
The third order modular linear differential equations

Masanobu Kaneko 1)1 Kiyokazu Nagatomo 2)2 and Yuichi Sakai 3)

1) Faculty of Mathematics, Kyushu University
Motooka 744, Nishi-ku, Fukuoka 819-0395, JAPAN

2) Department of Pure and Applied Mathematics
Graduate School of Information Science and Technology
Osaka University, Toyonaka, Osaka 560-0043, JAPAN

3) Yokomizo 3012-2, Oki-machi, Mizuma–gun, Fukuoka 830-0405, JAPAN

Abstract

We propose a third order generalization of the Kaneko-Zagier modular differential equa-
tion, which has two parameters. We describe modular and quasimodular solutions of integral
weight in the case where one of the exponents at infinity is a multiple root of the indicial equa-
tion. We also classify solutions of “character type”, which are the ones that are expected to
relate to characters of simple modules of vertex operator algebras and one-point functions of
two-dimensional conformal field theories. Several connections to generalized hypergeometric
series are also discussed.
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1 Introduction

This paper studies a third order generalization of the Kaneko-Zagier equation (K-Z equation
for short), which is called the third order K-Z equation here. The K-Z equation first appeared
in [11] in connection with supersingular j-invariants of elliptic curves, and subsequently,
various modular and quasimodular solutions of the K-Z equation were found and studied
in [5]–[8], etc. One of the characteristic properties of the K-Z equation is the invariance of
the space of solutions under the standard slash action of the modular group Γ1 = SL2(Z),
and indeed, our generalization has the same property.
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(B) 23340010.

2This work was supported by Japan Society for the Promotion of Science, Grant-in-Aid for Challenging Ex-
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Under mild conditions on the coefficient functions, we determine in §2 the form of what
we call the third order modular linear differential equation as

f ′′′ − k + 2

4
E2(τ)f

′′ +

{
(k + 1)(k + 2)

4
E′

2(τ) + αE4(τ)

}
f ′(τ)

−
{
k(k + 1)(k + 2)

24
E′′

2 (τ) +
kα

4
E′

4(τ)− βE6(τ)

}
f(τ) = 0 , (1)

where τ is a variable in the complex upper half-plane H, and ′ is the Euler operator of
q (= e2π

√
−1τ ) (see Theorem 1 in §2). The Ek(τ) is the normalized Eisenstein series of

weight k given by

Ek(τ) = 1− 2k

Bk

∞∑
n=1

σk−1(n)q
n,

where Bk is the kth Bernoulli number and σm(n) is the sum of mth powers of positive
divisors of n. The parameter k is expected to stand for the weight of f , and α, β are complex
parameters.

As shown in [8], the K-Z equation is closely related to two-dimensional conformal field
theory (2DCFT for short). The papers [1] and [3], which may be viewed as companion papers
of the present one, study affine 2DCFT with at most 20 simple modules or 5 independent
pseudo-characters and the minimal models with at most three simple modules, respectively.
The (formal) characters of such 2DCFT were expected to satisfy one of the third order K-Z
equations.

One of the main results in this paper (given in §3) is an almost complete description of
modular and quasimodular solutions in the case where the indicial equation of (1) with β = 0
at q = 0 has a multiple root and k is an integer (Theorem 2 in §3.1, Theorem 4 in §3.2). The
other is the determination of solutions of character type, which is characterized by integrality
and positivity of Fourier coefficients of an associated weight 0 function (Proposition 6 and
Theorem 7 in §4). As motivated by [10], we discuss in §5 a relation between the third order
K-Z equation and hypergeometric series (Theorem 8 in §5).

2 Modular linear differential equations of third or-

der

Let H be the complex upper half-plane and F the space of holomorphic functions on H. The
slash operator of weight k on F is defined as usual by

(f |kγ )(τ) = (cτ + d)−kf(γ(τ)) for each γ =

(
a b
c d

)
∈ SL2(R)

for each real number k. In this section, we determine the general form of third order linear
differential equations

f ′′′(τ) +A(τ)f ′′(τ) +B(τ)f ′(τ) + C(τ)f(τ) = 0 , ′ = q
d

dq
=

1

2π
√
−1

d

dτ
(2)
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under the conditions that each coefficient A(τ), B(τ) and C(τ) are holomorphic on H,
bounded as Im(τ) → ∞, and the space of solutions is invariant under the slash action |kγ
for every γ ∈ Γ1 = SL2(Z). In general a linear ordinary differential equation on H with
meromorphic coefficients is called a modular linear differential equation (MLDE) of weight k
on a discrete subgroup Γ of SL2(R) if the space of solutions is invariant under the slash
action |kγ of a fixed weight k for each γ ∈ Γ.

Theorem 1. Let f ′′′(τ) + A(τ)f ′′(τ) + B(τ)f ′(τ) + C(τ)f(τ) = 0 be a third order linear
differential equation for f such that the coefficient functions A(τ), B(τ) and C(τ) are holo-
morphic on H and are bounded as Im(τ) → ∞. Then this is a modular linear differential
equation of weight k on SL2(Z) if and only if the equation is given in the form

f ′′′ − k + 2

4
E2(τ)f

′′ +

{
(k + 1)(k + 2)

4
E′

2(τ) + αE4(τ)

}
f ′(τ)

−
{
k(k + 1)(k + 2)

24
E′′

2 (τ) +
kα

4
E′

4(τ)− βE6(τ)

}
f(τ) = 0 , (3)

where α and β are complex numbers and ′ = q
d

dq
.

