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Abstract

The aim of this paper is to give a criterion of algebraic independence for the values at the
same point of two modular functions under certain conditions. As an application, we show that
any two infinite products in

∞∏
n=1

(
1 +

1

Fn

)
,

∞∏
n=3

(
1− 1

Fn

)
,

∞∏
n=1

(
1 +

1

Ln

)
,

∞∏
n=2

(
1− 1

Ln

)
are algebraically independent over Q, where {Fn} and {Ln} are the Fibonacci and Lucas se-
quences, respectively. The proof of our main theorem is based on the properties of the field
of all modular functions for the principal congruence subgroup, together with a deep result of
Yu. V. Nesterenko on algebraic independence of the values of the Eisenstein series.
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1 Introduction and main results

Throughout the paper, H denotes the upper-half plane. For an integer k ≥ 2, the normalized
Eisenstein series is defined by

E2k(τ) =
1

2ζ(2k)

∑
(m,n)̸=(0,0)

1

(mτ + n)2k
, τ ∈ H, (1)
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where ζ(s) is the Riemann zeta function. It is well known that the function E2k(τ) is a modular
form of weight 2k for the modular group SL2(Z) and has the Fourier expansion

E2k(τ) = 1− 4k

B2k

∞∑
n=1

σ2k−1(n)e
2πinτ , (2)

where σ2k−1(n) =
∑

d|n d
2k−1 and B2k is the 2k-th Bernoulli number (cf. [1]). For k = 1, we define

the function E2(τ) by using the expression (2):

E2(τ) = 1− 24

∞∑
n=1

σ1(n)e
2πinτ , τ ∈ H.

This is a “quasimodular” form of weight 2 (cf. [11]). In 1996, Yu. V. Nesterenko [15] made a
breakthrough in transcendence theory by showing the algebraic independence of the values of the
Eisenstein series.

Theorem A ([15, Theorem 8]). If τ ∈ H, then at least three of the numbers eπiτ , E2(τ), E4(τ),
E6(τ) are algebraically independent over Q.

In particular, if eπiτ is algebraic, the three numbers E2(τ), E4(τ), E6(τ) are algebraically indepen-
dent over Q. Theorem A has a number of remarkable consequences on transcendence and algebraic
independence of the values of the modular forms. D. Bertrand [3] translated Theorem A in terms
of the theta-constants defined in H by

ϑ2(τ) := 2
∞∑
n=0

eπi(n+1/2)2τ , ϑ3(τ) := 1 + 2
∞∑
n=1

eπin
2τ , ϑ4(τ) := 1 + 2

∞∑
n=1

(−1)neπin
2τ . (3)

Theorem B ([3, Theorem 4]). Let α, β, γ ∈ {2, 3, 4} with α ̸= β. Then for any τ ∈ H, at least three
of the numbers eπiτ , ϑα(τ), ϑβ(τ), Dϑγ(τ) are algebraically independent over Q, where D := 1

πi
d
dτ

is a differential operator.

It should be noted that the sum
∑∞

n=1 q
n2

is transcendental for any algebraic number q with
0 < |q| < 1 (see also [6]). Recently, the second, third and fourth author [10] extended Theorem B
to a more general form:

Theorem C ([10, Theorem 1.1]). Let m,n, ℓ ≥ 1 be integers and α, β, γ ∈ {2, 3, 4} with (m,α) ̸=
(n, β). Then for any τ ∈ H, at least three of the numbers eπiτ , ϑα(mτ), ϑβ(nτ), Dϑγ(ℓτ) are
algebraically independent over Q.

As a corollary of Theorem C, we obtain the algebraic independence over Q of the three numbers

∞∑
n=1

(n
3

) qn

1− qn
,

∞∑
n=1

(−1)n
(n
3

) qn

1− qn
,

∞∑
n=1

(n
3

) qn

1− q2n
(4)

for any algebraic number q with 0 < |q| < 1, where
(
n
3

)
is the Legendre symbol ([10, Corollary 1.1]).

On the other hand, the first author, Ke. Nishioka, Ku. Nishioka and I. Shiokawa [7] applied Theo-
rem A to derive transcendence results for certain infinite series involving the Fibonacci and Lucas
sequences; e.g.

