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1 Introduction

In this expository article1, we review some aspects of poly-Bernoulli numbers
and related zeta functions.

The poly-Bernoulli number is a generalization of the classical Bernoulli num-
ber using the polylogarithm series. Although its definition looks rather artificial
at first glance, it has turned out recently that the poly-Bernoulli numbers of neg-
ative index have very nice combinatorial interpretations, and also they appear
in special values of certain zeta functions. It may therefore be reasonable to seek
arithmetic properties that may be involved with poly-Bernoulli numbers. The
author made one such attempt with late Arakawa in the hope of finding a nice
zeta function which connects poly-Bernoulli numbers with the so-called multiple
zeta values, the subject of wide interest not only in number theory but also in
numerous other branches such as topology, quantum groups, arithmetic geome-
try, mathematical physics etc. This work with Arakawa will be reviewed in §3,
after recalling definitions and properties of poly-Bernoulli numbers in §2. In §4
we give some results and speculations concerning the “multiple harmonic sums
mod p” and “multiple zeta-star values.” In the final section, §5, we discuss a
different type of zeta function which also has some relation to poly-Bernoulli
numbers as well as to certain generalized multiple zeta values.

The author would like to take this opportunity to express his deep gratitude
to late Professor Tsuneo Arakawa on the occasion of his sixtieth birthday, whose
encouragement and interest at the early stage of the research on this topic
greatly helped in developing the work further.

2 Poly-Bernoulli numbers

In relation to the well-known formula for the sum of consecutive powers of inte-
gers, Takakazu Seki2 and Jacob Bernoulli3 independently introduced a sequence
of rational numbers, nowadays known as the “Bernoulli numbers,” Bn (n =

1This is an extended version of [20].
2“Katsu-you-san-pou”, published posthumously in 1712.
3“Ars conjectandi”, published also posthumously in 1713.
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0, 1, 2, . . .). Their definition is by the recursion

n∑
i=0

(
n + 1

i

)
Bi = n + 1 (n = 0, 1, 2, . . .),

and this can be expressed by means of a generating series as

xex

ex − 1
=

∞∑
n=0

Bn
xn

n!
.

We note that the left-hand side of this differs by x from the more commonly
used defining series;

xex

ex − 1
=

x

ex − 1
+ x,

and as a result, with our definition we have B1 = 1/2 (instead of −1/2). The
other values of Bn are the same in both definitions and, because Bn = 0 for odd
n ≥ 3, to convert any formula with one definition into the other we only need
to change Bn into (−1)nBn.

According to [18] and [4], we define the poly-Bernoulli number B(k)
n and its

relative C
(k)
n , for any integers k ∈ Z and n ≥ 0, by the generating series

Lik(1 − e−x)
1 − e−x

=
∞∑

n=0

B(k)
n

xn

n!
and

Lik(1 − e−x)
ex − 1

=
∞∑

n=0

C(k)
n

xn

n!

respectively4. Here, Lik(z) denotes the formal power series
∑∞

m=1 zm/mk (the
kth polylogarithm when k > 0, and the rational function (z d/dz)−k (z/(1 − z))
when k ≤ 0). When k = 1, we have Li1(z) = − log(1 − z) and these generating
series become

xex

ex − 1
and

x

ex − 1

respectively, and hence each of B(k)
n and C

(k)
n generalizes the classical Bernoulli

numbers Bn, by choosing one of the above generating series for Bn. Since the
two generating series for B(k)

n and C
(k)
n differ by a factor ex, the two numbers

B(k)
n =

n∑
m=0

(
n

m

)
C(k)

m , C(k)
n = (−1)n

n∑
m=0

(−1)m

(
n

m

)
B(k)

m .

Also, using

Lik(1 − e−x)
1 − e−x

= ex Lik(1 − e−x)
ex − 1

=
Lik(1 − e−x)

ex − 1
+ Lik(1 − e−x)

=
Lik(1 − e−x)

ex − 1
+

∫ x

0

Lik−1(1 − e−x)
ex − 1

dx,

4We use the notation B(k)
n instead of B

(k)
n , to avoid possible confusion with Carlitz’s

Bernoulli number of higher order.
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we have the relation
B(k)

n = C(k)
n + C

(k−1)
n−1 .

