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By symbolic computation, we have derived algebraic equations including ellip-

tic curves to obtain cell-diversity condition. The development of a multicellu-

lar organism is a marvelous phenomenon. Starting from one or a few cells, the

organism becomes a set of cells with diverse cell types to serve various func-

tions. To obtain conditions for cell-type diversity, we construct a model using

a Lindenmayer system. In virtue of symbolic computation,quantifier elimina-

tion, we have successfully derived explicit relations of cell-type diversity under

some constraints. The derived relations are, interestingly and remarkably,

yield points deeply related toFibonacci numbersand include elliptic curves

which have been provided by symbolic computation tools for the first time.

Survey of the rational points and quadratic irrational numbers on these curves

has revealed periodic and quasi-periodic structures, respectively, bringing us

possible relevance of these points to forms of organs.
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In a multicellular organism, a single cell—an egg—or a group of cells develops into a multicell

with various different cell types. The multicells are thought to form according to specific rules,

wherein the first cell type transforms into one different cell type or into two or more different

cell types. Such cell-type transformation rules can be described as a tree diagram, termed

a cell-lineagediagram, while the developmental process of multicells is usually termedcell

differentiation(1). In 1968, such a cell-differentiation process was modeled by Lindenmayer

(2,3).

For simplicity, the model proposed in this paper is described by one-dimensional cell chains,

and is based on aLindenmayer system(L-system), where the cell-lineage diagram is described

by relations betweenrewriting rules. L-system models for developmental systems with cell

lineages and for biological tissues such as blood vessels of the eye have been studied over past

decades (4–6). In these L-systems,interactionsbetween cells have been ignored, forming a 0L-

system, because of the complexity or difficulty in analysis. By contrast, in this paper, symbolic

computation based on the quantifier elimination (QE) method is presented for the derivation of

algebraic equations over an L-system with interactions (“IL-system” hereafter). Furthermore,

stochastic aspects can be introduced into an L-system, termed a stochastic L-system (7,8). The

stochastic IL-system with interactions (sIL-system) can account for the influences of cell-type-

dependent proliferation and transition rates (9).

In this paper, we focus on the algebraic equations between the cell-type diversity and some

constraints on the cell chain. Further, we consider three basic cell-lineage diagrams: (i) the

branching cell-lineageA ⇒ {B,C} without the cell-type order conservation rule, (ii) the linear

diagramA ⇒ B ⇒ C with the conservation rule and (iii) the linear diagram without the rule.

Through various symbolic approaches, we have successfully obtained five equations including
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elliptic curves, for the first time. Analysis of these equations provides classification of the

multicell features under some conditions.

Throughout the previous and the present paper, we derived algebraic numbers or equations

instead of approximate values. The reason is illustrated by this simple example: consider the

algebraic number(1 +
√

5)/2 and its approximate value1.618. The former is one root of

x2 − x − 1 = 0 in x, which can be expressed as a continued fraction:

1 +
1

1 + 1
1+ 1

1+···.

Appearanceof only 1 in the above formula reveals the relationship between(1 +
√

5)/2 and

Fibonaccinumbers or self-similarity (quasi-periodicity) of the corresponding sequence (11,12).

By contrast, from the latter,1.618, we cannot submit such a strong proposal. This is why we

put a lot of effort into obtaining algebraic numbers by QE.

Lindenmayer system model. In this paper, we extract two basic and essential subgraphs of

general cell lineage diagrams:linear andbranchingcell differentiations with three cell types.

This model is described by an sIL-system for three cell types,A,B andC. Although we study

the case of three cell types because more than three types bring us highly complicated and

intractable calculation, the present approach of discrete model and symbolic computation will

shed some light on the mechanism of cell-type diversity within multicellular organisms.

We assume the following two basic cell-differentiation graphs as subgraphs of the cell-

lineage diagram,BranchingA ⇒ {B, C} andLinear A ⇒ B ⇒ C. The proliferations and

the transitions between types are denoted byA → AA, B → BB or C → CC andA → B,

A → C (in the branching) orA → B (in the linear), respectively. Further, the proliferation and

3



transitionrates of branching diagram are defined as follows:

A →





AA p1,1,
B p1,2,
C p1,3,
A 1 − p1,1 − p1,2 − p1,3,

, B →
{

BB p2,2,
B 1 − p2,2,

, C →
{

CC p3,3,
C 1 − p3,3

with 0 < pi,j < 1 (1 ≤ i ≤ j ≤ 3) andp1,1 + p1,2 + p1,3 < 1. The rulesA → A,B → B or

C → C represents that the type does not change.

Likewise, the rates of the linear diagram are defined as:

A →





AA p1,1,
B p1,2,
A 1 − p1,1 − p1,2,

, B →





BB p2,2,
C p2,3,
B 1 − p2,2 − p2,3,

, C →
{

CC p3,3,
C 1 − p3,3

with 0 < pi,j < 1 (1 ≤ i ≤ j ≤ 3) andpi,i +pi,i+1 < 1 (1 ≤ i ≤ 2). In addition to the rewriting

rules above, we adopt another rewriting rule, termed acell-type order conservation rule:

AC → ABC, CA → CBA,

which guarantees the contiguity of cell types. When we adopt this conservation rule is applied

after each application of the Branching or Linear rewriting rules. The cell-type order con-

servation rule originates from the “intercalary regeneration” phenomenon in cockroach legs,

as illustrated in Fig. 1. When portions of the legs with non-contiguous positional values are

grafted together, new tissue is intercalated to fill the gap so that the non-contiguous positional

values disappear (13, 14). Such a regeneration phenomenon may be common in wound repair

in the early stages of the cell-lineage diagram (15). This is why we analyze the effect of the

conservation rule. In this paper, we analyze the three cases: (i) a branching cell-lineage diagram

without the cell-type order conservation rule, (ii) a linear cell-lineage diagram without the rule

and (iii) a linear diagram with the rule. We have not analyzed the case of a branching diagram

with the rule because we have not found a corresponding phenomenon in the actual cell lineage.