∞∑
n=1

1

F2n−1
,

∞∑
n=1

1

L2n
, (5)



A criterion of algebraic independence of values of modular functions 3

where {Fn}n≥0 and {Ln}n≥0 are the Fibonacci and Lucas sequences defined, respectively, by

Fn+2 = Fn+1 + Fn, (n ≥ 0), F0 = 0, F1 = 1

and
Ln+2 = Ln+1 + Ln, (n ≥ 0), L0 = 2, L1 = 1.

We are still unaware of the transcendence of the infinite sums
∑∞

n=1 1/Fn,
∑∞

n=1 1/F2n,
∑∞

n=1 1/Ln,
and

∑∞
n=1 1/L2n−1. In the direction of infinite products, the first and fourth author showed in the

recent paper [9] that the two numbers

ξ1 :=
∞∏
n=1

(
1 +

1

Fn

)
, ξ2 :=

∞∏
n=3

(
1− 1

Fn

)
(6)

are algebraically independent over Q. This has been done first by expressing the numbers ξ1 and
ξ2 by means of the theta-constants and then applying Nesterenko’s Theorem A. For example, the
number ξ1 has the expression

ξ21 = 8β−5/2ϑ2(2τ0)

ϑ4(2τ0)
, (7)

where β := (
√
5 − 1)/2 and τ0 ∈ H satisfies β = eπiτ0 (cf. [9]). Note that the transcendence of

ξ1 follows immediately from a result of K. Barré-Sirieix, G. Diaz, F. Gramain and G. Philibert [2]
(see also [3, Theorem 3]) on the transcendence of the values of the elliptic modular j-function

j(τ) := 1728
E4(τ)

3

E4(τ)3 − E6(τ)2
, τ ∈ H. (8)

The main purpose of the present paper is to give a criterion of algebraic independence for the
values of two modular functions (Theorem 1 below). Then we will derive new results of algebraic
independence for certain infinite sums and products involving the Fibonacci and Lucas sequences
(Theorems 2 and 3) by expressing our target numbers by values of the Dedekind eta function.
Before stating our main theorem, we prepare some notations. Let N be a positive integer and
Γ(N) be the principal congruence subgroup of SL2(Z) of level N , which is defined by

Γ(N) :=

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ ( a b
c d

)
≡

(
1 0
0 1

)
(mod N)

}
.

A modular function of weight k ∈ Z for Γ(N) is a meromorphic function f on H, which satisfies
the following two conditions (cf. [12, p. 125]):

(i) f |[γ]k = f for all γ ∈ Γ(N), where f |[γ]k is the function whose value at τ is defined by

f(τ)|[γ]k := (cτ + d)−kf(γτ).

(ii) For any γ ∈ SL2(Z), the Fourier expansion of f |[γ]k has the form

f(τ)|[γ]k =

∞∑
n=−m

ane
2πinτ/N , (9)

where the integer m and the coefficients an depend on γ ∈ SL2(Z). We call such an f a modular
form of weight k for Γ(N) if it is holomorphic on H and if for any γ ∈ SL2(Z) we have an = 0 for
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all n < 0 in (9). In what follows, let FN denote the field of all modular functions of weight zero for
Γ(N) whose Fourier expansions with respect to e2πiτ/N of the form

f(τ) =

∞∑
n=−m

ane
2πinτ/N

have coefficients in Q(e2πi/N ). It should be noted that F1 = Q(j(τ)) and FN is a Galois extension
of F1, where j(τ) is the elliptic modular j-function defined in (8) (cf. [5, Chapter 15, A]). Our
results are the following.

Theorem 1 Let f1(τ) and f2(τ) be non-zero modular functions of weights k1 and k2, respectively,
for Γ(N) whose Fourier expansions with respect to e2πiτ/N have coefficients in Q(e2πi/N ). Let τ0 ∈ H
be neither a zero nor a pole of the functions f1 and f2 such that the number eπiτ0 is algebraic. Then
the two numbers f1(τ0) and f2(τ0) are algebraically independent over Q if and only if the function
fk2
1 /fk1

2 is not constant.