In particular, specializing k = 2 and using the fact that C
(1)
n = 0 for odd n ≥ 3,

we have
B(2)

n = C(2)
n for even n ≥ 4. (1)

We review here some of the known properties of poly-Bernoulli numbers.
The first is the closed formulas in terms of the Stirling number of the second
kind. The Stirling number of the second kind, denoted by

{
n
i

}
, is the number

of ways to partition a set of n elements into i nonempty subsets.

Theorem 1 We have the following formulas:
1) For any k ∈ Z and n ≥ 0,

B(k)
n = (−1)n

n∑
i=0

(−1)ii!
{

n
i

}
(i + 1)k

, C(k)
n = (−1)n

n∑
i=0

(−1)ii!
{

n+1
i+1

}
(i + 1)k

.

2) For k, n ≥ 0,

B(−k)
n =

min(n,k)∑
j=0

(j!)2
{

n + 1
j + 1

}{
k + 1
j + 1

}
,

C(−k−1)
n =

min(n,k)∑
j=0

j!(j + 1)!
{

n + 1
j + 1

}{
k + 1
j + 1

}
.

Proof. To prove 1), we expand the defining generating series by using the
formula (see e.g. [17])

(ex − 1)i = i!
∞∑

n=i

{
n

i

}
xn

n!
(2)

for the Stirling numbers and compare the coefficients.
For 2), we calculate the two variable generating series

∞∑
n=0

∞∑
k=0

B(−k)
n

xn

n!
yk

k!
and

∞∑
n=0

∞∑
k=0

C(−k−1)
n

xn

n!
yk

k!

by using formulas in 1), and as a result we have

ex+y

ex + ey − ex+y
and

ex+y

(ex + ey − ex+y)2
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respectively. Writing the first expression as

ex+y

ex + ey − ex+y
=

ex+y

1 − (ex − 1)(ey − 1)

= ex+y
∞∑

j=0

(ex − 1)j(ey − 1)j

=
∞∑

j=0

1
(j + 1)2

d

dx
(ex − 1)j+1 d

dy
(ey − 1)j+1

and using (2), we obtain the first formula of 2). The second can be proved
similarly by using

ex+y

(ex + ey − ex+y)2
=

ex+y(
1 − (ex − 1)(ey − 1)

)2

= ex+y
∞∑

j=0

(j + 1)(ex − 1)j(ey − 1)j

=
∞∑

j=0

1
(j + 1)

d

dx
(ex − 1)j+1 d

dy
(ey − 1)j+1.

The min(n, k) in the upper limits in the formulas is because the Stirling number{
n
k

}
is 0 when n < k. ¤

Corollary For k, n ≥ 0, we have the symmetries

B(−k)
n = B(−n)

k and C(−k−1)
n = C

(−n−1)
k .

With the aid of the above explicit formulas, C. Brewbaker [8, 9] and S.
Launois [22] found beautiful combinatorial interpretations of B(−k)

n , which we
now describe briefly.

A lonesum matrix is a matrix with entries 0 and 1 whose row-sums and

column-sums determine the matrix uniquely. For instance, the matrix
(

1 0
1 1
1 0

)
gives t(1, 2, 1) and (3, 1) as row- and column-sums respectively, and from these
two vectors, the original matrix is recovered uniquely. The theorem of Brew-
baker states that the number of lonesum matrices of a given size is equal to the
poly-Bernoulli number.

Theorem (Brewbaker [8, 9]) For k, n ≥ 1, the number of k × n lonesum
matrices is equal to B(−k)

n .

The key fact in order to count the total number of lonesum matrices is the
characterization (using an old result of Ryser [27]) to the effect that a (0, 1)-
matrix is lonesum if and only if it has no 2 × 2 minor of the form

(
1 0
0 1

)
nor
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(
0 1
1 0

)
. For a complete proof, we refer the reader to the original papers [8, 9].

The second combinatorial interpretation of B(−k)
n is related to the number

of special type of permutations. Let Sn denote the symmetric group of order
n, identified with the set of all permutations on the set {1, 2, . . . , n}. Launois
proved the following.

Theorem (Launois [22]) Let k and n be positive integers. The cardinality
of the set

{σ ∈ Sk+n| − k ≤ σ(i) − i ≤ n, 1 ≤ ∀i ≤ k + n}

is equal to B(−k)
n .

