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ON EXTREMAL QUASIMODULAR FORMS
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Abstract. We define and study ‘extremal’ quasimodular forms. Some explicit
descriptions of such forms are given. Connections with certain differential equations
and Atkin’s orthogonal polynomials, and the positivity of the Fourier coefficients, are
also discussed.

1. Introduction

The purpose of this paper is to introduce the notion of ‘extremal’ quasimodular forms
and to study some of their properties. In particular, we discuss connections with
certain differential equations and the Atkin orthogonal polynomials, which are closely
related to supersingular elliptic curves.

Let E2(τ ), E4(τ ) and E6(τ ) be the standard Eisenstein series on the full modular
group PSL2(Z) of weights 2, 4 and 6, respectively:

E2(τ ) = 1 − 24
∞∑

n=1

(∑
d |n

d

)
qn,

E4(τ ) = 1 + 240
∞∑

n=1

(∑
d |n

d3
)

qn,

E6(τ ) = 1 − 504
∞∑

n=1

(∑
d |n

d5
)

qn,
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where τ is the variable in the upper half-plane and q = e2πiτ as usual. Of these,
E4(τ ) and E6(τ ) are modular but E2(τ ) is not (it is quasimodular). A quasimodular
form of weight k on PSL2(Z) is an element of weight k in the graded ring
C[E2(τ ), E4(τ ), E6(τ )]. (See [3] for the definition of quasimodular forms.) In this
paper we only consider forms on PSL2(Z) and we often drop the reference to the
group.

Any quasimodular form of weight k is uniquely written as

f = f0 + f1E2 + f2E
2
2 + · · · + frE

r
2 (1)

with r an integer ≥ 0, fi (0 ≤ i ≤ r) a (true) modular form of weight k − 2i and
fr �= 0.

Definition 1.1. The integer r in (1) is referred to as the depth of f . The C-vector
space of all quasimodular forms of weight k and depth not greater than r is denoted
by QM

(r)
k .

The space QM
(0)
k is none other than the space of usual modular forms of weight

k and we denote this space also by Mk .

Clearly, the depth r does not exceed k/2, and there exists no quasimodular form
of weight k and depth k/2−1, due to the non-existence of modular forms of weight 2.
Thus, the chain of inclusion of the spaces is as follows:

Mk = QM
(0)
k ⊆ QM

(1)
k ⊆ · · · ⊆ QM

(k/2−2)
k = QM

(k/2−1)
k ⊆ QM

(k/2)
k

= QM
(k/2+1)

k = · · · .

We now define our main object of study.

Definition 1.2. Let f = ∑∞
n=0 anq

n be an element in QM
(r)
k \ QM

(r−1)
k , i.e. a

quasimodular form of weight k and depth r . Denote the dimension of the space
QM

(r)
k by m: m = dimCQM

(r)
k (= ∑r

i=0 dimCMk−2i ). We call f extremal if its
first m Fourier coefficients satisfy

a0 = a1 = · · · = am−2 = 0, am−1 �= 0.

If, moreover, am−1 = 1, f is said to be normalized.

Remark 1.3. There exists the notion of extremal modular forms (a modular form ∈ Mk

is extremal if it is 1 + O(qm), where m = dim Mk). The readers should not mix up
the two extremalities.

Here are some examples in low weights.
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Example 1.4. Weight 2, depth 1:

E2 = 1 − 24q − 72q2 − 96q3 − 168q4 − 144q5 − 288q6 − · · · .

Weight 4, depth 2:

E4 − E2
2

288

(
= −E′

2

24

)
= q + 6q2 + 12q3 + 28q4 + 30q5 + 72q6 + · · · .

Weight 6, depth 1:

E4E2 − E6

720

(
= E′

4

240

)
= q + 18q2 + 84q3 + 292q4 + 630q5 + 1512q6 + · · · .

Weight 6, depth 3:

5E3
2 − 3E4E2 − 2E6

51 840
= q2 + 8q3 + 30q4 + 80q5 + 180q6 + 336q7 + · · · .

Weight 8, depth 1:

E2
4 − E6E2

1008

(
= − E′

6

504

)
= q +66q2+732q3+4228q4+15 630q5+48 312q6+· · · .

