Point-arrangements in the real projective spaces and the Fibonacci polynomials

Masanobu Kaneko and Masaaki Yoshida

August 7, 2016

Abstract

We find a relation between the Fibonacci polynomials and arrangements of $n+3$ points in the real projective n-space admitting an action of the cyclic group of order $n+3$. We also describe explicitly the rational curve of degree n passing through these $n+3$ points, and determine the permutation of the $n+3$ points induced by this curve.

Introduction

Arrangements of $n+2$ points in general position in the real projective n-space $\mathbb{P}^{n}=\mathbb{P}^{n}(\mathbb{R})$ are unique up to projective transformations. Those of $m:=n+3$ points are projectively not unique, but they are combinatorially unique. We are interested in arrangements of m points which admit an action of the cyclic group of order m.

Let p_{1}, \ldots, p_{n+2} be $n+2$ points in \mathbb{P}^{n} in general position. We add another point p_{m}, and require that the m points $p_{1}, \ldots, p_{n+2}, p_{m}$ admit a projective transformation σ inducing the cyclic permutation:

$$
\sigma: p_{1} \rightarrow p_{2} \rightarrow \cdots \rightarrow p_{n+2} \rightarrow p_{m} \rightarrow p_{1} .
$$

There always exit such p_{m} and σ, and in fact there are several choices in general. Our first theorem (Theorem 1 in $\S 2$) asserts that such choices exactly correspond to the roots of the Fibonacci polynomial $F_{n}(t)$ of degree $[n / 2]+1$. And moreover, the resulting m points $p_{1}, \ldots, p_{n+2}, p_{m}$ are in general position if and only if the corresponding root is "primitive", i.e., a root of the core Fibonacci polynomial $f_{n}(t)$, which is an irreducible factor of $F_{n}(t)$ of degree $\varphi(m) / 2$. Here, $\varphi(m)$ denotes Euler's function counting the number of positive integers less than m and co-prime to m.

On the other hand, for m points in \mathbb{P}^{n} in general position, there is a unique rational curve C of degree n passing through these points. When we view the curve C as an image of $\mathbb{P}^{1}(\mathbb{R})$, the natural order in \mathbb{R} determines a cyclic permutation of these points. For the points corresponding to a root of the core Fibonacci polynomial as above, we can explicitly compute this permutation (Corollary 2 to Theorem 2 in $\S 3)$. More precisely, let $-|1+\zeta|^{-2}$ be a root of $f_{n}(t)$, where ζ is a primitive m-th root of unity (see $\S 1$ for the description of roots of $f_{n}(t)$), and p_{m} the m-th point
associated to this root by Theorem 1. For each $j(1 \leq j \leq m)$, denote by q_{j} the point in \mathbb{P}^{1} such that $C\left(q_{j}\right)=p_{j}$. Without loss of generality, we may assume $q_{1}=\infty, q_{2}=0, q_{1}=1$. Then we show in Theorem 2 that, there exits a linear fractional transformation R from $\mathbb{P}^{1}(\mathbb{R})$ to the unit circle in the complex plane, preserving the natural orientation of $\mathbb{P}^{1}(\mathbb{R})$ and the unit circle (counter clock-wise), such that

$$
R\left(q_{1}\right)=\zeta^{-1}, R\left(q_{2}\right)=1, R\left(q_{3}\right)=\zeta, R\left(q_{4}\right)=\zeta^{2}, \ldots, R\left(q_{m}\right)=\zeta^{m-2}
$$

Since ζ is a primitive m-th root of unity, the m points

$$
1, \zeta, \zeta^{2}, \ldots, \zeta^{m-2}, \zeta^{m-1}=\zeta^{-1}
$$

form vertices of a regular m-gon on the unit circle. From this, if we write $\zeta=\zeta_{m}^{i}$ with $\zeta_{m}=e^{2 \pi \sqrt{-1} / m}$ and $(i, m)=1$, we see that the cyclic permutation determined by the curve C is the ' i-skip $\bmod m$ ', i.e., the permutation of $\{1,2, \ldots, m\}$ given by $\{\overline{0 \cdot i}+1, \overline{1 \cdot i}+1, \ldots, \overline{(m-1) \cdot i}+1\}$, where \bar{l} denotes the residue of $l \bmod m$ such that $0 \leq \bar{l} \leq m-1$.

After introducing the necessary properties of Fibonacci polynomials in §1, we state and prove Theorem 1 in $\S 2$ and Theorem 2 in $\S 3$. In the final section $\S 4$, we discuss fixed points of the transformation σ.

1 Fibonacci polynomials

In this section, we summarize properties of the polynomials $F_{k}(t)$ and $f_{k}(t)$ that we need in this paper.

Definition 1. The Fibonacci polynomials $F_{k}(t)$ are defined as

$$
F_{-2}=F_{-1}=1, \quad F_{k}=F_{k-1}+t F_{k-2}, \quad k=0,1,2, \ldots
$$

The degree of F_{k} is $[k / 2]+1$.
Remark 1. In the literature (e.g., $[\mathrm{Ko}]$), the Fibonacci polynomial $\widetilde{F}_{k}(t)$ is defined by $\widetilde{F}_{0}=0, \widetilde{F}_{1}=1, \widetilde{F}_{k}=t \widetilde{F}_{k-1}(t)+\widetilde{F}_{k-2}(t)(k \geq 2)$. The relation to our $F_{k}(t)$ is $F_{k}(t)=\sqrt{t}^{k+2} \widetilde{F}_{k+3}(1 / \sqrt{t})$. From this, all properties described in the sequel should in principle follow from known properties of $\widetilde{F}_{k}(t)$. We nevertheless supply proofs for the convenience of the reader.