We omit the proof and only refer to [22]. It may be an interesting problem
to establish a natural bijection between the sets of n× k lonesum matrices and
the above permutations. We note that either of these interpretations of B(−k)

n

makes the above duality formula B(−k)
n = B(−n)

k apparent.

Further results obtained in [18, 5, 19] include Clausen-von Staudt type the-
orems for B(k)

n , and an analogue for C
(k)
n of the Akiyama-Tanigawa algorithm

for computing Bernoulli numbers (similar to Pascal’s triangle for binomial co-
efficients). As for the Clausen-von Staudt type result, a complete description of
denominators of B(2)

n (di-Bernoulli numbers) is given in [18] and partial results
are obtained in [5] for general k.

An important open problem is to find a Kummer type congruence for poly-
Bernoulli numbers. This and its generalization may be of importance also in
the theory of p-adic multiple zeta values, as surmised by Furusho [13].

As another topic of further investigation, we point out that the extra sym-
metries or other nice properties of dilogarithm function (see [32]) may force
di-Bernoulli numbers (the case of the upper index k = 2) to have the more
rich properties than the other ones (k 6= 2). We also point out that in the
di-Bernoulli case, both numbers B(2)

n and C
(2)
n coincide when n is even, as noted

before (1).

3 Multiple zeta values and a zeta function

The multiple zeta value (MZV) is a real number associated to each index set
(k1, k2, . . . , kn) of positive integers with k1 ≥ 2, defined by the convergent series

ζ(k1, k2, . . . , kn) :=
∑

m1>m2>···>mn>0

1
mk1

1 mk2
2 · · ·mkn

n

.

This is a rather naive generalization of values of the Riemann zeta function ζ(s)
at positive integer arguments, whose study was initiated by Euler [12] in the
case of “depth” n = 2. Since 1990’s when connections to quantum field theory,
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knot theory, mixed Tate motive, or quantum groups were found ([10], [23], [14],
[11]), the MZV has become a topic of intensive study. We refer the interested
reader to Mike Hoffman’s web page [16] for extensive references on MZV’s.

In [4], we studied the function ξk(s) (k ≥ 1) defined by

ξk(s) :=
1

Γ(s)

∫ ∞

0

ts−1

et − 1
Lik(1 − e−t)dt, (3)

with the intention that we might be able to find a generalization of Euler’s
celebrated formulas

ζ(2k) = (−1)k−1 B2k

2(2k)!
(2π)2k, ζ(1 − k) = −Bk

k
(k ≥ 1),

with multiple zeta values on one hand, and poly-Bernoulli numbers on the other.
What we obtained in [4] is the following theorem.

Theorem 2 ([4]) 1) The integral (3) converges for Re(s) > 0 and the function
ξk(s) analytically continues to an entire function of s.

2) We have the relation

ξk(s) = (−1)k−1
[
ζ(s, 2, 1, . . . , 1︸ ︷︷ ︸

k−1

) + ζ(s, 1, 2, 1, . . . , 1︸ ︷︷ ︸
k−1

) + · · · + ζ(s, 1, . . . , 1, 2︸ ︷︷ ︸
k−1

)

+ s · ζ(s + 1, 1, . . . , 1︸ ︷︷ ︸
k−1

)
]
+

k−2∑
j=0

(−1)jζ(k − j) · ζ(s, 1, . . . , 1︸ ︷︷ ︸
j

). (4)

Here, ζ(s, k2, . . . , kn) is a one variable function in s with fixed k2, . . . , kn, con-
tinued meromorphically to the whole s-plane.

In particular, the values of ξk(s) at positive integers are written in terms of
MZV’s.

3) At non-positive integer arguments, we have

ξk(−n) = (−1)nC(k)
n (n = 0, 1, 2, . . .). (5)

We only briefly mention to the proof. Once the holomorphic continuation is
established in a standard manner such as used in [33, §4 of Part 1], the relation
(4) is obtained by computing the integral∫ ∞

0

· · ·
∫ ∞

0

xs−1
k · x1 + · · · + xk

ex1+···+xk − 1
· 1
ex2+···+xk − 1

· · · 1
exk − 1

dx1 · · · dxk

in two ways, one is by the repeated use of the Mellin transform and the other
is the integration by parts using

