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Abstract

A Fuchsian system of rank 8 in 3 variables with 4 parameters is found. The singular locus
consists of six planes and a cubic surface. The restriction of the system onto the intersection
of two singular planes is an ordinary differential equation of order four with three singular
points. A middle convolution of this equation turns out to be the tensor product of two
Gauss hypergeometric equations, and another middle convolution sends this equation to the
Dotsenko-Fateev equation. Local solutions of these ordinary differential equations are found.
Their coefficients are sums of products of the Gamma functions. These sums can be expressed
as special values of the generalized hypergeometric series 4F3 at 1.
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Introduction

In Part I, we find a Fuchsian system Z3(A) of rank 8 in 3 variables (t1, t2, t3) with 4 parameters
A = (A0, A1, A2, A3). The singular locus consists of six planes and a cubic surface (the Fricke
surface):

ti = ±1 (i = 1, 2, 3), 1− t21 − t22 − t23 + 2t1t2t3 = 0.

In general, we can have ordinary differential equations as we like, we have only to give polynomials
to coefficients, but to have a system in more than 2 variables of finite and non-zero rank, the
coefficients must satisfy the integrability condition (a system of non-linear differential equations).
Very few examples are known (most of them belong to the so-called hypergeometric family). Our
system Z3(A), which is not hypergeometric, is an important example.

The restriction of the system onto the plane, say t3 = 1, is a system Z2(A) of rank 6 in 2
variables. Its singular locus consists of

ti = ±1, (i = 1, 2) t1 = t2,

which is equal to that of the well-known Appell’s hypergeometric system F1.
In the future, we would like to study these systems; power series solutions, integral representa-

tions of the solutions, etc.
To understand these systems we begin with studying its several restrictions. The restriction of

the system onto the diagonal t1 = t2 = t3 is an ordinary differential equation Z∆8 of order 8.
The restriction of the system Z2(A) onto the line, say, t2 = 1 is an ordinary differential equation

Z(A) of order 4 with three singular points t1 = ±1 and∞. This equation Z(A) has not been studied
so far, to the authors knowledge.

While studying local solutions of Z(A), which are fully presented in Part II, we find a power-
series solution to Z(A) at t = 1, which is very similar to the product of two Gauss hypergeometric
series. This leads to the discovery that a middle convolution sends the equation Z(A) to the
tensor product of two Gauss hypergeometric equations, with special parameters. We also find that
another middle convolution sends Z(A) to the Dotsenko-Fateev equation.

In Part II, we study local solutions for the ordinary differential equation Z(A) and for several
related ones around their singular points. We see the relation between Z(A) and the tensor
product of two specific Gauss hypergeometric equations. At a singular point of Z(A), say t = 1,
the coefficients of the holomorphic solution to Z(A) satisfy a 3-term difference equation Rc0(A).
On the other hand, 4F3(∗; 1), special values at the unit argument of the terminating generalized
hypergeometric series 4F3, satisfy a linear difference equation of order 2, if the parameters are
carefully chosen. Comparing the invariant of this difference equation with that of Rc0(A), we find
solutions of Rc0(A) expressed in terms of 4F3(∗; 1). From the observation that the special values

4F3(∗; 1) appear as the coefficients of the product of two Gauss hypergeometric series, we notice
that its product has relevance to the holomorphic solution to Z(A) at t = 1, which leads to the
discovery stated above.

For most local solutions of the ordinary differential equations related to Z(A), we can make use
of middle convolutions connecting the equation and the tensor product of two Gauss equations to
get explicit expressions for the solutions. But in these cases also, we present a way to get them by
using the difference equations for 4F3(∗; 1), because this method gives various expressions.

The coefficients of hypergeometric-type series are products of the Gamma functions. However
for our equation Z(A) and the related ones including the Dotsenko-Fateev equation, the coefficients
of local solutions are sums of products of the Gamma functions. These sums can be expressed as
special values 4F3(∗; 1).

Solutions of the ordinary differential equations we studied in this paper admit Euler integral
representations, which will be discussed elsewhere.
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Part I

A Fuchsian system of rank 8 in 3
variables and its restrictions
In §1, we find a Fuchsian system Z3(A) of rank 8 in 3 variables (t1, t2, t3) with 4 parameters
A = (A0, A1, A2, A3).
In §2, the restriction Z∆8(A) of the system Z3(A) onto the diagonal t1 = t2 = t3 is studied.
In §3, the restriction of the system Z3(A) onto the plane t3 = 1 is studied and the system Z2(A)
is found. The restriction of the system Z2(A) onto the diagonal t1 = t2 is also studied.
In §4, the restriction of the system Z2(A) onto the line t2 = 1 is studied and the system Z(A) is
found. This is an ordinary differential equation of order 4 with three singular points t1 = ±1 and
∞.
§5 gives a relation between Z(A) and the tensor product of two specific Gauss hypergeometric
equations.
§6 gives a relation between Z(A) and the Dotsenko-Fateev equation.
§7 illustrates the relation among the differential equations appeared above.
In §8, a Pfaffian form of Z3(A) is presented.
§9 studies the tensor products of two Gauss hypergeometric equations.

1 A Fuchsian system of rank 8 in 3 variables Z3(A)

We treat ideals of the ring of differential operators C[a0, . . . , t1, . . . , ∂/∂t1, . . . ]. We often call a
set of generators of an ideal simply as a system, which sometimes also means the corresponding
system of differential equations, after introducing an unknown, say F, u, . . . .

In 2017, Don Zagier showed us a system generated by a differential operator

(1− t21)∂11 + 2(t3 − t1t2)∂12 + (1− t22)∂22 + a0t1∂1 + a0t2∂2

and those obtained by a succession of the cyclic permutation 1 → 2 → 3 → 1 with a parameter
a0, where ∂1 = ∂/∂t1, ∂12 = ∂2/∂t1∂t2, etc. This system in 3 variables (t1, t2, t3) is Fuchsian of
rank 8, and is highly reducible. Hoping to have less reducible system of rank 8, we considered a
bit general system with more parameters and got the following result.

Theorem 1.1 The system generated by the operator

E3 = (1− t21)∂11 + 2(t3 − t1t2)∂12 + (1− t22)∂22 + a31t1∂1 + a32t2∂2 + a33t3∂3 + a30

and those obtained by a succession of the cyclic permutation 1 → 2 → 3 → 1 with constants
aij (i = 1, 2, 3, j = 0, 1, 2, 3) is of rank 8 if and only if

a11 = a22 = a33 = 0, a12 = a13 = a21 = a23 = a31 = a32 (=: a0).

Set a1 = a10, a2 = a20, a3 = a30. Then the operators E1, E2 and E3 are given as

E1 = (1− t22)∂22 + 2(t1 − t2t3)∂23 + (1− t23)∂33 + a0t2∂2 + a0t3∂3 + a1,
E2 = (1− t23)∂33 + 2(t2 − t3t1)∂31 + (1− t21)∂11 + a0t3∂3 + a0t1∂1 + a2,
E3 = (1− t21)∂11 + 2(t3 − t1t2)∂12 + (1− t22)∂22 + a0t1∂1 + a0t2∂2 + a3,

with parameters a = (a0, a1, a2, a3). We often use parameters A = (A0, A1, A2, A3) related to a by

a0 = 2A0 − 3, ai = A2
i − (A0 − 1)2 i = 1, 2, 3,

and name the system as Z3(A).
By using bi = (a1 + a2 + a3)/2 − ai (i = 1, 2, 3) as parameters, F as unknown, and writing

F1 = ∂1F, F12 = ∂12F , etc, this system can be also written as

(t21 − 1)F11 = (t3 − t1t2)F12 + (t2 − t3t1)F13 − (t1 − t2t3)F23 + a0t1F1 + b1F,
(t22 − 1)F22 = (t1 − t2t3)F23 + (t3 − t1t2)F21 − (t2 − t3t1)F31 + a0t2F2 + b2F,
(t23 − 1)F33 = (t2 − t3t1)F31 + (t1 − t2t3)F32 − (t3 − t1t2)F12 + a0t3F3 + b3F.
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Proposition 1.2 The system Z3(A) is Fuchsian, and the singular locus in the finite space consists
of six planes and a cubic surface:

ti = ±1 (i = 1, 2, 3), 1− t21 − t22 − t23 + 2t1t2t3 = 0.

The local exponents along the divisors are given as

ti = ±1 : 0, 1, 2, 3, 4, 5, 1/2±Ai,

the cubic surface : 0, 1, 2, 3, A0, A0 + 1, A0 + 2, A0 + 3,

ti =∞ : 1−A0 ±Aj , 1−A0 ±Ak, 2−A0 ±Aj , 2−A0 ±Ak ({i, j, k} = {1, 2, 3}).

The local exponents along a divisor are defined as those of the ordinary differential equation obtained
by restricting the system onto a curve intersecting the divisor transversely at an ordinary point of
the divisor.

The singularities are known from the matrix 1-form ω in the next subsection. If we restrict the
system onto a generic line t2 =constant, t3 =constant, we get an ordinary differential equation of
order 8 in t := t1 with polynomial coefficients:

(t+ 1)3(t− 1)3(1− t2 − t22 − t23 + 2t2t3t)
5P (t)

d8F

dt8
+ · · · = 0,

where P (t) is of degree 16, the number of apparent singular points, the local exponents at each
points are 0, 1, 2, 3, 4, 5, 6 and 8. Though we omit the explicit expression of the coefficients of the
ordinary equation above, we find the local exponents at the singular points as in the Proposition.

Remark 1.3 (Symmetry) The system Z3(A) is invariant under

(t1, t2, t3)→ (ε1t1, ε2t2, ε3t3), εi = ±1, ε1ε2ε3 = 1,

Aj → −Aj (j = 1, 2, 3),

(t1, t2, t3, A1, A2, A3)→ (tσ(1), tσ(2), tσ(3), Aσ(1), Aσ(2), Aσ(3)),

where σ is a permutation of {1, 2, 3}.

1.1 Outline of the poof of Theorem 1.1

Several integrable systems of partial differential equations with many variables are known; for
example Appell-Lauricella’s hypergeometric system FA in n variables. The rank of FA is known
to be 2n. The form of the equations tells immediately the rank does not exceed 2n. But it would
be quite difficult to prove that the rank is exactly 2n by manipulating the differential equations;
this is proved by finding 2n linearly independent hypergeometric series at a singular point.

In our case, no local solutions are known; so, we are forced to check honestly the integrability
condition. We transform the system Z3(A) into a Pfaffian form of size 8, and show the integrability.

Let F be the unknown, Fij..k the partial derivative of F by ti, tj , . . . , tk, and set

e = tr(F, F1, F2, F3, F12, F13, F23, DF123), D := −1 + t21 + t22 + t23 − 2t1t2t3.

A computation shows that the derivatives Fij..k can be written as linear combinations of F , F1,
F2, F3, F12, F13, F23 and F123, and thus we get a Pfaffian system of the form

de = ωe,

where ω is an 8×8-matrix 1-form given in §8.1. The integrability condition of the system is written
as

dω = ω ∧ ω,

and, by computation, we get Theorem 1.1.

5



2 Restriction of Z3(A) onto the diagonal t1 = t2 = t3

Let F (t1, t2, t3) be a solution of Z3(A). The function F (t, t, t) satisfies a Fuchsian ordinary differ-
ential equation. In this section, its singular points and the exponents are described. Proofs are
omitted.

2.1 Z∆8(A)

For generic parameters A = (A0, . . . , A3) the function F (t, t, t) satisfies an ordinary differential
equation Z∆8(A) of order 8 with regular singular points at −1,−1/2, 1,∞ and apparent singular
points at −2 and other 8 points. The local exponents are given as

t = −1 : 0, 1, 1
2 ±A1,

1
2 ±A2,

1
2 ±A3,

t = − 1
2 : 0, 1, 2, 3, A0, A0 + 1, A0 + 2, A0 + 3,

t = 1 : 0, 2A0, A0 − 1
2 , A0 +

1
2 , A0 +

3
2 , A0 +

5
2 , A0 +

7
2 , A0 +

9
2 ,

t =∞ : 1
2 (3− 3A0 ±A1 ±A2 ±A3),

t = −2 : 0, 1, 3, 4, 5, 6, 8, 9,

t = other 8 points : 0, 1, 2, 3, 4, 5, 6, 8.

2.2 Z∆6(A)

If A3 = A2 then F (t, t, t) satisfies an ordinary differential equation Z∆6 of order 6 with regular
singular points at −1,−1/2, 1,∞ and apparent singular points at −2 and other 4 points. The local
exponents are given as

t = −1 : 0, 1, 1
2 ±A1,

1
2 ±A2,

t = − 1
2 : 0, 1, 2, A0, A0 + 1, A0 + 2,

t = 1 : 0, 2A0, A0 − 1
2 , A0 +

1
2 , A0 +

3
2 , A0 +

5
2 ,

t =∞ : 1
2 (3− 3A0 ±A1 ± 2A2),

1
2 (3− 3A0 ±A1),

t = −2 : 0, 1, 3, 4, 5, 6,

t = other 4 points : 0, 1, 2, 3, 4, 6.

2.3 Z∆4(A)

If A3 = A2 = A1 then F (t, t, t) satisfies an ordinary differential equation Z∆4 of order 4 with
regular singular points at −1,−1/2, 1,∞ and only one apparent singular point at −2. The local
exponents are given as

t = −1 : 0, 1, 1
2 ±A1,

t = − 1
2 : 0, 1, A0, A0 + 1,

t = 1 : 0, 2A0, A0 − 1
2 , A0 +

1
2 ,

t =∞ : 1
2 (3− 3A0 ± 3A1),

1
2 (3− 3A0 ±A1),

t = −2 : 0, 1, 3, 4.

3 Restriction of Z3(A) onto the plane t3 = 1 and Z2(A)

3.1 Equation Z2(A)

The restriction Z3(A)|t3=1 of Z3(A) onto the plane t3 = 1 is, by definition, generated by the
operators P , where

P (t1, t2, ∂1, ∂2) + (t3 − 1)Q, ∂i := ∂/∂ti
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belongs to Z3(A) for some operator Q = Q(t1, t2, t3, ∂1, ∂2, ∂3). We find two such operators P1 and
P2 as follows. Since

E3 = (1− t21)∂11 + 2(1− t1t2)∂12 + (1− t22)∂22 + a0(t1∂1 + t2∂2) + a3 + 2(t3 − 1)∂12,

we cut off the last term, and define P1 as

P1 := (1− t21)∂11 + 2(1− t1t2)∂12 + (1− t22)∂22 + a0(t1∂1 + t2∂2) + a3.

We next express E1 and E2 as

E1 = G1 + (t3 − 1)R1 + 2(t1 − t2)∂23 + a0∂3,
E2 = G2 + (t3 − 1)R2 + 2(t2 − t1)∂13 + a0∂3,

where
G1 = (1− t22)∂22 + a0t2∂2 + a1, R1 = −2t2∂23 − (1 + t3)∂33 + a0∂3;

G2 and R2 are given by exchanging 1 and 2 in G1 and R1, respectively. Differentiate these:

E1,1 = G1,1 + (t3 − 1)R1,1 + 2∂23 + 2(t1 − t2)∂123 + a0∂13,
E2,2 = G2,2 + (t3 − 1)R2,2 + 2∂13 + 2(t2 − t1)∂123 + a0∂23,

where E1,1 := ∂1E1, G1,1 := ∂1G1, etc, for example,

G1,1 = (1− t22)∂122 + a0t2∂12 + a1∂1.

We have
E1 − E2 ≡ G1 −G2 + 2(t1 − t2)(∂23 + ∂13),
E1,1 + E2,2 ≡ G1,1 +G2,2 + (2 + a0)(∂23 + ∂13)

modulo (t3 − 1), and so

2(t1 − t2)(E1,1 + E2,2)− (2 + a0)(E1 − E2) ≡ 2(t1 − t2)(G1,1 +G2,2)− (2 + a0)(G1 −G2).

Now we define the second operator P2 by the right hand-side of this identity:

P2 := 2(t1 − t2){(1− t22)∂122 + a0t2∂12 + a1∂1 + (1− t21)∂112 + a0t1∂12 + a2∂2}

−(2 + a0){(1− t22)∂22 + a0t2∂2 + a1 − (1− t21)∂11 − a0t1∂1 − a2}.
Though we have no rigorous proof that P1 and P2 generate the ideal Z3(a)|t3=1, we study the
system Z2(A) in (t1, t2) generated by P1 and P2.

Theorem 3.1 The system Z2(A) := 〈P1, P2〉 is of rank 6. The singular locus in P1 × P1 is given
by

ti = ±1, ∞ (i = 1, 2), t1 = t2.

Proposition 3.2 The local exponents along the divisors above are given as

t1 = ±1 : 0, 1, 2, 3,
1

2
±A1,

t2 = ±1 : 0, 1, 2, 3,
1

2
±A2,

t1 = t2 : 0, 1, 2A0, 2A0 + 1, A0 ±A3,
ti =∞ : 1−A0 ±Aj , 2−A0 ±Aj , 1−A0 ±A3 ({i, j} = {1, 2}).

If we restrict the system Z2(A) further onto a generic line t2 =constant, we get an ordinary
differential equation of order 6 in t := t1 with polynomial coefficients:

(t+ 1)2(t− 1)2(t− t2)
4P (t)

d6F

dt6
+ · · · = 0,

where P (t) is of degree 6, the number of apparent singular points, whose local exponents are
0, 1, 2, 3, 4 and 6. Though we omit the explicit expression of the coefficients of the ordinary equation
above, we find the local exponents at the singular points as in the proposition.

Remark 3.3 Any set of six independent solutions defines a map from (t1, t2)-space into the five
dimensional projective space, whose image is regarded as a surface. We remark that the operator
P1 implies that the second jet-space of the surface is always degenerate; the system Z2(A) is not
general in this sense among those systems of rank 6.
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3.2 Outline of the proof of Theorem 3.1

Using unknown F , we rewrite the system in Pfaffian form relative to a frame

e6 = tr(F, F1, F2, (t1 − t2)F11, (t1 − t2)F12, (t1 − t2)
2F112).