For notational simplicity, put $G_{k}=F_{k-3}(k \geq 1)$. Of course the G_{k} 's satisfy the same recursion with $G_{1}=G_{2}=1$.

Proposition 1. $G_{k}(t)$ is a polynomial of degree $[(k-1) / 2]$ and is explicitly given as

$$
G_{k}(t)=\sum_{i=0}^{[(k-1) / 2]}\binom{k-1-i}{i} t^{i}, \quad k \geq 1 .
$$

Also, $G_{k}(t)$ admits the following expression:

$$
\begin{equation*}
G_{k}(t)=\frac{\alpha^{k}-\beta^{k}}{\sqrt{1+4 t}} \tag{1}
\end{equation*}
$$

where

$$
\alpha=\frac{1+\sqrt{1+4 t}}{2}, \quad \beta=\frac{1-\sqrt{1+4 t}}{2} .
$$

Proof. The first formula is easily proved by induction. The second can be shown either by the generating function $\sum_{k=0}^{\infty} G_{k}(t) X^{k}=1 /\left(1-X-t X^{2}\right)=1 /(1-\alpha X)(1-$ $\beta X)$ or by checking the right-hand side satisfies the same recurrence relation as $G_{k}(t)$.

We introduce a new polynomial (a priori, a rational function) $g_{k}(t)$. The core Fibonacci polynomial $f_{k}(t)$ is defined as $f_{k}(t)=g_{k+3}(t)$.

Definition 2. Put

$$
g_{k}(t)=\prod_{d \mid k} G_{d}(t)^{\mu(k / d)}, \quad k \geq 1
$$

where d runs over all positive divisors of k, and μ is the Möbius function ${ }^{1}$. Note that $g_{1}=g_{2}=1$.

Proposition 2. 1) For $k \geq 3, g_{k}(t)$ is a polynomial of degree $\varphi(k) / 2$, and is irreducible over \mathbb{Q}.
2) The irreducible decomposition of $G_{k}(t)$ over \mathbb{Q} is given by

$$
G_{k}(t)=\prod_{2<d \mid k} g_{d}(t)
$$

In terms of $F_{k}(t)$ and $f_{k}(t)$, this can be written as

$$
F_{k}(t)=\prod_{2<d \mid k+3} f_{d-3}(t)
$$

3) The $g_{k}(t)$ is expressed as

$$
g_{k}(t)=\beta^{\varphi(k)} \Phi_{k}(\alpha / \beta),
$$

where

$$
\Phi_{k}(t)=\prod_{d \mid k}\left(t^{d}-1\right)^{\mu(k / d)}
$$

is the k-th cyclotomic polynomial.
Proof. By (1), we have

$$
\begin{aligned}
g_{k} & =\prod_{d \mid k} G_{d}(t)^{\mu(k / d)}=\prod_{d \mid k}\left\{\frac{\alpha^{d}-\beta^{d}}{\sqrt{1+4 t}}\right\}^{\mu(k / d)} \\
& =\left(\frac{1}{\sqrt{1+4 t}}\right)^{\sum_{d \mid k} \mu^{(k / d)}} \prod_{d \mid k}\left(\alpha^{d}-\beta^{d}\right)^{\mu(k / d)} \\
& =\prod_{d \mid k}\left(\alpha^{d}-\beta^{d}\right)^{\mu(k / d)}=\beta^{\sum_{d \mid k} d \mu(k / d)} \prod_{d \mid k}\left\{\left(\frac{\alpha}{\beta}\right)^{d}-1\right\}^{\mu(k / d)} \\
& =\beta^{\varphi(k)} \Phi_{k}(\alpha / \beta) .
\end{aligned}
$$

[^0]Here, we have used the well-known identities $\sum_{d \mid k} \mu(k / d)=0$ and $\sum_{d \mid k} d \mu(k / d)=$ $\varphi(k)$. This proves 3). Since the cyclotomic polynomial Φ_{k} is of degree $\varphi(k), g_{k}(t)$ is a polynomial in α and β of total degree $\varphi(k)$, which is symmetric in α and β because of the expression $g_{k}=\prod_{d \mid k}\left(\alpha^{d}-\beta^{d}\right)^{\mu(k / d)}$ as above and $(-1)^{\sum_{d \mid k} \mu(k / d)}=1$. Therefore, $g_{k}(t)$ is a polynomial in t, of degree at most $\varphi(k) / 2$ because $\alpha+\beta=1$ and $\alpha \beta=-t$. The formula in 2) follows from the definition of $g_{k}(t)$ and the Möbius inversion formula. To prove the irreducibility of $g_{k}(t)$ and find the exact degree, we look at the roots of $g_{k}(t)$. By the formula in 3), we have

$$
g_{k}(t)=\beta^{\varphi(k)} \prod_{\zeta: \text { primitive } k \text {-th root of unity }}(\alpha / \beta-\zeta)
$$

Because $G_{k}(0)=1$ for all k, we have $g_{k}(0)=1$ and so β cannot be zero ($\beta=0 \Leftrightarrow$ $t=0)$. Hence,

$$
\begin{aligned}
g_{k}(t)=0 & \Leftrightarrow \frac{1+\sqrt{1+4 t}}{1-\sqrt{1+4 t}}=\zeta: \quad \text { primitive } k \text {-th root of unity } \\
& \Leftrightarrow t=\frac{1}{4}\left\{\left(\frac{1-\zeta}{1+\zeta}\right)^{2}-1\right\}=-\frac{1}{\zeta+\zeta^{-1}+2}=-\frac{1}{|1+\zeta|^{2}}
\end{aligned}
$$