Proof. The requirement that the equation is invariant under |kγ (γ ∈ Γ1) implies (after a little
complicated but similar calculations which were given in [6, Section 5] )

A

(
aτ + b

cτ + d

)
= (cτ + d)2A(τ)− 3µ(k + 2)(cτ + d) , (4)

B

(
aτ + b

cτ + d

)
= µ(cτ + d)4B(τ)− 2(k + 1)(cτ + d)3A(τ) + 3µ2(k + 1)(k + 2)(cτ + d)2 , (5)

C

(
aτ + b

cτ + d

)
= (cτ + d)6C(τ)− kµ(cτ + d)5B(τ) + µ2k(k + 1)(cτ + d)4A(τ)

− µ3k(k + 1)(k + 2)(cτ + d)3 ,

(6)

where

(
a b
c d

)
∈ Γ1 and µ = c/2πi. By (4)–(6) and the transformation formula of the

weight two (quasimodular) Eisenstein series

E2

(
aτ + b

cτ + d

)
= (cτ + d)2E2(τ) + 12µ(cτ + d) for any

(
a b
c d

)
∈ Γ1 ,

it follows that the three functions

A(τ) +
(k + 2)

4
E2(τ) , B(τ) + (k + 1)A′(τ) , C(τ) +

k

4
B′(τ) +

k(k + 1)

12
A′′(τ) (7)

are invariant under slash operators |2, |4 and |6 on γ ∈ Γ1, respectively. Because A(τ), B(τ)
and C(τ) are holomorphic and are bounded as Im(τ) → ∞, these functions are holomorphic
modular forms of weights 2, 4 and 6, respectively. By the well-known fact that there does
not exist a non-zero holomorphic modular form of weight 2 on Γ1 and that the space of

3



holomorphic modular forms of weights 4 and 6 are both one-dimensional and are spanned by
E4(τ) and E6(τ), respectively, we conclude that

A(τ) = −(k + 2)

4
E2(τ) , (8)

B(τ) =
(k + 1)(k + 2)

4
E′

2(τ) + αE4(τ) , (9)

C(τ) = −k(k + 1)(k + 2)

24
E′′

2 (τ)−
kα

4
E′

4(τ) + βE6(τ) (10)

with complex numbers α and β.
Conversely, the discussions above show that for any complex numbers α and β, eq. (3) is

a modular linear differential equation of weight k on Γ1.

We call (3) the third order Kaneko-Zagier equation (of weight k) or the third order K-Z
equation (of weight k) for short.

Remarks. (1) Eq. (3) can be rewritten with the help of the Ramanujan relations 12E′
2 =

E2
2 − E4, 3E

′
4 = E2E4 − E6 and 2E′

6 = E2E6 − E2
4 as

ϑ3
k(f) + α̂E4ϑk(f) + β̂E6(τ)(f) = 0 (11)

with the values of α̂ = α−(3k2+12k+8)/144 and β̂ = β+kα/12−k2(k+3)/864. Here ϑk(f)
is the Serre derivative ϑk(f) := f ′ − k

12E2f and the iterated Serre derivations are defined by
ϑ2
k = ϑk+2 ◦ ϑk and ϑ3

k = ϑk+4 ◦ ϑk+2 ◦ ϑk.
(2) The third order modular differential equation obtained by applying the Serre derivation

to the second order K-Z equation ϑ2
k(f)−

k(k+2)
144 E4(f) = 0 is a special case of (11) with the

values α = (k + 1)(k + 4)/72 and β = 0.

In the rest of the paper, we consider the special case β = 0 of (3), that is, the differential
equation

f ′′′(τ)− k + 2

4
E2(τ)f

′′(τ) +

{
(k + 1)(k + 2)

4
E′

2(τ) + αE4(τ)

}
f ′(τ)

−
{
k(k + 1)(k + 2)

24
E′′

2 (τ) +
kα

4
E′

4(τ)

}
f(τ) = 0 . (12)

The reason why we restrict ourselves to this case is first to reduce the number of parameters
from 3 to more manageable 2, but why we choose β = 0 among other specializations comes
from our interest in 2DCFT or VOA. There, characters often take the form f/η2k where f is
a modular form of weight k = half of the central charge and is 1+O(q) satisfying a modular
differential equation, and η = q1/24

∏∞
n=1(1 − qn) is the Dedekind eta function. A typical

example is the character of a lattice vertex operator algebra, which is written as ΘL/η
2d,

where L is a d-dimensional lattice and ΘL is the theta series associated to L. If f is a
solution of (3) and f = 1 +O(q), then β should necessarily equal 0.

Our aim in the following two sections is to give a fairly complete description of both
general and “character type” solutions of (3) under the assumption that the indicial equation

λ3 − k + 2

4
λ2 + αλ = 0 (13)

has a multiple root and the weight k is an integer.
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3 Third order Kaneko-Zagier equations with mul-

tiple exponents

In this section we sutudy modular or quasimodular solutions of (12) when equation (13) has
a multiple root and the weight parameter k is an integer. We are not able to establish any
general statement when k is not an integer. However, computer experiments suggest that
there are no (quasi)modular solutions (whose Fourier coefficients have bounded denominators)
to (12) when equation (13) has a multiple root and k is not an integer.

Equation (13) has a triple root if and only if k = −2 and α = 0 (the root is 0). This
case is trivial because (12) becomes f ′′′ = 0 and a fundamental system of solutions of this
equation is {1, τ, τ2}. We therefore assume in the remaining sections that (k, α) ̸= (−2, 0).

Clearly, a possible double root of (13) is either λ = 0 or λ = (k+2)/8. If λ = 0 is a double
root, then α = 0 (and k ̸= −2) and the corresponding MLDE is

f ′′′ − k + 2

4
E2f

′′ +
(k + 1)(k + 2)

4
E′

2f
′ − k(k + 1)(k + 2)

24
E′′

2f = 0 . (14)

If λ = (k + 2)/8 is a double root (k ̸= −2), then α = (k + 2)2/64 and the corresponding
MLDE is

f ′′′ − k + 2

4
E2f

′′ +

{
(k + 1)(k + 2)

4
E′

2 +
(k + 2)2

64
E4

}
f ′

−
{
k(k + 1)(k + 2)

24
E′′

2 +
k(k + 2)2

256
E′

4

}
f = 0 . (15)

Convention. We sometimes use equation numbers in the text such as (14)k to make the
dependence on the parameter k explicit.

In fact, solutions of one of (14) and (15) are obtained from those of the other. More
precisely, as is checked easily by direct computations, if f is a solution of (15)−2k−6 (resp.
of (14)−(k+6)/2), then f∆(k+2)/4 (resp. f∆(k+2)/8) is a solution of (14)k (resp. of (15)k), and
this correspondences is a bijection of the sets of solutions of (14) and (15). Therefore, we
only need to consider either of equations (14) and (15). Or alternatively, by the equivalence

k > −2 ⇔ −2k − 6 < −2 ⇔ −(k + 6)/2 < −2,

it suffices to consider both (14) and (15) under the assumption k > −2. Since we are mainly
interested in (quasi)modular forms of positive weights, we hereafter assume k > −2 and
study (14) and (15) separately in the following subsections.