Weight 8, depth 2:

5E2
4 + 2E6E2 − 7E4E

2
2

362 880
= q2 + 16q3 + 102q4 + 416q5 + 1308q6 + 3360q7 + · · · .

Weight 8, depth 4:

5E2
4 + 16E6E2 + 14E4E

2
2 − 35E4

2

11 612 160

= q3 + 21

2
q4 + 54q5 + 192q6 + 546q7 + 1323q8 + · · · .

In the case of modular forms (on PSL2(Z)), an element in Mk is uniquely
determined by its first dim Mk Fourier coefficients and one can prescribe these
coefficients arbitrarily. However, whether the corresponding statements for
quasimodular forms hold true is not at all obvious and we do not know the answer
in general. Our first question is then

Does there always exist an extremal quasimodular form of given weight
k and depth r , provided k and r satisfy the necessary constraint 0 ≤ r ≤
k/2, r �= k/2 − 1? And is it unique when normalized?
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We shall show the existence in the case of depth 1 and 2 in Sections 2 and 3, and
in Section 4 we give some conjectures on the general case. It is hoped that, at least
in some cases, extremal quasimodular forms have arithmetic significance. There are
some signs supporting such a prediction, but the study has just begun and for the most
part it is still to be explored.

2. Depth 1 case

Define two sequences of polynomials Pn(x), P ∗
n (x) (n = 0, 1, 2, . . . ) by

P0(x) = 1, P1(x) = x, Pn+1(x) = xPn(x) + µnPn−1(x) (n = 1, 2, . . . ),

P ∗
0 (x) = 1, P ∗

1 (x) = x, P ∗
n+1(x) = xP ∗

n (x) + µ∗
nP

∗
n−1(x) (n = 1, 2, . . . ),

where µn and µ∗
n are given by

µn = 12

(
6 + 1

n

)(
6 − 1

n + 1

)
, µ∗

n = 12

(
6 − 1

n

)(
6 + 1

n + 1

)
.

The first few examples are

P2(x) = x2 + 462, P3(x) = x3 + 904x, P4(x) = x4 + 1341x2 + 201 894, . . . ,

P ∗
2 (x) = x2 + 390, P ∗

3 (x) = x3 + 808x, P ∗
4 (x) = x4 + 1233x2 + 165 750, . . . .

Pn(x) and P ∗
n (x) are even (respectively odd) polynomials when n is even (respectively

odd). We also define Qn(x),Q∗
n(x) by the same recursion with different initial values

Q0(x) = 0, Q1(x) = 1, Qn+1(x) = xQn(x) + µnQn−1(x) (n = 1, 2, . . . ),

Q∗
0(x) = 0, Q∗

1(x) = 1, Q∗
n+1(x) = xQ∗

n(x) + µ∗
nQ

∗
n−1(x) (n = 1, 2, . . . ).

The first examples are

Q2(x) = x, Q3(x) = x2 + 442, Q4(x) = x3 + 879x,

Q5(x) = x4 + 1314x2 + 192 270, . . . ,

Q∗
2(x) = x, Q∗

3(x) = x2 + 418, Q∗
4(x) = x3 + 843x,

Q∗
5(x) = x4 + 6354

5
x2 + 894 102

5
, . . . ,

and the parity is opposite to that of Pn(x) and P ∗
n (x).

The depth 1 extremal quasimodular forms of weight k are described according to
the congruence classes of k modulo 6 as follows.
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THEOREM 2.1.
(1) Suppose that k = 6n (n = 1, 2, 3, . . . ). Then the form

√
�(τ)

n−1
Pn−1

(
E6(τ )√
�(τ)

)
E′

4(τ )

240

− √
�(τ)

n
Qn−1

(
E6(τ )√
�(τ)

) (
� = E3

4 − E2
6

1728

)

is an extremal quasimodular form of weight k and depth 1 on PSL2(Z), and is a
solution of the differential equation

f ′′(τ ) − k

6
E2(τ )f ′(τ ) + k(k − 1)

12
E′

2(τ )f (τ ) = 0

(
′ = 1

2πi

d

dτ
= q

d

dq

)
.