The one-dimensional cell chain becomes longer as these rules are applied. Using these two

models, we estimate the cell-type diversity by calculating the following composition in the cell
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chain:

AA,AB, BA, (AC, CA), BB, BC,CB, CC,

where(AC, CA) does not exist when the cell-type order conservation rule is adopted and ap-

plied in the elongation of a cell chain. We assume the following constraint:

gN(AA) = N(BB) = N(CC) ∧ gN(AB) = N(BC), (1)

where∧ denotes “And,”g designates the parameter in this constraint, andN(XY ) denotes

the number of the two contiguous cell typesXY in the cell chain.N(AB) = N(BA) and

N(BC) = N(CB) hold because of the mirror symmetry of the rewriting rules. IfA is regarded

as the initial cell type,A corresponds to a stem cell, which is thought to be a minority in

real biological mature tissues but a majority in the early developmental stage (1). Under these

constraints, in this paper, we have calculated the maximum value ofN(AB)/N(AA), which

represents the ratio of junctions to non-junctions between different cell types. We have adopted

this maximum as the measure ofcell-type diversityin the sense that the appearance frequencies

of cell types become uniform as the ratioN(AB)/N(AA) approaches1 under the constraint

(1).

Estimation of cell-type composition. We have calculated thegrowth matrixof the two con-

tiguous cell types, which enables us to estimate its composition aftern applications of the

Branching or Linear rewriting rules and the cell-type order conservation rule. In this paper,

we calculate three growth matrices for the branching cell lineage without the cell-type order

conservation rule and the linear diagram without and with the conservation rule (Table 1).

Let M be the growth matrix of the two contiguous cell types under some condition. Here,

we start withAA, that is, the axiom isAA, therefore, the composition at stepn can be calculated

by (1, 0, 0, . . .)Mn (16). In this paper, we study the composition asn approaches infinity—in
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otherwords, for sufficiently long cell chains. First, we derive the conditions for coexistence of

the two contiguous cell types from the eigenvalues and the eigenvectors of the growth matrices.

Second, under the constraint (1) and the coexistence condition, we estimate the composition us-

ing the growth matrix. Last, we derive the equation betweenN(AB)/N(AA) and the constraint

parameterg in (1) by QE.

Derivation of algebraic equations by QE. In this paper, we need to obtain the maximum

value of N(AB)/N(AA). For this purpose, we have used the quantifier elimination (QE)

method. QE is one of the main subjects in computer algebra (17, 18). In general, QE deals

with first-order formulas consisting of polynomial equations, inequalities, quantifiers (∃,∀)

and boolean operators such as∧(And), ∨(Or), and¬(Negation). QE computes an equivalent

quantifier-free formula for a given first-order formula over the real field. For instance, for the

input ∀x(x2 + bx + c > 0), QE outputs the equivalent quantifier-free formulab2 − 4c < 0. QE

obtains relations between unquantified variables that make the input formula true. We obtain

the maximum value of an objective polynomial under some constraints by adding one extra

variable, which is assigned to the objective polynomial (10). For instance, in order to calculate

the maximum value ofx/(p + y) under the constraintsx2 + py2 ≤ 1 ∧ y ≤ x2, we provide QE

with the following input, adding an extra variableh:

∃y∃x
(
x2 + py2 ≤ 1 ∧ y ≤ x2 ∧ h(p + y) == x ∧ p + y 6= 0

)
.

For this formula, QE outputsp < 0 ∨ h2p3 − p − h2 < 0, which indicates that the maximum

value ofx/(p + y) is
√

p/(p3 − 1) whenp > 1 and does not exist (+∞) whenp ≤ 1. Thus,

even when parameters exist, we can obtain the maximum value, in other words, the equation

between the maximum and parameters by QE. We can utilizeQEPCAD-Bor Mathematica

Ver. 6/7 as QE-implemented software.
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Elliptic curves derived by QE. We first derive the coexistence condition of two contiguous

cell types. Analysis of the eigenvalues and their corresponding eigenvectors of the growth

matrix reveals the coexistence condition:2p1,1 − p1,2 − p1,3 > 0∧ 2p1,1 − p1,2 − p1,3 > 2p2,2∧

2p1,1 − p1,2 − p1,3 > 2p3,3 (See also (10, Section 5.2) for details). Under this condition and the

constraint (1), the following relations hold:

N(AB)/N(AA) = (p1,2(g(1 − p1,2 − p1,3) − p1,3))/(2p1,3 + g(p1,2 + p1,3)),
p1,1 = (−(1 − p1,2 − p1,3)(2p1,3 + g(p1,2 + p1,3)))/(2(p1,3 − g(1 − p1,2 − p1,3))),
p2,2 = (g(−2 + p1,2 + p1,3)(p1,3(p

2
1,2 + 2p1,3) + g(p3

1,2 + p2
1,2(−1 + p1,3) + p1,2

p1,3 + p2
1,3)))/(2(p1,3 + g(−1 + p1,2 + p1,3))(g

2(p2
1,2 + p1,2(−2+

p1,3) − p1,3) + p1,2p1,3 + g(−1 + p1,2)(p1,2 + 2p1,3))),
p3,3 = (gp1,3(−2 + p1,2 + p1,3)(p1,3(2 + p1,3) + g(p1,2 + p1,2p1,3 + p2

1,3)))/
(2(p1,3 + g(−1 + p1,2 + p1,3))(g

2(p2
1,2 + p1,2(−2 + p1,3) − p1,3) + p2

1,3

+gp1,3(−3 + 2p1,2 + p1,3))).