This time, by using P1 = 0 and P2 = 0, and their higher-order derivatives, we can see that the
derivatives Fij..k, i, j, k = 1, 2, can be written in terms of F , F1, F2, F11, F12 and F112. Thus, we
get a Pfaffian form ω6 such that de6 = ω6e6. It is a straightforward computation to see that the
integrability condition dω6 = ω6 ∧ ω6 holds. The 6×6-matrix 1-form ω6 is listed in §8.2.

3.3 Restriction of Z2(A) onto the diagonal t1 = t2

Change the coordinates from (t1, t2) to (t, s) by t1 = t, t2 = t+ s. Then the operator P1 becomes

∂11 − t2∂11 + a0t∂1 + a3 + s {−s∂22 − 2t(∂12 − ∂22) + a0∂2 − 2t∂22} .

Thus the restriction of Z2(A) to the diagonal s = 0 is the ordinary differential equation

(1− t2)F11 + a0tF1 + a3F = 0, F1 = dF/dt.

The local exponents at t = −1, 1 and ∞ are

0, A0 −
1

2
; 0, A0 −

1

2
and 1−A0 ±A3,

respectively.

4 Restriction of Z2(A) onto the line t2 = 1 and Z(A)

4.1 Equation Z(A)

Express P1 and P2 as

P1 ≡ Q1 + 2(1− t1)∂12 + a0∂2,
P2 ≡ Q2 + 2(t1 − 1){a0∂12 + (1− t21)∂112 + a0t1∂12 + a2∂2} − (2 + a0)a0∂2

= Q2 + 2a0(t
2
1 − 1)∂12 − 2(t21 − 1)(t1 − 1)∂112 + {2a2(t1 − 1)− (2 + a0)a0}∂2

mod (1− t2), where　

Q1 = (1− t21)∂11 + a0t1∂1 + a3,
Q2 = 2(t1 − 1)a1∂1 − (2 + a0){a1 − (1− t21)∂11 − a0t1∂1 − a2}.

Differentiate P1, and we have

P1,1 := ∂1P1 = Q1,1 − 2∂12 − 2(t1 − 1)∂112 + a0∂12
= Q1,1 + (a0 − 2)∂12 − 2(t1 − 1)∂112,

where Q1,1 := ∂1Q1, ∂112 := ∂1∂12. Set

P3 := P2 − (t21 − 1)P1,1 = Q2 − (t21 − 1)Q1,1 + (t21 − 1)(a0 + 2)∂12 + {2a2(t1 − 1)− (2 + a0)a0}∂2,

and differentiate:

P3,1 = Q2,1 − 2t1Q1,1 − (t21 − 1)Q1,1,1

+ 2t1(a0 + 2)∂12 + (t21 − 1)(a0 + 2)∂112 + 2a2∂2 + {2a2(t1 − 1)− (2 + a0)a0}∂12.

By using P1, P3 and P1,1, express ∂2, ∂12 and ∂112 in terms of Q1, Q1,1. Substitute these expressions
into P3,1, and we get an ordinary differential operator Z(a) of order four.

Proposition 4.1 The equation Z(a) is irreducible.

Proof: If Z(a) factors as Z1Z2, then the local exponents of Z2 at t = ±1 and ∞ are subsets of
those of Z(a). Riemann relation says that the sum of the local exponents of Z2 is an integer. The
Riemann scheme of Z(a) below shows that this can not happen if Z2 is of order 1 or 3. Assume
that the order of Z2 is 2, and let k be the number of apparent singular points. Then Riemann
relation says that the sum of the local exponents of Z2 is equal to 1 + k. On the other hand the
Riemann scheme shows that the sum is greater than 3 + k. □
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This assures that Z(a) is the restriction of Z2(a) onto t2 = 1.

Theorem 4.2 The restriction Z(a) of Z2(a) onto the line t2 = 1 is given by

Z(a) := p0∂
4 + p1∂

3 + p2∂
2 + p3∂ + p4,

where ∂ = d/dt, t = t1, and

p0 = 2(t+ 1)2(t− 1)3,
p1 = −4(t+ 1)(t− 1)2{(2 + a0) + (a0 − 2)t},
p2 = 2(t− 1){(a20 − 2a1 + 6a0 + 2 + a2 + a3) + (3a20 + 4a0 − 4 + 2a1)t

+ (a20 − 4a0 + 2− a2 − a3)t
2},

p3 = (−4a20 − 8a0 + 4a0a1 + 4a1 − (2a0 + 4)(a2 + a3))
+ (−2a30 − 6a20 − 4a0a1 − 4a1 + 4(a2 + a3))t+ 2a0(a0 + a2 + a3)t

2,
p4 = 2a2a3t+ (a1 − a2 − a3)(a0 + 2)2 − 2a2a3.

This equation has one accessory parameter; the local exponents do not change if we add a constant
to p4.

We denote the operator Z(a) with parameters (A0, A1, A2, A3) by Z(A), the explicit form of which
will be given in §10. The Riemann scheme of Z(A) is given as

t = 1 t = −1 t =∞
0 1

2 −A1 1−A0 +A2

A0 − 1
2 0 1−A0 −A2

A0 +
1
2 1 1−A0 +A3

2A0
1
2 +A1 1−A0 −A3

 .

Remark 4.3 (Symmetry) Z(A) is invariant under

Aj → −Aj (j = 1, 2, 3) and A2 ↔ A3.

Remark 4.4 The Dotsenko-Fateev equation (§6.1) appears as the restriction on a divisor of the
Appell’s equation F4 in two variables (see [5]).

4.2 A small change Z̃(A) of Z(A)

To increase symmetry, we introduce an operator Z̃(A) as 1

Z̃(A) := Ad((t− 1)−A0+
1
2 )Z(A) = (t− 1)−A0+

1
2 ◦ Z(A) ◦ (t− 1)A0−

1
2 .

(Ad stands for addition which will be recalled in §5.1.) 2 We further change the variable t, used
for Z(A) and Z̃(A) etc, into the new variable

x =
1− t

2
.

In x-coordinate, the differential operator Z̃(A) changes into 3

Z̃(A) = x2(x− 1)2∂4 +m1(x)∂
3 +m2(x)∂

2 +m3(x)∂ +m4(x), ∂ := d/dx, (1)

where

m1 = 4(x− 1)x(2x− 1),

m2 =
1

4

(
4A2

0x− 4A2
0 − 4A2

1x− 4A2
2x

2 + 4A2
2x− 4A2

3x
2 + 4A2

3x+ 58x2 − 58x+ 9
)
,

m3 =
1

2

(
2A2

0 − 2A2
1 − 4A2

2x+ 2A2
2 − 4A2

3x+ 2A2
3 + 10x− 5

)
,

m4 =

(
A2 −

1

2

)(
A2 +

1

2

)(
A3 −

1

2

)(
A3 +

1

2

)
.

1Equivalent to changing the unknown z of the equation Z(A) to a new unknown w by z = (t− 1)A0−
1
2w

2Strictly speaking, Z̃(A) = 1
2
(t− 1)−1Ad((t− 1)−A0+

1
2 )Z(A).

3The equations Z(A) and Z̃(A) rewritten in the new variable x will be denoted by the same notation.
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The local exponents do not change if we add a constant to m3; the constant term of m3 is called
the accessory parameter.

Remark 4.5 (Symmetry) Z̃(A) is invariant under

Aj → −Aj (j = 0, 1, 2, 3) and A2 ←→ A3

and
(x,A0, A1)←→ (1− x,A1, A0).

The Riemann scheme of Z̃(A) is given as
x = 0 x = 1 x =∞
1
2 −A0

1
2 −A1

1
2 +A2

0 0 1
2 −A2

1 1 1
2 +A3

1
2 +A0

1
2 +A1

1
2 −A3

 .

4.3 Invariants of ordinary differential operators

For a differential operator L = p0∂
4 + p1∂

3 + p2∂
2 + p3∂ + p4, the operator

L∗ = ∂4 ◦ p0 − ∂3 ◦ p1 + ∂2 ◦ p2 − ∂ ◦ p3 + p4, ∂ = d/dx

is called the adjoint operator.

Proposition 4.6 The equation Z̃(A) is self-adjoint.

To explain the meaning of this proposition, we recall some differential invariants of ordinary dif-
ferential operators. An ordinary differential operator

∂4 +Q1∂
3 +Q2∂

2 +Q3∂ +Q4

is transformed into the operator of the form

∂4 + q2∂
2 + q3∂ + q4 (2)

which has no third-order term, by multiplying a non-zero function to the dependent variable. The
coefficients qi are given as

q2 = Q2 −
3

2
Q′

1 −
3

8
Q2

1,

q3 = Q3 −
1

2
Q1Q2 +

1

8
Q3

1 −Q′′
1 ,

q4 = Q4 −
1

4
Q1Q3 +

1

16
Q2

1Q2 −
3

256
Q4

1 −
1

4
Q2Q

′
1 +

3

32
Q2

1Q
′
1 +

3

16
(Q′

1)
2 − 1

4
Q′′′

1 .

It is known ([7]) that, for an appropriate choice of the dependent variable and the coordinate
y = y(x), the operator (2) can be transformed further into an operator

∂4 + r3∂ + r4, ∂ = d/dy. (3)

Though r3 and r4 are not unique, the forms

θ3 := r3dy
⊗3 = (q3 − q′2)dx

⊗3, θ4 :=

(
r4 −

1

2
r′3

)
dy⊗4 =

(
q4 −

1

2
q′3 −

9

100
q22 +

1

5
q′′2

)
dt⊗4

are unique and are called the fundamental invariants of the operator (2).
By an easy calculation, we see that the adjoint operator of (2) is

∂4 + q2∂
2 + (2q′2 − q3)∂ + q4 + q′′2 − q′3.

Hence, we have:

Lemma 4.7 The operator (2) is self-adjoint if and only if θ3 = 0.

Remark 4.8 The property that θ3 ≡ 0 is rephrased geometrically as follows: Let z1, ... , z4 be
linearly independent solutions of the equation and let us consider z = [z1, . . . , z4] as a curve in the
projective space P3. Then, we can see that, when θ3 ≡ 0, the curve formed by the tangent vectors
to this curve z, which lies in the 5-dimensional projective space of all lines in P3, is degenerate in
the sense that it lives in a 4-dimensional hyperplane.
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5 Z̃(A) is related to the tensor product of two Gauss equa-
tions

In §10.4, we study local solutions of Z̃(A) at x = 0 and find that they are closely related to the
product of two specific Gauss hypergeometric series. In this section we show that an addition and
a middle convolution connects Z̃(A) with the tensor product of the two Gauss equations. We begin
with introducing two important operations for differential operators.

Detailed study of the tensor product of two Gauss equations in general is made in the last section
of Part 1.

5.1 Definition and fundamental properties of addition and middle con-
volution

For a differential operator P in x and a function f in x, the addition by f is defined as

Ad(f)P := f ◦ P ◦ f−1,

which is already appeared in §4.2; multiplying a non-zero function f to the dependent variable to
get a new one.

For a differential operator P in x and a complex number µ, the middle convolution mcµP
with parameter µ is defined symbolically (cf. Definition 2.3 in [6]) as

mcµP := ∂−µ ◦ P ◦ ∂µ, ∂ =
d

dx
.

Actual procedure is as follows: Write the operator P in the form∑
pijx

i∂j .

Set r = max{i− j, pij 6= 0}, and multiply ∂r to P from the left, then substitute

xi∂i = θ(θ − 1) · · · (θ − i+ 1), θ = x∂

to express ∂rP as a linear combination of {θi∂j}. Then replace θ by θ − µ, and finally divide the
operator by ∂ from the left as many times as possible to obtain mcµP . Fundamental properties:

mcµ+µ′ = mcµ ◦mcµ′ , mc−µ = mc−1
µ , mcµθ = θ − µ, mcµ∂ = ∂.

5.2 A middle convolution connects Z̃(A) with the tensor product of two
Gauss equations

Recall the Gauss equation:

E

(
a, b

c
;x

)
= x(x− 1)∂2 + ((a+ b+ 1)x− c)∂ + ab.

Let us consider the tensor product

K = K(A) = K(A−+−+, A−++−, 1−A0, A−−−−, A−−++, 1−A0)

of the two Gauss equations

E

(
A−+−+, A−++−

1−A0
;x

)
and E

(
A−−−−, A−−++

1−A0
;x

)
,

where

Aε0,ε1,ε2,ε3 :=
ε0A0 + ε1A1 + ε2A2 + ε3A3 + 1

2
εj = ±.
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It is, by definition, the differential equation satisfied by the product of the solutions of the two
Gauss equations4, and is given as follows (see §9):

K(A) = x3(x− 1)2∂4 + k1(x)∂
3 + k2(x)∂

2 + k3(x)∂ + k4(x), ∂ = d/dx,

where

k1 = (1− x)x2(4A0x− 4A0 − 10x+ 5),

k2 = x(6A2
0x

2 − 11A2
0x+ 5A2

0 − 24A0x
2 + 33A0x− 9A0

−A2
1x−A2

2x
2 +A2

2x−A2
3x

2 +A2
3x+ 25x2 − 25x+ 4),

k3 =
1

2
(−8A3

0x
2 + 12A3

0x− 4A3
0 + 36A2

0x
2 − 39A2

0x+ 6A2
0

+ 4A0A
2
1x+ 4A0A

2
2x

2 − 4A0A
2
2x+ 4A0A

2
3x

2 − 4A0A
2
3x− 56A0x

2

+ 42A0x− 2A0 − 3A2
1x− 6A2

2x
2 + 3A2

2x− 6A2
3x

2 + 3A2
3x+ 30x2 − 15x),

k4 =
1

2
(2A4

0x− 2A4
0 − 8A3

0x+ 5A3
0 − 2A2

0A
2
1 − 2A2

0A
2
2x

+ 2A2
0A

2
2 − 2A2

0A
2
3x+ 2A2

0A
2
3 + 12A2

0x− 4A2
0 +A0A

2
1 + 4A0A

2
2x

−A0A
2
2 + 4A0A

2
3x−A0A

2
3 − 8A0x+A0 + 2A2

2A
2
3x− 2A2

2x− 2A2
3x+ 2x).

To increase symmetry, we make a change (addition) as:

L(A) = Ad(x−A0)K(A) = x−A0 ◦K(A) ◦ xA0 ,

which can be expressed as

L(A) = x2(x− 1)2∂4 + ℓ1(x)∂
3 + ℓ2(x)∂

2 + ℓ3(x)∂ + ℓ4(x), ∂ = d/dx

where
ℓ1 = 5(x− 1)x(2x− 1),

ℓ2 = A2
0x−A2

0 −A2
1x−A2

2x
2 +A2

2x−A2
3x

2 +A2
3x+ 25x2 − 25x+ 4,

ℓ3 = −3

2

(
−A2

0 +A2
1 + 2A2

2x−A2
2 + 2A2

3x−A2
3 − 10x+ 5

)
,

ℓ4 = (A2 − 1)(A2 + 1)(A3 − 1)(A3 + 1).

The constant term ℓ30 of ℓ3(x) = ℓ31x + ℓ30 is the accessory parameter. The Riemann scheme of
L(A) is given as

x−A0

 x = 0 x = 1 x =∞
0 0 A−+−+

A0 −A1 A−++−

×
 x = 0 x = 1 x =∞

0 0 A−−−−
A0 A1 A−−++


= x−A0


x = 0 x = 1 x =∞
0 0 −A0 −A2 + 1
A0 −A1 −A0 +A3 + 1

A0 + 1 A1 −A0 −A3 + 1
2A0 1 −A0 +A2 + 1

 =


x = 0 x = 1 x =∞
−A0 −A1 1 +A2

0 0 1−A3

1 1 1 +A3

A0 A1 1−A2

 .

Remark 5.1 (Symmetry) L is invariant under

Aj → −Aj (j = 0, 1, 2, 3) and A2 ←→ A3

and
(x,A0, A1)←→ (1− x,A1, A0).

This operator L is connected with the operator Z̃(A), introduced in §4.2, by the middle convolution
as follows.

Theorem 5.2 mc− 1
2
Z̃(A) = L(A).

4Do not confuse this and the product of two operators
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We first express the operator Z̃(A) defined in §4.2 (1) as a polynomial in θ = x∂x and ∂ = ∂x:

Z̃(A) = (θ +
1

2
−A2)(θ +

1

2
+A2)(θ +

1

2
−A3)(θ +

1

2
+A3)

−(θ + 1)(2θ2 + 4θ +A2
1 −A2

0 −A2
2 −A3

3 +
5

2
)∂

+(θ +
3

2
+A0)(θ +

3

2
−A0)∂

2.

Then, replacing θ by θ + 1/2, we have

mc−1/2Z̃(A) = (θ + 1−A2)(θ + 1 +A2)(θ + 1−A3)(θ + 1 +A3)

−(θ + 3

2
)(2θ2 + 6θ +A2

1 −A2
0 −A2

2 −A3
3 + 5)∂

+(θ + 2 +A0)(θ + 2−A0)∂
2,

which turns out to be L(A). This expression leads to

Corollary 5.3 Assume A2 is a positive integer: A2 = m + 1 for m ≥ 0. (or a negative integer
A2 = −m − 1, m ≥ 0; namely, A2 a non-zero integer). Then, the equation L(A)u = 0 has a
polynomial solution of degree m.

Proof. For an integer k, we see that

L(A)xk = pkx
k + qk−1x

k−1 + rk−2x
k−2,

where

pk =
(
(k + 1)2 −A2

2

) (
(k + 1)2 −A2

3

)
,

qk−1 = −k(2k + 1)(k2 + k − 2 + α), α = (A2
1 −A2

0 −A2
2 −A2

3 + 5)/2,

rk−2 = k(k − 1)(k2 −A2
0),

and q1 = r2 = r1 = 0. This implies that the operator L(A) sends the space of polynomials of
degree smaller than or equal to m, into itself. Since pm = 0 by assumption, the image is a proper
subspace; hence, there exists a polynomial solution.