3.1 Case λ = 0 is a double root

We describe solutions of (14)k when k is an integer > −2. If k = −1, (14)k becomes
f ′′′ − 1

4E2f
′′ = 0, and a set of fundamental solutions is given by 1, log q = 2π

√
−1τ , and the

double Eichler integral of η6 (a solution of f ′′ = η6).
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We define a sequence of functions fk by the four-term recursion formula

fk+4 = akE4fk − bkE
2
4fk−4 + ck∆fk−8 (k ≥ 4),

where coefficients and initial values are given by

ak =


2(k3 + k2 − 6k − 12)

(k − 3)(k + 2)(k + 4)
if k ̸≡ 2 (mod 4) ,

(k + 6)2(k3 + k2 − 6k − 12)

128(k − 3)(k + 3)(k + 4)2(k + 5)
if k ≡ 2 (mod 4) ,

bk =


(k − 2)k(k + 1)

(k − 3)(k + 2)(k + 4)
if k ̸≡ 2 (mod 4) ,

(k − 2)2(k + 2)2(k + 6)2

65536(k − 3)(k − 1)(k + 3)(k + 4)2(k + 5)
if k ≡ 2 (mod 4) ,

ck =


256(k − 5)(k − 4)k(k + 1)

(k − 6)(k − 2)(k + 2)(k + 4)
if k ̸≡ 2 (mod 4) ,

bk if k ≡ 2 (mod 4) ,

and f−4 = 0, f−3 = η−6, f−2 = f−1 = f0 = 1, f1 = E2, f2 = −E′
2/24, f3 = f4 = E4, f5 =

E6 + 49E′
4/15, f6 = −(21E′′

4 + 10E′
6)/151200, f7 = E2

4 + 16E′
6/105.

When k ≡ 0, 2 (mod 4), these fk s are same (up to normalization constants) as functions
already given in [10, Theorem 3.1] and [7, Theorem 3.1]. We now have:

Theorem 2. Let k be a non-negative integer. The function fk is a solution of (14)k. Its
q-expansion is fk = 1 + O(q) if k ̸≡ 2 (mod 4) and fk = q(k+2)/4 + O(q(k+6)/4) if k ≡ 2
(mod 4). Moreover,
(1) if k ≡ 0 (mod 4), fk is a modular form of weight k on SL2(Z),
(2) if k ≡ 2 (mod 4), fk is a quasimodular form of weight k + 2 and depth 2 on SL2(Z),
(3) if k is odd, fk is a quasimodular form of weight k + 1 and depth at most 1 on SL2(Z).

We can prove the theorem in a similar manner as in the proof of [7, Theorem 3.1] by
using Lemma 3 below.

Let [f, g]
(k,ℓ)
n (n ≥ 0) be the Rankin-Cohen bracket which is defined by

[f, g](k,ℓ)n =
∑
r, s≥0
r+s=n

(−1)r
(
n+ k − 1

s

)(
n+ ℓ− 1

r

)
f (r)g(s) , f (r) =

(
q
d

dq

)r

f

for modular forms f and g of weight k and ℓ on Γ1 (indeed, the Rankin-Cohen bracket is well

defined for any holomorphic functions f and g), respectively. Then it is known that [f, g]
(k,ℓ)
n

is a modular form of weight k + ℓ+ 2n on Γ1. An easy calculation shows that

[f, g]
(k,ℓ)
1 = kfϑℓ(g)− ℓϑk(f)g ,

[f,E4]
(k,4)
2 = 10E4 ϑ

2
k(f) +

5

3
(k + 1)E6 ϑk(f) +

5

72
k2E2

4 f , (16)

[f,E6]
(k,6)
2 = 21E6 ϑ

2
k(f) +

7

2
(k + 1)E2

4 ϑk(f) +
7

48
k2E4E6 f . (17)
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Lemma 3. Let k be a rational number.
(1) Suppose that f is is a solution of (14)k. Then we have

ϑk+8

(
[f,E4]

(k,4)
2

)
=

5

63
(k − 1)[f,E6]

(k,6)
2 ,

ϑk+10

(
[f,E6]

(k,6)
2

)
=

7

20
(k − 2)E4[f,E4]

(k,4)
2 − 42k2(k + 1)∆f ,

and [f,E4]
(k,4)
2 /∆ is a solution of (14)k−4.

(2) Suppose that Fk, Fk−4 and Fk−8 are solutions of (14)k, (14)k−4 and (14)k−8, respectively.
Then Fk+4 = E4Fk + E2

4Fk−4 +∆Fk−8 is a solution of (14)k+4 if and only if

[Fk, E6]
(k,6)
2 + 2E4[Fk−4, E6]

(k−4,6)
2

= −7

8
∆
(
27648ϑk−4(Fk−4) + 12kE4ϑk−8(Fk−8) + (k2 − 2k + 12)E6Fk−8

)
. (18)

Proof. We give a sketch of a proof. A fairly direct calculation of both sides by using equa-
tion (11)k (with α = β = 0)

ϑ3
k(f)(τ)−

3k2 + 12k + 8

144
E4(τ)ϑk(f)(τ)−

k2(k + 3)

864
E6(τ)f(τ) = 0 (19)

together with (16) and (17) provides the equalities in (1).

That the [f,E4]
(k,4)
2 /∆ is a solution of (14)k−4 can be seen by substituting [f,E4]

(k,4)
2 /∆

into (19)k−4 and using the relation ϑk−4

(
[f,E4]

(k,4)
2 /∆

)
= ϑk+8

(
[f,E4]

(k,4)
2

)
/∆ with (16).

Finally, substituting Fk+4 into (19)k+4, we see that the left-hand side of (19)k+4 coincides
with

− 1

21

(
[Fk, E6]

(k,6)
2 + 2E4[Fk−4, E6]

(k−4,6)
2

+
7

8
∆
(
27648ϑk−4(Fk−4) + 12kE4ϑk−8(Fk−8) + (k2 − 2k + 12)E6Fk−8

))
,

which proves (3).

The condition (18) in (2) of the lemma is effectively used in proving that the recursively
defined function fk satisfies the differential equation (14)k.

3.2 Case λ = (k + 2)/8 is a double root

Solutions of (15)k are described similarly as in the previous subsection. However, we need
modular forms of level 2 here, and computer experiments suggest that there exist modular
or quasimodular solutions only when k is even.