To obtain the maximum value ofN(AB)/N(AA) by QE, the following input is used:

∃p1,3
∃p1,2

(
ψ(p1,2, p1,3, g) ∧ h == N(AB)/N(AA) ∧ 0 < p1,2∧

0 < p1,3 ∧ 0 < p1,1 ∧ 0 < p2,2 ∧ 0 < p3,3 ∧ p1,1 + p1,2 + p1,3 < 1
)
,

whereψ(p1,2, p1,3, g) is a formula derived by combining conjunctively all equations and inequal-

ities appearing in the coexistence condition and the constraint (1). Unfortunately, one cannot

obtain the maximum if one provides the QE command ofQEPCAD-Bor Mathematica 6.0.1

with the above formula as it is. This is because the computation requires too much memory

and time. Therefore, we have transformed the above formula into the equivalent formulas of

reduced form as shown in Supporting Online Material. After all,Mathematica 6.0.1 out-

puts:0 < h < (
√

8g + 5g2 − g)/(2(2 + g)). This reveals that the equation betweeng and the

maximum valuef of N(AB)/N(AA)(= h) is (g + 2)f 2 + gf − g = 0.

Likewise, for thelinear cell-lineage diagram without and with the cell-type order conser-

vation rule, we have also exhaustively used the QE method to derive the algebraic equations

betweenf (the maximum ofN(AB)/N(AA)) andg, as shown in Table 2.
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Classification of cell chains. So far, we have derived the algebraic equations between the

cell-type diversity measuref and the parameterg under the constraint (1). We summarize in

Table 2 and illustrate in Fig. 2 the equations betweeng andf in the three cases: the branching

and linear cell-lineage diagrams with and without the cell-type order conservation rule.

Let us look closely at the values of the natural numberg that makef a rational number. The

rational numbers of the maximum value ofN(AB)/N(AA) shows that the sequence becomes

periodic with respect to the two contiguous cell types as the cell chain becomes sufficiently

long. We have searched forg ∈ N with corresponding rationalf on the three curves (Table

2 and Fig. 2). Interestingly, only on the curve of the branching diagram without the rule

(g + 2)f2 + gf − g = 0, there exist a pair satisfying{(g, f) | g ∈ N, f ∈ Q}. The proof is

given in Supporting Online Material. On this curve,f is rational wheng is in the following

set:{2, 18, 128, 882, 6050, 41472, . . .} = {gn|gn+2 = 7gn+1 − gn + 4, g0 = 0, g1 = 2, n ≥ 1}.

Somewhat remarkably, the pair(gn, fn) can also be described as(2F 2
2n, F2n/F2n+1), whereFn

are Fibonacci numbers defined as{Fn | Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1, n ≥ 1} =

{1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .}. The features ofg ∈ N and their corresponding values of

f are summarized as follows.

(a) Wheng = 1, for the branching diagram without the rule:f = (
√

13 − 1)/6 ∼ 0.434259;

linearwithout the rule:f = −1/2+{(9+ı
√

687)1/3+(9−ı
√

687)1/3}/122/3 ∼ 0.557454;

andlinear with the rule:f = (1 +
√

17)/8 ∼ 0.640388.

(b) Wheng ≥ 2 andg ∈ N, for the branching diagram without the rule:f is a rational number

if g is in {2F 2
2n | n ≥ 1}, otherwisef is a quadratic irrational number. For the linear

diagram without and with the rule:f is always a quadratic irrational number (See also

Supporting Online Material). A quadratic irrational number is a solution to a quadratic

equationax2 + bx + c = 0, wherea, b, c are integers, andb2 − 4ac is positive and not
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a perfect square. The cell chain associated with a quadratic irrational number is quasi-

periodic (11, 12). Furthermore, based on (20), we can construct the rewriting rules that

produce the pattern associated with a given quadratic irrational or rational numberf .

Indeed, we have constructed the sequences in the case ofg = 1, f = (1 +
√

17)/8 in the

linear diagram with the rule andg = 2, f = 1/2 in the branching diagram, respectively, as

shown in Fig. 3. In this figure, we laid the 2-dimensional space with 40000 colored cells

spirally, where red, green and blue boxes denotesA−, B− andC− cell types. Figures 3

(B) and (C) show quasi-periodic and periodic structure, respectively.

From the viewpoint of the developmental process of multicells,A-type cells in the dia-

gram can be regarded as stem cells, andB- andC-types can be regarded as differentiated

cells. In this schema,g can be one measure of the ratio of stem cells to differentiated

cells. Therefore, the tissues according to the constraint (1) with largeg (≥ 1) are thought

to be mature, and with smallg (< 1) to be in the early developmental stage. It has been

shown that only wheng is one of some specific natural numbers,f is rational in the cell-

lineage diagrams we have analyzed. In other words, the cell chain is periodic only when

gn = 2F 2
2n in the branching cell-lineage diagram.

Relationship between classification and various forms wheng is large: Mature multicells.

It seems reasonable to suppose that multicell structures are classified as periodic and quasi-

periodic structures wheng is a natural number. Figure 4 shows the schematic structures of

various organs inside a human body (A–D). The structure of muscular cells seems periodic

(Fig. 4(A)), while that of lung cells seems quasi-periodic (B). Interestingly, the cochlea of

the inner ear forms a golden spiral derived fromFibonacci rectangles (21) (C). The finger is

also characterized byFibonaccinumbers so that the motion path of the digits follows a golden

spiral (22) (D).
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Relationship when g is small: Early stage. Now, let us consider the region of smallg < 1

in the cell-lineage diagrams with and without the cell-type order conservation rule. The curve

‡ in Table 2 is transformed into the minimal model:y2 + xy = x3 − 7x + 9, by bi-rational

transformation:

{
f = (x − 2)/(x + 2),
g = (2 − x)(3 + y)/(2x(2 + x)),

,
{

x = 2(1 + f)/(1 − f),
y = (−3f + 3f2 − 4g − 4fg)/((1 − f)f).

Likewise, the curve† is transformed into:y2 + xy + y = x3 − x2 − 9x + 9, by:

{
f = (3x + y − 1)/(x + y − 3),
g = (3x + y − 1)2(x2 − 4x + 3 − 2y)/(2(x + y − 3)(x − y + 5)(2x + y − 2)),

,

{
x = (f 2(3f + 1) + 2(f + 1)(f − 2)g)/(f2(f − 1)),
y = 2(f + 1)(2f 2 − (f − 2)(f − 3)g)/(f2(f − 1)2).