As an application of Theorem 1, we obtain the following algebraic independence results.

Theorem 2 Any two infinite products in the set{
ξ1 :=

∞∏
n=1

(
1 +

1

Fn

)
, ξ2 :=

∞∏
n=3

(
1− 1

Fn

)
, ν1 :=

∞∏
n=1

(
1 +

1

Ln

)
, ν2 :=

∞∏
n=2

(
1− 1

Ln

)}

are algebraically independent over Q, while any three are not.

Note that the same holds for the set of the four alternating infinite products

ξ3 :=
∞∏
n=2

(
1 +

(−1)n

Fn

)
, ξ4 :=

∞∏
n=3

(
1− (−1)n

Fn

)
,

ν3 :=
∞∏
n=2

(
1 +

(−1)n

Ln

)
, ν4 :=

∞∏
n=1

(
1− (−1)n

Ln

)
,

since we will prove in Section 3 that

ξ3 = 6ξ2, 12ξ4 = ξ1, 2
√
5ν3 = ν1, ν4 = 2

√
5ν2. (10)

Theorem 3 Any two numbers in the set{
λ1 :=

∞∑
n=1

1

F2n−1
, ξ5 :=

∞∏
n=1

(
1 +

1

F2n−1

)
, ξ6 :=

∞∏
n=2

(
1− 1

F2n−1

)
,

λ2 :=

∞∑
n=1

1

L2n
, ν5 :=

∞∏
n=1

(
1 +

1

L2n

)
, ν6 :=

∞∏
n=1

(
1− 1

L2n

)}

are algebraically independent over Q except only three algebraically dependent cases {ξ5, ν5}, {ξ5, ν6}
and {ν5, ν6}, while any three are not.
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Theorems 2 and 3 give generalizations of the algebraic independence and transcendence results
for the numbers (6) and (5), respectively.

The present paper is organized as follows. In Section 2, we prove Theorem 1 by using the
theory of modular functions and Nesterenko’s Theorem A. In Section 3, we show that the infinite
products in Theorems 2 and 3 can be expressed by values of the Dedekind eta function. Section 4 is
devoted to the proofs of Theorems 2 and 3. In the last Section 5, we give explicit algebraic relations
for certain eta products, which yield similar relations for any two numbers in the set {ξ5, ν5, ν6}
excepted in Theorem 3.

2 Proof of Theorem 1

We first show the following Lemma 1. The proof is almost the same as that of [10, Theorem 1.1],
but we recall it for the convenience of the readers.

Lemma 1 Let N ≥ 1 be an integer and x(τ), y(τ) ∈ FN . Let τ0 ∈ H be not a pole of the functions
x(τ) and y(τ). If the function y(τ) is not constant, then the number x(τ0) is algebraic over the
field Q(y(τ0)).

Proof. Let j(τ) be the elliptic modular j-function. As previously stated, the field FN is a
Galois extension of Q(j(τ)) and so the functions x(τ), y(τ) ∈ FN are algebraic over Q(j(τ)). Since
y(τ) is not constant, the function x(τ) is algebraic over Q(y(τ)); namely, there exists a polynomial

f(X,Y ) := b0(Y )Xn + b1(Y )Xn−1 + · · ·+ bn(Y ), b0(Y ) ̸≡ 0,

with b0(Y ), b1(Y ), . . . , bn(Y ) ∈ Q[Y ], such that f(x(τ), y(τ)) is identically zero, where the polyno-
mials b0(Y ), b1(Y ), . . . , bn(Y ) have no common factors in Q[Y ].

Let τ0 ∈ H be as in Lemma 1. Suppose that bµ(y(τ0)) = 0 for all µ = 0, 1, . . . , n. Then y(τ0)
is an algebraic number, since b0(Y ) is a non-zero polynomial. Hence, all polynomials bµ(Y ) are
divisible by the minimal polynomial of y(τ0) over Q, which is impossible. Thus, the polynomial
g(X) := f(X, y(τ0)) over Q(y(τ0)) is non-zero and satisfies g(x(τ0)) = f(x(τ0), y(τ0)) = 0, and
therefore, x(τ0) is algebraic over Q(y(τ0)).

