b— AN b+1,—c Q;Z)
r—1) (1-4 a+c+2 —a—c—g

)
:i( xl)n (1- g;n(HCH) L(=b—c—9), [Z”]2F1(0+1 q,Z>2F1< a1 —c—

Llate+2), (—a—c—yg), b+c+2 —b—c—yg

)n( a_c_g)n

13.2 Local solutions of the Dotsenko-Fateev equation at z =1
By the symmetry of (39) of Q(A) and the relation (52) between Q(A) and D-F, we have
Proposition 13.4
(1) SﬁMabcg;>:f§£Mamam1—x.
(2) foi) (a,b,c.g32) = F3
(3) fbi (asbc,gix) = (OW@mamI*x
— (1— ) 2bF2ctg+2 £(0,0 _9_ 9 S
=(1-x) f ( c=3 1,a—|—b+c—|—2+1, b 5 1,9;1 x)

AR

= z \" -9 (1-g9), a+1,b+1 c+l,—a—b—c—g—-1
=3 (-3, (Z"]sF) AN VAl
x—1/) (a+c+2), (- 1-4 1-4



13.3 Solutions of the Dotsenko-Fateev equation at x = oo

The relation (40) and the relation (52) between Q(A) and D-F lead to

Proposition 13.5

—2c
1 1
(1) (DO;’O) (a,b,c,g;2) = <—) g);?) (—a —b—c—g—2,b0¢,g; ) .
X X
(c0,1) . B 1 —2a—2b—2c—g—2 ©.1) . 1
(2) DF (a’bvcagwr)* _5 DF a,c,b,g,; .

(00.2) 1 —2a—2b—2¢c—g—2 ©0.0) 1
(3) DF7 (a’bvcag;x): <_.13) D}77‘ (a,c,b,g; .13) .

Acknowledgement: The authors thank D. Zagier for presenting them with the challenging system
Z3(A),a1 = as = ag = 0. They also thank N. Takayama for instructing them about various
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