These curves are, interestingly,elliptic curves(23, Ch. 3). These two curves have Mordell–Weil

rank= 1 and no torsion points overQ. Using the features of an elliptic curve (We can calculate

all the rational points by using the fact that the pointP = (2, 1) generates all the points under

the group operation on the curve), we easily find the rational points of(g, f) (0 < g ≤ 1, 0 <

f < 1) on the elliptic curve‡:

(g, f) = (1/4, 1/3), (725/3588, 145/483), (8832/9019493, 552/25201),
(3466764335501/11363197974660, 127769297/347639747),(

848587149331039323906560512
207198954360715901710175668905

, 525449923546336144
11833844877112783169

)
,(

30262546812928060768945737753693138205817
82250471749798419221515485788002745970564

, 302713566908857083166867201
751660468695296029317353763

)
, . . . .

We can prove that the rational points are dense. Further, focusing on points such that1/g ∈ N

andf ∈ Q(g > 0, 0 < f < 1), we have proved that there does not exist such a point in

the branching diagram and that there exist only(g, f) = (1/7, 1/4) and (1/4, 1/3) on the

curve† (the linear diagram without the rule) and the curve‡ (the linear diagram with the rule),

respectively. The finiteness of these points follows from Siegel’s theorem on the finiteness of

integral points (23, Ch. 9). In the above cases, we transformed the curves into quartic elliptic

equations on which we can compute all integral points based on (24,25).
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After all, wheng < 1 and1/g ∈ N, the correspondingf is usually not rational, indicating

that the resultant cell chain is usually aperiodic. This indicates that there are few periodic

structures of multicells in the early developmental stage over this sIL-system.

Conclusion. In this paper, by symbolic computation, we have derived Fibonacci-number and

Elliptic-curve relations between a measure of cell-type diversity and the cell-type ratio con-

straint. We have focused on patterns of cell chains with the “maximum” value. It is not certain

that living things aim at the “maximum” structure. However, the form of living things can often

be explained well by the optimality principle (26). For this reason, we have tried to obtain the

equations between the maximum value (f) and the constraint on the structure (g). A survey

of rational numbers and quadratic irrational numbers on these equations revealed remarkable

features: rareFibonacci-related periodicity and frequent quasi-periodicity. A more elaborate

study on the relationship between these features and actual algae or organs may provide us with

a more profound understanding of multicells.
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Table 1: The three growth matrices; we have calculated the matrices to estimate the compo-

sition of two contiguous cell types at stepn. The top and middle matrices are of9 × 9 form

(AA,AB,BA, AC, CA, BB, BC,CB,CC) because of the non-existence of the cell-type con-

servation rule, while the bottom is of7 × 7 form (AA,AB,BA,BB, BC,CB,CC) with the

rule.
Branchingdiagram without the cell-type order conservation rule


m1,1 m1,2 m1,3 m1,2 p2
1,2 p1,2p1,3 m1,3 p1,2p1,3 p2

1,3
p1,1 m2,2 0 0 p1,2 + p2,2 0 0 p1,3 0
p1,1 0 m2,2 0 0 p1,2 0 0 p1,3 + p3,3

p1,1 0 0 m2,2 p1,2 + p2,2 p1,3 0 0 0
0 0 0 0 1 + 2p2,2 0 0 0 0
0 0 0 0 p2,2 1 0 0 p3,3

p1,1 0 0 0 0 0 m2,2 p1,2 p1,3 + p3,3

0 0 0 0 p2,2 0 0 1 p3,3

0 0 0 0 0 0 0 0 1 + 2p3,3




with m1,1 = 2p1,1 + (1 − p1,2 − p1,3)2, m1,2 = p1,2(1 − p1,2 − p1,3),
m1,3 = p1,3(1 − p1,2 − p1,3),m2,2 = 1 − p1,2 − p1,3.

Lineardiagram without the rule


m′
1,1 m′

1,2 0 m′
1,2 p2

1,2 0 0 0 0

p1,1 m′
2,2 p2,3 − p1,2p2,3 0 m′

2,5 p1,2p2,3 0 0 0
p1,1 0 1 − p1,2 0 0 p1,2 0 0 p3,3

p1,1 0 0 m′
2,2 m′

2,5 0 p2,3 − p1,2p2,3 p1,2p2,3 0

0 0 0 0 m′
5,5 m′

5,6 0 m′
5,6 p2

2,3
0 0 0 0 p2,2 1 − p2,3 0 0 p2,3 + p3,3

p1,1 0 0 0 0 0 1 − p1,2 p1,2 p3,3

0 0 0 0 p2,2 0 0 1 − p2,3 p2,3 + p3,3

0 0 0 0 0 0 0 0 1 + 2p3,3




with m′
1,1 = p1,1 + (1 − p1,2)2,m′

1,2 = p1,2(1 − p1,2),m′
2,2 = (1 − p1,2)(1 − p2,3),

m′
2,5 = p1,2 + p2,2 − p1,2p2,3,m

′
5,5 = 2p2,2 + (1 − p2,3)2,m′

5,6 = p2,3(1 − p2,3).
Lineardiagram with the rule



m′′
1,1 m′′

1,2 m′′
1,2 p2

1,2 0 0 0
p1,1 1 − p1,2 0 m′′

2,4 p2,3 0 0
p1,1 0 1 − p1,2 m′′

2,4 0 p2,3 0
0 0 0 m′′

3,4 m′′
3,5 m′′

3,5 p2
2,3

0 0 0 p2,2 1 − p2,3 0 p2,3 + p3,3

0 0 0 p2,2 0 1 − p2,3 p2,3 + p3,3

0 0 0 0 0 0 1 + 2p3,3




with m′′
1,1 = 2p1,1 + (1 − p1,2)2,m′′

1,2 = (1 − p1,2)p1,2,m
′′
2,4 = p1,2 + p2,2 − p1,2p2,3,

m′′
3,4 = 2p2,2 + (1 − p2,3)2, m′′

3,5 = (1 − p2,3)p2,3.
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Table 2: The algebraic equations betweeng andf ; g denotes the parameter in the constraint