∂

∂x1
Li2(1 − e−x1−···−xk) =

x1 + · · · + xk

ex1+···+xk − 1
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and similar formulas for higher Lik. Formula (5) in 3) is deduced also in a
standard way. Or rather, we have so defined the function ξk(s) that we have (5).
(Note, however, we face with a convergence problem if we want B(k)

n instead
of C

(k)
n .) Interesting point is that the function ξk(s) has the expression (4) in

terms of the multiple zeta function.
We remark that the multi-variable function

ζ(s1, s2, . . . , sn) :=
∑

m1>m2>···>mn>0

1
ms1

1 ms2
2 · · ·msn

n

is also meromorphically continued to Cn, thanks to the works of Akiyama-
Egami-Tanigawa [2] and Zhao [34]. To seek for a connection between poly-
Bernoulli numbers (or its generalization) and the values of ζ(s1, s2, . . . , sn) at
non-positive integers may be an interesting problem, but, as described in [2],
those points are “points of indeterminacy” and we have no canonical values
there. Still, it is possible to find a connection with any fixed way of limiting
process.

As for values at positive integers of ξk(s), formulas

ξk(n) =
∑

a1+···+ak=n−1
∀aj≥0

(a1 + 1)ζ(a1 + 2, a2 + 1, . . . , ak + 1) (k, n ≥ 1),

and

ξk(2) =
1
2

k−2∑
i=0

(−1)iζ(i + 2)ζ(k − i) (k: even ≥ 2)

are obtained in [4]. Y. Ohno discovered, as an application of his renowned
formula [25], that the first expression can be transformed into the following
simple formula:

Theorem (Ohno [25]) For k, n ≥ 1, we have

ξk(n) = ζ?(k + 1, 1, . . . , 1︸ ︷︷ ︸
n−1

), (6)

where
ζ?(k1, k2, . . . , kn) :=

∑
m1≥m2≥···≥mn≥1

1
mk1

1 mk2
2 · · ·mkn

n

is the multiple “zeta-star” value.

This formula plays an interesting role in finding a “duality” phenomenon of
multiple zeta-star values, which we discuss in the next section.
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4 Finite multiple zeta sums mod p and multiple
zeta-star values

Let p be an odd prime number. Consider the finite sums obtained by truncating
the series for ζ(k1, k2, . . . , kn) and ζ?(k1, k2, . . . , kn) right before the prime p
appears in denominators;

Hp(k1, k2, . . . , kn) :=
∑

p−1≥m1>m2>···>mn≥1

1
mk1

1 mk2
2 · · ·mkn

n

,

H?
p (k1, k2, . . . , kn) :=

∑
p−1≥m1≥m2≥···≥mn≥1

1
mk1

1 mk2
2 · · ·mkn

n

.

Hoffman [15] and Zhao [35] studied these sums (“multiple harmonic sums” in
Hoffman’s terminology) mod p. For a particular type of index (“height 1” case),
Hoffman showed that there is essentially no difference in modulo p between
“zetas” and “zeta-stars”:

Theorem (Hoffman [15, Th. 5.1]) For prime p > n, it holds the congruence

H?
p (k, 1, . . . , 1︸ ︷︷ ︸

n−1

) ≡ (−1)kHp(k, 1, . . . , 1︸ ︷︷ ︸
n−1

) mod p.

And he conjectures that all sums Hp(k1, k2, . . . , kn) and H?
p (k1, k2, . . . , kn) can

be written mod p as sums of products of the height one sums Hp(k, 1, . . . , 1).
For these conjectural “building blocks” Hp(k, 1, . . . , 1) mod p, he gave a

closed formula as a sum involving the Stirling numbers of the second kind.
A simple manipulation using Fermat’s little theorem and the closed formula of
C

(k)
n in Theorem 1-2) shows that his formula can be stated simply in terms of

poly-Bernoulli numbers as follows.

Theorem (Hoffman [15, Th. 5.4]) For k, n ≥ 1 and any prime p > n, we
have

H?
p (k, 1, . . . , 1︸ ︷︷ ︸

n−1

) ≡ (−1)nC
(k−1)
p−1−n mod p. (7)

Proof. The formula of Hoffman [15, Th. 5.4] reads

Hp(k, 1, . . . , 1︸ ︷︷ ︸
n−1

) ≡
p−n∑
j=1

(−1)j(−j)p−k(j − 1)!
{

p − n

j

}
mod p.