Let H2(τ) = 2E2(2τ) − E2(τ) and ∆2(τ) = η(2τ)8/η(τ)4, which are modular forms of
weight 2 on Γ0(2) and Γ(2), respectively. The groups Γ0(2) and Γ(2) are the standard
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congruence subgroups of SL2(Z) of level 2;

Γ0(2) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 mod 2

}
,

Γ(2) =

{(
a b
c d

)
∈ Γ0(2)

∣∣∣∣ (a b
c d

)
≡
(
1 0
0 1

)
mod 2

}
.

For even integers k ̸≡ 6 (mod 8), we define gk by the four-term recursion formula

gk+8 = E2
4gk − bkE4∆gk−8 + ck∆

2gk−16 (k ≥ 8)

with coefficients

bk =
512k(k3 − 8k2 − 4k + 128)

(k − 6)2(k + 2)2
, ck =

65536(k − 12)(k − 10)2(k − 8)k(k + 4)

(k − 14)2(k − 6)2(k + 2)2

and with initial values g−8 = g−6 = g−4 = 0, g0 = 1, g2 = H2, g4 = E4, g8 = E2
4 , g10 =

H2(H
4
2 + 61440∆4

2), g12 = (3E3
4 − 2048∆)/3.

We define another series of functions hk for even k ≡ 2 (mod 4) by the similar recursion

hk+8 = akE
2
4hk − bkE4∆hk−8 + ck∆

2hk−16 (k ≥ 10)

with coefficients

ak =
(k + 2)2(k + 10)

256(k + 4)(k + 6)(k + 8)
, bk =

(k + 2)(k + 10)(k3 − 8k2 − 4k + 128)

128(k − 4)(k − 2)(k + 4)(k + 6)(k + 8)
,

ck =
(k − 10)(k − 6)(k + 2)(k + 10)

256(k − 4)(k − 2)(k + 6)(k + 8)

and initial values h−6 = η−12, h−2 = 1, h2 = ∆2, h6 = E′′
4/240, h10 = ∆3

2(H
2
2 + 192∆2

2/5),
h14 = (E3

4 − 720∆)′′/786240. Then we have:

Theorem 4. Let k be a non-negative even integer. The functions gk for k ̸≡ 6 (mod 8) and
hk for k ≡ 2 (mod 4) are solutions of (15)k with Fourier expansions of the form gk = 1+O(q)
and hk = q(k+2)/8 +O(q(k+10)/8). Moreover,
(1) if k ≡ 0 (mod 4), the function gk is a modular form of weight k on SL2(Z),
(2) if k ≡ 2 (mod 8), the function gk and hk are modular forms of weight k on Γ0(2) and
Γ(2), respectively,
(3) if k ≡ 6 (mod 8), the function hk is a quasimodular form of weight k + 2 and depth at
most 2 on SL2(Z) .

Remarks. (1) Since c8 = c10 = c12 = 0, we may choose any functions as the initial values
g−8, g−6, and g−4. The following (non-modular) functions are solutions of (15)−8, (15)−6,
and (15)−4 with 1 +O(q) respectively.

g−8 =
9

16η18

((
log(q)E2 + 12

) ∫ q

0

E2∆
3/4

E2
4

dq

q
− E2

∫ q

0

(
log(q)E2 + 12

)
∆3/4

E2
4

dq

q

)
,

g−6 =
1

2 η12

∫ q

0
∆2

dq

q
, g−4 =

1

16 η6

∫ q

0

∫ q

0
η6
(
dq

q

)2

.
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(2) From the general theory of ordinary differential equations, we know that if f and g
are two independent solutions of (3)k, then the other (meromorphic) solution is given by

g

∫ q

0

∆
k+2
4

f3
{
(g/f)′

}2 dqq − f

∫ q

0

g∆
k+2
4

f4
{
(g/f)′

}2 dqq .

The proof of Theorem 4 goes similarly to that of Theorem 2 if we replace Lemma 3 by
the lemma below.

Lemma 5. Let k be a rational number.
(1) Suppose that f is a solution of (15)k. Then we have

ϑk+8

(
[f,E4]

(k,4)
2

)
=

5

63
(k − 1)[f,E6]

(k,6)
2 +

5

128
(k + 2)2E4[f,E4]

(k,4)
1 ,

ϑk+10

(
[f,E6]

(k,6)
2

)
=

7

20
(k − 2)E4[f,E4]

(k,4)
2 +

21

64
(k + 2)2E6[f,E4]

(k,4)
1 − 42k2(1 + k)∆f ,

and
(
[f,E4]

(k,4)
2 + 5

18(k + 1)[f,E6]
(k,6)
1

)
/E4∆ is a solution of (15)k−8.

(2) Suppose that Fk, Fk−8 and Fk−16 are solutions of (15)k, (15)k−8 and (15)k−16, respectively.
Then Fk+8 = E2

4Fk + E4∆Fk−8 +∆2Fk−16 is a solution of (15)k+8 if and only if

1

5
E6[Fk, E4]

(k,4)
2 +

k + 6

48
[Fk, E

3
4 ]

(k,12)
1 + 576(k + 3)∆ϑk(Fk)

+ ∆

(
1

21
[Fk−8, E6]

(k−8,6)
2 +

1

24
[Fk−8, E

2
4 ]

(k−8,8)
1 − 9k2 + 36k + 292

576
E4E6Fk−8

)
= ∆2

(
−k − 2

4
E4ϑk−16(Fk−16) +

k2 + 44

96
E6Fk−16

)
.

3.3 Quasimodular forms and solutions with logarithmic terms

We found solutions of quasimodular forms of the third order K-Z equations in Theorems 2
and 4. A simple observation shows that, because of the modular invariance of the space of
solutions, if MLDEs of weight k have solutions of quasimodular forms of weight k + r and
depth r > 0, then there exist solutions with logarithmic terms. We briefly illustrate this in
the cases of depth 1 and 2.

Suppose that a quasimodular form Jk := AkE2 + Bk of weight k + 1 and depth 1 is a
solution of a K-Z equation of order 3 and weight k, where Ak and Bk are modular forms
on Γ1 of weight k − 1 and k + 1, respectively. Then the function Gk := τ−kJk(−1/τ) =
(2π

√
−1)−1(Jk log q + 12Ak) is a solution because of the modular invariance. Moreover, it

follows from the transformation formula of E2 that(
Jk
Gk

)∣∣∣∣
k

(
a b
c d

)
=

(
d c
b a

)(
Jk
Gk

)
for each

(
a b
c d

)
∈ Γ1 .