(1) andf the measure of cell-type diversity.root−1 denotes the largest real root of the equation

2(g + 1)f 4 + g(g + 1)f 3 − g(2g + 5)f2 − g2f + 2g2 = 0 in g. g1 is nearly1.29661, which

is exactly the intersection of the two curves within0 < g, 0 < f < 1, the largest real root of

1− 67g +1224g2 − 4008g3 +4599g4 − 1701g5 = 0. Likewise,g0 is nearly1.14254 and exactly

the real root of1 − 3g + 11g2 − 8g3 = 0.
Branchingwithout the cell-type order conservation rule

(g + 2)f 2 + gf − g = 0
Linearwithout the rule{

g = root−12(g + 1)f 4 + g(g + 1)f3 − g(2g + 5)f 2 − g2f + 2g2†, (0 ≤ g < g1)
2(3g − 1)f2 + (3g − 1)f − 3g = 0 (g ≥ g1)

Linearwith the rule{
2(g − 1)f 3 − g(g + 3)f2 + gf + g2 = 0‡, (0 ≤ g < g0)

2gf2 + (g − 1)f − g = 0 (g ≥ g0)

15



Figurelegends

Figure 1: Intercalary regeneration in cockroach legs (27). When mismatched portions of the

growing legs are grafted together, new tissue is intercalated to fill the gap so that the non-

contiguous positional values disappear. In this figure, we exemplify the rule:I8I4 → I8I7I6I5I4.

Figure 2: The equations betweeng andf . The gray line denotes the equation in the branching

cell-lineage diagram without the cell-type order conservation rule. The black and broken lines

denote the equations in the linear diagram with and without the rule, respectively. The derivative

discontinuities are nearly1.14254(g0) and1.29661(g1). The intersection of the broken and gray

lines is nearly3.28773 (g2), and that of the black and gray lines is nearly3.83118 (g3). Thef -

value of the broken and black lines approaches1/2 as g → ∞, while that of the gray line

approaches the reciprocal of the golden ratio1/ϕ ∼ 0.61803
(
ϕ = (1 +

√
5)/2

)
asg → ∞.

Figure 3: Spiral tiling of cells. (A) Schematic illustration of spiral tiling of one-dimensional

cell chain. (B)g = 1, f = (1 +
√

17)/8 in the linear diagram with the rule. (C)g = 2, f = 1/2

in the branching diagram.
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Figure4: The structures of the organs. (A) Muscular cells seem periodic. (B) Lung cells seem

quasi-periodic. (C) The cochlea of the inner ear forms a golden spiral related toFibonacci

numbers. (D) The motion paths of the digits also form a golden spiral (22).

17



Supporting Online Material

We show the reduced form of complicated formulas in the case of Branching and Linear

diagrams. Via factorization, we have derived the formulas with respect to the branching cell-

lineage as follows:

∃p1,3
∃p1,2

(
0 < p1,2 ∧ 0 < p1,3 ∧ − h(2p1,3 + g(p1,2 + p1,3)) == p1,2(p1,3 + g(−1 + p1,2 + p1,3)∧

e1 < 0 ∧ e2 < 0 ∧ e3 < 0 ∧ e4 < 0 ∧ e5 < 0 ∧ e6 < 0
)

with:

e1 := p1,3 + g(−1 + p1,2 + p1,3),
e2 := (g2(p2

1,2 + p1,2(−2 + p1,3) − p1,3) + p1,2p1,3 + g(−1 + p1,2)(p1,2 + 2p1,3))
(p1,3(p

2
1,2 + 2p1,3) + g(p3

1,2 + p2
1,2(−1 + p1,3) + p1,2p1,3 + p2

1,3)),
e3 := (g2(p2

1,2 + p1,2(−2 + p1,3) − p1,3) + p2
1,3 + gp1,3(−3 + 2p1,2 + p1,3)),

e4 := (4p1,3 + g(−2 + 3p1,2 + 3p1,3)),
e5 := g2(p2

1,2 + p1,2(−2 + p1,3) − p1,3) + p1,2p1,3 + g(−1 + p1,2)(p1,2 + 2p1,3),
e6 := g2(p2

1,2 + p1,2(−2 + p1,3) − p1,3) + p2
1,3 + gp1,3(−3 + 2p1,2 + p1,3),

under the physiological condition:0 < h < 1, g > 0. After all, Mathematica 6.0.1 outputs:

0 < h < (
√

8g + 5g2−g)/(2(2+g)). This reveals that the equation betweeng and the maximum

valuef of N(AB)/N(AA)(= h) is (g + 2)f2 + gf − g = 0.

Likewise, for thelinear cell-lineage diagram without and with the cell-type order conser-

vation rule, we have also successfully used the QE method to derive the algebraic equations

betweenf (the maximum ofN(AB)/N(AA)) andg, as shown in Table 2. The procedure for

deriving these equations follows. The eigenvalues of the growth matrix in the middle row of

Table 1 are:

1 − p1,2, 1 + 2p1,1 − p1,2, (1 − p1,2)
2, 1 − p2,3, 1 + 2p2,2 − p2,3,

(1 − p1,2)(1 − p2,3), (1 − p2,3)
2, 1 + 2p3,3.