(2) Suppose that k = 6n + 2 (n = 1, 2, 3, . . . ). Then the form

√
�(τ)

n−1
P ∗

n−1

(
E6(τ )√
�(τ)

)(
−E′

6(τ )

504

)
− √

�(τ)
n
Q∗

n−1

(
E6(τ )√
�(τ)

)
E2(τ )

is an extremal quasimodular form of weight k and depth 1 on PSL2(Z), and is a
solution of

f ′′ −
(

k

6
E2 − 1

3

E6

E4

)
f ′ +

(
k(k − 1)

12
E′

2 − k − 1

18

E′
6

E4

)
f = 0.

(3) An extremal quasimodular form of weight k ≡ 4 mod 6 and depth 1 is obtained
from the form in (1) with k replaced by k − 4, by multiplying E4(τ ). The
differential equation it satisfies is

f ′′ −
(

k

6
E2 − 2

3

E6

E4

)
f ′ +

(
k(k − 1)

12
E′

2 − k − 1

9

E′
6

E4
− 2

9

(
E4 − E2

6

E2
4

))
f = 0.

Remark 2.2. (i) The expressions in (1) and (2) contain
√

�(τ), but the square
root is superficial because of the parities of Pn(x) and Qn(x). Hence, they define
elements in Q[E2, E4, E6] (note also Ramanujan’s formulas E′

4 = (E2E4 − E6)/3,

E′
6 = (E2E6 − E2

4)/2).
(ii) The differential equation in (1) (with k replaced by k + 1) is that which was

studied extensively in [4] and [2].

Proof. We note that by the standard dimension formula for Mk we have dim QM
(1)
k =

[k/6] + 1. For (1), that the given form satisfies the differential equation as indicated
has been proved in [2, Theorem 2]. By looking at the exponent of that solution,
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we conclude it is extremal (obviously of depth 1). The proof of (2) goes in a similar
manner.

For (3), it is enough to note that, when k ≡ 4 mod 6, we have dim QM
(1)
k =

dim QM
(1)
k−4 and, hence, QM

(1)
k = E4 · QM

(1)
k−4. The differential equation can be

deduced from (1) with the aid of Ramanujan’s formulas mentioned above. �

If we compute the forms in Theorem 2.1 separately according to the parity of
n (in order to avoid the expression

√
�(τ)), we encounter the Atkin orthogonal

polynomials. We shall describe the resulting expressions when k is congruent to 0
or 2 modulo 6.

Put

λn =




1, n = 0,

720, n = 1,

12

(
6 + (−1)n

n − 1

)(
6 + (−1)n

n

)
, n ≥ 2,

and

λ∗
n =




1, n = 0,

1008, n = 1,

12

(
6 − (−1)n

n − 1

)(
6 − (−1)n

n

)
, n ≥ 2.

Define the sequences of polynomials An(X),Bn(X), Ãn(X), B̃n(X),A∗
n(X), B∗

n(X),

Ã∗
n(X), B̃∗

n(X) by the recursion relations

An+1(X) = (X − (λ2n+1 + λ2n))An(X) − λ2nλ2n−1An−1(X) (n ≥ 1),

Bn+1(X) = (X − (λ2n+1 + λ2n))Bn(X) − λ2nλ2n−1Bn−1(X) (n ≥ 1),

Ãn+1(X) = (X − (λ2n + λ2n−1))Ãn(X) − λ2n−1λ2n−2Ãn−1(X) (n ≥ 1),

B̃n+1(X) = (X − (λ2n + λ2n−1))B̃n(X) − λ2n−1λ2n−2B̃n−1(X) (n ≥ 1),

A∗
n+1(X) = (X − (λ∗

2n+1 + λ∗
2n))A

∗
n(X) − λ∗

2nλ
∗
2n−1A

∗
n−1(X) (n ≥ 1),

B∗
n+1(X) = (X − (λ∗

2n+1 + λ∗
2n))B

∗
n(X) − λ∗

2nλ
∗
2n−1B

∗
n−1(X) (n ≥ 1),

Ã∗
n+1(X) = (X − (λ∗

2n + λ∗
2n−1))Ã

∗
n(X) − λ∗

2n−1λ
∗
2n−2Ã

∗
n−1(X) (n ≥ 1),

B̃∗
n+1(X) = (X − (λ∗

2n + λ∗
2n−1))B̃

∗
n(X) − λ∗

2n−1λ
∗
2n−2B̃

∗
n−1(X) (n ≥ 1)
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with initial conditions

A0(X) = 1, A1(X) = X − 720, B0(X) = 0, B1(X) = 1,

Ã0(X) = 0, Ã1(X) = 1, B̃0(X) = −1, B̃1(X) = 1,

A∗
0(X) = 1, A∗

1(X) = X − 1008, B∗
0 (X) = 0, B∗

1 (X) = 1,

Ã∗
0(X) = 0, Ã∗

1(X) = 1, B̃∗
0 (X) = −1, B̃∗

1 (X) = 1.