Now we prove Theorem 1.

Proof of Theorem 1. Let τ0 ∈ H be as in Theorem 1. We first assume that fk2
1 /fk1

2 is
constant, and we show that f1(τ0) and f2(τ0) are algebraically dependent over Q. If f2 is constant,
then f2 is an algebraic number by the condition on the coefficients of the Fourier expansions, and
hence, the assertion clearly holds. Let f2 be non-constant. If the integers k1 and k2 are not both
zero, the assertion is also clear, since fk2

1 /fk1
2 is an algebraic number. In the case where k1 and k2

are both zero, the functions f1 and f2 belong to FN and the assertion holds by Lemma 1.

Next we assume that fk2
1 /fk1

2 is not constant. Then the integers k1 and k2 are not both zero.
We may assume that k1 ̸= 0 (If k1 = 0 and k2 ̸= 0, consider the inverse fk1

2 /fk2
1 instead of fk2

1 /fk1
2 ).

Since the Eisenstein series E4(τ) is a modular form of weight 4 for SL2(Z), the functions

x(τ) :=
Ek1

4

f4
1

, y(τ) :=
fk2
1

fk1
2

(11)
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are both modular functions of weight zero for Γ(N) and belong to the field FN . Let τ0 ∈ H be as
in Theorem 1. Then by Lemma 1 the number x(τ0) is algebraic over the field Q(y(τ0)), so that by
(11) the number

E4(τ0)
k1 = x(τ0)f1(τ0)

4

is algebraic over the field Q
(
y(τ0), f1(τ0)

)
⊂ K := Q

(
f1(τ0), f2(τ0)

)
. This implies that the number

E4(τ0) is algebraic over K, since k1 is non-zero. Similarly, replacing E4 by E6 and f4
1 by f6

1 in (11)
yields that the number E6(τ0) is algebraic over K. Thus, we have

2 ≥ trans.degQK = trans.degQK (E4(τ0), E6(τ0)) ≥ trans.degQQ (E4(τ0), E6(τ0)) = 2,

where the last equality follows from Nesterenko’s Theorem A in Section 1, since eπiτ0 is algebraic.
Therefore, we obtain trans.degQK = 2, namely, the numbers f1(τ0) and f2(τ0) are algebraically
independent over Q. The proof of Theorem 1 is completed.

3 Infinite products and Dedekind eta function

In this section, we show that certain infinite products involving the Fibonacci and Lucas numbers
can be expressed by means of values of the Dedekind eta function

η(τ) := q1/24
∞∏
n=1

(1− qn), q := e2πiτ , (12)

which defines a holomorphic function on H. The Dedekind eta function η(τ) has no zeros or poles
in H, and moreover, the function η(τ)24 is a modular form of weight 12 for SL2(Z) and has the
expression

η(τ)24 =
1

1728

(
E4(τ)

3 − E6(τ)
2
)
,

where E4 and E6 are the normalized Eisenstein series defined in (1) (cf. [1]). From (12) we deduce
at once

∞∏
n=1

(1− qn) = q−1/24η(τ),
∞∏
n=1

(1− q2n−1) = q1/24
η(τ)

η(2τ)
, (13)

∞∏
n=1

(1 + qn) = q−1/24 η(2τ)

η(τ)
,

∞∏
n=1

(1 + q2n−1) = q1/24
η(2τ)2

η(τ)η(4τ)
. (14)

Let {Fn} and {Ln} be the Fibonacci and Lucas sequences defined in Section 1. In what follows,
let β := (

√
5− 1)/2 and τ0 ∈ H be a fixed complex number such that

e2πiτ0 = β2. (15)

Then we obtain
∞∏
n=1

(
1 +

1

F2n

)
= 2β−1,

∞∏
n=2

(
1− 1

F2n

)
=

1

3
β−1, (16)

and
∞∏
n=1

(
1 +

1

F2n−1

)
= 2β−1/4 η(4τ0)

η(τ0)
,

∞∏
n=2

(
1− 1

F2n−1

)
=

√
5β−1/4 η(τ0)

3η(4τ0)

η(2τ0)2
(17)