By Fermat’s little theorem, jp−k ≡ j1−k mod p, the right-hand side is congruent
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to

(−1)p−k

p−n∑
j=1

(−1)j(j − 1)!
{

p−n
j

}
jk−1

mod p

≡ (−1)k+n(−1)p−n−1

p−n−1∑
j=0

(−1)jj!
{

p−n
j+1

}
(j + 1)k−1

mod p (j → j + 1)

≡ (−1)k+nC
(k−1)
p−1−n mod p (by Theorem 1).

This congruence, combined with the previous theorem of Hoffman, establishes
the theorem. ¤

With (7) and (5) together, we obtain

H?
p (k, 1, . . . , 1︸ ︷︷ ︸

n−1

) ≡ ξk−1(−p + 1 + n) mod p. (8)

In view of the formula (6) of Ohno, this congruence looks very suggestive, al-
though for the moment it is only a superficial curiosity. The curious point is
this: Start with the value of the function ξk−1(s) at a positive integer n. This
is, by Ohno’s Theorem (6), the multiple zeta-star value ζ?(k, 1, . . . , 1︸ ︷︷ ︸

n−1

). Take

an odd prime p and truncate this series to get H?
p (k, 1, . . . , 1︸ ︷︷ ︸

n−1

), and reduce it

modulo p. Then the resulting value is congruent mod p to the value of ξk−1(s)
at n − (p − 1), the shift of the initial n by p − 1!

ξk−1(n) = ζ?(k, 1, . . . , 1︸ ︷︷ ︸
n−1

) truncate=⇒ H?
p (k, 1, . . . , 1︸ ︷︷ ︸

n−1

)
mod p
=⇒ ξk−1(n − (p − 1)).

Now, we trace our original thinking to get the idea of a kind of “duality” for
multiple zeta-stars.

In the same paper, Hoffman also proved the duality congruence ([15, Th.5.2])

(−1)nH?
p (n, 1, . . . , 1︸ ︷︷ ︸

k−1

) ≡ (−1)kH?
p (k, 1, . . . , 1︸ ︷︷ ︸

n−1

) mod p.

Given the relation to poly-Bernoulli numbers (7), this is just a consequence of
the duality of poly-Bernoulli numbers in Corollary to Theorem 1. As a possible
different approach however, first note the congruence of truncated Riemann zeta
values

1 +
1
2n

+
1
3n

+ · · · + 1
(p − 1)n

≡ 0 mod p

which is valid for all p > n + 1. This is because the left-hand side is equal to
1 + 2 + · · · + (p − 1) = p(p − 1)/2 ≡ 0 mod p. The above mentioned duality of
Hoffman would follow from this if the difference

(−1)nH?
p (n, 1, . . . , 1︸ ︷︷ ︸

k−1

) − (−1)kH?
p (k, 1, . . . , 1︸ ︷︷ ︸

n−1

)
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could be expressed as a polynomial in the truncated Riemann zeta values. Ac-
tually, Hoffman proved in [15] many of the congruences in this way. However,
the duality in question is proved in another way and we do not know if there is
such an expression.

Anyway, inspired by this and the above mentioned curious analogy, we sur-
mised that the difference of the two multiple zeta-star values

(−1)nζ?(n, 1, . . . , 1︸ ︷︷ ︸
k−1

) − (−1)kζ?(k, 1, . . . , 1︸ ︷︷ ︸
k−1

) (9)

may be written as a polynomial over Q in the Riemann zeta values, and did
numerical experiments. The result was in favor of the speculation, and soon
after the author had informed him of this speculation, Yasuo Ohno proved that
this was indeed true. He obtained, using (6) and (4) together with his main
result in [25], the formula

(−1)nζ?(n, 1, . . . , 1︸ ︷︷ ︸
k−1

) − (−1)kζ?(k, 1, . . . , 1︸ ︷︷ ︸
n−1

)

= (k − 1)ζ(k + 1, 1, . . . , 1︸ ︷︷ ︸
n−2

) − (n − 1)ζ(n + 1, 1, . . . , 1︸ ︷︷ ︸
k−2

)

+(−1)k
k−2∑
j=1

(−1)jζ(k − j)ζ(n, 1, . . . , 1︸ ︷︷ ︸
j−1

)

−(−1)n
n−2∑
j=1

(−1)jζ(n − j)ζ(k, 1, . . . , 1︸ ︷︷ ︸
j−1

).