Let u =
∑m

k=0 akx
k be such a solution. Then, we see

am−1pm−1 + amqm−1 = 0,

am−2pm−2 + am−1qm−2 + amrm−2 = 0,

· · · ,

akpk + ak+1qk + ak+2rk = 0,

· · · ,

a0p0 + a1q0 + a2r0 = 0.

If A3 /∈ Z, for a given value am, the other ak are uniquely determined as follows. Let M be a lower
triple-triangular matrix defined as

M =



pm−1

qm−2 pm−2

rm−3 qm−3 pm−3

rm−4 qm−4 pm−4

. . .
. . .

. . .

r0 q0 p0


,

and a = tr(am−1, am−2, . . . , a0) be a column vector. Then, the linear equations above are written
as

Ma = tr(−amqm−1,−amrm−2, 0, . . . , 0).
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Hence, multiplying the inverse of M yields the solution a; note that, since A3 /∈ Z, the determinant
of M is non-vanishing. First few terms of a are given as

am := 1, am−1 =
−m(m2 +m− 2 + α)

m2 −A2
3

,

am−2 =
m(m− 1)

{
(2m− 1)(m2 +m− 2α)((m− 1)2 +m− 3 + α)− (m2 −A2

0)(m
2 −A2

3)
}

2(2m+ 1)((m− 1)2 −A2
3)(m

2 −A2
3)

.

6 Relation between Z̃(A) and the Dotsenko-Fateev equation

6.1 The Dotsenko-Fateev equation

The Dotsenko-Fateev operator ([2]) is an operator of order 3 defined as

S = S(a, b, c, g) = x2(x− 1)2∂3 + s1∂
2 + s2∂ + s3, ∂ := d/dx

where

s1 = −(−1 + x)x(3ax+ 3bx+ 6cx+ 2gx− 3a− 3c− g),

s2 = 2a2x2 + 4abx2 + 12acx2 + 3agx2 + 2b2x2 + 12bcx2 + 3bgx2 + 12c2x2 + 8cgx2

+g2x2 − 4a2x− 4abx− 16acx− 4agx+ ax2 − 8bcx− 2bgx+ bx2 − 12c2x− 8cgx+ 6cx2

−g2x+ gx2 + 2a2 + 4ac+ ag − 2ax+ 2c2 + cg − 6cx− gx+ a+ c,

s3 = −c(2a+ 2 + 2b+ 2c+ g)(2ax+ 2bx+ 4cx+ 2gx− 2a− 2c− g + 2x− 1).

The constant term of s3 is the accessory parameter. The Riemann scheme is
x = 0 x = 1 x =∞
0 0 −2c

a+ c+ 1 b+ c+ 1 −a− b− 2c− g − 1
2a+ 2c+ g + 2 2b+ 2c+ g + 2 −2a− 2b− 2c− g − 2

 .

Remark 6.1 (Symmetry) The adjoint operator of S(a, b, c, g) is given by S with the change:

(a, b, c, g)→ (−1− a,−1− b,−1− c,−g).

6.2 A middle convolution and an addition send Z̃(A) to the Dotsenko-
Fateev equation

The equation Z̃(A) = x2(x− 1)2∂4 + · · · has the Riemann scheme
x = 0 x = 1 x =∞
0 0 1

2 −A2

1 1 1
2 +A2

1
2 −A0

1
2 −A1

1
2 −A3

1
2 +A0

1
2 +A1

1
2 +A3

 .

Proposition 6.2 A middle convolution with parameter − 1
2−A2 sends Z̃(A) to the equation defined

by 5

Q(A) = mc− 1
2−A2

(Z̃(A)) = x2(x− 1)2∂3 + q1(x)∂
2 + q2(x)∂ + q3(x)

5It is known (cf. [6]) that if we choose the parameter µ of a middle convolution as

µ+ 1 = one of the local exponents of Z̃(A) at ∞,

say, µ = 1
2
−A2 − 1 = − 1

2
−A2, the resulting equation is of order 3; for generic parameter it is of order 4.
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of order 3, where

q1 = (2A2 + 3)(x− 1)x(2x− 1),

q2 = A2
0x−A2

0 −A2
1x+ 5A2

2x
2 − 5A2

2x+A2
2 + 12A2x

2 − 12A2x+ 2A2

−A2
3x

2 +A2
3x+ 7x2 − 7x+ 1,

q3 =
1

2
(2A2 + 1)

(
A2

0 −A2
1 + 2A2

2x−A2
2 + 4A2x− 2A2 − 2A2

3x+A2
3 + 2x− 1

)
.

The Riemann scheme of Q(A) is
x = 0 x = 1 x =∞
0 0 1 + 2A2

−A0 −A2 −A1 −A2 1 +A2 −A3

A0 −A2 A1 −A2 1 +A2 +A3

 .

The coefficients are determined by the local exponents except q30, where q3(x) = q31x+ q30, which
is the accessory parameter.

Remark 6.3 (Symmetry) Q(A) is invariant under

Aj → −Aj (j = 0, 1, 3) and (x,A0, A1)←→ (1− x,A1, A0).

Moreover, the change (x,A0, A1, A2, A3)→ ( 1x , A3, A1, A2, A0) takes Q(A) into Ad(x1+2A2)Q(A).

Remark 6.4 The symmetry of Q(A) under x→ 1/x and its Riemann scheme determine the acces-
sory parameter as above, and so characterize the equation Q(A).

Proposition 6.5 The operator R(A) defined by

R(A) := Ad(xA0+A2(x− 1)A1+A2)Q(A)

has an expression:

R(A) = R(A0, A1, A2, A3) = x2(x− 1)2∂3 + r1(x)∂
2 + r2(x)∂ + r3(x),

where

r1 = (1− x)x(3A0x− 3A0 + 3A1x+ 2A2x−A2 − 6x+ 3),

r2 = 3A2
0x

2 − 5A2
0x+ 2A2

0 + 6A0A1x
2 − 6A0A1x+ 4A0A2x

2

− 6A0A2x+ 2A0A2 − 9A0x
2 + 12A0x− 3A0 + 3A2

1x
2 −A2

1x+ 4A1A2x
2

− 2A1A2x− 9A1x
2 + 6A1x+A2

2x
2 −A2

2x− 6A2x
2 + 6A2x−A2 −A2

3x
2

+A2
3x+ 7x2 − 7x+ 1,

r3 = −1

2
(2A0x− 2A0 + 2A1x− 2x+ 1)(A0 +A1 +A2 −A3 − 1)(A0 +A1 +A2 +A3 − 1).

The Riemann scheme of R(A) is
x = 0 x = 1 x =∞
0 0 1−A0 −A1

2A0 2A1 1−A0 −A1 −A2 −A3

A0 +A2 A1 +A2 1−A0 −A1 −A2 +A3

 ,

and the constant term of r3 is the accessory parameter.

Proposition 6.6 Change the parameters {A0, A1, A2, A3} to {a, b, c, g} by

A0 =
2a+ 2c+ g + 2

2
, A1 =

2b+ 2c+ g + 2

2
, A2 =

−g
2

, A3 =
2a+ 2b+ g + 2

2
.

Then R(A0, A1, A2, A3) exactly coincides with the Dotsenko-Fateev equation S(a, b, c, g).

Remark 6.7 (Symmetry) R(A) is invariant only under

Aj → −Aj (j = 3) and (x,A0, A1)←→ (1− x,A1, A0).
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7 Table of related differential equations

Though the equations Z(A),K(A) and R(A) have origin in the Zagier system Z3(A), the hyperge-
ometric equations and the Dotsenko-Fateev equation, respectively, the equations Z̃(A), L(A) and
Q(A) are more accessible. They are related as in the table below:

Z3(A) E1, E2

rest (t3 = 1) ↓ ↓ ⊗

Z2(A) K(A) = E1 ⊗ E2

rest (t2 = 1) ↓ ↓ Ad1

Z(A) L(A)

Ad2 ↓ ↓ mc 1
2

Z̃(A) ∼ Z̃(A) in x = 1−t
2

↓ mc− 1
2−A2

Q(A)

↓ Ad3

R(A) = S(a, b, c, g) : DF

Here E1 and E2 are Gauss hypergeometric equations:

E1 = E

(
A−+−+, A−++−

1−A0
;x

)
, E2 = E

(
A−−−−, A−−++

1−A0
;x

)
.

The additions Adj are given as

Ad1 = Ad(x−A0), Ad2 = Ad((t− 1)
1
2−A0), Ad3 = Ad(xA0+A2(x− 1)A1+A2)

are used just for cosmetic changes. Since a middle convolution is additive and invertible, from

mc− 1
2−A2

(Z̃) = Q, Ad3(Q) = R, Ad1(K) = L, mc 1
2
(L) = Z̃,

we have
Q = mc− 1

2−A2
(Z̃) =

(
mc− 1

2−A2
◦mc 1

2

)
(L) = mc−A2

(L),

and
R = Ad3(Q) = (Ad3 ◦mc−A2

) (L) = (Ad3 ◦mc−A2
◦Ad1) (K),

and conversely,
K =

(
Ad−1

1 ◦mcA2
◦Ad−1

3

)
(R).

Relation of the system of parameters: a∗, A∗, A±±±± and (a, b, c, g):

a0 = 2A0 − 3, ai = A2
i − (A0 − 1)2, i = 1, 2, 3,

Aε0,ε1,ε2,ε3 := (ε0A0 + ε1A1 + ε2A2 + ε3A3 + 1)/2, εj = ±,

a =
A+−++ − 1

2
, b =

A−+++ − 1

2
, c =

A+++− − 1

2
, g = −2A2,

A0 =
2a+ 2c+ g + 2

2
, A1 =

2b+ 2c+ g + 2

2
, A2 =

−g
2

, A3 =
2a+ 2b+ g + 2

2
.
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8 Explicit expressions of matrix 1-forms

8.1 8× 8-matrix form ω = M1dt1 +M2dt2 +M3dt3

In §1.1 the system Z3(a) is transformed into the Pfaffian form de = ωe with the frame

e = tr(F, F1, F2, F3, F12, F13, F23, DF123), D = −1 + t21 + t22 + t23 − 2t1t2t3.

We express in this subsection the 8 × 8-matrix 1-form ω = M1dt1 + M2dt2 + M3dt3. We use
parameters

b1 = (−a1 + a2 + a3)/2, b2 = (a1 − a2 + a3)/2, b3 = (a1 + a2 − a3)/2.

M1 =

0 1 0 0 0 0 0 0

b1
(t21−1)

a0t1
(t21−1)

0 0 −(t1t2−t3)
(t21−1)

−(t1t3−t2)
(t21−1)

t2t3−t1
(t21−1)

0

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

0 p152
(t21−1)D

p153
(t21−1)D

p154
(t21−1)D

p155
(t21−1)D

1
(t21−1)

p157
(t21−1)D

(t2−t3t1)
(t21−1)D

0 p162
(t21−1)D

p163
(t21−1)D

p164
(t21−1)D

1
(t21−1)

p166
(t21−1)D

p167
(t21−1)D

−(t1t2−t3)
(t21−1)D

0 0 0 0 0 0 0 1
D

m181
(t21−1)D

m182
D

m183
(t21−1)D

m184
(t21−1)D

m185
(t21−1)

m186
(t21−1)

m187
(t21−1)D

m188
(t21−1)D


,

p152 = −b2(t1t2 − t3) + b3t1(t1t3 − t2),

p153 = b1(t
2
2 − 1)− (b1 + b3)t1(t2t3 − t1),

p154 = b2(t2t3 − t1)− b1t3(t1t3 − t2),

p155 = −a0(t21 − 1)(t2t3 − t1) + (t1t2 − t3)(t1t3 − t2),

p157 = −(1 + a0)(t2t3 − t1)(t1t3 − t2),

p162 = σ23 ◦ p152 = −b3(t1t3 − t2) + b2t1(t1t2 − t3),

p163 = σ23 ◦ p154 = b3(t2t3 − t1)− b1t2(t1t2 − t3),

p164 = σ23 ◦ p153 = b1(t
2
3 − 1)− (b1 + b2)t1(t2t3 − t1),

p166 = σ23 ◦ p155 = p155 = −a0(t21 − 1)(t2t3 − t1) + (t1t2 − t3)(t1t3 − t2),

p167 = σ23 ◦ p157 = −(1 + a0)(t2t3 − t1)(t1t2 − t3),

where we use the permutation σ23: (σ23 ◦ P )(t1, t2, t3, b1, b2, b3) = P (t1, t3, t2, b1, b3, b2).

m181 = −b2b3(t21 − 1)(t2t3 − t1) + b1(b2 + b3)(t1t2 − t3)(t1t3 − t2),

m182 = b3(1− t23) + b2(1− t22),

m183 = a0b1t2(t1t2 − t3)(t1t3 − t2)− a0b3(t1t3 − t2)(t2t3 − t1) + b1t3(t
2
1 − 1)(t22 − 1),

m184 = a0b1t3(t1t3 − t2)(t1t2 − t3)− a0b2(t1t2 − t3)(t2t3 − t1) + b1t2(t
2
1 − 1)(t23 − 1),

m185 = a0(t2 − t3t1) + b3(t2 − t3t1) + b2(t2t
2
1 − t3t1),

m186 = a0(t3 − t1t2) + b3(t
2
1t3 − t1t2) + b2(t3 − t1t2),

m187 = a20(t2t3 − t1)(t1t3 − t2)(t1t2 − t3)− (a0 + b2 + b3)t1(t2t3 − t1)D + b1(t
2
1 − 1)D

+(t21 − 1)(t22 − 1)(t23 − 1),

m188 = a0(−t1t22 + 2t2t3 − t23t1 + t31 − t1) + 2(t21 − 1)(t2t3 − t1).

Note that m181, m182, m187 and m188 are σ23-invariant, and σ23 ◦m183 = m184, σ23 ◦m185 =
m186.
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M2 =

0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0

b2
(t22−1)

0 a0t2
(t22−1)

0 −(t1t2−t3)
(t22−1)

t1t3−t2
(t22−1)

−(t2t3−t1)
(t22−1)

0

0 0 0 0 0 0 1 0

0 p252
(t22−1)D

p253
(t22−1)D

p254
(t22−1)D

p255
(t22−1)D

p256
(t22−1)D

1
(t22−1)

−(t2t3−t1)
(t22−1)D

0 0 0 0 0 0 0 1
D

0 p272
(t22−1)D

p273
(t22−1)D

p274
(t22−1)D

1
(t22−1)

p276
(t22−1)D

p277
(t22−1)D

−(t1t2−t3)
(t22−1)D

m281
(t22−1)D

m282
(t22−1)D

m283
D

m284
(t22−1)D

m285
(t22−1)

m286
(t22−1)D

m287
(t22−1)

m288
(t22−1)D


,

p252 = σ12 ◦ p153, p272 = σ12 ◦ p163,
p253 = σ12 ◦ p152, p273 = σ12 ◦ p162,
p254 = σ12 ◦ p154, p274 = σ12 ◦ p164,
p255 = σ12 ◦ p155, p276 = σ12 ◦ p167,
p256 = σ12 ◦ p157 = p157, p277 = σ12 ◦ p166 = p255,
m281 = σ12 ◦m181, m285 = σ12 ◦m185,
m282 = σ12 ◦m183, m286 = σ12 ◦m187,
m283 = σ12 ◦m182, m287 = σ12 ◦m186,
m284 = σ12 ◦m184, m288 = σ12 ◦m188,

where (σ12 ◦ P )(t1, t2, t3, b1, b2, b3) = P (t2, t1, t3, b2, b1, b3).

M3 =

0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

b3
(t23−1)

0 0 a0t3
(t23−1)

t1t2−t3
(t23−1)

−(t1t3−t2)
(t23−1)

−(t2t3−t1)
(t23−1)

0

0 0 0 0 0 0 0 1
D

0 p362
(t23−1)D

p363
(t23−1)D

p364
(t23−1)D

p365
(t23−1)D

p366
(t23−1)D

1
(t23−1)

−(t2t3−t1)
(t23−1)D

0 p372
(t23−1)D

p373
(t23−1)D

p374
(t23−1)D

p375
(t23−1)D

1
(t23−1)

p377
(t23−1)D

−(t1t3−t2)
(t23−1)D

m381
(t23−1)D

m382
(t23−1)D

m383
(t23−1)D

m384
D

m385
(t23−1)D

m386
(t23−1)

m387
(t23−1)

m388
(t23−1)D


,

p362 = σ13 ◦ p164, p372 = σ13 ◦ p154,
p363 = σ13 ◦ p163, p373 = σ13 ◦ p153,
p364 = σ13 ◦ p162, p374 = σ13 ◦ p152,
p365 = σ13 ◦ p167 = p167, p375 = σ13 ◦ p157,
p366 = σ13 ◦ p166, p377 = σ13 ◦ p155 = p366,
m381 = σ13 ◦m181, m385 = σ13 ◦m187,
m382 = σ13 ◦m184, m386 = σ13 ◦m186,
m383 = σ13 ◦m183, m387 = σ13 ◦m185,
m384 = σ13 ◦m182, m388 = σ13 ◦m188.

where (σ13◦)P (t1, t2, t3, b1, b2, b3) = P (t3, t2, t1, b3, b2, b1).

Remark 8.1 Though all the poles of the entries of Mi are simple, dω 6= 0 .
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8.2 6× 6-matrix form ω6 = N1dt1 +N2dt2

In §3.1 the system Z2(A) is transformed into the Pfaffian form de6 = ω6e6 with the frame

e6 = tr(F, F1, F2, (t1 − t2)F11, (t1 − t2)F12, (t1 − t2)
2F112).

We express in this subsection the 6× 6-matrix 1-form ω6 = N1dt1 +N2dt2.