Let j (τ ) = E4(τ )3/�(τ) be the elliptic modular invariant.

THEOREM 2.3.

(1) The form

1

N∗
n

(�(τ)nA∗
n(j (τ )) − E2(τ )E4(τ )E6(τ )�(τ)n−1B∗

n(j (τ )))

(N∗
n = λ∗

2nλ
∗
2n−1 · · · λ∗

2λ
∗
1)

is a normalized extremal quasimodular form of weight 12n and depth 1.
(2) The form

1

Nn

(E2(τ )�(τ)nAn(j (τ )) − E4(τ )2E6(τ )�(τ)n−1Bn(j (τ )))

(Nn = λ2nλ2n−1 · · · λ2λ1)

is a normalized extremal quasimodular form of weight 12n + 2 and depth 1.
(3) The form

1

Ñn

(E2(τ )E4(τ )�(τ)nÃn+1(j (τ )) − E6(τ )�(τ)nB̃n+1(j (τ )))

(Ñn = λ2n+1λ2n · · · λ2λ1)

is a normalized extremal quasimodular form of weight 12n + 6 and depth 1.
(4) The form

1

Ñ∗
n

(E4(τ )2�(τ)nÃ∗
n+1(j (τ )) − E2(τ )E6(τ )�(τ)nB̃∗

n+1(j (τ )))

(Ñ∗
n = λ∗

2n+1λ
∗
2n · · · λ∗

2λ
∗
1)

is a normalized extremal quasimodular form of weight 12n + 8 and depth 1.
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Proof. The relations between µn,µ
∗
n and λn, λ

∗
n are given by (we put µ0 = 720 and

µ∗
0 = 1008)

λ2n+1 + λ2n = 1728 − (µ∗
2n + µ∗

2n−1), λ2nλ2n−1 = µ∗
2n−1µ

∗
2n−2 (n ≥ 1),

λ2n + λ2n−1 = 1728 − (µ2n−1 + µ2n−2), λ2n−1λ2n−2 = µ2n−2µ2n−3 (n ≥ 2),

λ∗
2n+1 + λ∗

2n = 1728 − (µ2n + µ2n−1), λ∗
2nλ

∗
2n−1 = µ2n−1µ2n−2 (n ≥ 1),

λ∗
2n + λ∗

2n−1 = 1728 − (µ∗
2n−1 + µ∗

2n−2), λ∗
2n−1λ

∗
2n−2 = µ∗

2n−2µ
∗
2n−3 (n ≥ 2).

By using these, that the forms given in the theorem coincide up to normalizing factors
to those in Theorem 2.1 is easily seen. For instance, in the case of weight 12n+ 2, we
can show that the identities

An(x
2 + 1728) = xP ∗

2n−1(x) + 1008Q∗
2n−1(x)

Bn(x
2 + 1728) = P ∗

2n−1(x)/x

hold by checking that both sides of each identity satisfy the same recursion and initial
conditions. Then by noting j (τ ) = (E6(τ )/

√
�(τ))2 + 1728 we obtain the assertion

in this case. The remaining cases can be shown similarly.
To determine the normalizing factors, we use the argument in [4, Section 4].

We only look at the case (2), the other cases being similar. Put

� = E2E4

E6j
= 1

j
+ 720

j2 + · · · .

In [4], it is shown that

Bn(j)

An(j)
= � − Nn

j2n+1
+ O

(
1

j2n+2

)
,

where Nn is the number given in the theorem and is equal to the inner product (An,An)

associated to � (in this case it is equal to the Atkin scalar product). From this we have

E2�
nAn(j) − E2

4E6�
n−1Bn(j) = Nnq

2n + O(q2n+1),

which shows the left-hand side divided by Nn is a normalized extremal quasimodular
form (dim QM

(1)
12n+2 = 2n + 1). �

Remark 2.4. The polynomials {An(X)} is so-called Atkin’s orthogonal polynomials.
For any prime p, denoting by np the number of isomorphism classes of supersingular
elliptic curves in characteristic p, the roots of Anp(X) mod p exactly give the
j -invariants of supersingular elliptic curves (see [4]).
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3. Depth 2 case

We shall describe extremal quasimodular forms of depth 2 when the weights are
divisible by 4.