Assume $k \geq 3$, and write $\zeta=e^{2 \pi l \sqrt{-1} / k}$ with an integer l, so that $\zeta+\zeta^{-1}=$ $2 \cos (2 l \pi / k)$. Since ζ and ζ^{-1} give the same root, and ζ is primitive, we see that exactly $\varphi(k) / 2$ values

$$
t=-\frac{1}{2 \cos \frac{2 l \pi}{k}+2}=-\frac{1}{4 \cos ^{2} \frac{l \pi}{k}}, \quad(l, k)=1, \quad 1 \leq l \leq\left[\frac{k-1}{2}\right]
$$

give distinct roots of $g_{k}(t)$. Hence $g_{k}(t)$ is of degree $\varphi(k) / 2$ (remember we have shown the degree is at most $\varphi(k) / 2$), and has distinct roots. Since its splitting field is $\mathbb{Q}(\cos (2 \pi / k))=\mathbb{Q}\left(\zeta+\zeta^{-1}\right)$, which is the maximal real subfield of degree $\varphi(k) / 2$ of the cyclotomic field $\mathbb{Q}(\zeta)$, we conclude that the polynomial g_{k} is irreducible over \mathbb{Q}.

Corollary 1. The roots of $g_{k}(t)$ are given by

$$
-\frac{1}{\left|1+\zeta_{k}^{i}\right|^{2}}=-\frac{1}{4 \cos ^{2} \frac{i \pi}{k}}, \quad(i, k)=1, \quad 1 \leq i \leq\left[\frac{k-1}{2}\right] .
$$

Here, $\zeta_{k}=e^{2 \pi \sqrt{ }-1 / k}$. In particular, all roots are negative real numbers, and if $k \neq k^{\prime}$, roots of $g_{k}(t)$ and $g_{k^{\prime}}(t)$ never coincide.

The roots of $G_{k}(t)$ are given by

$$
-\frac{1}{\left|1+\zeta_{k}^{i}\right|^{2}}=-\frac{1}{4 \cos ^{2} \frac{i \pi}{k}}, \quad 1 \leq i \leq\left[\frac{k-1}{2}\right] .
$$

Examples: Factorizations of the first several Fibonacci polynomials are as follows:

$$
\begin{array}{llll}
F_{0}=f_{0}, & F_{1}=f_{1}, & F_{2}=f_{2}, & F_{3}=f_{0} f_{3}, \\
F_{4}=f_{4}, & F_{5}=f_{1} f_{5}, & F_{6}=f_{0} f_{6}, & F_{7}=f_{2} f_{7}, \\
F_{8}=f_{8}, & F_{9}=f_{0} f_{1} f_{3} f_{9}, & F_{10}=f_{10}, & F_{11}=f_{4} f_{11}, \\
F_{12}=f_{0} f_{2} f_{12}, & F_{13}=f_{1} f_{5} f_{13}, & F_{14}=f_{14}, & F_{15}=f_{0} f_{3} f_{6} f_{15}, \\
F_{16}=f_{16}, & F_{17}=f_{1} f_{2} f_{7} f_{17}, & F_{18}=f_{0} f_{4} f_{18}, & F_{19}=f_{8} f_{19}, \\
F_{20}=f_{20}, & F_{21}=f_{0} f_{1} f_{3} f_{5} f_{9} f_{21}, & F_{22}=f_{2} f_{22}, & F_{23}=f_{10} f_{23}, \ldots,
\end{array}
$$

whereas the 'core Fibonacci polynomials' are given by

$$
\begin{array}{ll}
f_{0}=t+1, & f_{1}=2 t+1, \\
f_{2}=t^{2}+3 t+1, & f_{3}=3 t+1, \\
f_{4}=t^{3}+6 t^{2}+5 t+1, & f_{5}=2 t^{2}+4 t+1, \\
f_{6}=t^{3}+9 t^{2}+6 t+1, & f_{7}=5 t^{2}+5 t+1, \\
f_{8}=t^{5}+15 t^{4}+35 t^{3}+28 t^{2}+9 t+1, & f_{9}=t^{2}+4 t+1, \\
f_{10}=t^{6}+21 t^{5}+70 t^{4}+84 t^{3}+45 t^{2}+11 t+1, & f_{11}=7 t^{3}+14 t^{2}+7 t+1, \ldots
\end{array}
$$

When $n=18$, we have $3,7 \mid 21=18+3$, and the twelve numbers $1,2, \ldots, 19,20$ are coprime to 21. So

$$
F_{18}=f_{0} f_{4} \cdot f_{18}, \quad \operatorname{deg} f_{18}=12 / 2=6 .
$$

When $n=21$, we have $2,3,4,6,8,12 \mid 24=21+3$, and the eight numbers $1,5, \ldots, 19,23$ are coprime to 24 . So

$$
F_{21}=f_{0} f_{1} f_{3} f_{5} f_{9} \cdot f_{21}, \quad \operatorname{deg} f_{21}=8 / 2=4
$$