For example, eqs. (14)1 and (14)5 have solutions J1 = E2 and J5 = (49E2E4 − 4E6)/45,
respectively. Then G1 = (2π

√
−1)−1(J1 log q+12) and G5 = (2π

√
−1)−1(F5 log q+196E4/15)

are solutions of (14)1 and (14)5 with logarithmic terms, respectively.
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Next suppose that a quasimodular form Kk := AkE
2
2 + BkE2 + Ck of weight k + 2 and

depth 2 is a solution of a third order K-Z equation of weight k, where Ak, Bk and Ck are
modular forms on Γ1 of weight k− 2, k and k+2, respectively. Then we have solutions with
logarithmic terms

Ik = (2π
√
−1)−2

(
Kk(log q)

2 + 12(2AkE2 +Bk) log q + 144Ak

)
,

Gk = (2π
√
−1)−1 (Kk log q + 6(2AkE2 +Bk)) ,

which are obtained by Ik = Kk|kγ1 and Gk = (Kk|kγ2 − Kk − Ik)/2 (γ1 : τ 7→ −1/τ, γ2 :
τ 7→ −1/(τ + 1)), respectively. It then follows thatKk

Gk

Ik

∣∣∣∣∣∣
k

(
a b
c d

)
=

d2 2cd c2

bd ad+ bc ac
b2 2ab a2

Kk

Gk

Ik

 for each

(
a b
c d

)
∈ Γ1 .

For instance, eq. (15)6 has a solution K6 = (E2
2E4 − 2E2E6 + E2

4)/1728. Consequently,
there exist solutions I6 = (2π

√
−1)−2

(
K6(log q)

2 + (E2E4 − E6) log q/72 + E4/12
)
and G6 =

(2π
√
−1)−1 (K6 log q + (E2E4 − E6)/144).

This kind of phenomena that if a MLDE has a quasimodular solution of depth r then
associated vector-valued modular form corresponds to the symmetric tensor representation
with degree r + 1 is studied for instance in [4] and [9].

4 Solutions of character type

As mentioned in the introduction, we are interested in special type of solutions of MLDEs in
connection with 2DCFT and VOAs, namely, solutions of “character type” which is defined
as follows.

Definition. A solution f of the third order K-Z equation (of weight k) is said to be of
character type if it is a (quasi)modular form and all Fourier coefficients of f/η2k are non-
negative integers. Furthermore, if its leading Fourier coefficient is 1, we call it of vacuum
character type.

In this section we shall give a fairly complete description of solutions of character type
of equation (14). As explained in the paragraph before §3.1, equations (14) and (15) are
equivalent in the sense that solutions of either of these equations are obtained from the other
by multiplying a suitable power of η. And under this equivalence, the property of a solution
being of character type is clearly unchanged because we look at the Fourier coefficients of
the associated weight 0 function obtained by multiplying a power of η. Hence, we shall
exclusively look at equation (14), but for any (positive and non-positive) integer k.

Let f be a solution of (14)k and set g = f/η2k. Then (14)k is rewritten in terms of g as

g′′′ − 1

2
E2 g

′′ +

{
1

2
E′

2 −
k(k + 4)

48
E4

}
g′ − k2(k + 3)

864
E6 g = 0 . (20)
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Our aim in this section is to determine all solutions g of (20)k which have the form

g = qν
(
1 +

∞∑
n=1

anq
n
)
, (21)

where each an is a non-negative integer and ν ∈ R. Since the characteristic equation of (20)
is

ν3 − 1

2
ν2 − k(k + 4)

48
ν − k2(k + 3)

864
=

(
ν +

k

12

)2(
ν − k + 3

6

)
= 0 ,

the indicial roots of (20) are {−k/12,−k/12, (k + 3)/6 }. The indicial roots ν = −k/12 and
(k+3)/6 of g correspond to the exponents µ = 0 and (k+2)/4 of f , respectively. We compute
coefficients an of a solution (21) of (20) by the Frobenius method, and seek for conditions
that an are non-negative integers. (Even if an index is a double root, we can obtain a solution
when a pair of indices does not have a integral difference.)

Substituting (21) into (20), we have

2

(
n+ ν +

k

12

)2(
n+ ν − k + 3

6

)
an =

n∑
i=1

(
n+ ν − i)2 e2,i −

(
i · e2,i −

k(k + 4)

24
e4,i

)
(n+ ν − i) +

k2(k + 3)

432
e6,i

)
an−i (22)

with a0 = 1, where E2(τ) =
∑∞

i=0 e2,i q
i, E4(τ) =

∑∞
i=0 e4,i q

i and E6(τ) =
∑∞

i=0 e6,i q
i,

respectively.

We consider two cases, that is, ν = −k/12 and ν = (k + 3)/6, separately in the following
subsections.

4.1 Case ν = −k/12

We now study the solutions of (20)k with an indicial root ν = −k/12, which corresponds to
the solutions of (14)k with an exponent µ = 0. Though we are not able to prove the positivity
of Fourier coefficients for all weights, we can list all possible solutions of vacuum character
type when the weights are integers.

Theorem 6. Let k be an integer.
(1) Suppose that the equation (14)k has a solution of vacuum character type with the expo-
nent 0. Then k is one of the values in the set

{−30, −22, −14, −10, −6, −4, 0, 3, 4, 8 } . (23)

(2) For each k ∈ {−10, −6, −4, 0, 3, 4, 8}, the function vk given below is a solution of (14)k
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of vacuum character type with the exponent 0 ;

v0 = 1,

v3 = v4 = E4 = 1 + 240q + 2160q2 + 6720q3 + 17520q4 + 30240q5 + · · · ,
v8 = E2

4 = 1 + 480q + 61920q2 + 1050240q3 + 7926240q4 + 37500480q5 + · · · ,

v−4 =
∆2√
∆

= 1 + 16q + 144q2 + 960q3 + 5264q4 + 25056q5 + · · · ,

v−6 =
h6
∆

= 1 + 60q + 1440q2 + 22080q3 + 253680q4 + 2369160q5 + · · · ,

v−10 =
h14
∆2

= 1 + 240q + 18540q2 + 792960q3 + 23080560q4 + 508465440q5 + · · · ,

where the subscripts indicate the weights of the solutions.
(3) For each k = −14, −22, −30, we have the following solution vk of (14)k, which is possibly
of vacuum character type ;

v−14 =
h22
∆3

= 1 + 546q + 88452q2 + 7440888q3 + 405394080q4 + 16071109236q5 + · · · ,

v−22 =
h38
∆5

= 1 + 1540q + 657360q2 + 137466120q3 + 17723389420q4 + · · · ,

v−30 =
h54
∆7

= 1 + 3045q + 2494870q2 + 974923740q3 + 229294066260q4 + · · · ,

where ∆2(τ) = η(2τ)8/η(τ)4 and hk is a quasimodular form defined in §3.2.
(4) The functions vk (k = 0, 3, 4, 8) are modular forms of weight k (except that v3 has
weight 4) and vk (k = −6, −10, −14, −22, −30) are quasimodular forms of weight k+2 and
depth 2 on SL2(Z). The function v−4 is a meromorphic modular form on Γ0(2) of weight −4
with the pole at the cusp 0.