N1 =

0 1 0 0 0 0

0 0 0 1
t1−t2

0 0

0 0 0 0 1
t1−t2

0

−b1(2+a0)
t21−1

n142
t21−1

−(b1+b3)(t1−t2)
t21−1

n144
(t21−1)(t1−t2)

n145
(t21−1)(t1−t2)

1−2t1t2+t21
(t21−1)(t1−t2)

0 0 0 0 1
t1−t2

1
t1−t2

n161
t21−1

n162
(t21−1)(t1−t2)

n163
(t21−1)(t1−t2)

n164
(t21−1)(t1−t2)

n165
(t21−1)(t1−t2)

n166
(t21−1)(t1−t2)



n142 = −a0(t1 + t2)− a20t1 + (b1 − b3)(t1 − t2),

n144 = t21 + 2t1t2 − 3 + a0(2t
2
1 − t1t2 − 1),

n145 = 2(t22 − 1)− a0(t
2
1 − 2t1t2 + 1),

n161 = (2 + a0)b1 − (b1 + b2)(b1 + b3),

n162 = −a0(b1 + b3)t1(t1 − t2) + a0(2 + a0)t1(t1 − t2)− a0b2(t
2
1 − 2t1t2 + 1) + 2b2(t

2
2 − 1) + 2b3(t1 − t2)

2,

n163 = −a0b3t2(t1 − t2) + 2b3(t1 − t2)
2 + 2b1(1− 2t1t2 + t21) + a0b1(1− t1t2),

n164 = 2− 2t21 + a0(1− t21) + 2b3t1(t1 − t2) + b2(1− 2t1t2 + t21)− b1(1− t21),

n165 = 2− 2t22 + a0(3t
2
1 − 4t1t2 − t22 + 2) + a20(1− t1t2) + b3(t

2
1 − t22) + b1(t

2
1 + t22 − 2),

n166 = −2t21 + 4t1t2 − 2 + a0(t
2
1 + t1t2 − 2),

N2 =



0 0 1 0 0 0

0 0 0 0 1
t1−t2

0

b1+b2
t22−1

a0t1
t22−1

a0t2
t22−1

−(t21−1)

(t22−1)(t1−t2)
2(1−t1t2)

(t22−1)(t1−t2)
0

0 0 0 −1
t1−t2

0 −1
t1−t2

b1(2+a0)
t22−1

n252
t22−1

(b1+b3)(t1−t2)
t22−1

−(2+a0)(t
2
1−1)

(t22−1)(t1−t2)
n255

(t22−1)(t1−t2)

−(t21−1)

(t22−1)(t1−t2)

n261
t22−1

n262
(t22−1)(t1−t2)

n263
(t22−1)(t1−t2)

n264
(t22−1)(t1−t2)

n265
(t22−1)(t1−t2)

−2(t22−1)+a0(2−t21−t22)

(t22−1)(t1−t2)



n252 = (2 + a0)a0t1 + (b2 + b3)(t1 − t2),

n255 = −t22 − 2t1t2 + 3 + a0(t
2
1 − t22 + 1− t1t2),

n261 = (2 + a0)a0b1 + (b1 + b3)(b1 + b2),

n262 = (2 + a0)a
2
0t1(t1 − t2) + a0b1t1(t1 − t2) + a0b2(1− 2t1t2 + t21) + a0b3(2t

2
1 − 3t1t2 + t22) + 2b2(1− t22),

n263 = a0b3t1(t1 − t2)− 2b1(1− t22) + a0b1(t
2
2 + t21 − 1− t1t2),

n264 = (2a0 + a20 + b1 + b3)(1− t21)− (b2 + b3)(1− t22),

n265 = a0(t
2
2 − 2t1t2 + 1) + a20t1(t1 − t2)− 2b3t2(t1 − t2) + 2b1(1− t1t2).

Remark 8.2 Though all the poles of the entries of Ni are simple, dω6 6= 0 .
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9 Tensor product of two Gauss equations

Consider two differential equations

z′′1 = S1z1 and z′′2 = S2z2 (z′ := dz/dx),

with dependent variables z1 and z2. If S1 6= S2, the product w = z1z2 satisfies the fourth-order
differential equation KS1,S2w = 0, where

KS1,S2
:= ∂4 + f3∂

3 + f2∂
2 + f1∂ + f0, (∂ := d/dx)

and

f3 := −S′
1 − S′

2

S1 − S2
, f2 := −2(S1 + S2),

f1 := −S1S
′
1 − S2S

′
2 + 5(S1S

′
2 − S′

1S2)

S1 − S2
,

f0 := −S′′
1 − S′′

2 + (S1 − S2)
2 +

(S′
1)

2 − (S′
2)

2

S1 − S2
.

If S1 = S2 = S, w = z21 satisfies the third-order equation KSw = 0, where

KS = ∂3 − 4S∂ − 2S′. (4)

For two Gauss equations

y′′j + pjy
′
j + qjyj = 0, pj =

cj − (aj + bj + 1)x

x(1− x)
, qj = −

ajbj
x(1− x)

, (j = 1, 2)

we let
yj = λjzj , λj = x−cj/2(x− 1)(cj−aj−bj−1)/2.

Then, zj satisfies the equation

z′′j = Sjzj , Sj = −qj +
1

4
p2j +

1

2
p′j ,

with the Riemann scheme x = 0 x = 1 x =∞
cj/2 (aj + bj − cj + 1)/2 (aj − bj − 1)/2

1− cj/2 (cj − aj − bj + 1)/2 (bj − aj − 1)/2

 .

From the equation KS1,S2
satisfied by z1z2, we get the differential equation

K = K(a1, b1, c1, a2, b2, c2) = Ad(λ1λ2)KS1,S2

satisfied by y1y2 = (λ1λ2)z1z2. Though we omit the explicit form of K, if (a1, b1, c1) 6= (a2, b2, c2),
it is of order four and has generically two apparent singular points say {x1, x2} other than {0, 1,∞},
and the Riemann scheme is given as x = 0 x = 1 x =∞

0 0 a1
1− c1 c1 − a1 − b1 b1

×
 x = 0 x = 1 x =∞

0 0 a2
1− c2 c2 − a2 − b2 b2



=


x = 0 x = 1 x =∞ x = x1 x = x2

0 0 a1 + a2 0 0
1− c1 c1 − a1 − b1 a1 + b2 1 1
1− c2 c2 − a2 − b2 b1 + a2 2 2

2− c1 − c2 c1 + c2 − a1 − b1 − a2 − b2 b1 + b2 4 4

 .
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Note that though the Gauss equations have no accessory parameters, K has one. The two apparent
singular points {x1, x2} are the roots of the following quadratic form:

App(x) := (a1 + a2 − b1 − b2)(a1 − a2 − b1 + b2)x
2

+ 2
(
2a1b1 − 2a2b2 + (1− a1 − b1)c1 − (1− a2 − b2)c2

)
x+ (c1 − c2)(c1 + c2 − 2).

If for example, c1 = c2, then App is divisible by x, and so we set x2 = 0, and if the other parameters
remain generic, the Riemann scheme becomes

x = 0 x = 1 x =∞ x = x1

0 0 a1 + a2 0
1− c1 c1 − a1 − b1 a1 + b2 1
2− c1 c1 − a2 − b2 b1 + a2 2
2− 2c1 2c1 − a1 − b1 − a2 − b2 b1 + b2 4

 .

9.1 Tensor product without apparent singularities

There are several choices of parameters that the tensor product has no apparent singularities, that
is the cases App reduces to constant times

x2, (x− 1)2, 1, and x− 1, x, x(x− 1),

corresponding to

{x1, x2} → 0, 1,∞, and {x1, x2} → {0,∞}, {1,∞}, {0, 1},

respectively. Thanks to the symmetry of the Gauss equations on the three singular points, we
consider only two cases: x2 and x(x− 1). The first case occurs only when

(1.1) {c1 = c2, a1 = (2a2b2 − a2c2 + b1c2 − b2c2)/(2b1 − c2)}, or

(1.2) {c1 = 2− c2, a1 = (2a2b2 − a2c2 − b1c2 − b2c2 + 2b1 + 2c2 − 2)/(2b1 + c2 − 2)};

and the second case,

(2.1) {c1 = c2, a1 = −b1 + 2c2 − a2 − b2}, or (this is used below)

(2.2) {c1 = c2, a1 = a2 − b1 + b2}, or

(2.3) {c1 = 2− c2, a1 = −b1 − 2c2 + 2 + a2 + b2}, or

(2.4) {c1 = 2− c2, a1 = −a2 − b1 − b2 + 2}.

For the first case, two of the local exponents at x = 0 differ by 2, and for the second case, two of
the local exponents at x = 0 and at x = 1 differ by 1. Thanks to the adjoint symmetry (cf. §4.3)

G(α, β, γ)←→ G(1− α, 1− β, 2− γ)

of the Gauss equation6, we study only two cases (1.1) and (2.1); in these cases we have

c1 = c2 =: c.

For each case, in the following, we consider the renormalized equation (addition by xc−1)

L := Ad(xc−1)(K) = xc−1 ◦K ◦ x1−c.

After cancelling the common factor (denoted also by L), it is of the form

L =

{
x3(x− 1)3∂4 + · · · in case (1.1),

x2(x− 1)2∂4 + · · · in case (2.1).

6Adjoint equation of G(α, β, γ) is G(1− α, 1− β, 2− γ).
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9.2 Tensor product without apparent singularities Case 1

In this subsection we assume

a1 = (2a2b2 − a2c2 + b1c2 − b2c2)/(2b1 − c2), c1 = c2,

and study the middle convolution of L. The local exponents of L are given as follows:

x = 0 : [0, 2, c2 − 1,−c2 + 1],

x = 1 : [0, c1 − a1 − b1, c2 − a2 − b2, c1 − a1 − b1 + c2 − a2 − b2],

x =∞ : [a1 + a2 − c2 + 1, a1 + b2 − c2 + 1, b1 + b2 − c2 + 1, b1 + a2 − c2 + 1],

where a1 = (2a2b2 − a2c2 + b1c2 − b2c2)/(2b1 − c2) and c1 = c2 should be assumed. We follow
the recipe of making the middle convolution: we consider L6 := ∂2 ◦ L, and express it in terms
of (x∂x)

i ◦ (∂x)j with constant coefficients and replace x∂x by x∂x − m, where m is a constant
(parameter of middle convolution). The resulting operator M6 is of order 6, with parameter m,
written as

M6 = cm6∂
6 + cm5∂

5 + cm4∂
4 + cm3∂

3 + cm2∂
2 + cm1∂

1 + cm0,

where

cm6 = (2b1 − c2)
2x3(x− 1)3,

cm5 = x2(x− 1)2(2b1 − c2)(4xb
2
1 − 8xb1c2 + 4xa2b1 + 44xb1

−12xb1m+ 4xb2b1 + 4c22x+ 4a2b2x− 4c2b2x− 4c2a2x− 22c2x

+6xmc2 − 20b1 + 6b1m+ 10c2 − 3mc2),

cm4 = x(x− 1)P2(x), cm3 = P3(x), cm2 = P2(x), cm1 = (m− 1)P1(x),

cm0 = (m− 1)(m− 2)(b1 + b2 − c2 + 1−m)(b1 + a2 − c2 + 1−m)

×(−2b1m+mc2 + 2b1 − c2 − b1c2 + c22 + 2a2b1 − 2c2a2 + 2a2b2 − c2b2)

×(−2b1m+mc2 + 2b1 − c2 − b1c2 + c22 − c2a2 + 2b2b1 − 2c2b2 + 2a2b2),

where Pk(x) denotes symbolically a polynomial of degree k in x. The local exponents of ∂2 ◦L are

x = 0 : [0, 1, 2, 2, c2 − 1, −c2 + 1],

x = 1 : [0, 1, 2, c2 − a2 − b2, c1 − a1 − b1, c1 − a1 − b1 + c2 − a2 − b2],

x =∞ : [1, 2, 1 + b1 + b2 − c2, 1 + b1 + a2 − c2, 1 + a1 + a2 − c2, 1 + a1 + b2 − c2],

and those of M6 are

x = 0 : [0, 1, 2, m+ 2, c2 − 1 +m, 1− c2 +m],

x = 1 : [0, 1, 2, m+ c2 − a2 − b2,m+ c1 − a1 − b1,m+ c1 − a1 − b1 + c2 − a2 − b2],

x =∞ : [−m+ 1, −m+ 2, −m+ 1 + b1 + b2 − c2, −m+ 1 + b1 + a2 − c2,

−m+ 1 + a1 + a2 − c2, −m+ 1 + a1 + b2 − c2].

The difference is

[0, 0, 0,m,m,m], [0, 0, 0,m,m,m], [−m,−m,−m,−m,−m,−m].

Though L would be generically irreducible, since the local exponents at x = 0 are [0, 2, c2 −
1,−c2 + 1], the resulting M6 might be reducible (cf. [6]). In fact M6 breaks as

M6 = Y ◦M5, M5 = u5∂
5 + u4∂

4 + u3∂
3 + u2∂

2 + u1∂ + u0,

where Y is a first order operator, and u0, . . . , u5 are polynomials in x and the parameters, and u5

is given as

u5 = (2b1 − c2)
2x2(x− 1)3(b1 − c2 + b2)(b1 − c2 + a2)(x+ (m− 1)λ),
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where

λ = − 2b1 − c2
(b1 − c2 + b2)(b1 − c2 + a2)

.

This shows that M5 has one apparent singularity at p := −(m− 1)λ. The local exponents of M5
are

x = 0 : [0, 1, 2, c2 − 1 +m, −c2 + 1 +m],
x = 1 : [0, 1,−b2 + c2 +m− a2, c1 − a1 − b1 +m, c1 − a1 − b1 + c2 − a2 − b2 +m],
x =∞ : [1−m, b1 + b2 − c2 + 1−m, b1 + a2 − c2 + 1−m, a1 + b2 − c2 + 1−m, a1 + a2 − c2 + 1−m],
x = p : [0, 1, 2, 3, 5].

9.2.1 Why M6 is divisible from the left by a first-order operator

Note first that the operator L = x3(x− 1)3∂4 + · · · can be written as

L = x2Q1(θ, ∂) + {λ(θ − 1) + x}Q2(θ, ∂), θ = x∂.

Since
∂2x2 = (θ + 1)(θ + 2), ∂2{λ(θ − 1) + x} = {(θ + 1)(λ∂ + 1) + 1}∂,

L6 = ∂2L is written in terms of θ and ∂:

L6 = (θ + 1)(θ + 2)Q1(θ, ∂) + {(θ + 1)(λ∂ + 1) + 1}∂Q2(θ, ∂).

So M6 can be obtained from L6 by replacing θ by θ −m:

M6 = (θ + 1−m)(θ + 2−m)Q1(θ −m,∂) + {(θ + 1−m)(λ∂ + 1) + 1}∂Q2(θ −m,∂).

On the other hand we have the following formulae:

(θ + 1−m)(θ + 2−m) =

(
θ + 1−m+

x

x+ u

)(
θ + 2−m− x

x+ u

)
for any constant u,

(θ + 1−m)(λ∂ + 1) + 1 =

(
θ + 1−m+

x

x+ (m− 1)λ

)(
λ∂ + 1− λ

x+ (m− 1)λ

)
.

Applying these by putting u = (m− 1)λ, we see that M6 can be divisible from the left by

Y = θ + 1−m+
x

x+ (m− 1)λ
.

9.2.2 When M5 has no apparent singular point

Further to forget the singularity p, we assume, for example, b1 = c2 − b2. Then we also have
a1 = c2 − a2, namely, the two Gauss are equal up to a Euler transformation: F (a, b, c;x) =
(1 − x)c−a−bF (c − a, c − b, c;x). But M5 remains to be an equation of order 5 (see §9.3.1 for an
analogous phenomenon), with the local exponents

x = 0 : [0, 1, 2, c2 − 1 +m,−c2 + 1 +m],
x = 1 : [0, 1, m, b2 + a2 − c2 +m, c2 − b2 +m− a2],
x =∞ : [2−m, 1−m, 1−m, 1− b2 + a2 −m, 1− a2 + b2 −m],

and is reducible of type [14]7. We have [1] = −x(x− 1)2(x(x− 1)∂ − (m− 6)x− 2), and

x2(x− 1)2[4] = x2(x− 1)2∂4 +m3∂
3 +m2∂

2 +m1∂
1 +m0,

where

m3 = −x(2x− 1)(x− 1)(2m− 5),

m2 = 2c2b2x+ 2a2b2x
2 + 2c2a2x+ 3 + 25x2 − x2b22 − 24mx2 − x2a22 + 6m2x2

−2c2x− 4a2b2x− c22 + 2c2 − 4m+m2 − 24x− 6m2x+ 24mx,

m1 = (−3 + 2m)(−2m2x+m2 − 3m+ 6mx− c2b2 + xa22 − c2a2 + 2− 2a2b2x+ 2a2b2 + c2 + xb22 − 5x),

m0 = −(−1 +m)2(a2 − 1 +m− b2)(a2 + 1−m− b2).

7An operator P decomposes (is reducible) for example of type [14] means P can be written as P1 ◦ P2, where
P1 is of order 1 and P2 is of order 4. [4] part means P2. The decomposition is not necessarily an irreducible
decomposition, which is not unique.

23



The local exponents are

x = 0 : [0, 1, c2 − 1 +m, −c2 + 1 +m],
x = 1 : [0, 1, −a2 + c2 − b2 +m, −c2 + b2 + a2 +m],
x =∞ : [1−m, 1−m, −a2 + 1−m+ b2, a2 + 1−m− b2].

9.3 Tensor product without apparent singularities Case 2

In this section we assume

a1 = −b1 + c1 + c2 − a2 − b2, c1 = c2 =: c,

and study the middle convolution of L. This case happens to connect Gauss equations and the
equation Z̃(A), because the above assumption exactly fits the parameter change (see §5.2):

a1 = A−+−+, b1 = A−++−, a2 = A−−−−, b2 = A−−++, c = 1−A0.