Finally, we give the following lemma which will be used in the proof of Theorem 1.
Lemma 1. For $-1 \leq i<j$, we have

$$
F_{i} F_{j-1}-F_{j} F_{i-1}=(-1)^{i} t^{i+2} F_{j-i-3} .
$$

Proof. We proceed by induction on i. For $i=-1$, the identity becomes the recursion of F_{j}. Suppose the identity is true up to i (and for all j). Then, by the recursion and the induction hypothesis, we have

$$
\begin{aligned}
F_{i+1} F_{j-1}-F_{j} F_{i} & =\left(F_{i}+t F_{i-1}\right) F_{j-1}-\left(F_{j-1}+t F_{j-2}\right) F_{i} \\
& =-t\left(F_{i} F_{j-2}-F_{j-1} F_{i-1}\right)=(-1)^{i+1} t^{i+3} F_{j-i-4} .
\end{aligned}
$$

$2 n+3$ points in \mathbb{P}^{n} admitting a cyclic group action

For $n+2$ points p_{1}, \ldots, p_{n+2} in the real projective n-space in general position (no $n+1$ points are collinear), we would like to add another point p_{m}, and require that the m points admit a projective transformation σ inducing the cyclic action:

$$
\begin{equation*}
\sigma: p_{1} \rightarrow p_{2} \rightarrow \cdots \rightarrow p_{n+2} \rightarrow p_{m} \rightarrow p_{1} . \tag{2}
\end{equation*}
$$

Without loss of generality, we put $n+3$ points in the projective n-space \mathbb{P}^{n} coordinatized by $x_{1}: \cdots: x_{n+1}$ as:

$$
\begin{array}{cccccc}
& x_{1}: & x_{2} & : \cdots: & x_{n}: & x_{n+1} \\
& & & & \\
p_{1}= & 1: & 1 & : \cdots: & 1: & 1, \\
p_{2}= & 1: & 0 & : \cdots: & 0: & 0 \\
p_{3}= & 0: & 1 & : \cdots: & 0: & 0, \\
\vdots \\
p_{n+1}= & 0: & 0 & : \cdots: & 1: & 0 \\
p_{n+2}= & 0: & 0 & : \cdots: & 0: & 1, \\
p_{m}= & \xi_{1}: & \xi_{2} & : \cdots: & \xi_{n}: & \xi_{n+1} .
\end{array}
$$

In the following, we sometimes use the abbreviation $x_{1} x_{2} \cdots x_{n+1}$ for a point $\left[x_{1}\right.$: $\left.x_{2}: \cdots: x_{n+1}\right]$ in \mathbb{P}^{n}.

Theorem 1. There exists a one-to-one correspondence between the m-th points p_{m} admitting the projective transformation σ as above and the roots of $F_{n}(t)$. Moreover, under this correspondence, the m points $\left\{p_{1}, \ldots, p_{n+2}, p_{m}\right\}$ in \mathbb{P}^{n} are in general position if and only if the associated root is a root of $f_{n}(t)$.

Proof. Since the inverse of σ induces the move $0 \cdots 01 \rightarrow 0 \cdots 010 \rightarrow \cdots \rightarrow$ $10 \cdots 0 \rightarrow 1 \cdots 1$, we have

$$
\begin{equation*}
\sigma^{-1}: x_{1}^{\prime}=x_{1}+b_{1} x_{2}, \ldots, x_{n}^{\prime}=x_{1}+b_{n} x_{n+1}, \quad x_{n+1}^{\prime}=x_{1}, \tag{3}
\end{equation*}
$$

for some non-zero b_{j} 's. Because the last coordinate of the image of $1 \cdots 1$ is 1 , we may and shall assume $\xi_{n+1}=1$. Then from the move $1 \cdots 1 \rightarrow \xi_{1} \cdots \xi_{n} 1$, we have

$$
\begin{equation*}
\xi_{j}=1+b_{j}, \quad(1 \leq j \leq n) \tag{4}
\end{equation*}
$$

and from the move $\xi_{1} \cdots \xi_{n} 1 \rightarrow 0 \cdots 01$, we get a system of equations in b_{j} :

$$
\begin{gathered}
1+b_{1}+b_{1}\left(1+b_{2}\right)=0, \\
1+b_{1}+b_{2}\left(1+b_{3}\right)=0, \\
\vdots \\
1+b_{1}+b_{n-1}\left(1+b_{n}\right)=0, \\
1+b_{1}+b_{n}=0 .
\end{gathered}
$$

Set $b:=b_{n}$. Then by the last equation we have

$$
\begin{equation*}
1+b_{1}=-b \tag{5}
\end{equation*}
$$

and by solving the other equations we obtain

$$
\begin{equation*}
b_{1}=\frac{b}{1+b_{2}}, b_{2}=\frac{b}{1+b_{3}}, \ldots, b_{n-1}=\frac{b}{1+b_{n}}=\frac{b}{1+b} . \tag{6}
\end{equation*}
$$

In particular, every b_{j} is written in terms of b (as a rational function) and so is $\xi_{j}(1 \leq j \leq n)$ by (4). Equations (5) and (6) in terms of ξ_{j} 's can be written as

$$
\begin{equation*}
\xi_{1}=-b \quad \text { and } \quad \xi_{j}=\frac{\xi_{1}}{1-\xi_{j-1}} \quad(2 \leq j \leq n) \tag{7}
\end{equation*}
$$

Now define rational functions $h_{k}(t)$ in t recursively by

$$
h_{0}=t, \quad h_{k}=\frac{t}{1+h_{k-1}} \quad(k=1,2, \ldots) .
$$

We easily see from (6) that $b_{j}=h_{n-j}(b)(1 \leq j \leq n)$. The h_{k} 's and Fibonacci polynomials are related as