(cf. [9], see also [8]). Similar expressions are obtained for the case of the Lucas numbers:
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Lemma 2 Let τ0 ∈ H satisfy (15). Then we have

∞∏
n=1

(
1 +

1

L2n

)
=

η(2τ0)η(3τ0)

η(τ0)η(4τ0)
,

∞∏
n=1

(
1− 1

L2n

)
=

η(τ0)η(6τ0)

η(3τ0)η(4τ0)
, (18)

∞∏
n=1

(
1 +

1

L2n−1

)
= 2β−1/4 η(2τ0)

2

η(τ0)
,

∞∏
n=2

(
1− 1

L2n−1

)
=

1√
5
β−1/4 η(2τ0)

2

η(τ0)
. (19)

Proof. By Binet’s formula, we have for all n ≥ 1

L2n = β−2n + β2n, L2n−1 = β−2n+1 − β2n−1. (20)

Let ε = ±1. Then by (20)

∞∏
n=1

(
1 +

ε

L2n

)
=

∞∏
n=1

(
1 +

ε

β−2n + β2n

)
=

∞∏
n=1

(
1 +

εβ2n

1 + β4n

)

=
∞∏
n=1

1 + εβ2n + β4n

1 + β4n
=

∞∏
n=1

1− εβ6n

(1− εβ2n) (1 + β4n)
.

Hence, we get by (13) and (14)

∞∏
n=1

(
1 +

1

L2n

)
=

∞∏
n=1

1− β6n

(1− β2n) (1 + β4n)
=

η(2τ0)η(3τ0)

η(τ0)η(4τ0)
,

∞∏
n=1

(
1− 1

L2n

)
=

∞∏
n=1

1 + β6n

(1 + β2n) (1 + β4n)
=

η(τ0)η(6τ0)

η(3τ0)η(4τ0)
,

which are the formulas in (18). On the other hand, we have by (20)

∞∏
n=2

(
1 +

ε

L2n−1

)
=

∞∏
n=2

(
1 +

εL1

L2n−1

)
=

∞∏
n=2

(
1 +

εβ−1 − εβ

β−2n+1 − β2n−1

)

=

∞∏
n=2

(
1 +

εβ2n−2 − εβ2n

1− β4n−2

)
=

∞∏
n=2

(
1 + εβ2n−2

) (
1− εβ2n

)
1− β4n−2

=
1− β2

1− εβ2
·

∞∏
n=1

1− β4n

1− β4n−2
=

1− β2

1− εβ2
· β−1/4 η(2τ0)

2

η(τ0)
,

which proves (19). The proof of Lemma 2 is completed.

From (16), (17), (18), and (19), we deduce immediately that

∞∏
n=1

(
1 +

1

Fn

)
= 4β−5/4 η(4τ0)

η(τ0)
,

∞∏
n=3

(
1− 1

Fn

)
=

√
5

3
β−5/4 η(τ0)

3η(4τ0)

η(2τ0)2
, (21)

∞∏
n=1

(
1 +

1

Ln

)
= 2β−1/4 η(2τ0)

3η(3τ0)

η(τ0)2η(4τ0)
,

∞∏
n=2

(
1− 1

Ln

)
=

1√
5
β−1/4 η(2τ0)

2η(6τ0)

η(3τ0)η(4τ0)
, (22)
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and that

∞∏
n=2

(
1 +

(−1)n

Fn

)
= 2

√
5β−5/4 η(τ0)

3η(4τ0)

η(2τ0)2
,

∞∏
n=3

(
1− (−1)n

Fn

)
=

1

3
β−5/4 η(4τ0)

η(τ0)
,

∞∏
n=2

(
1 +

(−1)n

Ln

)
=

1√
5
β−1/4 η(2τ0)

3η(3τ0)

η(τ0)2η(4τ0)
,

∞∏
n=1

(
1− (−1)n

Ln

)
= 2β−1/4 η(2τ0)

2η(6τ0)

η(3τ0)η(4τ0)
,

which shows (10).

4 Proofs of Theorems 2 and 3

To prove Theorems 2 and 3, we need two lemmas.