Define polynomials Pn(x),Qn(x), Rn(x) by initial values

P0(x) = 0, P1(x) = −120, P2(x) = 420x,

Q0(x) = 0, Q1(x) = 0, Q2(x) = −420,

R0(x) = 1, R1(x) = 0, R2(x) = 0

and the same recursions

Pn+1(x) = anxPn(x) + bnx
2Pn−1(x) + cnPn−2(x) (n ≥ 2),

Qn+1(x) = anxQn(x) + bnx
2Qn−1(x) + cnQn−2(x) (n ≥ 2),

Rn+1(x) = anxRn(x) + bnx
2Rn−1(x) + cnRn−2(x) (n ≥ 2),

where

an = 16n3 − 20n2 + 2n − 1,

bn = −(4n − 9)(4n − 1)(2n − 1)2(n − 1)2,

cn = 8(4n − 13)(4n − 9)(4n − 7)(4n − 5)(4n − 1)(2n − 3)2(2n − 1)2.

THEOREM 3.1. Suppose that k = 4n (n = 0, 1, 2, . . .). Then the form

3
√

�(τ) n−1Pn

(
E4(τ )
3
√

�(τ)

)(
−E′

2(τ )

24

)

+ 3
√

�(τ) n−2Qn

(
E4(τ )
3
√

�(τ)

)(
−E′

6(τ )

504

)
+ 3

√
�(τ) nRn

(
E4(τ )
3
√

�(τ)

)

is an extremal quasimodular form of weight k and depth 2, and satisfies the differential
equation

f ′′′ − k

4
E2f

′′ + k(k − 1)

4
E′

2f
′ − k(k − 1)(k − 2)

24
E′′

2f = 0.

Proof. We can mimic the argument given in [2, Section 3], although computations
naturally become more tedious. First, it is convenient to re-write the differential
equation in the theorem as

∂k+2∂k∂k−2(f ) − 3k2 − 4

144
E4∂k−2(f ) − (k − 2)2(k + 1)

864
E6f = 0, (�)k
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where ∂k is the operator given by

∂k(f ) = q
df

dq
− k

12
E2f.

We show that we can construct a quasimodular solution of (�)k inductively as follows.
Put f0 = 1, f4 = 5E′

2, f8 = 420(E′
6/504 − E4E

′
2/24) = 5(5E2

4 + 10E6E2 −
7E4E

2
2)/24, and define

fk+4 = akE4fk + bkE
2
4fk−4 + ck�fk−8 (k ≥ 8)

with

ak = 1
4 (k3 − 5k2 + 2k − 4),

bk = − 1
64(k − 9)(k − 4)2(k − 2)2(k − 1),

ck = 1
2 (k − 13)(k − 9)(k − 7)(k − 6)2(k − 5)(k − 2)2(k − 1).

Then fk is a solution of (�)k . To show this, we need the following lemma, which
corresponds to lemmas and propositions in [2, Section 3]. Since the argument is
completely parallel, we omit the proof.

To state the lemma, we need to introduce the Rankin–Cohen bracket [·, ·](k,l)
n ,

which is defined for integers k, l, n ≥ 0 and functions f, g on the upper half-plane by

[f, g](k,l)
n :=

n∑
i=0

(−1)i
(

n + k − 1

n − i

)(
n + l − 1

i

)
f (i)g(n−i),

where f (i) (respectively g(n−i)) is the ith (respectively (n − i)th) derivative of f

(respectively g) with respect to 2πiτ . We have [f, g](k,l)
0 = fg, [f, g](k,l)

1 =
kfg′ − lf ′g, etc. When f and g are modular of respective weights k and l on some
group � ⊂ PSL(2, R), the bracket [f, g](k,l)

n is modular of weight k + l +2n on � (see
[6] for properties of the Rankin–Cohen bracket).