Proof. Using the recursive formula (22) with ν = −k/12

2n2

(
n− k + 2

4

)
an

=

n∑
i=1

(
(n− k

12
− i)2 e2,i −

(
i e2,i −

k(k + 4)

24
e4,i

)(
n− k

12
− i

)
+

k2(k + 3)

432
e6,i

)
an−i ,

(24)

we can determine the Fourier coefficients an of a solution g of (20) of the form (21).
The case n = 1 of (24) gives (1 − k/2)a1 = −2k3 − 7k2 − 2k. Then it follows that

a1 = 4k2+22k+48+96/(k−2). Suppose that a1 is an integer. Then the condition (k−2)|96
gives k−2 = ±1, ±2, ±3, ±4, ±6, ±8, ±12, ±16, ±24, ±32, ±48, ±96. The another condition
a1 ≥ 0 reduces the values of k to

{−94, −46, −30, −22, −14, −10, −6, −4, 0, 3, 4, 5, 6, 8, 10, 14, 18, 26, 34, 50, 98} . (25)

We pick up each value of k from the list (25) and determine every an by (24) recursively (up to
n = 30). Then the list of k such that all an are non-negative integers for 0 < n ≤ 30 reduces

12



the values of k to {−30, −22, −14, −10, −6, −4, 0, 3, 4, 8 }, which coincides with (23). For
each k in (23), it follows from Theorem 2 and Theorem 4 that the functions vk are solutions
of (14)k.

For k = 0, 3, 4 and 8, the function vk is clearly of vacuum character type because E4

and 1/η2k have positive integral Fourier coefficients. Since v−4η
8 = q1/3

∏∞
n=1(1 + qn)8 and

v−6η
12 = E′′

4/(240η
12), the functions v−4 and v−6 are also of vacuum character type.

For v−10, we use the identity

v−10 η
20 =

1

12η28

(
5E4

(
E′

4

240

)2

+ 7

(
E′

6

504

)2)
=

1

12η28

(
5
(
1 + 240

∞∑
n=1

σ3(n)q
n
)( ∞∑

n=1

σ3(n)q
n
)2

+ 7
( ∞∑
n=1

σ5(n)q
n
)2)

which shows the positivity of Fourier coefficients. Moreover, using the congruence σ3(n) ≡
σ5(n) (mod 12), we have

5
(
1 + 240

∞∑
n=1

σ3(n)q
n
)( ∞∑

n=1

σ3(n)q
n
)2

+ 7
( ∞∑
n=1

σ5(n)q
n
)2

≡ 5
( ∞∑
n=1

σ3(n)q
n
)2

+ 7
( ∞∑
n=1

σ5(n)q
n
)2

≡ 12
( ∞∑
n=1

σ3(n)q
n
)2

≡ 0 (mod 12)

and thus conclude that the Fourier coefficients of v−10 η
20 are integers.

Because ∆2/
√
∆ = (H2

2 − 64∆2
2)

−1 and ∆2
2 is a modular form on Γ0(2), the function v−4

is a modular form on Γ0(2) of weight −4. Since

∆2(τ)√
∆(τ)

∣∣∣∣∣
−4

(
0 −1
1 0

)
=

η(τ/2)8

η(τ)16
=

1

q1/2
− 8 + 36q1/2 +O(q) , (26)

v−4 has a pole at 0. The rest of assertions are clear from the definition of the functions
vk.

Remark. It is worth noting that the solution v−10 has an another expression v−10 = (E3
4 −

720∆)′′/(786240∆2), and the modular form E3
4 − 720∆ of weight 12 is the theta series of

the 24-dimensional Leech lattice. Let Nm be the number of vectors of the Leech lattice
whose norms are m. The identity

E3
4 − 720∆ = E12 −

65520

691
∆ = 1 +

65520

691

∞∑
n=1

(
σ11(n)− τ(n)

)
qn,

where τ(n) is the nth Fourier coefficient of ∆(τ), shows the well-known formula

N2n =
65520

691
(σ11(n)− τ(n)) . (27)

By the integrality of coefficients of (E3
4 − 720∆)′′/786240 proved in the previous paragraph,

we derive the fact that (i) N2n is divisible by N4 = 196560 if n is even, (ii) N2n is divisible
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by 4N4 = 786240 if n is odd and not divisible by 3 and (iii) 3N2n is divisible by 4N4 if n is
odd and divisible by 3 since 786240 = 65520× 12 = 196560× 3. (The facts (i)–(iii) can also
be proved by using (27) and classical congruences of τ(n) given in [13].)

Example. The function v8/η
16 = j2/3 is the character of the lattice VOA associated with

the unimodular lattice of rank 8. Here j(τ) = E4(τ)
3/∆(τ) is the elliptic modular function.

At the present time, we do not know if vk is of character type except a few k. However,
computer experiments suggest that any solution of (14)k with the exponent 0 is of character
type after multiplied by a suitable integer. More specifically, we give the following conjecture.

Conjecture. Let k be either a positive integer or a negative even integer. Define a natural
number p1(k) by

p1(k) =



⌊(k+1)/8⌋∏
i=1

(k − 4i+ 2) if k is positive ,

⌊(|k|−4)/4⌋∏
i=1

(|k|/2 + 2i− 1) if k is negative ,

where an empty product is regarded as 1. If vk = 1+O(q) is a solution of (14)k, then p1(k) vk
is of character type.

For example, we have p1(7) = 5 and

5v7 = 5E2
4 + 16E′

6/21 = 5 + 96

∞∑
n=1

(25σ7(n)− nσ5(n)) q
n.