Lemma 2.

$$
1+h_{k}=\frac{F_{k}}{F_{k-1}}, \quad h_{k}=t \frac{F_{k-2}}{F_{k-1}}, \quad k=0,1, \ldots
$$

Proof. The first identity is easily proved by induction on k. When $k=0$, the both sides are equal to $1+t$. Assuming the validity for k, we have

$$
1+h_{k+1}=1+\frac{t}{1+h_{k}}=\frac{F_{k} / F_{k-1}+t}{F_{k} / F_{k-1}}=\frac{F_{k}+t F_{k-1}}{F_{k}}=\frac{F_{k+1}}{F_{k}} .
$$

The second follows from the first by the recurrence for F_{k}.
By the relations $1+b_{1}+b=0, b_{1}=h_{n-1}(b)$ and by Lemma 2, we obtain

$$
0=1+h_{n-1}(b)+b=\frac{F_{n-1}(b)}{F_{n-2}(b)}+b=\frac{F_{n}(b)}{F_{n-2}(b)} .
$$

Therefore $b=-\xi_{1}$ is a root of the Fibonacci polynomial $F_{n}(t)$.
Conversely, let b be any root of $F_{n}(t)$ and $b_{j}(1 \leq j \leq n)$ be determined by $b_{n}=b$ and (6). Then the point $p_{m}=\xi_{1} \cdots \xi_{n} 1$ and the projective transformation σ determined by (4) and (3) satisfy the desired condition. That the different b 's give different p_{m} 's is clear. We note that the σ is uniquely determined by the p_{m}. This concludes the proof of the first half of the theorem.

For the second half, suppose first a root b of $F_{n}(t)$ is not a root of $f_{n}(t)$. Then by 2) of Proposition 2, b must be a root of some $f_{d-3}(t)$ with $d<m$. This means that b is a root of some $F_{j}(t)$ with $j<n$. By the identity

$$
\begin{equation*}
\xi_{n-j}=1+b_{n-j}=1+h_{j}(b)=\frac{F_{j}(b)}{F_{j-1}(b)} \tag{8}
\end{equation*}
$$

we conclude that $\xi_{n-j}=0$, and so the points $p_{m}=\xi_{1} \cdots \xi_{n} 1$ and p_{1}, \ldots, p_{n+2} are not in general position (points other than p_{1} and p_{n-j+1} are on the hyperplane $x_{n-j}=0$). Next suppose b is a root of $f_{n}(t)$. Then b is never a root of any $F_{j}(t)$ with $j<n$ by 2) of Proposition 2, and so by (8), no $\xi_{j}(1 \leq j \leq n)$ can be zero. Also, by the same identity (8), if $\xi_{n-i}=\xi_{n-j}$ for some $i<j$, we have $F_{i}(b) F_{j-1}(b)-F_{j}(b) F_{i-1}(b)=0$ and hence by Lemma $1 F_{j-i-3}(b)=0$ (note that b is never zero). This contradicts to the fact that b is a root of $f_{n}(t)$. Therefore we have $\xi_{i} \neq \xi_{j}$ whenever $i \neq j$ and hence we conclude $\left\{p_{1}, \ldots, p_{n+1}, p_{m}\right\}$ is in general position. This completes the proof of Theorem 1.

3 The rational curve of degree n passing through $n+3$ points

Let $p_{1}, \ldots, p_{n+2}, p_{m}$ be $m=n+3$ points in general position admitting a projective cyclic permutation. Without loss of generality, we assume $n+2$ points p_{1}, \ldots, p_{n+2} are as in $\S 2$, the m-th point p_{m} has coordinates $\xi_{1}: \cdots: \xi_{n}: 1$ with $\xi_{i} \neq 0$ and $\xi_{i} \neq \xi_{j}(i \neq j)$, and the cyclic permutation is as (2).

It is known that there exits a unique rational curve C of degree n passing through m points in \mathbb{P}^{n} in general position (see for example [CYY]). Thus let

$$
C: t \longmapsto x_{1}(t): \cdots: x_{n+1}(t) \in \mathbb{P}^{n}
$$

be the curve such that each $x_{j}(t)$ is a polynomial in t of degree n, and

$$
\begin{equation*}
C\left(q_{1}\right)=p_{1}, \quad C\left(q_{2}\right)=p_{2}, \ldots, C\left(q_{n+2}\right)=p_{n+2}, \quad C\left(q_{m}\right)=p_{m} \tag{9}
\end{equation*}
$$

for some $q_{j} \in \mathbb{P}^{1}$. We may normalize $\left\{q_{j}\right\}$ so that

$$
q_{1}=\infty, \quad q_{2}=0, \quad q_{3}=1 .
$$

Our second theorem describes q_{j} explicitly in terms of the root of $f_{n}(t)\left(=g_{m}(t)\right)$.
Theorem 2. Let $-|1+\zeta|^{-2}$ be the root of $f_{n}(t)$ corresponding to the m-th point p_{m} as in Theorem 1, where ζ is a primitive m-th root of unity. Then, q_{j} is given by

$$
q_{j}=(1+\zeta) \cdot \frac{1-\zeta^{j-2}}{1-\zeta^{j-1}} \quad(1 \leq j \leq m)
$$

The linear fractional transformation

$$
\begin{equation*}
z=\frac{x-(1+\zeta)}{\zeta x-(1+\zeta)} \tag{10}
\end{equation*}
$$

from the real x-line to the complex z-plane sends q_{j} to ζ^{j-2}, hence $q_{1}, q_{2}, \ldots, q_{m}$ are inverse images of $\zeta^{-1}, 1, \zeta, \ldots, \zeta^{m-2}$, vertices of a regular m-gon on the unit circle.