Lemma 3 Let f(τ) be a modular function of weight k for Γ(N) whose Fourier expansion with
respect to e2πiτ/N has coefficients in Q(e2πi/N ). Let τ0 ∈ H be not a pole of f . Then the number
f(τ0) is algebraic over the field Q

(
E4(τ0), E6(τ0)

)
.

Proof. This follows immediately from Lemma 1 with the functions

x(τ) :=
f12

η24k
= (1728)k

f12

(E3
4 − E2

6)
k
, y(τ) := j(τ) = 1728

E3
4

E3
4 − E2

6

,

which belong to the field FN .

Lemma 4 (cf. [12, Proposition 17 (a)]) Let f(τ) be a modular form of weight k for SL2(Z).
Then for any integer N ≥ 1 the function g(τ) := f(Nτ) is a modular form of weight k for Γ(N).

Proof of Theorem 2. Define the four functions

Ξ1(τ) :=
η(4τ)

η(τ)
, Ξ2(τ) :=

η(τ)3η(4τ)

η(2τ)2
, N1(τ) :=

η(2τ)3η(3τ)

η(τ)2η(4τ)
, N2(τ) :=

η(2τ)2η(6τ)

η(3τ)η(4τ)
. (23)

Then by (21) and (22) we have

ξ1 = 4β−5/4Ξ1(τ0), ξ2 =

√
5

3
β−5/4Ξ2(τ0), ν1 = 2β−1/4N1(τ0), ν2 =

1√
5
β−1/4N2(τ0),

where τ0 ∈ H satisfies (15). Hence, noting that β is an algebraic number, we only have to study
the algebraic independence over Q of the four values

Ξ1(τ0), Ξ2(τ0), N1(τ0), N2(τ0). (24)

We first show the latter assertion of Theorem 2, namely, that any three numbers in (24) are
algebraically dependent over Q. Let N ≥ 1 be an integer. Then by Lemma 4 the function η(Nτ)24

is a modular form of weight 12 for Γ(N), since η(τ)24 is a modular form of weight 12 for SL2(Z).
Moreover, it is clear by definition (12) that the coefficients of the Fourier expansion with respect
to e2πiτ/N of η(Nτ)24 are all rational integers. Thus, by Lemma 3 the number η(Nτ0) is algebraic
over the field Q (E4(τ0), E6(τ0)), and hence, so are the numbers (24) by definition (23). Therefore,
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the transcendence degree of the field generated over Q by any three numbers in (24) is less than
three.

Next we prove the algebraic independence of any pair of numbers in (24). We find by Lemma 4
again that the 24th powers of the functions (23) are modular forms for Γ(12) having the following
weights

Ξ24
1 Ξ24

2 N24
1 N24

2

weight 0 24 12 12

Let f1 = Ξ24
1 and f2 ∈ {Ξ24

2 , N24
1 , N24

2 }. Then fk2
1 /fk1

2 = fk2
1 is not constant, since the weights

k1 = 0 and k2 = 12 or 24. Hence, by Theorem 1 the two numbers f1(τ0) and f2(τ0) are algebraically
independent over Q. Similarly, considering the functions f1, f2 ∈ {Ξ24

2 , N24
1 , N24

2 }, we can deduce
the same conclusion by Theorem 1, since the ratios

Ξ2

N2
1

,
Ξ2

N2
2

,
N1

N2

are non-constant functions. The proof of Theorem 2 is completed.

Proof of Theorem 3. Let τ0 ∈ H satisfy (15). Then we have

∞∑
n=1

1

F2n−1
=

√
5

4
ϑ2(2τ0)

2,

∞∑
n=1

1

L2n
=

1

4

(
ϑ3(2τ0)

2 − 1
)

(25)

(cf. [4, §3.7 Comments and Exercises]), where ϑ2 and ϑ3 are the theta-constants defined in (3).
Hence, using Jacobi’s triple-product identities together with (13) and (14), we have

ϑ2(2τ) = 2q1/4
∞∏
n=1

(1− q2n)(1 + q2n)2 = 2
η(4τ)2

η(2τ)
, (26)