Since 25σ7(n) − 4nσ5(n) > 0 (n ≥ 1) (this is because σ7(n) ≥ n7 ≥ n(15 + 25 + · · · + n5) ≥
nσ5(n)), we see that p1(7) · v7 is a solution of (15)7 of character type.

4.2 Case ν = (k + 3)/6

We next study the solutions of (20) with index ν = (k + 3)/6, which corresponds to those
of (14) with exponent µ = (k + 2)/4.

Theorem 7. Let k be an integer.
(a) Suppose that (14)k has a solution of vacuum character type with the exponent (k + 2)/4.
Then k is one of the values in the list

{−8, −7, −5, −4, 2, 6 } . (28)

(b) For each k in (28), the following functions wk are of vacuum character type with the
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exponent (k + 2)/4:

w2 = f2 = q + 6q2 + 12q3 + 28q4 + 30q5 + 72q6 + 56q7 + · · · ,
w6 = f6 = q2 + 16q3 + 102q4 + 416q5 + 1308q6 + 3360q7 + · · · ,

w−4 = H2/
√
∆ =

1

q1/2
+ 36q1/2 + 402q3/2 + 3064q5/2 + 18351q7/2 + 93300q9/2 + · · · ,

w−5 =
E4

∆3/4
=

1

q3/4
+ 258q1/4 + 6669q5/4 + 92442q9/4 + 911976q13/4 + 7168716q17/4 + · · · ,

w−7 =
E2

4

∆5/4
=

1

q5/4
+

510

q1/4
+ 76815q3/4 + 3151330q7/4 + 72967305q11/4 + · · · ,

w−8 =
H2(H

4
2 + 61440∆4

2)

∆3/2
=

1

q3/2
+

156

q1/2
+ 72342q1/2 + 5125368q3/2 + 176987145q5/2 + · · · ,

where f2, f6 are defined in §3.1 and H2, ∆2 are defined in §3.2.
(c) The functions w2 and w6 are quasimodular forms on SL2(Z) of depth 2 of weights 4
and 8, respectively. The functions w−4 and w−8 are meromorphic modular forms of weights
−4 and −8 of level 2. The functions w−5 and w−7 are meromorphic modular of weights −5
and −8 of level 4.

Proof. Suppose that there exists a Fourier series solution (21) with ν = (k + 3)/6 of (20).
Then recursion (22) gives

2n

(
n+

k + 2

4

)2

an =

n∑
i=1

{
e2,i

(
n+

k + 3

6
− i
)2

−
(
i e2,i −

k(k + 4)

24
e4,i

)(
n+

k + 3

6
− i
)
+

k2(k + 3)

3 · 122
e6,i

}
an−i

for every n > 0. The case n = 1 gives a1 = 4k+12− 128(k+3)/(k+6)2. Suppose that a1 is
an integer. Then we have 128(k + 3)/(k + 6)2 ∈ Z, and in particular 128(k + 3)/(k + 6) =
128−384/(k+6) ∈ Z. Therefore, we have (k+6)|384 = 27 ·3 and then we obtain the possible
list {−8, −7, −5, −4, 2, 6 } of k in the same manner as in the case µ = 0.

It follows from Theorem 2 and Theorem 4 that wk is a solution of (14)k. The Fourier
coefficients of the functions wk/η

2k for k = −4,−5,−7 and −8 are non-negative integers
because H2 = 1 + 24

∑∞
n=1(σ1(n) − 2σ1(n/2))q

n, ∆2 = η(2τ)8/η(τ)4 = (
∑∞

n=1 q
(n−1/2)2/2)4

and E4 = 1 + 240
∑∞

n=1 σ3(n)q
n have positive integral Fourier coefficients.

It is obvious that w2 is of vacuum character type since w2 = −E′
2/24 =

∑∞
n=1 nσ1(n)q

n

(σ1(1) = 1). Finally, we show that w6 has positive integral Fourier coefficients, which also
shows w6 is of vacuum character type. By the definition of the Eisenstein series, we have

w6 =
1

30

(
E′

6

−504
− E′′

4

240

)
=

1

30

∞∑
n=1

n(σ5(n)− nσ3(n))q
n .

We prove that the coefficient n (σ5(n)− nσ3(n)) is positive for n > 1 and is divisible by 30.
Since σ5(n) ≥ n5 and σ3(n) ≤ 1+23+· · ·+n3 ≤ n·n3 = n4, it follows that σ5(n)−nσ3(n) ≥ 0
(equality only holds when n = 1).
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To prove that n(σ5(n) − nσ3(n)) is divisible by 30, it is enough to show the divisibility
by 6 because the other expression of w6 by (E′′

4/240 − E2 · E′
4/240)/42 shows that 5 does

not appears in the denominators. Because of the congruence nσ5(n) ≡ n2σ3(n) (mod 6)
(n ≥ 1), it follows that n(σ5(n) − nσ3(n)) is divisible by 6. Therefore, all coefficients of
w6 are positive integers. (The positivity of the coefficients of w6 can also be seen from the
identity w′

6 = (−E′
2/24) · (E′

4/240).)
For the statements in (c) that w−4 and w−8 are meromorphic modular forms of level 2 and

that w−5, w−7 are of level 4, we only mention that the former is on the principal congruence
subgroup Γ(2) and the latter on the group

Γ0
0(4) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ b ≡ c ≡ 0 mod 4 ,

}
because the functions ∆1/2 and ∆1/4 are modular forms of weight 6 and 3 on Γ(2) and Γ0

0(4),
respectively.

Taking account of [7, Conjecture 2] together with computer experiences, we propose the
second conjecture below. Compare this conjecture to the one in the previous subsection.

Conjecture. Let k be a positive integer satisfying k ≡ 2 (mod 4). Define an integer p2(k)

by p2(k) =
∏⌊(k+2)/8⌋

i=1

(
(k + 4− 4i)2/2

)
. Suppose that (14)k has a solution wk = q(k+2)/4 +

O(q(k+6)/4) with the index (k + 2)/4. Then p2(k)wk is a (quasi)modular form of character
type.

Remarks. (1) From the relation a1 = 4k+12− 128(k+3)/(k+6)2 obtained in the proof of
the theorem, it follows that there do not exist (quasi)modular forms of character type if the
weight k satisfies k < −2(3 + 2

√
2) = −11.6569 · · · or −3 < k < 2(−3+ 2

√
2) = −0.3431 · · · ,

because a1 becomes negative for such an integer k.
Let k be an integer between −11 and −3. We do not know the exact form of solutions at

the moment except k = −9 and −11. For k = −9, the solution w−9 = (E3
4 − 2048∆/3)/η42

is of character type as

w−9 η
18 = j(τ)− 2048

3

(
=

1

q
+

184

3
+ 196884q + 21493760q2 + 864299970q3 + · · · .