The coexistence condition is calculated as:

2p1,1 > p1,2 ∧ 2p1,1 − p1,2 > 2p2,2 − p2,3 ∧ 2p1,1 − p1,2 > 2p3,3.
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Underthe constraint and the coexistence condition, we obtain the following relations:

N(AB)/N(AA) = ((1 − p1,2)p1,2)/(2p1,1 + (1 − p1,2)p2,3),
p2,2 = (p1,1(2p1,1 − p1,2 + p2,3)(p

2
1,2(−2p1,1 − (−1 + p1,2)(−2 + p2,3))g

(4p2
1,1 + −2p1,1((−3 + p2,3)p2,3 + p1,2(1 + p2,3)) + p2,3(p

2
1,2 − (−

2 + p2,3)p2,3 + p1,2(−1 − 2p2,3 + p2
2,3)))))/((−1 + p1,2)p1,2(−4

p2
1,1 + (−1 + p1,2)p1,2p2,3 − 2p1,1(p1,2(−1 + p2,3) + p2,3))2gp1,1(

4p2
1,1 − 2p1,1((−3 + p2,3)p2,3 + p1,2(1 + p2,3)) + p2,3(p

2
1,2 − (−2+

p2,3)p2,3 + p1,2(−1 − 2p2,3 + p2
2,3)))),

p3,3 = ((1 + 2p1,1 − p1,2)(−1 + p1,2)p
2
1,2p

2
2,3 + gp1,1(8p

3
1,1 − 4p2

1,1((−2+
p2,3)p2,3 + p1,2(2 + p2,3)) + 2p1,1(−p2

2,3 + p2
1,2(1 + 2p2,3) + p1,2p2,3

(−3 + p2
2,3)) + p2,3(−p3

1,2 + (−2 + p2,3)p
2
2,3 + p2

1,2(1 + p2,3 − p2
2,3)−

p1,2p2,3(1 − 3p2,3 + p2
2,3))))/((2p1,1 + p2,3 − p1,2p2,3)(−(−1 + p1,2

)p1,2p2,3 + 2gp1,1(2p1,1 − p1,2 + 2p2,3 − p2
2,3))).

To obtain the maximum value ofN(AB)/N(AA), we provide QE with the following input:

∃p1,1
∃p1,2

∃p2,3

(
ψ′(p1,1, p1,2, p2,3, g) ∧ h == N(AB)/N(AA) ∧ 0 < p1,2 < 1∧

0 < p2,3 < 1 ∧ 0 < p1,1 ∧ 0 < p2,2 ∧ 0 < p3,3 < 1 ∧ p1,1 + p1,2 < 1 ∧ p2,2 + p2,3 < 1
)
,

whereψ′(p1,1, p1,2, p2,3, g) is a formula derived by combining conjunctively all equations and

inequalities appearing in the coexistence condition and the constraint. The above formula was,

unfortunately, too complicated to analyze by the QE program (QEPCAD-Bor Mathematica).

Therefore, we transform the formula in the following manner.

• Fromh = N(AB)/N(AA),

p1,1 =
(1 − p1,2)(p1,2 − hp2,3)

2h
(2)

holds.Using 2, we eliminate one variable,p1,1.

• Next, via factorization, the inequalities withp1,1 eliminated, can be transformed into the

following formulas:

e′1 < 0 ∧ e′2 < 0 ∧ e′3 > 0 ∧ e′4 < 0 ∧ e′5 < 0 ∧ e′6 < 0 ∧ e′7 < 0 (3)
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with:

e′1 := −p1,2 + hp2,3,
e′2 := (1 − h − p1,2 + hp2,3)(−2h2p1,2 + gp1,2 − hgp1,2 − hp2