Corollary 2. Take $\zeta=\zeta_{m}^{l},(l, m)=1$ in the theorem $\left(\zeta_{m}=e^{2 \pi \sqrt{-1} / m}\right)$, then q_{j} can also be written as

$$
q_{j}=1+\frac{\sin \left(\frac{(j-3) l}{m} \pi\right)}{\sin \left(\frac{(j-1) l}{m} \pi\right)} .
$$

If we arrange $q_{1}, q_{2}, \ldots, q_{m}$ acccording to magnitude as

$$
q_{1}=r_{1}=-\infty<r_{2}<r_{3}<\cdots<r_{m},
$$

then the permutation of indices is given by

$$
q_{j}=r_{(j-1) l+1} \quad(1 \leq j \leq m),
$$

where the index of r should be taken modulo m with value in the interval $[1, m]$. In particular, if $\zeta=\zeta_{m}(l=1)$, then $q_{j}=r_{j}$.

Proof. With our normalization, the condition (9) is equivalent to the system of equations

$$
\begin{array}{ccl}
\left(x_{1}(r)=\right) & c\left(r-q_{3}\right)\left(r-q_{4}\right)\left(r-q_{5}\right) \cdots\left(r-q_{n+2}\right) & =\xi_{1}, \\
\left(x_{2}(r)=\right) & c\left(r-q_{2}\right)\left(r-q_{4}\right)\left(r-q_{5}\right) \cdots\left(r-q_{n+2}\right) & =\xi_{2}, \\
& \vdots & \\
\left(x_{j-1}(r)=\right) & c\left(r-q_{2}\right) \cdots\left(r-q_{j-1}\right)\left(r-q_{j+1}\right) \cdots\left(r-q_{n+2}\right) & =\xi_{j-1}, \\
\vdots & & \\
\left(x_{n+1}(r)=\right) & c\left(r-q_{2}\right)\left(r-q_{3}\right)\left(r-q_{4}\right) \cdots\left(r-q_{n+1}\right) & =\xi_{n+1}=1,
\end{array}
$$

with $n+1$ unknowns $q_{4}, \ldots, q_{n+2}, r=q_{m}$ and c. The value of c is determined by the rest from the last equation. From the first and the $(j-1)$-st equations, by taking the ratio, we have

$$
\frac{r-q_{j}}{r}=\frac{\xi_{1}}{\xi_{j-1}} \quad(3 \leq j \leq n+2)
$$

and thus

$$
q_{j}=r \frac{\xi_{j-1}-\xi_{1}}{\xi_{j-1}}=r \xi_{j-2} \quad(3 \leq j \leq n+2)
$$

For the last equality, we have used (7) (with $j \rightarrow j-1$) in the previous section. Since $q_{3}=1$, the case $j=3$ gives $r\left(=q_{m}\right)=1 / \xi_{1}$ and so we obtain

$$
\begin{equation*}
q_{j}=\frac{\xi_{j-2}}{\xi_{1}} \quad(3 \leq j \leq m) \tag{11}
\end{equation*}
$$

where the case $j=m$ is included because $\xi_{m-2}=\xi_{n+1}=1$. From this, by writing the relation $\xi_{j-1}=\xi_{1} /\left(1-\xi_{j-2}\right)$ in (7) (j being replaced by $j-1$) as

$$
\frac{\xi_{j-1}}{\xi_{1}}=\frac{1}{1-\xi_{j-2}}=\frac{\frac{1}{\xi_{1}}}{\frac{1}{\xi_{1}}-\frac{\xi_{j-2}}{\xi_{1}}},
$$

we obtain the relation

$$
\begin{equation*}
q_{j+1}=\frac{|1+\zeta|^{2}}{|1+\zeta|^{2}-q_{j}} \quad(1 \leq j \leq n+2) \tag{12}
\end{equation*}
$$

Here, we have used $\xi_{1}=|1+\zeta|^{-2}$ from (7) (note b is the root of $f_{n}(t)$), and note that (12) is valid also for $j=1,2$ because of our normalization.

Now, let $R=R(x)$ be the map given by (10):

$$
z=R(x)=\frac{x-(1+\zeta)}{\zeta x-(1+\zeta)}
$$

This gives an orientation preserving homeomorphism from $\mathbb{P}^{1}(\mathbb{R})$ to the unit circle (counter clock-wise) in the complex z-plane, its inverse being given by

$$
x=R^{-1}(z)=(1+\zeta) \cdot \frac{1-z}{1-\zeta z} .
$$

Straightforward computation shows that the rotation $z \mapsto \zeta z$ in the z-plane corresponds under R the map

$$
\begin{equation*}
x \mapsto \frac{|1+\zeta|^{2}}{|1+\zeta|^{2}-x} \quad\left(=R^{-1}(\zeta R(x))\right) . \tag{13}
\end{equation*}
$$