)
For k = −11, we have

w−11 η
22 =

E4

∆4/3

(
E3

4 −
24576

25
∆

)
= j(q)1/3 (j(q)− 24576/25)(
=

1

q4/3
+

224

25q1/3
+

3543152

25
q2/3 +

1734248576

25
q5/3 +

174965201848

25
q8/3 + · · ·

)
and we can verify that these coefficients are all positive and the denominators are at most 25
up to q1023.
(2) The functions w2 and w6 are extremal quasimodular forms (see [7] for the definition).
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5 Solutions of hypergeometric type and symme-

tries

In [10, Theorem 3.1], one of the authors and his collaborator obtained a solution of (12)
under the condition k + 2±

√
(k + 2)2 − 64α ∈ 8Z, which has the form f = 1 +O(q) and is

expressed in terms of a hypergeometric polynomial. Since the modular group SL2(Z) is one
of the arithmetic triangle groups, it is natural and interesting to seek for conditions under
which solutions of the third order K-Z equations can be written by using hypergeometric
series. In this section we generalize Theorem 3.1 of [10] and write down solutions of (12) by
using the generalized hypergeometric series under several restrictions on k. At the end
of the section, we mention that the modified K-Z equation

g′′′ − 1

2
E2g

′′ +

{
1

2
E′

2 +

(
α− k

12
− k2

48

)
E4

}
g′ +

k

12

(
α− k

24
− k2

72

)
E6 g = 0 (29)

(as well as its solutions) admits a symmetry of S3.
It is well known that the generalized hypergeometric series of degree 3 (cf. [14]), which is

defined by

3F2(α1, α2, α3 ;β1, β2 ;x) =
∞∑
n=0

(α1)n(α2)n(α3)n
(β1)n(β2)n

· x
n

n!
,

satisfies the differential equation (F = 3F2)

x2(1− x)
d3F

dx3
+ x
(
(β1 + β2 + 1)− (α1 + α2 + α3 + 3)

) d2F
dx2

+
(
β1β2 − (α1α2 + α2α3 + α3α1 + α1 + α2 + α3 + 1)x

)dF
dx

− α1α2α3 F = 0 , (30)

where (α)n is the (ascending) Pochhammer symbol (α)n = α(α+ 1) · · · (α+ n− 1) for n > 0
and (α)0 = 1. The series 3F2 is absolutely convergent inside the unit circle if the real

part of
∑2

i=1 βi −
∑3

i=1 αi is positive. Set F = E
−k/4
4 · f and denote a local coordinate in

a neighborhood of the cusp ∞ by and x = x(τ) = 123/j(τ). Then we have

x2(1− x)
d3F

dx3
+ x

(
10− k

4
− 16− k

4
x

)
d2F

dx2

+

{(
α− k − 2

4

)
− 3k2 − 60k + 320

122
x

}
dF

dx
+

k(k − 4)(k − 8)

123
F = 0 (31)

which is equivalent to (12) by the Ramanujan relations and the property
(
2π

√
−1
)−1

dx/dτ =
x(1−x)E2

4/E6. The comparison of (30) and (31) shows that α1 = −k/12, α2 = −(k− 4)/12,
α3 = −(k− 8)/12, β1 = (−k+6+ ξ)/8 and β2 = (−k+6− ξ)/8, where ξ =

√
(k + 2)2 − 64α

and α is a complex number such that k + 2± ξ ̸∈ 8Z. Hence (12) has a solution

f1(τ) = E4(τ)
k/4

3F2

(
− k

12
,−k − 4

12
,−k − 8

12
;
−k + 6 + ξ

8
,
−k + 6− ξ

8
;
1728

j(τ)

)
.
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Now suppose that 1− β1, 1− β2, β1 − β1 ̸∈ Z, or equivalently, k+2± ξ ̸∈ 8Z and ξ ̸∈ 4Z.
Then the functions defined by

x1−β1
3F2(α1 − β1 + 1, α2 − β1 + 1, α3 − β1 + 1;β2 − β1, 2− β1;x) ,

x1−β2
3F2(α1 − β2 + 1, α2 − β2 + 1, α3 − β2 + 1;β1 − β2, 2− β2;x)

are solutions of (30) (see [14, §2.1]). Therefore, we conclude that

f2 = b2 · 3F2

(
k + 6− 3ξ

24
,
k + 14− 3ξ

24
,
k + 22− 3ξ

24
;−1

4
,
k + 10− ξ

8
;
1728

j

)
,

f3 = b3 · 3F2

(
k + 6 + 3ξ

24
,
k + 14 + 3ξ

24
,
k + 22 + 3ξ

24
;
1

4
,
k + 10 + ξ

8
;
1728

j

)
are solutions of (12), where b2 = ∆(k+2−ξ)/8E

(−k+3ξ−6)/8
4 and b3 = ∆(k+2+ξ)/8E

(−k−3ξ−6)/8
4 .

The f2 and f3 absolutely converge on the domain |j| > 1728 if Re(ξ) > 3 and Re(ξ) < −1,
respectively.

Theorem 8. Suppose that ξ =
√
(k + 2)2 − 64α ̸∈ 4Z and k + 2 ± ξ ̸∈ 8Z. Then f2 and f3

are solutions of (12) if Re(ξ) > 3 and Re(ξ) < −1, respectively.

Remark. The modified third order K-Z equation (29) admits an action of the symmetric
group S3. Let σ and ρ be affine transformations on R2 defined by

σ(k, ξ) =
(−k + 6 + 3ξ

2
,
k + 2− ξ

2

)
, ρ(k, ξ) =

(−k + 6 + 3ξ

2
,
k − 2 + ξ

2

)
,

which have orders 3 and 2, respectively. It is obvious that these two affine transformations
form the symmetric group S3 and that (29) is invariant under this action of S3 if ξ =√

(k + 2)2 − 64α. Moreover, h1 = f1/η
2k, h2 = f2/η

2k and h3 = f3/η
2k are solutions of (29),

which have relations σ(h1, h2, h3) = (h2, h3, h1) and ρ(h1, h2, h3) = (h2, h1, h3).
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