The middle convolution ML4(m) of L with parameter m is now computed without multiplying ∂
from the left, and we get

ML4(m) := x2(x− 1)2∂4 +mℓ3∂
3 +mℓ2∂

2 +mℓ1∂ +mℓ0,

where

mℓ3 = −x(2x− 1)(x− 1)(2m− 5),

mℓ2 = 3 + 2b1xb2 + 2b1xa2 + 25x2 − 24x+ 2c− c2 − 4m+ 2xb21 + 2ca2x
2

+2cb2x
2 − 2a2b2x− 2cx+ 2c2x− 2x2b21 − x2a22 − x2b22 − 2c2x2

−4cb1x+ 6m2x2 − 24mx2 − 6m2x+ 24mx+m2 − 2x2b1b2 − 2x2b1a2 + 4x2b1c,

mℓ1 = (−3 + 2m)(m2 − 2m2x− 3m+ 6mx+ 2 + 2c2x+ 2b1xa2 + 2b1xb2 + c− c2 + a2b2

−5x− b21 + 2xb21 − 2ca2x+ 2b1c− 2cb2x− b1a2 − b1b2 − 4cb1x+ xb22 + xa22),

mℓ0 = (b1 − 1 +m+ b2 − c)(b1 + 1−m+ b2 − c)(b1 + 1− c−m+ a2)(b1 − 1− c+m+ a2).

The local exponents of ML4(m) are

x = 0 : [0, 1, c− 1 +m, 1− c+m],

x = 1 : [0, 1, b2 − c+m+ a2,−b2 − a2 + c+m],

x =∞ : [−b1 + 1 + c− b2 −m, b1 + 1 + b2 − c−m,−b1 + 1 + c−m− a2, 1 + b1 − c−m+ a2].

Recall that L(A) = Ad(x−A0)(K(A)). Since c − 1 = −A0, our L just agrees with L(A). The
middle convolution ML4(m) of L = L(A) is given by

mℓ3 = −2x(2x− 1)(x− 1)(−2 + (m− 1/2)),

mℓ2 = 29/2x2 − 29/2x− 3(m− 1/2) + 9/4− 6x(m− 1/2)2 + 18x(m− 1/2) + 6x2(m− 1/2)2

−18x2(m− 1/2) + (m− 1/2)2 −A2
0 + xA2

0 + xA2
3 − xA2

1 + xA2
2 − x2A2

2 − x2A2
3,

mℓ1 = −1/2(−1 + (m− 1/2))(10x+ 8(m− 1/2)− 5 + 8x(m− 1/2)2 − 16x(m− 1/2)− 4(m− 1/2)2

+2A2
0 + 2A2

3 + 2A2
2 − 2A2

1 − 4xA2
3 − 4xA2

2),

mℓ0 = 1/16(2A2 − 1 + 2(m− 1/2))(−2A2 − 1 + 2(m− 1/2))(−2A3 − 1 + 2(m− 1/2))

×(2A3 − 1 + 2(m− 1/2)).

Thus we rediscovered Theorem 5.2: ML4(1/2) = Z̃(A).

9.3.1 KS1,S2 when A2 = 0

The quadratic formApp giving the two apparent singularities ofK andKS1,S2
reduces to−4A2A3x(x−

1); note that

S1 − S2 = − A2A3

x(x− 1)
.
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The coefficients of KS1,S2
= ∂4 + f3dx

3 + · · · are given as

f3 := (2x− 1)/(x(−1 + x)),

f2 := (−A2
2x

2 −A2
3x

2 +A2
0x−A2

1x+A2
2x+A2

3x−A2
0 + x2 − x+ 1)/(x2(−1 + x)2),

f1 := −(−2A2
2x

3 − 2A2
3x

3 + 5A2
0x

2 − 5A2
1x

2 + 3A2
2x

2 + 3A2
3x

2 − 9A2
0x+A2

1x

−A2
2x−A2

3x+ 2x3 + 4A2
0 − 3x2 + 9x− 4)/(2x3(−1 + x)3),

f0 := (2A2
2A

2
3x

4 − 4A2
2A

2
3x

3 + 2A2
2A

2
3x

2 − 2A2
2x

4 − 2A2
3x

4 + 6A2
0x

3

−6A2
1x

3 + 4A2
2x

3 + 4A2
3x

3 − 15A2
0x

2 + 3A2
1x

2 − 3A2
2x

2 − 3A2
3x

2 + 2x4 + 13A2
0x

−A2
1x+A2

2x+A2
3x− 4x3 − 4A2

0 + 15x2 − 13x+ 4)/(2x4(−1 + x)4).

When A2 = 0, KS1,S2
decomposes of type [13]:

[1] = ∂ + (2x− 1)/(x(−1 + x)),

[3] = ∂3 + (−A2
3x

2 +A2
0x−A2

1x+A2
3x−A2

0 + x2 − x+ 1)∂/(x2(−1 + x)2)

−(−2A2
3x

3 + 3A2
0x

2 − 3A2
1x

2 + 3A2
3x

2 − 5A2
0x+A2

1x−A2
3x+ 2x3

+2A2
0 − 3x2 + 5x− 2)/(2x3(−1 + x)3).

When A1 = A2 = 0 ((a1, b1, c1) = (a2, b2, c2)), the 3rd order operator [3] above is nothing but the
equation (4): KS = ∂3 − 4S∂ − 2S′.
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Part II

Local solutions of ordinary differential
equations related to the Dotsenko-Fateev
equation
In Part I, we found a Fuchsian system of rank 8 in 3 variables with 4 parameters, and an ordinary
differential equation Z(A) of order 4 with three singular points by restricting the system on a
projective line. In Part II, we study the ordinary differential equation Z(A) and several related
ones, around their singular points.
In §10, we study a linear difference equation Rc0(A) of order 2, which is the recurrence relation
satisfied by the coefficients of a power series solution to Z(A) at x = 0.
§10.1 introduces the invariant of such a difference equation.
§10.3 introduces special values 4F3(∗; 1) of terminating generalized hypergeometric series 4F3 at 1
satisfying a linear difference equation Rc(0) of order 2.
In §10.4, by studying the invariant of this difference equation and that of Rc0(A), we find solutions
of Rc0(A) expressed in terms of 4F3(∗; 1). This expression is very near to the product of two Gauss
hypergeometric series. This observation leads to the discovery: A middle convolution sends Z(A)
to the product of two Gauss hypergeometric equation.
In §10.5 and 6, invariants of the difference equations are used to get local solutions of Z(A) at
x = 0, 1 and ∞.
In §10.7, Riemann-Liouville transformation is recalled.
In §10.8 and 9, we get local solutions of Z(A) at x = 0, 1 and ∞ by using middle convolution.
In §11, we study a linear difference equation Rc1(A) of order 2, which is the recurrence relation
satisfied by the coefficients of difference equation a solution to Z(A) at x = 0 with exponents
A0 ± 1/2.
§11.2 introduces special values 4F3(∗; 1) of non-terminating generalized hypergeometric series 4F3

at 1 satisfying a linear difference equations of order 2.
§11.3 studies the difference equation Rc(1) satisfied by this special values.
In §11.4, by studying the invariant of this difference equation and that of Rc1(A), we find solutions
of Rc1(A) expressed in terms of non-terminating 4F3(∗; 1).
§12and 13 give a set of local solutions of Q(A) and the Dotsenko-Fateev equation.

10 Local solutions of Z(A) at x = 0 with exponent 0 and 2A0,
and those at infinity

The explicit form of the differential equation in question is given as

Z(A) = p0∂
4 + p1∂

3 + p2∂
2 + p3∂ + p4, ∂ = d/dx,

where
p0 = x3(x− 1)2,
p1 = −2x2(x− 1)(2A0x− 2A0 − 5x+ 3),
p2 = x(p22x

2 + p21x+ p20),
p22 = 6A2

0 −A2
2 −A2

3 − 24A0 + 25,
p21 = −11A2

0 −A2
1 +A2

2 +A2
3 + 36A0 − 59/2,

p20 = (10A0 − 9)(2A0 − 3)/4,
p3 = p32x

2 + p31x+ p30,
p32 = −(2A0 − 3)(2A2

0 −A2
2 −A2

3 − 6A0 + 5),
p31 = (A0 − 1)(6A2

0 + 2A2
1 − 2A2

2 − 2A2
3 − 16A0 + 11),

p30 = −((2A0 − 3)(2A0 − 1)2)/4,
p4 = p41x+ p40,

p41 = (A0 − 1 +A3)(A0 − 1−A3)(A0 − 1 +A2)(A0 − 1−A2),
p40 = −(2A0 − 1)2(A2

0 +A2
1 −A2

2 −A2
3 − 2A0 + 1)/4,
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its Riemann scheme is given as
x = 0 x = 1 x =∞
0 1

2 −A1 1−A0 +A2

A0 − 1
2 0 1−A0 −A2

A0 +
1
2 1 1−A0 +A3

2A0
1
2 +A1 1−A0 −A3

 .

In this section we give the two local solutions around the point x = 0, whose exponents are 0
and 2A0. The other local solutions around x = 0, whose exponents are A0 ± 1/2, will be given
in the next section. The coefficients of the power series satisfy a 3-term recurrence relation (a
homogeneous linear difference equation of order 2), say Rc0(A).
On the other hand, under some condition, special values of the terminating generalized hypergeo-
metric series 4F3 at 1 satisfy a linear difference equation of order 2. By making use of this fact, we
solve the equation Rc0(A) in terms of the special values of 4F3 at 1. The result suggests a relation
between Z(A) and the tensor product of two Gauss hypergeometric differential equations: they
are connected by a middle convolution. This method will be applied to other equations at other
singular points.
The local exponents of the equation Z̃(A) at x = 0 are

0, 1, 1/2 +A0, 1/2−A0;

the holomorphic solution of Z(A) at x = 0 corresponds to the solution of Z̃(A) with local exponent
1/2−A0, so the solution of Z(A) at x = 0 with exponent 2A0 corresponds to the solution of Z̃(A)
with exponent 1/2 + A0, which can be obtained from that with exponent 1/2 − A0 by changing
the sign of A0.

But for the other exponents A0 ± 1/2 of Z(A) at x = 0 ({0, 1} for Z̃(A)), we need to make use
of non-terminating series 4F3. These are studied in the next section.

10.1 Invariants of linear difference equations

In this subsection, we introduce the invariants of linear difference equations following [3]. Let us
consider a homogeneous linear difference equation of order 2

P : Cn = p1(n)Cn−1 + p2(n)Cn−2,

where p1 and p2 are rational functions in n. The quantity

H :=
p1(n)p1(n+ 1)

p2(n+ 1)

is called the invariant of the difference equation P . Consider another such equation

Q : Dn = q1(n)Dn−1 + q2(n)Dn−2.

The two equations are said to be essentially the same if there is a homogeneous linear difference
equation of order 1:

λ(n− 1) = µ(n)λ(n), µ(n) : a rational function in n

and a solution λ(n) so that
{Cn} = λ(n){Dn},

where {Cn} is the set of solutions of P , and {Dn} that of solutions of Q.

Proposition 10.1 The two equations P and Q are essentially the same if and only if the two
invariants agree.
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In fact, substituting

Cn = λ(n)Dn, Cn−1 = λ(n− 1)Dn−1, Cn−2 = λ(n− 2)Dn−2,

into P and equalizing with Q, we have

q1(n)

p1(n)
= µ(n),

q2(n)

p2(n)
= µ(n)µ(n− 1),

and, by eliminating µ,
p1(n)p1(n− 1)

p2(n)
=

q1(n)q1(n− 1)

q2(n)
.

On the other hand if we assume the last identity, we can trace back the argument up to Cn =
λ(n)Dn.

Corollary 10.2 For two essentially the same equations P and Q, the spaces of solutions {Cn}
and {Dn} are related as

{Cn} =
1

wn+1
·
∏

j Γ(n+ vj + 1)∏
i Γ(n+ ui + 1)

· {Dn},

where the rational function q1(n)
p1(n)

is factorized as

q1(n)

p1(n)
= w ·

∏
i(n+ ui)∏
j(n+ vj)

, w : independent of n.

10.2 Recurrence relation Rc0(A) for the coefficients of a holomorphic
solution of Z(A) at x = 0

Let

f (0,0)(A;x) :=

∞∑
n=0

Cnx
n, C0 = 1

be the (normalized) power series solution to Z(A) at x = 0. Substituting this expression into Z(A),
we see that the coefficients Cn satisfy the following recurrence relation Rc0(A) (C−1 = 0, C0 = 1):

Rc0(A) :
Cn =

{2(n−A0)− 1}2
{
2n2 − 4A0n+A2

0 +A2
1 −A2

2 −A2
3 + 1− 2(n−A0)

}
n(n− 2A0)(2n− 2A0 − 1)(2n− 2A0 + 1)

Cn−1

− 4(n−A0 −A2 − 1)(n−A0 +A2 − 1)(n−A0 −A3 − 1)(n−A0 +A3 − 1)

n(n− 2A0)(2n− 2A0 − 1)(2n− 2A0 + 1)
Cn−2.

Thus we see that the invariant of Rc0(A) is given as

H0(n;A) =
−
{
4(n−A0)

2 − 1
}{(

2n2 − 4A0n+A2
0 +A2

1 −A2
2 −A2

3 + 1
)2 − 4(n−A0)

2
}

4n(n− 2A0)(n−A0 −A2)(n−A0 +A2)(n−A0 −A3)(n−A0 +A3)
.

Remark 10.3 (Symmetry) Rc0(A) is invariant under

Aj → −Aj (j = 1, 2, 3) and A2 ↔ A3.

10.3 3-term relation for the special values (at 1) of balanced terminating
hypergeometric series 4F3

We consider the special value (at 1) of the generalized hypergeometric series:

4F3(α; 1) =

∞∑
k=0

(α0)k(α1)k(α2)k(α3)k
(β1)k(β2)k(β3)k

1

k!
, α =

(
α0, α1, α2, α3

β1, β2, β3

)
.
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Here we assume α0 is a non-positive integer (the series terminates), and also assume it is balanced:

β1 + β2 + β3 − α0 − α1 − α2 − α3 = 1.

Set

e1 :=

(
1, 0, 0, 0
1, 0, 0

)
, e2 :=

(
0, 1, 0, 0
0, 1, 0

)
, e12 :=

(
1, 1, 0, 0
1, 1, 0

)
.

We have

Proposition 10.4 ([1] (§3.7), see also [8])

4F3(α; 1) = U
(0)
1 (α)4F3(α+ e1; 1) + V

(0)
1 (α)4F3(α+ e12; 1), (5)

4F3(α; 1) = U
(0)
2 (α)4F3(α+ e2; 1) + V

(0)
2 (α)4F3(α+ e12; 1), (6)

where

U
(0)
1 (α) :=

− (β1 − α1) (β1 + β2 − α2 − α3)

β1 (β3 − α0 − 1)
, V

(0)
1 (α) :=

−α1 (β2 − α2) (β2 − α3)

β1β2 (β3 − α0 − 1)
, (7)

U
(0)
2 (α) :=

− (β2 − α0) (β1 + β2 − α2 − α3)

β2 (β3 − α1 − 1)
, V

(0)
2 (α) :=

−α0 (β1 − α2) (β1 − α3)

β1β2 (β3 − α1 − 1)
. (8)

Perform a change α 7→ α+ e12 in (5), and we have

4F3(α+ e12; 1) = U
(0)
1 (α+ e12)4F3(α+ 2e1 + e2; 1) + V

(0)
1 (α+ e12)4F3(α+ 2e12; 1), (9)

and a change α 7→ α+ e1 in (6) to get

4F3(α+ e1; 1) = U
(0)
2 (α+ e1)4F3(α+ e12; 1) + V

(0)
2 (α+ e1)4F3(α+ 2e1 + e2; 1). (10)

Eliminating 4F3(α+ 2e1 + e2; 1) and 4F3(α+ e1; 1) from (5), (9) and (10), we eventually get

Lemma 10.5

4F3(α; 1) = q
(0)
1 (α)4F3(α+ e12; 1) + q

(0)
2 (α)4F3(α+ 2e12; 1),

where

q
(0)
1 (α) = U

(0)
1 (α)U

(0)
2 (α+ e1) + V

(0)
1 (α) +

U
(0)
1 (α)V

(0)
2 (α+ e1)

U
(0)
1 (α+ e12)

,

q
(0)
2 (α) =

−U (0)
1 (α)V

(0)
1 (α+ e12)V

(0)
2 (α+ e1)

U
(0)
1 (α+ e12)

.

If we change α into

(n; α̂) :=

(
−n, α1 − n, α2, α3

β1 − n, β2 − n, β3

)
= −ne12 + α̂, where α̂ =

(
0, α1, α2, α3

β1, β2, β3

)
in the lemma above, we get

Proposition 10.6

D(n; α̂) := 4F3

(
−n, α1 − n, α2, α3

β1 − n, β2 − n, β3
; 1

)
with β1 + β2 + β3 − α1 − α2 − α3 = 1

satisfies the homogeneous linear difference equation

Rc(0)(α̂) : Dn = q
(0)
1 (n; α̂)Dn−1 + q

(0)
2 (n; α̂)Dn−2. (11)

The invariant of the difference equation Rc(0)(α̂) is

H(0)(n; α̂) :=
q
(0)
1 (n; α̂) q

(0)
1 (n+ 1; α̂)

q
(0)
2 (n+ 1; α̂)

.

Remark 10.7 (Symmetry) Rc(0)(α̂) is invariant under

α2 ↔ α3 and β1 ↔ β2. (12)
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10.4 Local solutions at zero I: solving Rc0(A)

Proposition 10.8 The two invariants H0(n;A) and H(0)(n; α̂) of the difference equations Rc0(A)
and Rc(0)(α̂) agree, as functions in n, if and only if

α̂ =

(
0, α1, α2, α3

β1, β2, β3

)
=

(
0, A0, A−+−+, A−++−
A++−−, A++++, 1−A0

)
, (13)

or =

(
0, A0 −A2, A−+−+, A−+−−
A++−−, A++−+, 1−A0 −A2

)
, (14)

up to the symmetries of the two difference equations. Thus Rc0(A) and Rc(0)(α̂) are essentially
the same in these cases.

This can be obtained by solving the system

H0(n;A) = H(0)(n; α̂) n = 1, 2, ...

with unknown α̂. Actual process is as follows: The numerator of H0(n;A) − H(0)(n; α̂) is a
polynomial in n of degree 14. The coefficient of the top term decomposes as

constant× (α1 − β1 − β2 + 1−A1)(α1 − β1 − β2 + 1 +A1).