1,2 − gp2
1,2 + hgp2,3 + 2h2

p1,2p2,3 + hgp1,2p2,3 − hgp2
2,3)(−hp2

1,2 + h2p2
1,2 − gp2

1,2 + hgp2
1,2 + hp3

1,2 + gp3
1,2

+h2p1,2p2,3 − 2h3p1,2p2,3 − h2gp1,2p2,3 − 3h2p2
1,2p2,3 − 2hgp2

1,2p2,3 + h2gp2
2,3

+2h3p1,2p
2
2,3 + hgp1,2p

2
2,3 + h2gp1,2p

2
2,3 − h2gp3

2,3),
e′3 := gp3

1,2 − 2hgp3
1,2 + h2gp3

1,2 − 2gp4
1,2 + 2hgp4

1,2 + gp5
1,2 − 2hgp2

1,2p2,3 + 3h2gp2
1,2

p2,3 − h3gp2
1,2p2,3 + 5hgp3

1,2p2,3 − 4h2gp3
1,2p2,3 − 3hgp4

1,2p2,3 − 2h4p1,2p
2
2,3

−h2gp1,2p
2
2,3 − h3gp1,2p

2
2,3 − 2h3p2

1,2p
2
2,3 − hgp2

1,2p
2
2,3 − 3h2gp2

1,2p
2
2,3 + 2h3

gp2
1,2p

2
2,3 + hgp3

1,2p
2
2,3 + 3h2gp3

1,2p
2
2,3 + 2h3gp3

2,3 + 2h4p1,2p
3
2,3 + 3h2gp1,2p

3
2,3

−2h2gp2
1,2p

3
2,3 − h3gp2

1,2p
3
2,3 − 2h3gp4

2,3 + h3gp1,2p
4
2,3,

e′4 := −2h2p2
1,2 + 2h3p2

1,2 − 2hgp2
1,2 + 2h2gp2

1,2 + 2h3p3
1,2 + gp3

1,2 + h2gp3
1,2 − hp4

1,2

+3h2p4
1,2 − 2gp4

1,2 + 2hgp4
1,2 + hp5

1,2 + gp5
1,2 + 2h3p1,2p2,3 − 4h4p1,2p2,3 − 2h3

gp1,2p2,3 + 2h2p2
1,2p2,3 − 6h3p2

1,2p2,3 − 2h4p2
1,2p2,3 + 2hgp2

1,2p2,3 − 5h2gp2
1,2

p2,3 − h3gp2
1,2p2,3 + h2p3

1,2p2,3 − 7h3p3
1,2p2,3 + hgp3

1,2p2,3 − 4h2gp3
1,2p2,3 − 4

h2p4
1,2p2,3 − 3hgp4

1,2p2,3 + 2h3gp2
2,3 − 2h3p1,2p

2
2,3 + 8h4p1,2p

2
2,3 + h2gp1,2p

2
2,3

+5h3gp1,2p
2
2,3 + 4h3p2

1,2p
2
2,3 + 4h4p2

1,2p
2
2,3 − hgp2

1,2p
2
2,3 + 5h2gp2

1,2p
2
2,3 + 2h3

gp2
1,2p

2
2,3 + 5h3p3

1,2p
2
2,3 + hgp3

1,2p
2
2,3 + 3h2gp3

1,2p
2
2,3 − 4h3gp3

2,3 − 4h4p1,2p
3
2,3

−h2gp1,2p
3
2,3 − 4h3gp1,2p

3
2,3 − 2h4p2

1,2p
3
2,3 − 2h2gp2

1,2p
3
2,3 − h3gp2

1,2p
3
2,3 + 2

h3gp4
2,3 + h3gp1,2p

4
2,3,

e′5 := −1 + h + p1,2 − hp2,3,
e′6 := −hp2

1,2 + h2p2
1,2 − gp2

1,2 + hgp2
1,2 + hp3

1,2 + gp3
1,2 + h2p1,2p2,3 − 2h3p1,2p2,3 − h2

gp1,2p2,3 − 3h2p2
1,2p2,3 − 2hgp2

1,2p2,3 + h2gp2
2,3 + 2h3p1,2p

2
2,3 + hgp1,2p

2
2,3+

h2gp1,2p
2
2,3 − h2gp3

2,3,
e′7 := −gp2

1,2 + hgp2
1,2 + gp3

1,2 − h2p1,2p2,3 − h2gp1,2p2,3 − 2hgp2
1,2p2,3 + h2gp2

2,3+
hgp1,2p

2
2,3 + h2gp1,2p

2
2,3 − h2gp3

2,3.

Notice that in the above formulas, we show only those inequalities that maximize

N(AB)/N(AA); it is relatively easy to find these via polynomial factorization and con-

firmation by QE input for fixed values ofg.

• Furthermore, the equalitygN(AB) = N(BC) in the constraint condition yields:

0 = −4gp2
1,1p1,2 + 2gp1,1p

2
1,2 + 4gp2

1,1p
2
1,2 − 2gp1,1p

3
1,2 + 4gp2

1,1p2,3 − 2gp1,1p1,2

p2,3 + p2
1,2p2,3 + 2p1,1p

2
1,2p2,3 + 2gp1,1p

2
1,2p2,3 − 2p3

1,2p2,3 − 2p1,1p
3
1,2p2,3 + p4

1,2

p2,3 + 2gp1,1p
2
2,3 − 4gp2

1,1p
2
2,3 − 2gp1,1p1,2p

2
2,3 − 2gp1,1p

3
2,3 + 2gp1,1p1,2p

3
2,3.

Substituting 2 into the above equality yields:

g =
hp1,2p2,3(−h − p1,2 + hp2,3)

(−p1,2 + hp2,3)(p1,2 − hp1,2 − p2
1,2 − p2,3 + hp1,2p2,3 + p2

2,3)
. (4)
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We therefore eliminate one more variable,g.

• By eliminatingg from the equalities and inequalities and factorizing, we obtain the following

reduced formulas suitable for QEPCAD-B:

∃p2,3
∃p1,2(0 < h < 1∧g > 0∧0 < p1,2 < 1∧0 < p2,3 < 1∧ep0 == 0∧ep1 < 0∧ep2 < 0)

with:

ep0 := hp1,2p2,3(−h − p1,2 + hp2,3) − g(−p1,2 + hp2,3)(p1,2 − hp1,2 − p2
1,2

−p2,3 + hp1,2p2,3 + p2
2,3)

ep1 := 2hp2
1,2 − 2h2p2

1,2 + p3
1,2 − 3hp3

1,2 − p4
1,2 − 3hp1,2p2,3 − h2p1,2p2,3+

2h3p1,2p2,3 − 2p2
1,2p2,3 − hp2

1,2p2,3 + 7h2p2
1,2p2,3 + p3

1,2p2,3 + 4hp3
1,2

p2,3 + h2p2
2,3 + 5hp1,2p

2
2,3 − 4h3p1,2p

2
2,3 + p2

1,2p
2
2,3 − 2hp2

1,2p
2
2,3 − 5h2

p2
1,2p

2
2,3 − 2h2p3

2,3 − 2hp1,2p
3
2,3 + h2p1,2p

3
2,3 + 2h3p1,2p

3
2,3 + h2p4

2,3,
ep2 := −p1,2 + hp1,2 + p2

1,2 + hp2,3 + 2h2p2,3 − hp1,2p2,3 + hp2
2,3.

• Last, because of the RAM limitation (up to 4 GB) of 32-bit software, we provide the above

formulas for the QE program (We usedQEPCAD-BVer. 1.48 withmeasure-zero-error

and+N670000000 option. It took from4.5 to 12 hours and3.7 GB RAM with anIntel

Xeon CPU 2.33 GHz processor), withg-space divided into(0, 1/7], (1/7, 1/4], (1/4, 1),

[1, 2],(2,∞).

Summing up, with respect to thelinear cell-lineage diagram without the rule, we obtain the

following equivalent quantifier-free formulas as QE outputs:





g ≥ root−1 h3g2 − 2h2g2 − hg2 + 2g2 + 2h4g + h3g − 5h2g + 2h4

For (0, 1/7],
(1/7, 1/4], (1/4, 1),(

h3g2 − 2h2g2 − hg2 + 2g2 + 2h4g + h3g − 5h2g + 2h4 ≥ 0
∧6h2g + 3hg − 3g − 2h2 − h ≤ 0

For [1, 2],

6h2g + 3hg − 3g − 2h2 − h ≤ 0 For (2,∞),

whereroot−1 denotes the largest real root of the equationh3g2 − 2h2g2 − hg2 + 2g2 + 2h4g +

h3g − 5h2g + 2h4 = 0 in g. The middle row of Table 2 has been constructed from the above

QE output. The equation for the linear diagram with the rule is the same as in (19).