Since we know that the multiple zeta values of height 1 (= of type ζ(m, 1, . . . , 1))
can be expressed as polynomials over Q in the Riemann zeta values ([3], [11],
see also [26]), we conclude that the quantity (9) is a polynomial in the Riemann
zeta values. Using this formula, we can compute the two variable generating
series of (9):∑

k,n≥2

(
(−1)nζ?(n, 1, . . . , 1︸ ︷︷ ︸

k−1

) − (−1)kζ?(k, 1, . . . , 1︸ ︷︷ ︸
k−1

)
)
xk−1yn−1

= ψ(x) − ψ(y) + π (cot(πx) − cot(πy))
Γ(1 − x)Γ(1 − y)

Γ(1 − x − y)
.

Here, ψ(x) = Γ′(x)/Γ(x) is the digamma function. To compute this, we use the
formula of Aomoto [1] and Drinfeld [11]∑

k,n≥1

ζ(k + 1, 1, . . . , 1︸ ︷︷ ︸
n−1

)xkyn = 1 − Γ(1 − x)Γ(1 − y)
Γ(1 − x − y)

and the well-known Taylor expansion of the (logarithm of) gamma function

Γ(1 + x) = exp
(
−γx +

∞∑
n=2

(−1)n ζ(n)
n

xn

)
(|x| < 1, γ : Euler’s constant).
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From this we have

Γ(1 − x)Γ(1 − y)
Γ(1 − x − y)

= exp

( ∞∑
n=2

ζ(n)
n

(xn + yn − (x + y)n)

)
,

ψ(x) = − 1
x
− γ +

∞∑
n=2

(−1)nζ(n)xn−1,

π cot(πx) =
1
x

+ ψ(1 − x) − ψ(1 + x) =
1
x
− 2

∞∑
n=1

ζ(2n)x2n−1,

and expanding these out we obtain a rather complicated (in fact too complicated
to neatly describe, because we have to expand the exponential) expression of

(−1)nζ?(n, 1, . . . , 1︸ ︷︷ ︸
k−1

) − (−1)kζ?(k, 1, . . . , 1︸ ︷︷ ︸
k−1

)

as a polynomial in Riemann zeta values. All the details and possible general-
izations will be discussed in a joint paper [21].

Recall the duality (in height 1 case) for the usual multiple zeta values;

ζ(n + 1, 1, . . . , 1︸ ︷︷ ︸
k−1

) = ζ(k + 1, 1, . . . , 1︸ ︷︷ ︸
n−1

).

This does not hold for ζ?-values when we just replace ζ by ζ?, and, to the best
of our knowledge, no duality-like formula for ζ? is known so far. The established
assertion

(−1)nζ?(n, 1, . . . , 1︸ ︷︷ ︸
k−1

) − (−1)kζ?(k, 1, . . . , 1︸ ︷︷ ︸
n−1

) ∈ Q[ζ(2), ζ(3), ζ(5), . . .]

may be regarded as a kind of duality (modulo the ring of Riemann zeta values
Q[ζ(2), ζ(3), ζ(5), . . .]). We do not know the reason why the correspondence of
indices

(n, 1, . . . , 1︸ ︷︷ ︸
k−1

) ←→ (k, 1, . . . , 1︸ ︷︷ ︸
n−1

)

for this ζ? case is different from that of the duality of usual multiple zeta values,

(n + 1, 1, . . . , 1︸ ︷︷ ︸
k−1

) ←→ (k + 1, 1, . . . , 1︸ ︷︷ ︸
n−1

)

Finally, we point out the potential importance of studying further the func-
tion ξ(k1, . . . , kr; s), a multiple generalization of ξk(s) introduced in [4], in order
to understand and generalize properties and phenomena of the multiple zeta-star
values discussed in this section.
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5 Values of the central binomial series

In this final section, we review some facts on the values of the “central binomial
series” ζCB(s), defined by the following absolutely convergent Dirichlet series;

ζCB(s) :=
∞∑

m=1

1
ms

(
2m
m

) (∀s ∈ C).