If we set α1 = β1 + β2 − 1±A1, then the second top term decomposes as

constant× (2A1 − 1)(2A1 + 1)(α2 + α3 − β1 − β2 + 2A0).

Since we assume A1 is a free parameter, we have

α2 + α3 − β1 − β2 + 2A0 = 0. (15)

Eliminating β2 and β3 from H(0)(n; α̂) by making use of this equality and the balance condition

β1 + β2 + β3 − α1 − α2 − α3 = 1 (16)

in Proposition 10.6, we get an expression

H(0)(n; α̂) =
−γ(0) +O

(
(n−A0)

2
)

γ(0) +O
(
(n−A0)

2
) ,

where

γ(0) := A2
0(α1 −A0)

2(α2 − β1 +A0)
2(α3 − β1 +A0)

2. (17)

Now, assume γ(0) 6= 0. Then, H(0)(A0; α̂) = −1, whereas H0(A0;A) is parameter dependent:

H0 (A0;A) =
−
(
A2

0 −A2
1 +A2

2 +A2
3 − 1

)2
4A2

0A
2
2A

2
3

.

So it does not happen that H0(n;A) = H(0)(n; α̂) in the case γ(0) 6= 0. Therefore, γ(0) must be
equal to 0. Thanks to the symmetry of Rc(0)(α̂) (cf. Remark 10.3), we have only to study two
cases:

Case 1 : α1 = A0 and Case 2 : β1 = α3 +A0.

Case 1: Eliminating β2 and β3 from H(0)(n; α̂) by (15) and (16), we have

H(0) (n; α̂) =
−
{
4(n−A0)

2 − 1
}
ϵ
(0)
1 (n)ϵ

(0)
1 (n+ 1)

4n(n− 2A0)(n+ α2 − β1)(n− α2 + β1 − 2A0)(n+ α3 − β1)(n− α3 + β1 − 2A0)
,

where ϵ
(0)
1 (n) = 2

(
n2 − 2A0n+ 2A0β1 + α2α3 + α2β1 + α3β1 − β2

1 − α2 − α3 + 1− n
)
.

Equating this and H0(n;A), we conclude that α̂ satisfies
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• ϵ
(0)
1 (0) = A2

0 +A2
1 −A2

2 −A2
3 + 2A0 + 1,

• {± (−α2 + β1 −A0)−A0, ± (−α3 + β1 −A0)−A0} = {−A0 ±A2, −A0 ±A3} .

These lead to (13), up to the symmetries of Rc0(A) and Rc(0)(α̂).

Case 2: In the same way we have

H(0) (n; α̂) =
−
{
4(n−A0)

2 − 1
}
ϵ
(0)
2 (n)ϵ

(0)
2 (n+ 1)

4n(n− 2A0)(n− α1)(n+ α1 − 2A0)(n− α2 + α3 −A0)(n+ α2 − α3 −A0)
,

where ϵ
(0)
2 (n) = 2

(
n2 − 2A0n+ 2A2

0 −A0α1 + 2A0α2 + 2A0α3

− α1α2 − α1α3 + 2α2α3 + α1 − α2 − α3 + 1−A0 − n
)
,

and the conditions

• ϵ
(0)
2 (0) = A2

0 +A2
1 −A2

2 −A2
3 + 2A0 + 1,

• {± (α1 −A0)−A0, ± (α2 − α3)−A0} = {−A0 ±A2, −A0 ±A3} ,

which lead to (14), up to the symmetries of Rc0(A) and Rc(0)(α̂).
These conclude the proof the proposition.

This proposition together with Corollary 10.2 implies

Proposition 10.9

(Solutions of Rc0(A)) =
(A−−−−)n (A−−++)n

n!
(
3
2 −A0

)
n

(Solutions of Rc(0)(α̂) with α̂ as (13) )

=
(1−A0 −A2)n (A−−+−)n (A−−++)n

n! (1−A0)n
(
3
2 −A0

)
n

(Solutions of Rc(0)(α̂) with α̂ as (14) ).

Picking the solutions with initial condition C−1 = 0, C0 = 1 up from the right hand-sides, we get

Theorem 10.10 The solution f (0,0)(A;x) of Z(A) holomorphic at x = 0 (with normalization
f (0,0)(A; 0) = C0 = 1) can be expressed as

f (0,0)(A;x)

=

∞∑
n=0

xn (A−−−−)n (A−−++)n
n!

(
3
2 −A0

)
n

4F3

(
−n,A0 − n,A−+−+, A−++−

A++−− − n,A++++ − n, 1−A0
; 1

)
(18)

=

∞∑
n=0

xn (1−A0 −A2)n (A−−+−)n (A−−++)n
n! (1−A0)n

(
3
2 −A0

)
n

4F3

(
−n,A0 −A2 − n,A−+−+, A−+−−

A++−− − n,A++−+ − n, 1−A0 −A2
; 1

)
.

(19)

It is invariant under the symmetry of Rc0(A) in Remark 10.3.

Remark 10.11 (Another way of deriving (19) from (18)) By the way, the following identity is known:

4F3

(
−n, a, b, c
d, e, f

; 1

)
=

(e− a)n (f − a)n
(e)n (f)n

4F3

(
−n, a, d− b, d− c

d, a+ 1− n− e, a+ 1− n− f
; 1

)
, (20)

where a + b + c − n + 1 = d + e + f (see Theorem 3.3.3 in [1]). Applying this transformation
formula to the expression (18) by putting(

a, b, c
d, e, f

)
=

(
A−+−+, A0 − n,A−++−

A++−− − n,A++++ − n, 1−A0

)
we get the expression (19).
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Remark 10.12 It is easily seen that

2F1

(
α, β

γ
;x

)
2F1

(
a, b

c
;x

)
=

∞∑
n=0

xn (a)n(b)n
(c)nn!

4F3

(
−n, 1− c− n, α, β

1− a− n, 1− b− n, γ
; 1

)
, (21)

which implies

2F1

(
A−+−+, A−++−

1−A0
;x

)
2F1

(
A−−−−, A−−++

1−A0
;x

)
=

∞∑
n=0

xn (A−−−−)n (A−−++)n
n! (1−A0)n

4F3

(
−n,A0 − n,A−+−+, A−++−

A++−− − n,A++++ − n, 1−A0
; 1

)
.

Compare this with (18). It leads the authors to the discovery of the relationship between Z̃(A) and
L(A): Z̃(A) = mc1/2(L(A)) in Theorem 5.2 (see also §10.7).

Let us define the following operation to state the above discovery impressively.

Definition 10.13 The operation [Xn] is defined to pick up the coefficient of Xn from a series∑∞
n=0 CnX

n, that is,

[Xn]

∞∑
n=0

CnX
n := Cn.

Then, the expression (18) can be rephrased as

f (0,0)(A;x) =

∞∑
n=0

xn (1−A0)n(
3
2 −A0

)
n

[Xn]2F1

(
A−+−+, A−++−

1−A0
;X

)
2F1

(
A−−−−, A−−++

1−A0
;X

)
. (22)

Remark 10.14 By combining (19) and (21), we can also obtain another expression of f (0,0)(A;x):

f (0,0)(A;x) =

∞∑
n=0

xn (1−A0 −A2)n(1−A0 +A2)n

(1−A0)n
(
3
2 −A0

)
n

[Xn]2F1

(
A−+−+, A−+−−

1−A0 −A2
;X

)
2F1

(
A−−+−, A−−++

1−A0 +A2
;X

)
.

10.5 Other local solutions expressed in terms of f (0,0)

Recall

Z̃(A) = Ad
(
x−A0+

1
2

)
Z(A) = x−A0+

1
2 ◦ Z(A) ◦ xA0−

1
2

and that Z̃(A) has symmetries

Aj → −Aj (j = 0, 1, 2, 3); A2 ←→ A3; (23)

(x,A0, A1)←→ (1− x,A1, A0). (24)

In particular, the symmetry A0 → −A0 for Z̃(A) implies that if f(A;x) is a solution of Z(A), then
x−A0+1/2f(A;x) and xA0+1/2f(−A0, A1, A2, A3;x) satisfy Z̃(A), that is, x2A0f(−A0, A1, A2, A3;x)
also solves Z(A). Therefore, we get the following:

Proposition 10.15 Let f (0,2A0)(A;x) be the normalized local solution of Z(A) at x = 0 with
exponent 2A0. Then, f (0,2A0)(A;x) is expressible as

f (0,2A0)(A;x) = x2A0f (0,0)(−A0, A1, A2, A3;x).

Similarly, the symmetry (24) leads to the following:

Proposition 10.16 Let f (1,±A1)(A;x) be the normalized local solutions of Z(A) at x = 1 with
exponents 1

2 ±A1, respectively. Then, f (1,±A1)(A;x) are expressed as

f (1,±A1)(A;x) = xA0− 1
2 (1− x)

1
2±A1f (0,0)(∓A1, A0, A2, A3; 1− x),

respectively.

Thus, we have obtained the normalized local solutions at x = 0 with exponents 0, 2A0, and at
x = 1 with exponents 1/2±A1.
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10.6 Local solutions at infinity I: using invariants of the difference equa-
tions

In this section, we start to find the normalized local solutions of Z(A) at x =∞. Recall that the
local exponents at x =∞ are

1−A0 ±A2, 1−A0 ±A3.

We find the normalized local solution with exponent 1−A0 +A2. By substituting the expression

f (∞,+A2)(A;x) :=

(
1

x

)1−A0+A2 ∞∑
n=0

Cn

(
1

x

)n

, where C0 = 1.

into Z(A), we see that coefficients Cn satisfy the following 3-term recurrence relation

Rc∞(A) :
Cn =

{2(n+A2)− 1}2
{
2n2 + 4A2n−A2

0 +A2
1 +A2

2 −A2
3 + 1− 2(n+A2)

}
4n(n+ 2A2)(n+A2 +A3)(n+A2 −A3)

Cn−1

− (2n+ 2A2 − 1)(2n+ 2A2 − 3)(n+A0 +A2 − 1)(n−A0 +A2 − 1)

4n(n+ 2A2)(n+A2 +A3)(n+A2 −A3)
Cn−2.

Thus the invariant H∞(n;A) of Rc∞(A) is given by

H∞(n;A) = H0(n;−A2, A1, A0, A3).

Remark 10.17 (Symmetry) Rc∞(A) is invariant under Aj → −Aj (j = 0, 1, 3), not under A2 ↔
A3.

Hence, Proposition 10.8 yields the following proposition;

Proposition 10.18 The two invariants H(0)(n; α̂) and H∞(n;A) of the difference equations Rc(0)(α̂)
and Rc∞(A), respectively, agree if and only if

α̂ =

(
0, α1, α2, α3

β1, β2, β3

)
=

(
0,−A2, A−+++, A+++−
A−+−−, A++−+, 1 +A2

)
, (25)

or =

(
0,−A0 −A2, A−+++, A−++−
A−+−−, A−+−+, 1−A0 +A2

)
, (26)

or =

(
0,−A2 −A3, A+++−, A−++−
A−+−−, A++−−, 1 +A2 −A3

)
, (27)

up to the symmetries of the difference equations.

In a similar way to §10.4, by computing the ratio of the coefficients of the two difference equations
Rc∞(A) and Rc(0)(α̂), we get

Proposition 10.19

(Solutions of Rc∞(A))

=

(
1
2 +A2

)
n
(A−−+−)n (A+−++)n

n! (1 +A2 −A3)n (1 +A2 +A3)n
(Solutions of Rc(0)(α̂) with α̂ as (25) )

=

(
1
2 +A2

)
n
(1−A0 +A2)n (A+−++)n (A+−+−)n

n! (1 +A2)n (1 +A2 −A3)n (1 +A2 +A3)n
(Solutions of Rc(0)(α̂) with α̂ as (26) )

=

(
1
2 +A2

)
n
(A−−++)n (A+−++)n

n! (1 +A2)n (1 +A2 +A3)n
(Solutions of Rc(0)(α̂) with α̂ as (27) ).

Picking the solutions with initial condition C−1 = 0, C0 = 1 up from the right hand-sides, we get
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Theorem 10.20 f (∞,+A2)(A;x) is given as

f (∞,+A2)(A;x) =

(
1

x

)1−A0+A2 ∞∑
n=0

(
1

x

)n
(
1
2 +A2

)
n
(A−−+−)n (A+−++)n

n! (1 +A2 −A3)n (1 +A2 +A3)n

× 4F3

(
−n,−A2 − n,A−+++, A+++−

A−+−− − n,A++−+ − n, 1 +A2
; 1

)
=

(
1

x

)1−A0+A2 ∞∑
n=0

(
1

x

)n
(
1
2 +A2

)
n
(1−A0 +A2)n (A+−++)n (A+−+−)n

n! (1 +A2)n (1 +A2 −A3)n (1 +A2 +A3)n

× 4F3

(
−n,−A0 −A2 − n,A−+++, A−++−

A−+−− − n,A−+−+ − n, 1−A0 +A2
; 1

)
=

(
1

x

)1−A0+A2 ∞∑
n=0

(
1

x

)n
(
1
2 +A2

)
n
(A−−++)n (A+−++)n

n! (1 +A2)n (1 +A2 +A3)n

× 4F3

(
−n,−A2 −A3 − n,A+++−, A−++−

A−+−− − n,A++−− − n, 1 +A2 −A3
; 1

)
.

The function x1−A0+A2f (∞,+A2)(A;x) is invariant under the change of parameters Aj → −Aj (j =
0, 1, 3).

Note that one of these three expressions yield the other two by the help of the transformation
formula (20) as stated before. Note also that these expressions are rephrased in terms of products
of 2F1 using (21):

Theorem 10.21 f (∞,+A2)(A;x) is expressible as

f (∞,+A2)(A;x) =

(
1

x

)1−A0+A2 ∞∑
n=0

(
1

x

)n
(
1
2 +A2

)
n
(1 +A2)n

(1 +A2 −A3)n (1 +A2 +A3)n

× [Xn]2F1

(
A−+++, A+++−

1 +A2
;X

)
2F1

(
A+−++, A−−+−

1 +A2
;X

)

=

(
1

x

)1−A0+A2 ∞∑
n=0

(
1

x

)n
(
1
2 +A2

)
n
(1−A0 +A2)n (1 +A0 +A2)n

(1 +A2)n(1 +A2 −A3)n(1 +A2 +A3)n

× [Xn]2F1

(
A−+++, A−++−

1−A0 +A2
;X

)
2F1

(
A+−++, A+−+−

1 +A0 +A2
;X

)

=

(
1

x

)1−A0+A2 ∞∑
n=0

(
1

x

)n
(
1
2 +A2

)
n

(1 +A2)n

× [Xn]2F1

(
A+++−, A−++−

1 +A2 −A3
;X

)
2F1

(
A+−++, A−−++

1 +A2 +A3
;X

)
.

The other three local solutions at x = ∞ are easily obtained from Theorem 10.20 by recalling
symmetries of Z(A)

Aj → −Aj (j = 1, 2, 3) and A2 ↔ A3.

Theorem 10.22 Let f (∞,−A2)(A;x) , f (∞,±A3)(A;x) be normalized local solutions of Z(A) at
x =∞ with exponents 1−A0 −A2, 1−A0 ±A3, respectively. Then, these can be expressed as

f (∞,−A2)(A;x) = f (∞,+A2)(A0, A1,−A2, A3;x),

f (∞,±A3)(A;x) = f (∞,+A2)(A0, A1,±A3, A2;x),

where f (∞,+A2)(A;x) are given in Theorem 10.20 and 10.21.
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10.7 Correspondence of solutions via the Riemann-Liouville transfor-
mation

For a linear differential operator P , the middle convolution mcµP of P with parameter µ is defined
in §5.1 as the linear differential operator ∂−µ ◦ P ◦ ∂µ.

On the other hand, for a function u(x), the notion of Riemann-Liouville transformation of u
with parameter µ is defined as the function in x:(

Iµγ u
)
(x) :=

1

Γ(µ)

∫
γ

u(s)(x− s)µ−1ds,

where γ is a cycle.

It is known ([Hara2]) that if u is a solution of P , then the function given by the integral above
is a solution of mcµP .

If u(x) is given locally around x = 0 as

u = xα
∞∑
j=0

cnx
n (α /∈ Z),

and if µ /∈ Z, then we can choose γ as a path from 0 to x:(
Iµ[0,x]u

)
(x) =

1

Γ(µ)

∫ x

0

u(s)(x− s)µ−1ds.

Since we assume α, µ /∈ Z, we can apply the beta function formula to get(
Iµ[0,x]u

)
(x) =

Γ(1 + α)

Γ(1 + α+ µ)
xα+µ

∞∑
n=0

(1 + α)n
(1 + α+ µ)n

cnx
n.

10.8 Partial correspondence of local solutions at x = 0, 1

Recall Theorem 5.2:
Z̃(A) := x−A0+1/2Z(A)xA0−1/2 = mc 1

2
L(A).

This suggests us to apply the above transformation formula for

α = −A0, µ = 1/2

and for u the product of the two Gauss hypergeometric series multiplied by x−A0 :

u = x−A0

∑
cnx

n, cn = [Xn]2F1

(
A−+−+ A−++−

1−A0
;x

)
2F1

(
A−−−− A−−++

1−A0
;x

)
.

We get a solution of Z̃(A):(
I
1/2
[0,x]u

)
(x) =

Γ(1−A0)

Γ(3/2−A0)
x−A0+1/2

∑ (1−A0)n
(3/2−A0)n

cnx
n,

which is, by the definition of f (0,0)(A, x), equal to

Γ(1−A0)

Γ(3/2−A0)
x−A0+1/2f (0,0)(A, x).

This rediscovers the expression (22), and we have

Proposition 10.23 Via the Riemann-Liouville transformation I
1/2
[0,x] above, the local solution at

x = 0 to L(A), the product of two Gauss equation, of exponent ±A0 is sent to the local solution at
x = 0 to Z̃(A) of exponent 1

2 ±A0.