By our normalization, $R\left(q_{1}\right)=R(\infty)=\zeta^{-1}$. We therefore conclude that, by (12) and (13), the point q_{j} is the image of R^{-1} of ζ^{j-2}, which is the image of ζ^{-1} under the $(j-1)$-st iteration of the rotation $z \rightarrow \zeta z$, and so

$$
q_{j}=R^{-1}\left(\zeta^{j-2}\right)=(1+\zeta) \cdot \frac{1-\zeta^{j-2}}{1-\zeta^{j-1}}
$$

This concludes the proof of Theorem 2.
When $\zeta=\zeta_{m}^{l}$, we compute

$$
\begin{aligned}
q_{j} & =\frac{1+\zeta-\zeta^{j-2}-\zeta^{j-1}}{1-\zeta^{j-1}}=1+\frac{\zeta-\zeta^{j-2}}{1-\zeta^{j-1}} \\
& =1+\frac{\zeta^{(j-3) / 2}-\zeta^{-(j-3) / 2}}{\zeta^{(j-1) / 2}-\zeta^{-(j-1) / 2}}=1+\frac{\sin \left(\frac{(j-3) l}{m} \pi\right)}{\sin \left(\frac{(j-1) l}{m} \pi\right)} .
\end{aligned}
$$

The other assertion in the corollary is clear from the description above.
Examples: When $m=5$ and 6 , the vertices of the regural m-gon in $\mathbb{P}^{1}(\mathbb{R})$ are

$$
\begin{array}{lllll}
m=5: & x=0, & 1, & \frac{1+\sqrt{5}}{2}, & \frac{3+\sqrt{5}}{2},
\end{array} \quad \infty
$$

Remark 2. We see that all q_{j} 's are in $\mathbb{Q}\left(\zeta+\zeta^{-1}\right)$, and so are the ξ_{j} 's. This is a geometric explanation of the fact that this field is the splitting field of the core Fibonacci polynomial f_{n}.

4 Fixed points

Let τ be a root of f_{n}. We find fixed points of σ (notation as in $\left.\S 1\right)$:

$$
\lambda x_{1}=x_{1}+b_{1} x_{2}, \lambda x_{2}=x_{1}+b_{2} x_{3}, \ldots, \lambda x_{n}=x_{1}+b_{n} x_{n+1}, \lambda x_{n+1}=x_{1} .
$$

If we put $x_{n+1}=1$, then λ must satisfy

$$
\widetilde{H}_{n}(\lambda, \tau):=-\lambda^{n+1}+\lambda^{n}+b_{1}\left(\lambda^{n-1}+b_{2}\left(\cdots\left(\lambda^{2}+b_{n-1}\left(\lambda+b_{n}\right)\right) \cdots\right)\right)=0 .
$$

If there is a real λ solving this equation, then the coordinates $\lambda_{1}: \cdots: \lambda_{n}: 1$ of the fixed point are

$$
\lambda_{1}=\lambda, \quad \lambda_{2}=\lambda \frac{\lambda_{1}-1}{b_{1}}, \quad \lambda_{3}=\lambda \frac{\lambda_{2}-1}{b_{2}}, \ldots,
$$

or equivalently, $\lambda_{n}=1+b_{n} \lambda_{n+1} / \lambda, \quad \lambda_{n-1}=1+b_{n-1} \lambda_{n} / \lambda, \ldots$
We can express the polynomial \widetilde{H}_{n} in terms of the Fibonacci polynomials. Since $b_{n}=h_{0}(\tau)=\tau$ and

$$
\begin{aligned}
& b_{1}=h_{n-1}(\tau)=\tau \frac{F_{n-3}(\tau)}{F_{n-2}(\tau)}, \quad b_{1} b_{2}=h_{n-1}(\tau) h_{n-2}(\tau)=\tau^{2} \frac{F_{n-4}(\tau)}{F_{n-2}(\tau)}, \ldots, \\
& b_{1} \cdots b_{n}=h_{n-1} \cdots h_{0}=\tau^{n} \frac{F_{-2}(\tau)}{F_{n-2}(\tau)}
\end{aligned}
$$

and $0=F_{n}(\tau)=F_{n-1}(\tau)+\tau F_{n-2}(\tau)$, we see that, if we put $x=\lambda / \tau, \widetilde{H}_{n}(\lambda, \tau)$ is a constant multiple of $H_{n}(x, \tau)$, where

$$
H_{n}(x, t):=F_{n-1}(t) x^{n+1}+F_{n-2}(t) x^{n}+\cdots+F_{-1} x+F_{-2}, \quad F_{-1}=F_{-2}=1 .
$$

Theorem 3. Let τ be a root of f_{n}. When n is odd, $H_{n}(x, \tau)$ has no real root. When $n=2 k$ is even, $H_{n}(x, \tau)$ has a unique real root

$$
-\frac{F_{k-2}(\tau)}{F_{k-1}(\tau)}
$$

Proof. Substituting

$$
F_{i}=G_{i+3}=\frac{1}{\sqrt{1+4 t}}\left(\alpha^{i+3}-\beta^{i+3}\right)
$$

into $H_{n}=\sum_{i=-2}^{n-1} F_{i} x^{i+2}$, we have

$$
\begin{aligned}
H_{n} & =\sum_{i=-2}^{n-1} \frac{1}{\sqrt{1+4 t}}\left(\alpha^{i+3}-\beta^{i+3}\right) x^{i+2}=\frac{1}{\sqrt{1+4 t}} \sum_{i=0}^{n+1}\left(\alpha^{i+1}-\beta^{i+1}\right) x^{i} \\
& =\frac{1}{\sqrt{1+4 t}}\left\{\alpha \frac{\alpha^{n+2} x^{n+2}-1}{\alpha x-1}-\beta \frac{\beta^{n+2} x^{n+2}-1}{\beta x-1}\right\} \\
& =\frac{\alpha \beta\left(\alpha^{n+2}-\beta^{n+2}\right) x^{n+3}-\left(\alpha^{n+3}-\beta^{n+3}\right) x^{n+2}+\alpha-\beta}{\sqrt{1+4 t}(\alpha x-1)(\beta x-1)} .
\end{aligned}
$$