In [6], Borwein, Broadhurst and Kamnitzer show that the value ζCB(k) for each
positive integer k ≥ 2 is written as a Q-linear combination of multiple zeta
values (of height 1) and multiple Clausen and Glaisher values. The latter two
are real or imaginary parts (according to the parity of weights) of values at a
6th root of unity of the multiple polylogarithm function

Lik1,...,kn(z) :=
∑

m1>···>mn>0

zm1

mk1
1 · · ·mkn

n

.

In analogy with “Zagier’s conjecture” for multiple zeta values5, they conjec-
ture the following

Conjecture ([6]) Consider the following dimensions of the Q-vector spaces

ak := dimQ

∑
k1+···+kn=k

ki≥1, n≥1

Q · Re
(
ik1+···+knLik1,...,kn(eπi/3)

)
,

bk := dimQ

∑
k1+···+kn=k

ki≥1, n≥1

Q · Im
(
ik1+···+knLik1,...,kn(eπi/3)

)
.

Then, these numbers ak and bk are determined recursively by

a0 = a1 = 1, b0 = b1 = 0,

an = an−1 + bn−2, bn = bn−1 + an−2.

（In particular, the number an + bn is the Fibonacci number.）

It would be a very interesting problem to find an arithmetic/geometric in-
terpretation of the conjecture and to prove, as in Goncharov [14] and Terasoma
[30], that these numbers actually give upper bounds of the spaces.

On the other hand, all the values ζCB(k) for k ≤ 1 are Q-linear combinations
of 1 and π/

√
3. This fact follows from a result due to D. H. Lehmer [24], who

adopted the formula

2x arcsin(x)√
1 − x2

=
∞∑

m=1

(2x)2m

m
(
2m
m

) |x| < 1

5This is a conjecture posed in [31] concerning the dimension of the Q-vector space spanned
by MZV’s of fixed weight. The conjecture predicts that the dimensions in question satisfy a
simple Fibonacci-like recursion. Decisive result to the effect that the conjectural dimension
does give an upper bound was given by Goncharov [14] and Terasoma [30].
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and its successive differentiations to derive the following explicit formula.
Define two sequences of polynomials {pk(t)} and {qk(t)} (k = −1, 0, 1, 2, . . .)

over Z by p−1(t) = 0, q−1(t) = 1 and the recursion

pk+1(t) = 2(kt + 1)pk(t) + 2t(1 − t)p′k(t) + qk(t) (k ≥ −1),
qk+1(t) = (2(k + 1)t + 1) qk(t) + 2t(1 − t)q′k(t) (k ≥ −1).

The first few examples are

p0(t) = 1, p1(t) = 3, p2(t) = 8t + 7, p3(t) = 20t2 + 70t + 15, . . . ,

q0(t) = 1, q1(t) = 2t + 1, q2(t) = 4t2 + 10t + 1, . . . .

Then we have for k ≥ −1
∞∑

m=1

(2m)k(2x)2m(
2m
m

) =
x

(1 − x2)k+3/2

(
x
√

1 − x2pk(x2) + arcsin(x)qk(x2)
)

and consequently

ζCB(−k) =
1
3

(
2
3

)k

pk

(
1
4

)
+

1
3

(
2
3

)k+1

qk

(
1
4

)
π√
3

(k ≥ −1). (10)

This shows that the values ζCB(k) (k ≤ 1) all lie in the two dimensional Q-
vector space spanned by 1 and π/

√
3, the fact which is parallel to the result

of Euler for ζ(s): Namely, the values of ζ(s) at positive integers give variety of
(conjecturally independent) transcendental numbers including powers of π (at
even arguments) and almost unknown ζ(odd), whereas the values at negative
integers all lie in the one dimensional Q-vector space, Q itself, and these values
are explicitly described by the Bernoulli numbers.

It is therefore interesting to note that, for the value (10), R. Stephan [29]
observed the (still conjectural) formula(

2
3

)k

pk

(
1
4

)
=

k∑
j=0

B(−j)
k−j .

An explicit formula given in [7] may be of help to establish this identity. It
would also be interesting if we could find any connection of the coefficient of
π/

√
3 in (10) to poly-Bernoulli or allied numbers, but so far no such connection

seems to have been found.

We may consider various analogues of the function ζCB(s) and its values at
integer arguments. It is possible that among them there are similar descriptions
as in the case of ζCB(s) described above.
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