Since the equation is stable under the change

(x,A0, A1, A2, A3) 7→ (1− x,A1, A0, A2, A3)

as in Remark 4.5, the happening at x = 1 reduces to that at x = 0.
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10.9 Local solutions at infinity II: using middle convolution

Since the local exponents
α = −1±A2, 1±A3

of L(A) at ∞ are non integral, the corresponding solutions with exponents

α = −1/2±A2, 3/2±A3

of Z̃(A) are obtained via the Riemann-Liouville transformation with parameter 1/2 from those of
L(A). Just apply to the local solution at infinity

u(x) = xα
0∑

n=−∞
cnx

n =

0∑
n=−∞

cnx
n+α α ∈ {−1±A2, 1±A3}

to get

Γ(α+ 1)

Γ(α+ 3
2 )

xα+
1
2

0∑
n=−∞

cn
(−α− 1

2 )n

(−α)n
xn.

11 Local solutions of Z(A) at x = 0 with exponent A0 ± 1/2

In this section, local solutions of Z(A) at x = 0 with exponent A0 ± 1
2 are constructed.

11.1 Recurrence relation Rc1(A)

The coefficients of a local solution

xA0− 1
2

∞∑
n=0

Cnx
n

satisfy

Rc1(A) :

Cn =
(n− 1)2

(
2n2 − 4n−A2

0 +A2
1 −A2

2 −A2
3 +

5
2

)
n(n− 1)

(
n+A0 − 1

2

) (
n−A0 − 1

2

) Cn−1

−
(
n+A2 − 3

2

) (
n−A2 − 3

2

) (
n+A3 − 3

2

) (
n−A3 − 3

2

)
n(n− 1)

(
n+A0 − 1

2

) (
n−A0 − 1

2

) Cn−2.

(n = 2, 3, . . .)

For arbitrary given C0 and C1, remaining coefficients Cn(n ≥ 2) are uniquely determined. The
invariant of Rc1(A) is given by

H1(n;A) =
−n(n− 1)

(
2n2 − 4n−A2

0 +A2
1 −A2

2 −A2
3 +

5
2

) (
2n2 −A2

0 +A2
1 −A2

2 −A2
3 +

1
2

)(
n+A0 − 1

2

) (
n−A0 − 1

2

) (
n+A2 − 1

2

) (
n−A2 − 1

2

) (
n+A3 − 1

2

) (
n−A3 − 1

2

) .
Remark 11.1 (Symmetry) Rc1(A) is invariant under

Aj → −Aj (j = 0, 1, 2, 3) and A2 ↔ A3. (28)

11.2 Special values of non-terminating 4F3 at x = 1

The difference equation Rc0(A) for holomorphic solutions at x = 0 was solved by special values
of the terminating series 4F3(∗; 1), which satisfy the difference equation Rc(0)(α̂). The key was to
find the parameters α̂ so that the invariants of the two difference equations

H0(n;A) and H(0)(n; α̂)

agree.
For the difference equation Rc1(A) for general parameters A = (A0, A1, A2, A3), we can not

find α̂ so that the invariants H1(n;A) and H(0)(n; α̂) agree. In other words, the terminating series

4F3(∗; 1) can not solve our equation Rc1(A).
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We introduce some special values of non-terminating 4F3 at 1: We first introduce

4f̃3

(
a0, a1, a2, a3
b0, b1, b2, b3

;x

)
:=

∞∑
n=0

Γ(a0 + n)Γ(a1 + n)Γ(a2 + n)Γ(a3 + n)

Γ(b0 + n)Γ(b1 + n)Γ(b2 + n)Γ(b3 + n)
xn,

and8

4f3

(
a0, a1, a2, a3
b1, b2, b3

;x

)
:= 4f̃3

(
a0, a1, a2, a3
1, b1, b2, b3

;x

)
=

Γ(a0)Γ(a1)Γ(a2)Γ(a3)

Γ(b1)Γ(b2)Γ(b3)
4F3

(
a0, a1, a2, a3
b1, b2, b3

;x

)
.

For

α =

(
α0, α1, α2, α3

β1, β2, β3

)
,

we define

y0(α) := 4f3(α; 1) := 4f3

(
α0, α1, α2, α3

β1, β2, β3
; 1

)
,

yi(α) := 4f̃3

(
α0 + 1− βi, α1 + 1− βi, α2 + 1− βi, α3 + 1− βi

2− βi, β1 + 1− βi, β2 + 1− βi, β3 + 1− βi
; 1

)
, (i = 1, 2, 3)

yi+4(α) := −4f̃3

(
αi, αi + 1− β1, αi + 1− β2, αi + 1− β3

αi + 1− α0, αi + 1− α1, αi + 1− α2, αi + 1− α3
; 1

)
. (i = 0, 1, 2, 3)

From now on we always assume that the parameters are balanced:

β1 + β2 + β3 − α0 − α1 − α2 − α3 = 1; (29)

so all the infinite series above are convergent.

11.3 Difference equation Rc(1)(α) : an extension of Rc(0)(α̂)

Set

e1 =

(
1, 0, 0, 0
1, 0, 0

)
, e2 =

(
0, 1, 0, 0
0, 1, 0

)
, e12 =

(
1, 1, 0, 0
1, 1, 0

)
.

as in §10.3. We have

Proposition 11.2 ([4])

yi(α) = U
(1)
1 (α)yi(α+ e1) + V

(1)
1 (α)yi(α+ e12) +

1

α0(β3 − α0 − 1)
,

yi(α) = U
(1)
2 (α)yi(α+ e2) + V

(1)
2 (α)yi(α+ e12) +

1

α1(β3 − α1 − 1)

hold for any i (i = 0, 1, . . . , 7). Here,

U
(1)
1 (α) =

−(β1 − α1)(β1 + β2 − α2 − α3)

α0(β3 − α0 − 1)
, V

(1)
1 (α) =

−(β2 − α2)(β2 − α3)

α0(β3 − α0 − 1)
,

U
(1)
2 (α) = U

(1)
1 (α)|α0↔α1,β1↔β2 , V

(1)
2 (α) = V

(1)
1 (α)|α0↔α1,β1↔β2 .

As Proposition 10.4 led to Lemma 10.5 and Proposition 10.6, we have

Lemma 11.3 Assume condition (29). Set (n;α) := −ne12 +α. yi(n;α) (i = 0, 1, . . . , 7) satisfies
the non-homogeneous linear difference equation

Dn = q
(1)
1 (n;α)Dn−1 + q

(1)
2 (n;α)Dn−2 + q

(1)
0 (n;α),

8This series is known to be convergent at x = 1 if

ℜ(b0 + b1 + b2 + b3 − a0 − a1 − a2 − a3) > 1.
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where

q
(1)
1 (α) = U

(1)
1 (α)U

(1)
2 (α+ e1) + V

(1)
1 (α) +

U
(1)
1 (α)V

(1)
2 (α+ e1)

U
(1)
1 (α+ e12)

,

q
(1)
2 (α) =

−U (1)
1 (α)V

(1)
1 (α+ e12)V

(1)
2 (α+ e1)

U
(1)
1 (α+ e12)

,

q
(1)
0 (α) =

(β1 − α2 + 1)(β1 − α3 + 1)(β1 + β2 − α2 − α3)

α0α1(β3 − α0 − 1)(β3 − α1 − 1)(β1 + β2 − α2 − α3 + 2)
+

α0α1 − β1(β1 + β2 − α2 − α3)

α0α1(β3 − α0 − 1)(β3 − α1 − 1)
.

Proposition 11.4 Assume condition (29).

D
(1)
ij (n;α) := yi(n;α)− yj(n;α) i, j ∈ {0, 1, 2, . . . , 7}

satisfies the homogeneous linear difference equation

Rc(1)(α) : Dn = q
(1)
1 (n;α)Dn−1 + q

(1)
2 (n;α)Dn−2.

The invariant of Rc(1)(α) is

H(1)(n;α) :=
q
(1)
1 (n;α)q

(1)
1 (n+ 1;α)

q
(1)
2 (n+ 1;α)

.

Note that this invariant is a generalization of the former one:

H(1)(n;α)|α0=0 = H(0)(n; α̂).

Remark 11.5 (Symmetry) The homogeneous linear difference equation Rc(1)(α) has symmetries

α0 ↔ α1 , α2 ↔ α3 , β1 ↔ β2 , (30)

α→ (α0 + 1− β3, α1 + 1− β3, α2 + 1− β3, α3 + 1− β3, β1 + 1− β3, β2 + 1− β3, 2− β3) , (31)

α→ (α0, α0 + 1− β3, α0 + 1− β1, α0 + 1− β2, α0 + 1− α2, α0 + 1− α3, α0 + 1− α1) . (32)

11.4 Local solutions at zero II: solving Rc1(A)

We eventually find α to solve Rc1(A).

Proposition 11.6 The invariant H1(n;A) of the equation Rc1(A) and the invariant H(1)(n;α)
of the equation Rc(1)(α) agree if and only if α = (α0, α1, α2, α3;β1, β2, β3) is equal to

α =

(
1

2
, A0 +

1

2
, A+−−−, A+−++;A+−−+ +

1

2
, A+−+− +

1

2
, A0 + 1

)
, (33)

or =

(
1

2
, A2 +

1

2
, A−−+−, A+−++;A−−++ +

1

2
, A+−+− +

1

2
, A2 + 1

)
, (34)

or =

(
A0 +

1

2
, A2 +

1

2
, A+−++, A+−+−;A+−++ +

1

2
, A+−+− +

1

2
, A0 +A2 + 1

)
, (35)

or =

(
A2 +

1

2
, A3 +

1

2
, A+−++, A−−++;A+−++ +

1

2
, A−−++ +

1

2
, A2 +A3 + 1

)
, (36)

up to the symmetries (28), (30), (31), (32) of the difference equations.

Proof is parallel to that of Proposition 10.8, and goes as follows: The numerator of H1(n;A) −
H(1)(n;α) is a polynomial in n of degree 14. The coefficient of the top term decomposes as

constant× (α0 + α1 − β1 − β2 + 1−A1)(α0 + α1 − β1 − β2 + 1 +A1).
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If we set α0 = −α1 + β1 + β2 − 1±A1, then the second top term decomposes as

constant× (2A1 − 1)(2A1 + 1)(α2 + α3 − β1 − β2 + 1).

Since we assume A1 is a free parameter, we have

α2 + α3 − β1 − β2 + 1 = 0. (37)

Eliminating β2 and β3 from H(1)(n;α) by making use of the condition (29) and the relation (37),
we get an expression

H(1)(n;α) =
−γ(1) +O

((
n− 1

2

)2)
γ(1) +O

((
n− 1

2

)2) ,

where

γ(1) := (2α0 − 1)2(2α1 − 1)2(2α2 − 2β1 + 1)2(2α3 − 2β1 + 1)2.

Now, assume γ(1) 6= 0. Then, H(1)
(
1
2 ;α

)
= −1, whereas H1

(
1
2 ;A

)
is parameter dependent:

H1

(
1

2
;A

)
=
−
(
A2

0 −A2
1 +A2

2 +A2
3 − 1

)2
4A2

0A
2
2A

2
3

.

So it does not happen that H1 (n;A) = H(1)(n;α) in the case γ(1) 6= 0. Thus γ(1) must be 0.
Thanks to the symmetry (30) of Rc(1)(α), we have only to consider two cases:

Case 1 : α0 =
1

2
and Case 2 : β1 = α2 +

1

2
.

Case 1: Eliminating β2 and β3 from H(1)(n;α) by the condition (29) and the relation (37), we get

an expression

H(1) (n;α) =
−n(n− 1)ϵ

(1)
1 (n)ϵ

(1)
1 (n+ 1)

(n− α1)(n+ α1 − 1)(n+ α2 − β1)(n− α2 + β1 − 1)(n+ α3 − β1)(n− α3 + β1 − 1)
,

where ϵ
(1)
1 (n) = 2

(
n2 − 2n− α1α2 − α1α3 + α2α3 + α2β1 + α3β1 − β2

1 + α1 − α2 − α3 + β1 + 1
)
.

Equating this and H1(n;A), we conclude that α satisfies

• ϵ
(1)
1 (0) = −A2

0 +A2
1 −A2

2 −A2
3 +

5

2
,

•
{
±
(
α1 −

1

2

)
− 1

2
, ±

(
−α2 + β1 −

1

2

)
− 1

2
, ±

(
−α3 + β1 −

1

2

)
− 1

2

}
=

{
±A0 −

1

2
, ±A2 −

1

2
, ±A3 −

1

2

}
.

These lead to (33) and (34), up to the symmetries (28) and (30).

Case 2: In the same way we have

H(1) (n;α) =
−n(n− 1)ϵ

(1)
2 (n)ϵ

(1)
2 (n+ 1)

(n− α0)(n+ α0 − 1)(n− α1)(n+ α1 − 1)
(
n− α2 + α3 − 1

2

) (
n+ α2 − α3 − 1

2

) ,
where ϵ

(1)
2 (n) = 2

(
n2 − 2n+ α0α1 − α0α2 − α0α3 − α1α2 − α1α3 + 2α2α3 +

α0

2
+

α1

2
+ 1

)
,

and the conditions

• ϵ
(1)
2 (0) = −A2

0 +A2
1 −A2

2 −A2
3 +

5

2
,
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•
{
±
(
α0 −

1

2

)
− 1

2
, ±

(
α1 −

1

2

)
− 1

2
, ± (α2 − α3)−

1

2

}
=

{
±A0 −

1

2
, ±A2 −

1

2
, ±A3 −

1

2

}
,

which lead to (35) and (36), up to the symmetries (28) and (30).
These complete the proof of the proposition.

This proposition together with Corollary 10.2 implies

Proposition 11.7

(Solutions of Rc1(A))

=

(
1
2

)
n

n!
(Solutions of Rc(1)(α) with α as (33) )

=

(
1
2

)
n

(
−A2 +

1
2

)
n

(
A2 +

1
2

)
n

n!
(
−A0 +

1
2

)
n

(
A0 +

1
2

)
n

(Solutions of Rc(1)(α) with α as (34) )

=

(
−A2 +

1
2

)
n

(
A2 +

1
2

)
n

n!
(
1
2

)
n

(Solutions of Rc(1)(α) with α as (35) )

=

(
−A2 +

1
2

)
n

(
A2 +

1
2

)
n

(
−A3 +

1
2

)
n

(
A3 +

1
2

)
n

n!
(
1
2

)
n

(
−A0 +

1
2

)
n

(
A0 +

1
2

)
n

(Solutions of Rc(1)(α) with α as (36) ).

So far we got many solutions of the difference equation Rc1(A), whose solution space is two
dimensional. Among these, there are many linearly independent pairs, but it is not so obvious to
pick two independent ones. Set

W
(1)
1,ij(n;A) :=

(
1
2

)
n

n!
D

(1)
ij (n;α)

∣∣∣
α=(33)

,

W
(1)
2,ij(n;A) :=

(
1
2

)
n

(
−A2 +

1
2

)
n

(
A2 +

1
2

)
n

n!
(
−A0 +

1
2

)
n

(
A0 +

1
2

)
n

D
(1)
ij (n;α)

∣∣∣
α=(34)

,

W
(1)
3,ij(n;A) :=

(
−A2 +

1
2

)
n

(
A2 +

1
2

)
n

n!
(
1
2

)
n

D
(1)
ij (n;α)

∣∣∣
α=(35)

,

W
(1)
4,ij(n;A) :=

(
−A2 +

1
2

)
n

(
A2 +

1
2

)
n

(
−A3 +

1
2

)
n

(
A3 +

1
2

)
n

n!
(
1
2

)
n

(
−A0 +

1
2

)
n

(
A0 +

1
2

)
n

D
(1)
ij (n;α)

∣∣∣
α=(36)

,

and
Ω := {(k, i, j) | k = 1, 2, 3, 4; i, j = 0, 1, . . . , 7; i 6= j}.

We have

Theorem 11.8 For (k, i, j) ∈ Ω,

f
(0,A0−1/2)
k,ij (A;x) := xA0− 1

2

∞∑
n=0

W
(1)
k,ij(n;A)xn

is a solution of Z(A) at x = 0 with exponent A0 − 1
2 .

Examples of linearly independent pairs:

{f (0,A0−1/2)
1,01 , f

(0,A0−1/2)
1,02 }, {f (0,A0−1/2)

1,03 , f
(0,A0−1/2)
1,54 }, {f (0,A0−1/2)

2,03 , f
(0,A0−1/2)
2,54 }.

12 Local solutions of Q(A)

Let PQ(A;x) (= PQ(A0, A1, A2, A3;x)) denote the space of solutions of Q(A) appeared in §6.2.
Remark 6.3 implies the following equivalence.
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Proposition 12.1

PQ(A0, A1, A2, A3;x) = PQ(±A0,±A1, A2,±A3;x) (38)

= PQ(±A1,±A0, A2,±A3; 1− x) (39)

=

(
− 1

x

)1+2A2

PQ

(
±A3,±A1, A2,±A0;

1

x

)
(40)

= (1− x)
−1−2A2 PQ

(
±A0,±A3, A2,±A1;

x

x− 1

)
. (41)

To help understand the following propositions, we tabulate several expressions of the Riemann
scheme of Q(A):

x = 0 x = 1 x =∞
0 0 1 + 2A2

−A0 −A2 −A1 −A2 1 +A2 −A3

A0 −A2 A1 −A2 1 +A2 +A3

 =

(
− 1

x

)1+2A2


1
x =∞ 1

x = 1 1
x = 0

1 + 2A2 0 0
1 +A2 −A0 −A1 −A2 −A3 −A2

1 +A2 +A0 A1 −A2 A3 −A2



= (1− x)−(1+2A2)


x

x−1 = 0 x
x−1 =∞ x

x−1 = 1

0 1 + 2A2 0
−A0 −A2 1 +A2 −A1 −A3 −A2

A0 −A2 1 +A2 +A1 A3 −A2

 .