ϑ3(2τ) =
∞∏
n=1

(1− q2n)(1 + q2n−1)2 =
η(2τ)5

η(τ)2η(4τ)2
, (27)

where q := e2πiτ (τ ∈ H). Thus, by (17), (18), (25), (26), and (27), for proving Theorem 3 we only
have to investigate the six values

Λ1(τ0), Ξ5(τ0), Ξ6(τ0), Λ2(τ0), N5(τ0), N6(τ0), (28)

where

Λ1(τ) :=
η(4τ)2

η(2τ)
, Ξ5(τ) :=

η(4τ)

η(τ)
, Ξ6(τ) :=

η(τ)3η(4τ)

η(2τ)2
, (29)

Λ2(τ) :=
η(2τ)5

η(τ)2η(4τ)2
, N5(τ) :=

η(2τ)η(3τ)

η(τ)η(4τ)
, N6(τ) :=

η(τ)η(6τ)

η(3τ)η(4τ)
. (30)

Similarly as in the proof of Theorem 2, we find that the 24th powers of the functions in (29) and
(30) are modular forms for Γ(12) having the weights

Λ24
1 Ξ24

5 Ξ24
6 Λ24

2 N24
5 N24

6

weight 12 0 24 12 0 0
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and that any three numbers in (28) are algebraically dependent over Q.

If f1, f2 ∈ {Ξ24
5 , N24

5 , N24
6 }, then fk2

1 /fk1
2 = 1 is a constant. Hence, by Theorem 1 any two

numbers in {Ξ24
5 (τ0), N

24
5 (τ0), N

24
6 (τ0)} are algebraically dependent over Q, and so are any two

numbers in the set {ξ5, ν5, ν6}. Next, we consider the case when f1 ∈ {Ξ24
5 , N24

5 , N24
6 } and f2 ∈

{Λ24
1 ,Ξ24

6 ,Λ24
2 }. Then fk2

1 /fk1
2 = fk2

1 is not constant, since k1 = 0 and k2 = 12 or 24. Hence,
by Theorem 1 the numbers f1(τ0) and f2(τ0) are algebraically independent over Q. Moreover, we
can deduce the same conclusion for the case when f1, f2 ∈ {Λ24

1 ,Ξ24
6 ,Λ24

2 }, since the corresponding
ratios

Λ2
1

Ξ6
,

Λ1

Λ2
,

Ξ6

Λ2
2

are not constant. The proof of Theorem 3 is completed.

5 Algebraic relations for certain eta products

Let ξ5, ν5, ν6 be as in Theorem 3 and let f, g, h be eta products defined by

f :=
η(4τ)

η(τ)
, g :=

η(2τ)η(3τ)

η(τ)η(4τ)
, h :=

η(τ)η(6τ)

η(3τ)η(4τ)
. (31)

Then for τ0 ∈ H with e2πiτ0 = β2 we have by (17) and (18)

ξ5 = 2β−1/4f(τ0), ν5 = g(τ0), ν6 = h(τ0). (32)

In this section, we give the algebraic relations for each two functions in {f, g, h}. Such relations
yield the algebraic relations for each two numbers in {ξ5, ν5, ν6} through the equalities (32).

I). Algebraic relation for f and h.

It is known that the symmetric polynomial

P (X,Y ) := X4 + Y 4 −X3Y 3 − 2332X2Y 2(X + Y )− 223252XY (X2 + Y 2)

+ 2 · 32 · 1579X2Y 2 − 21532XY (X + Y )− 224XY

vanishes identically for

X =

(
η(3τ)

η(6τ)

)24

, Y =

(
η(τ)

η(2τ)

)24

(cf. [14, see Ψ
Γ0(2)
3 in Table 2, p. 183]). On the other hand, we have the identities

f8 + 16f16 =

(
η(2τ)

η(τ)

)24

(33)

(cf. [16, § 34, p. 114]), which is equivalent to Jacobi’s celebrated relation ϑ3(τ)
4 = ϑ2(τ)

4+ϑ4(τ)
4,

and

(fh)24 =

(
η(6τ)

η(3τ)

)24

.
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Hence, the polynomial

Q(X,Y ) := X4Y 4P (X−1, Y −1)

= X4 + Y 4 − 224X3Y 3 − 21532X2Y 2(X + Y )− 223252XY (X2 + Y 2)

+ 2 · 32 · 1579X2Y 2 − 2332XY (X + Y )−XY

vanishes identically for X = f8 + 16f16 and Y = (fh)24.