21



Proof of the existence or non-existence of rational numbersf .

• For the branching cell-lineage diagram without the cell-type order conservation rule, we ob-

tain the equation betweenf andg:

(g + 2)f 2 + gf − g = 0. (5)

The discriminant of the above equation isD = 5g2 + 8g. We survey(gn, fn) such

that gn and fn are natural and positive rational numbers, respectively. If and only if

D = m2,m ∈ N, f is rational. D = m2 yields (5g + 4)2 − 5m2 = 42. Let X

be 5g + 4. Then the equationX2 − 5m2 = 42 is a Pell’s equation. It follows that

X +
√

5m = ±4
(
(3 +

√
5)/2

)n
, n = 0, 1, 2, · · · yields a pair{(X, m) |X ∈ Z,m ∈ Z}.

Therefore, fromX = 5g + 4, g +
√

5m′ = 4
{(

(3 +
√

5)/2
)2n

− 1
}

/5, n = 1, 2, 3, . . .

yields a natural number sequence{gn | gn ∈ N}. Moreover,gn can more explicitly be

described as2
{(

(3 +
√

5)/2
)2n

+
(
(3 −

√
5)/2

)2n
− 2

}
/5. It follows from the golden

ratio ϕ = (1 +
√

5)/2 thatgn is 2 (ϕ4n + ϕ−4n − 2) /5. BecauseFibonaccinumberFn

can be described as(ϕn − (−ϕ)−n) /
√

5, gn = 2F 2
2n q.e.d.

The recurrence formula ofgn can be derived as follows:

gn+2 = 2F 2
2(n+2) = 2(F2n+3 + F2(n+1))

2

= 2(2F2(n+1) + F2n+1)
2

= 2(3F2(n+1) − F2n)2

= 2(9F 2
2(n+1) + F 2

2n − 6F2(n+1)F2n)

From the formula3F2(n+1)F2n = F 2
2(n+1) + F 2

2n − 1,
= 2(7F 2

2(n+1) − F 2
2n + 2)

= 7gn+1 − gn + 4. q.e.d.

The correspondingfn with respect togn on the curve (5) is calculated as:

fn =
F2n

(√
4 + 5F 2

2n − F2n

)

2(1 + F 2
2n)

.

The formulae onFibonacciandLucasnumbersFn andLn:

Fn+1Fn−1 − F 2
n = (−1)n, 5F 2

n − L2
n = 4(−1)n+1, Fn + Ln = 2Fn+1
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reveal thatfn = F2n/F2n+1 q.e.d.

• With respect to the cell-lineage diagram without the rule, we obtain:

2(3g − 1)f 2 + (3g − 1)f − 3g = 0. (6)

The discriminant of the above equation isD = 81g2 − 30g + 1. We survey(gn, fn)

such thatgn andfn are natural and positive rational numbers, respectively. If and only

if D = m2, m ∈ N, f is rational. D = m2 yields (27g − 5)2 − (3m)2 = 42, which

can be factorized as(27g + 3m − 5)(27g − 3m − 5) = 42. Fromg ≥ 1 andm ≥ 1,

27g + 3m − 5 ≥ 52. Therefore, there exists no rationalfn for natural numbergn q.e.d.

• For the linear diagram with the rule, we obtain:

2gf 2 + (g − 1)f − g = 0. (7)

We survey(gn, fn) such thatgn andfn are natural numbers (g > 0) and positive rational

numbers (0 < f < 1), respectively.

We prove the non-existence of such pairs in0 < g, 0 < f < 1. Assume thatf =

n/m , gcd(m,n) = 1, m ∈ N, n ∈ N because it is a positive rational number. Then, the

equation (7) can be transformed into:

g(2n − m)(m + n) = mn. (8)

From 0 < g and0 < f < 1, it follows thatm/2 < n < m. Furthermore, from (8),

2n2g ≡ 0mod m, and m2g ≡ 0mod n. It follows from gcd(m,n) = 1 that 2g ≡ 0

(mod m) andg ≡ 0 (mod n), revealing2g ≡ 0 (mod mn). This fact, together with

g = mn/((2n − m)(m + n)),m/2 < n < m, implies that the only possible value ofg is

mn/2. g = mn/2 yields an equation(2n − m)(m + n) = 2, which has a single solution

m = n = 1, contradicting the assumptionf = n/m < 1 q.e.d.
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rewriting rule: I I I I I I I

Figure1: Intercalary regeneration in cockroach legs (27). When mismatched portions of the
growing legs are grafted together, new tissue is intercalated to fill the gap so that the non-
contiguous positional values disappear. In this figure, we exemplify the rule:I8I4 → I8I7I6I5I4.
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Figure2: The equations betweeng andf . The gray line denotes the equation in the branching
cell-lineage diagram without the cell-type order conservation rule. The black and broken lines
denote the equations in the linear diagram with and without the rule, respectively. The derivative
discontinuities are nearly1.14254(g0) and1.29661(g1). The intersection of the broken and gray
lines is nearly3.28773 (g2), and that of the black and gray lines is nearly3.83118 (g3). Thef -
value of the broken and black lines approaches1/2 as g → ∞, while that of the gray line
approaches the reciprocal of the golden ratio1/ϕ ∼ 0.61803

(
ϕ = (1 +

√
5)/2

)
asg → ∞.

25



A

. 

B g=1 HLinear with the ruleL

C g=2 HBranchingL

Figure3: Spiral tiling of cells. (A) Schematic illustration of spiral tiling of one-dimensional
cell chain. (B)g = 1, f = (1 +

√
17)/8 in the linear diagram with the rule. (C)g = 2, f = 1/2

in the branching diagram. 26



Figure4: The structures of the organs. (A) Muscular cells seem periodic. (B) Lung cells seem
quasi-periodic. (C) The cochlea of the inner ear forms a golden spiral related toFibonacci
numbers. (D) The motion paths of the digits also form a golden spiral (22).
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