Thanks to the identities (39) and (40), three linearly independent local solutions at x = 0 give those

at other singular points. We find a holomorphic solution f
(0,0)
Q (A;x) and a solution f

(0,±)
Q (A;x) of

local exponent ±A0 −A2 at x = 0 as follows.

12.1 Holomorphic solution f
(0,0)
Q (A;x) to Q(A) at x = 0

Set

f
(0,0)
Q (A;x) =

∞∑
n=0

Cn x
n, C0 = 1.

The coefficients Cn satisfy the recurrence relation

RcQ(A) :
Cn =

(
n+A2 − 1

2

) (
2n2 + 2(2A2 − 1)n−A2

0 +A2
1 +A2

2 −A2
3 − 2A2 + 1

)
n(n+A0 +A2)(n−A0 +A2)

Cn−1

− (n+ 2A2 − 1)(n+A2 +A3 − 1)(n+A2 −A3 − 1)

n(n+A0 +A2)(n−A0 +A2)
Cn−2,

whose invariant will be called HQ(n;A).

Remark 12.2 (Symmetry) RcQ(A) is invariant under

Aj → −Aj (j = 0, 1, 3). (42)

Proposition 12.3 Let A be generic. Then, the two invariants HQ(n;A) and H(0)(n; α̂) of the
difference equations RcQ(A) and Rc(0)(α̂) agree as functions in n if and only if

α̂ =

(
0, α1, α2, α3

β1, β2, β3

)
=

(
0, A0 −A2, A+−+−, A+−++

A+−−−, A+−−+, 1 +A0 +A2

)
,

or =

(
0,−A2 +A3, A−−++, A+−++

A−−−+, A+−−+, 1 +A2 +A3

)
,

or =

(
0,−A2, A−−++, A+−+−
A−−−−, A+−−+, 1 +A2

)
,

up to the symmetries of two difference equations, that is, (42) and Remark 10.3.
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Doing the same as we got Theorem 10.10 from Proposition 10.8, we can obtain the following
theorem:

Theorem 12.4 The holomorphic solution f
(0,0)
Q (A;x) to Q(A) at x = 0 has the following expres-

sions:

f
(0,0)
Q (A;x)

=

∞∑
n=0

xn (1 + 2A2)n (A−+++)n (A−++−)n
(1 +A2)n (1−A0 +A2)nn!

4F3

(
−n,A0 −A2 − n,A+−+−, A+−++

A+−−− − n,A+−−+ − n, 1 +A0 +A2
; 1

)
(43)

=

∞∑
n=0

xn (1 + 2A2)n (1 +A2 +A3)n (A+++−)n (A−++−)n
(1 +A2)n (1−A0 +A2)n(1 +A0 +A2)nn!

4F3

(
−n,−A2 +A3 − n,A−−++, A+−++

A−−−+ − n,A+−−+ − n, 1 +A2 +A3
; 1

)
(44)

=

∞∑
n=0

xn (1 + 2A2)n (A++++)n (A−++−)n
(1−A0 +A2)n(1 +A0 +A2)nn!

4F3

(
−n,−A2 − n,A−−++, A+−+−

A−−−− − n,A+−−+ − n, 1 +A2
; 1

)
. (45)

Remark 12.5 By the help of the transformation formula (20), one of the three (43), (44), (45)
implies the other two.

Remark 12.6 By using the formula (21), the expressions (43), (44), (45) can be written also as

f
(0,0)
Q (A;x)

=

∞∑
n=0

xn (1 + 2A2)n
(1 +A2)n

[Zn]2F1

(
A−+++, A−++−

1−A0 +A2
;Z

)
2F1

(
A+−+−, A+−++

1 +A0 +A2
;Z

)
(46)

=

∞∑
n=0

xn (1 + 2A2)n(1 +A2 +A3)n(1 +A2 −A3)n
(1 +A2)n(1−A0 +A2)n(1 +A0 +A2)n

[Zn]2F1

(
A+++−, A−++−

1 +A2 −A3
;Z

)
2F1

(
A−−++, A+−++

1 +A2 +A3
;Z

)
(47)

=

∞∑
n=0

xn (1 +A2)n (1 + 2A2)n
(1−A0 +A2)n(1 +A0 +A2)n

[Zn]2F1

(
A++++, A−++−

1 +A2
;Z

)
2F1

(
A−−++, A+−+−

1 +A2
;Z

)
.

(48)

Remark 12.7 Applying the trivial symmetry (38)) to f
(0,0)
Q (A;x), we have

f
(0,0)
Q (A;x) = f

(0,0)
Q (±A0,±A1, A2,±A3;x).

12.2 Local solution to Q(A) at x = 0 with exponent A0 − A2

Set

f
(0,+)
Q (A;x) = xA0−A2

∞∑
n=0

Cnx
n, C0 = 1.

The coefficients Cn satisfy the recurrence relation:

Cn =

(
n+A0 − 1

2

) (
2n2 + 2(2A0 − 1)n+A2

0 +A2
1 −A2

2 −A2
3 − 2A0 + 1

)
n (n+ 2A0) (n+A0 −A2)

Cn−1

− (n+A0 +A2 − 1) (n+A0 +A3 − 1) (n+A0 −A3 − 1)

n (n+ 2A0) (n+A0 −A2)
Cn−2.

The same argument as in the previous section leads to
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Theorem 12.8 The local solution f
(0,+)
Q (A;x) to Q(A) at x = 0 with exponent A0 − A2 has the

following expressions:

f
(0,+)
Q (A;x)

= xA0−A2

∞∑
n=0

xn (1 +A0 +A2)n
(1 +A0)n

[Zn]2F1

(
A+−−+, A+−−−

1 +A0 −A2
;Z

)
2F1

(
A++++, A+++−

1 +A0 +A2
;Z

)
(49)

= xA0−A2

∞∑
n=0

xn (1 +A0 −A3)n(1 +A0 +A3)n
(1 +A0)n(1 +A0 −A2)n

[Zn]2F1

(
A+−−+, A+−++

1 +A0 +A3
;Z

)
2F1

(
A++−−, A+++−

1 +A0 −A3
;Z

)
(50)

= xA0−A2

∞∑
n=0

xn (1 +A0)n
(1 +A0 −A2)n

[Zn]2F1

(
A+−+−, A+−−+

1 +A0
;Z

)
2F1

(
A++−−, A++++

1 +A0
;Z

)
. (51)

Remark 12.9 As in the previous section, the formula (21) changes the expressions (49) , (50) and
(51) into those in terms of 4F3(1).

Remark 12.10 Applying the trivial symmetry (38) to f
(0,+)
Q (A;x), we have

f
(0,+)
Q (A;x) = f

(0,+)
Q (A0,±A1, A2,±A3;x).

12.3 Pfaff transforms of the solutions of Q(A)

From formula (41) we get the following Pfaff transformations:

Proposition 12.11

f
(0,0)
Q (A;x) = (1− x)−(1+2A2)f

(0,0)
Q

(
±A0,±A3, A2,±A1;

x

x− 1

)
,

f
(0,+)
Q (A;x) = C × (1− x)−(1+2A2)f

(0,+)
Q

(
A0,±A3, A2,±A1;

x

x− 1

)
,

where C is a constant depending on the choice of the branch of xA0−A2 .

12.4 Local solutions of Q(A)

Applying the symmetries (38), (39) and (40) to local solutions f
(0,0)
Q (A;x) and f

(0,+)
Q (A;x) of

Q(A), we obtain series expressions of other local solutions.

Proposition 12.12 Local solutions of Q(A) are tabulated in Table 1.

13 Local solutions of the Dotsenko-Fateev equation

The Dotsenko-Fateev equation S is obtained (Propositions 6.5 ) from the equation Q(A) by the
change of unknown

z = x−A0−A2(x− 1)−A1−A2w, (52)

where z: solution of Q(A), w: solution of S, and the parameter change given in Propositions 6.6.
So we get expressions of local solutions of Dotsenko-Fateev (D-F for short) equation from those
obtained in the previous section.

Table 2 tabulates the local solutions of Q(A) appeared in the previous section, and names

f
(∗,∗)
DF (a, b, c, g;x) of the corresponding solutions of the Dotsenko-Fateev equation.
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names of solutions (point, exponent) series expression

f
(0,0)
Q (A;x) (0, 0) Theorem 12.4, Remark 12.6, 12.7, Proposition 12.11

f
(0,+)
Q (A;x) (0, A0 −A2) Theorem 12.8, Remark 12.10, Proposition 12.11

f
(0,−)
Q (A;x) (0,−A0 −A2) f

(0,+)
Q (−A0,±A1, A2,±A3;x)

f
(1,0)
Q (A;x) (1, 0) f

(0,0)
Q (±A1,±A0, A2,±A3; 1− x)

f
(1,+)
Q (A;x) (1, A1 −A2) f

(0,+)
Q (A1,±A0, A2,±A3; 1− x)

f
(1,−)
Q (A;x) (1,−A1 −A2) f

(0,+)
Q (−A1,±A0, A2,±A3; 1− x)

f
(∞,0)
Q (A;x) (∞, 2A2 + 1)

(
− 1

x

)1+2A2

f
(0,0)
Q

(
±A3,±A1, A2,±A0;

1

x

)
f
(∞,+)
Q (A;x) (∞, A2 +A3 + 1)

(
− 1

x

)1+2A2

f
(0,+)
Q

(
A3,±A1, A2,±A0;

1

x

)
f
(∞,−)
Q (A;x) (∞, A2 −A3 + 1)

(
− 1

x

)1+2A2

f
(0,+)
Q

(
−A3,±A1, A2,±A0;

1

x

)
Table 1: Names of local solutions of Q(A) and their series expressions

solutions of Q(A) (point, exponent) solutions of D-F equation (point, exponent)

f
(0,0)
Q (A;x) (0, 0) f

(0,1)
DF (a, b, c, g;x) (0, a+ c+ 1)

f
(0,+)
Q (A;x) (0, A0 −A2) f

(0,2)
DF (a, b, c, g;x) (0, 2a+ 2c+ g + 2)

f
(0,−)
Q (A;x) (0,−A0 −A2) f

(0,0)
DF (a, b, c, g;x) (0, 0)

f
(1,0)
Q (A;x) (1, 0) f

(1,1)
DF (a, b, c, g;x) (1, b+ c+ 1)

f
(1,+)
Q (A;x) (1, A1 −A2) f

(1,2)
DF (a, b, c, g;x) (1, 2b+ 2c+ g + 2)

f
(1,−)
Q (A;x) (1,−A1 −A2) f

(1,0)
DF (a, b, c, g;x) (1, 0)

f
(∞,0)
Q (A;x) (∞, 2A2 + 1) f

(∞,1)
DF (a, b, c, g;x) (∞,−a− b− 2c− g − 1)

f
(∞,+)
Q (A;x) (∞, A2 +A3 + 1) f

(∞,0)
DF (a, b, c, g;x) (∞,−2c)

f
(∞,−)
Q (A;x) (∞, A2 −A3 + 1) f

(∞,2)
DF (a, b, c, g;x) (∞,−2a− 2b− 2c− g − 2)

Table 2: Names of local solutions of D-F equations corresponding to those of Q(A)

13.1 Local solutions of the Dotsenko-Fateev equation at x = 0

Proposition 13.1 (1)

f
(0,0)
DF (a, b, c, g;x)/(1− x)b+c+1

=

∞∑
n=0

xn (−a− c− g)n(
−a− c− g

2

)
n

[Zn]2F1

(
−c,−a− b− c− g

2 − 1

−a− c
;Z

)
2F1

(
b+ 1,−a− g

2

−a− c− g
;Z

)

=

∞∑
n=0

xn (−2a− b− c− g − 1)n(b− c+ 1)n

(−a− c)n
(
−a− c− g

2

)
n

[Zn]2F1

(
−c,−c− g

2

b− c+ 1
;Z

)
2F1

(
−a,−a− g

2

−2a− b− c− g − 1
;Z

)

=

∞∑
n=0

xn

(
−a− c− g

2

)
n

(−a− c)n
[Zn]2F1

(
−c,−a− b− c− g − 1

−a− c− g
2

;Z

)
2F1

(
b+ 1,−a
−a− c− g

2

;Z

)
.
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(2)

f
(0,1)
DF (a, b, c, g;x)/xa+c+1(1− x)b+c+1

=

∞∑
n=0

xn (1− g)n(
1− g

2

)
n

[Zn]2F1

(
b+ 1,−a− g

2

−a− c− g
;Z

)
2F1

(
a+ 1,−b− g

2

a+ c+ 2
;Z

)

=

∞∑
n=0

xn (1− g)n(a+ b+ 2)n(−a− b− g)n(
1− g

2

)
n
(−a− c− g)n (a+ c+ 2)n

[Zn]2F1

(
c+ 1,−a− g

2

−a− b− g
;Z

)
2F1

(
a+ 1,−c− g

2

a+ b+ 2
;Z

)

=

∞∑
n=0

xn

(
1− g

2

)
n
(1− g)n

(−a− c− g)n (a+ c+ 2)n
[Zn]2F1

(
a+ 1,−a− b− c− g − 1

1− g
2

;Z

)
2F1

(
b+ 1, c+ 1

1− g
2

;Z

)
.

(3)

f
(0,2)
DF (a, b, c, g;x) = x2a+2c+g+2f

(0,0)
DF

(
−c− g

2
− 1, a+ b+ c+

g

2
+ 1,−a− g

2
− 1, g;x

)
.

Proof: By the relation (52) and Proposition 12.12, we get (1) and (3). From the expressions (46),

(47), (48) of the holomorphic solution f
(0,0)
Q (A;x) of Q(A), we have (2). □

Remark 13.2 By using the trivial symmetry (38) of the equation Q(A), we can obtain other ex-

pressions of f
(0,i)
DF (a, b, c, g;x) (i = 0, 1, 2), which we omit.

Relation (52) between Q(A) and D-F, and the Pfaff transformation (41) lead to other expressions

of f
(0,0)
DF and f

(0,1)
DF :

Proposition 13.3

(1) f
(0,0)
DF (a, b, c, g;x) = (1− x)2cf

(0,0)
DF

(
a,−a− b− c− g − 2, c, g;

x

x− 1

)
.

(2) f
(0,1)
DF (a, b, c, g;x) = C × (1− x)2cf

(0,1)
DF

(
a,−a− b− c− g − 2, c, g;

x

x− 1

)
,

where C is a constant depending on the choice of a branch around x = 0; or more precisely,

f
(0,1)
DF (a, b, c, g;x)/xa+c+1(1− x)b+c+g

=

∞∑
n=0

(
x

x− 1

)n
(1− g)n(
1− g

2

)
n

[Zn]2F1

(
c+ 1,−b− g

2

a+ c+ 2
;Z

)
2F1

(
b+ 1,−c− g

2

−a− c− g
;Z

)

=

∞∑
n=0

(
x

x− 1

)n
(1− g)n (b+ c+ 2)n (−b− c− g)n(
1− g

2

)
n
(a+ c+ 2)n (−a− c− g)n

[Zn]2F1

(
c+ 1,−a− g

2

b+ c+ 2
;Z

)
2F1

(
a+ 1,−c− g

2

−b− c− g
;Z

)

=

∞∑
n=0

(
x

x− 1

)n
(
1− g

2

)
n
(1− g)n

(a+ c+ 2)n (−a− c− g)n
[Zn]2F1

(
a+ 1, b+ 1

1− g
2

;Z

)
2F1

(
c+ 1,−a− b− c− g − 1

1− g
2

;Z

)
.

13.2 Local solutions of the Dotsenko-Fateev equation at x = 1

By the symmetry of (39) of Q(A) and the relation (52) between Q(A) and D-F, we have

Proposition 13.4

(1) f
(1,0)
DF (a, b, c, g;x) = f

(0,0)
DF (b, a, c, g; 1− x) .

(2) f
(1,1)
DF (a, b, c, g;x) = f

(0,1)
DF (b, a, c, g; 1− x) .

(3) f
(1,2)
DF (a, b, c, g;x) = f

(0,2)
DF (b, a, c, g; 1− x)

= (1−x)2b+2c+g+2f
(0,0)
DF

(
−c− g

2
− 1, a+ b+ c+

g

2
+ 1,−b− g

2
− 1, g; 1− x

)
.
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13.3 Solutions of the Dotsenko-Fateev equation at x =∞
The relation (40) and the relation (52) between Q(A) and D-F lead to

Proposition 13.5

(1) f
(∞,0)
DF (a, b, c, g;x) =

(
− 1

x

)−2c

f
(0,0)
DF

(
−a− b− c− g − 2, b, c, g;

1

x

)
.

(2) f
(∞,1)
DF (a, b, c, g;x) =

(
− 1

x

)−2a−2b−2c−g−2

f
(0,1)
DF

(
a, c, b, g;

1

x

)
.

(3) f
(∞,2)
DF (a, b, c, g;x) =

(
− 1

x

)−2a−2b−2c−g−2

f
(0,0)
DF

(
a, c, b, g;

1

x

)
.
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Padé and rational approximation (Proc. Internat. Sympos., Univ. South Florida, Tampa,
Fla., 1976), 227 – 232, Academic Press, New York, 1977.

Akihito Ebisu
Faculty of Information and Computer Science, Chiba Institute of Technology,
Chiba 275-0023, Japan
email: akihito.ebisu@p.chibakoudai.jp

Yoshishige Haraoka
Department of Mathematics, Kumamoto University,
Kumamoto 860-8555, Japan
email: haraoka@kumamoto-u.ac.jp

Masanobu Kaneko
Department of Mathematics, Kyushu University,
Fukuoka 819-0395, Japan
email: mkaneko@math.kyushu-u.ac.jp

Hiroyuki Ochiai
Department of Mathematics, Kyushu University,

46



Fukuoka 819-0395, Japan
email: ochiai@imi.kyushu-u.ac.jp

Takeshi Sasaki
Kobe University,
Kobe 657-8501, Japan
email: sasaki@math.kobe-u.ac.jp

Masaaki Yoshida
Kyushu University,
Fukuoka 819-0395, Japan
email: myoshida@math.kyushu-u.ac.jp

47