II). Algebraic relation for f and g.
Set

x := 212
(
η(2τ)

η(τ)

)24

, y := 36
(
η(3τ)

η(τ)

)12

, z := j(τ), (34)

where j(τ) is the elliptic modular function defined by (8). We use the well-known identities

z =
(x+ 16)3

x
, z =

(y + 3)3(y + 27)

y
(35)

(cf. [16, § 72, p. 250–252]). By the second identity in (35), we have

z2y2 − 72zy2(y2 + 21)− (y2 − 9)3(y2 − 272) ≡ 0,

and then together with the first identity in (35) we obtain

(x+ 16)6y2 − 72xy2(x+ 16)3(y2 + 21)− x2(y2 − 9)3(y2 − 36) ≡ 0. (36)

Multiplying (36) by x2 yields

(x+ 16)6x · xy2 − 72x · xy2(x+ 16)3(xy2 + 21x)− (xy2 − 9x)3(xy2 − 36x) ≡ 0. (37)

On the other hand, by (31), (33) and (34) we have

x = 212(f8 + 16f16), xy2 = 612(fg)24. (38)

Therefore, substituting (38) into the polynomial in (37), we find that the polynomial

R(X,Y ) : = (28X + 1)6XY − 2333XY (28X + 1)3(7X + 311Y )− (X − 310Y )3(X − 36Y )

vanishes identically for X = f8 + 16f16 and Y = (fg)24.

III). Algebraic relation for g and h.
We use the identities

3
η(3τ)3η(4τ)

η(τ)η(12τ)
= 2

η(2τ)7η(3τ)

η(τ)3η(4τ)2η(6τ)
+

η(τ)3η(4τ)η(6τ)2

η(2τ)2η(3τ)η(12τ)
, (39)

3
η(τ)η(4τ)2η(6τ)9

η(2τ)3η(3τ)3η(12τ)4
=

η(2τ)7η(3τ)

η(τ)3η(4τ)2η(6τ)
+ 2

η(τ)3η(4τ)η(6τ)2

η(2τ)2η(3τ)η(12τ)
, (40)

2
η(4τ)4η(6τ)2

η(2τ)2η(12τ)2
=

η(2τ)7η(3τ)

η(τ)3η(4τ)2η(6τ)
+

η(τ)3η(4τ)η(6τ)2

η(2τ)2η(3τ)η(12τ)
(41)
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(cf. [13, Example 26.32]). Multiplying (39) by

w(τ) :=
η(2τ)2η(12τ)

η(τ)η(3τ)η(4τ)3
,

we have

2
η(2τ)9η(12τ)

η(τ)4η(4τ)5η(6τ)
= 3

(
η(2τ)η(3τ)

η(τ)η(4τ)

)2

−
(

η(τ)η(6τ)

η(3τ)η(4τ)

)2

= 3g2 − h2. (42)

Moreover, multiplying (40) by 2w(τ)/3 and using (42), we have

2
η(6τ)9

η(2τ)η(3τ)4η(4τ)η(12τ)3
=

2

3
· η(2τ)9η(12τ)

η(τ)4η(4τ)5η(6τ)
+

4

3

(
η(τ)η(6τ)

η(3τ)η(4τ)

)2

=

(
g2 − h2

3

)
+

4

3
h2 = g2 + h2. (43)

Similarly, multiplying (41) by 2w(τ) and using (42) again, we obtain

4
η(4τ)η(6τ)2

η(τ)η(3τ)η(12τ)
= 3g2 + h2. (44)

Thus, by (42), (43), and (44)

212(3g2 − h2)(g2 + h2)3 = 216
η(2τ)6η(6τ)26

η(τ)4η(3τ)12η(4τ)8η(12τ)8
= g6h10(3g2 + h2)8, (45)

and therefore, the polynomial

S(X,Y ) := 212(3X − Y )(X + Y )3 −X3Y 5(3X + Y )8

vanishes identically for X = g2 and Y = h2.
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