Since $\alpha+\beta=1, \alpha \beta=-t$ and $\alpha-\beta=\sqrt{1+4 t}$, we have

$$
H_{n}=\frac{-t F_{n-1}(t) x^{n+3}-F_{n}(t) x^{n+2}+1}{1-x-t x^{2}}
$$

If τ is a root of $F_{n}(t)$ (which is always negative real), the equation $H_{n}=0$ in x is equivalent to

$$
x^{n+3}=\frac{1}{\tau F_{n-1}(\tau)} .
$$

If n is even, this has a unique real solution, and if n is odd, since $F_{n-1}(\tau)$ is positive (next Lemma), it has no real solution. The theorem follows from the two lemmas below.

Lemma 3. If n is odd and if τ is a root of $f_{n}(t)$, then $F_{n-1}(\tau)$ is positive.
Proof. Recall that $F_{n}=G_{n+3}$, and the roots of $G_{n+3}(t)$ are given as (Corollary 1)

$$
\tau_{i}=-\frac{1}{4 \cos ^{2} \frac{i \pi}{n+3}}, \quad 1 \leq i \leq\left[\frac{n}{2}\right]+1
$$

and the roots of $G_{n+2}(t)$ are

$$
t_{j}=-\frac{1}{4 \cos ^{2} \frac{j \pi}{n+2}}, \quad 1 \leq j \leq\left[\frac{n+1}{2}\right] .
$$

Since $\tau_{i}-t_{j}<0$ if and only if

$$
\frac{j}{n+2}<\frac{i}{n+3}
$$

the number of roots t_{j} such that $\tau_{i}-t_{j}<0$ (for fixed i) is $i-1$. So if i is odd, $F_{n-1}(\tau)>0$. If n is odd and τ is a root of $f_{n}(t)$, we must have $(i, n+3)=1$, which implies i is odd.

Lemma 4. Let $n=2 k$ is even, and let τ be a root of $F_{2 k}(t)$. Then we have

$$
\left(-\frac{F_{k-2}(\tau)}{F_{k-1}(\tau)}\right)^{n+3}=\frac{1}{\tau F_{n-1}(\tau)}
$$

Proof. Recall that, if we set $a=(1+\sqrt{1+4 \tau}) / 2$ and $b=(1-\sqrt{1+4 \tau}) / 2$,

$$
F_{j}(\tau)=\frac{a^{j+3}-b^{j+3}}{\sqrt{1+4 \tau}}
$$

By assumption, we have $a^{2 k+3}=b^{2 k+3}$. We first note

$$
-\frac{F_{k-2}(\tau)}{F_{k-1}(\tau)}=-\frac{a^{k+1}-b^{k+1}}{a^{k+2}-b^{k+2}}=\frac{a^{k+1}}{b^{k+2}},
$$

because

$$
\left(a^{k+2}-b^{k+2}\right) a^{k+1}+\left(a^{k+1}-b^{k+1}\right) b^{k+2}=a^{2 k+3}-b^{2 k+3}=0 .
$$

Hence, we have

$$
\left(-\frac{F_{k-2}(\tau)}{F_{k-1}(\tau)}\right)^{n+3}=\left(\frac{a^{k+1}}{b^{k+2}}\right)^{2 k+3}=\left(\frac{a^{2 k+3}}{b^{2 k+3}}\right)^{k} \frac{a^{2 k+3}}{b^{2(2 k+3)}}=\frac{1}{b^{2 k+3}}
$$

On the other hand, by using $\tau=-a b, \sqrt{1+4 \tau}=a-b$, and $a^{2 k+3}=b^{2 k+3}$, we obtain

$$
\frac{1}{\tau F_{n-1}(\tau)}=\frac{-(a-b)}{a b\left(a^{2 k+2}-b^{2 k+2}\right)}=\frac{-(a-b)}{b\left(b^{2 k+3}-a b^{2 k+2}\right)}=\frac{-(a-b)}{b^{2 k+3}(b-a)}=\frac{1}{b^{2 k+3}} .
$$

References

[AMY] F. Apéry, B. Morin and M. Yoshida, Structure of chambers cut out by Veronese arrangements of hyperplanes in the real projective spaces, preprint
[CYY] K. Cho, K. Yada and M. Yoshida, Six points/planes in the 3-space, Kumamoto J of Math. 25 (2012), 17-52.
[Ko] T. Koshy, Fibonacci and Lucas numbers with applications, John Wiley, New York, United States. 652 pp, (2001).

Masanobu Kaneko
Faculty of Mathematics
Kyushu University
Nishi-ku, Fukuoka 819-0395
Japan
mkaneko@math.kyushu-u.ac.jp
Masaaki Yoshida
Kyushu University
Nishi-ku, Fukuoka 819-0395
Japan
myoshida@math.kyushu-u.ac.jp

[^0]: ${ }^{1} \mu(n)=0$ if n has a square factor and $\mu(n)=(-1)^{\nu}$ if n is a product of ν distinct primes. $\mu(1)=1$.