LEMMA 3.2.
(1) If f is a solution of (�)k , then

∂k+6([f,E4](k−2,4)
2 ) = 5

63 (k − 3)[f,E6](k−2,6)
2 ,

∂k+8([f,E6](k−2,6)
2 ) = 7

20 (k − 4)E4[f,E4](k−2,4)
2 − 42(k − 2)2(k − 1)�f.

(2) If f is a solution of (�)k , then [f,E4](k−2,4)
2 /� is a solution of (�)k−4.
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(3) Suppose that fk, fk−4 and fk−8 are solutions of (�)k, (�)k−4 and (�)k−8,
respectively. Then, the form

fk+4 = E4fk + E2
4fk−4 + �fk−8

is a solution of (�)k+4 if and only if

[fk,E6](k−2,6)
2 + 2E4[fk−4, E6](k−6,6)

2

= − 7
8�(27 648∂k−6(fk−4) + 12(k − 2)E4∂k−10(fk−8)

+ (k2 − 6k + 20)E6fk−8).

The way to obtain the description of fk as in Theorem 3.1 is also similar to that in [2].
This time, the polynomials Pn, Qn, Rn have the form xiP̃n(x

3), etc., according to the
value n mod 3. From this, the appearance of 3

√
�(τ) turns out to be superficial and the

expression in the theorem defines an element in C[E2, E4, E6]. �

The differential equations in Theorems 2.1 and 3.1 can be neatly written in terms
of the operator θ

(r)
k defined by

θ
(r)
k (f ) := f (r+1) − k + r

12
[E2, f ](2,k)

r .

When r = 0, the operator

θ
(0)
k (f ) = f ′ − k

12
E2f

(identical to the ∂k above) is sometimes referred to as Serre’s operator and sends
modular forms of weight k to those of weight k + 2. When r = 1 and 2, we have

θ
(1)
k−1(f ) = f ′′ − k

6
E2f

′ + k(k − 1)

12
E′

2f

and

θ
(2)
k−2(f ) = f ′′′ − k

4
E2f

′′ + k(k − 1)

4
E′

2f
′ − k(k − 1)(k − 2)

24
E′′

2 f.

These are nothing but the differential operators that appeared in Theorems 2.1(1) and
3.1. In the next section we give a speculation for the cases r = 3 and 4.

We record here one general property of the operator θ
(r)
k , which might be of

considerable interest.

PROPOSITION 3.3. For all n ≥ 0, if f ∈ QM
(n)
k+n, then θ

(r)
k (f ) ∈ QM

(n)
k+n+2(r+1). In

particular, if f is modular of weight k, then θ
(r)
k (f ) is modular of weight k + 2(r + 1).
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Proof. To prove the proposition, we introduce three operators D, ∂ and H on
C[E2, E4, E6] as follows. We let D and ∂ be the differential operators

D = q
d

dq
and ∂ = −12

∂

∂E2
,

and H the Euler operator

H(f ) = kf (k = the weight of f ).

Alternatively, if we write x = E4, y = E6 and z = E2, these operators on the ring
C[x, y, z] are given by (use Ramanujan’s formulas for D)

D = xz − y

3

∂

∂x
+ yz − x2

2

∂

∂y
+ z2 − x

12

∂

∂z
,

∂ = −12
∂

∂z
,

H = 4x
∂

∂x
+ 6y

∂

∂y
+ 2z

∂

∂z
.

It is easy to check that these operators form an ‘sl2-triple’†, i.e. they satisfy the
commutation relations [D, ∂] = H, [H,D] = 2D, and [H, ∂] = −2∂ . By using
these relations, we can prove by induction the relation

∂Dn = Dn∂ − nDn−1H − n(n − 1)Dn−1 (n ≥ 0).

With this we can easily deduce

∂θ
(r)
k (f ) = θ

(r)
k (∂f ) + (r + 1)(k − wt(f ))θ

(r−1)
k+1 (f ) (wt(f ) = weight of f )

and then inductively

∂n+1θ
(r)
k (f ) =

n+1∑
i=0

(
n + 1

i

)
(r + 1)i(k + n − wt(f ))i θ

(r−i)
k+i (∂n+1−if )

where (a)i = a(a − 1) · · · (a − i + 1).
Now, note that for a quasimodular form f ∈ C[E2, E4, E6], f has depth

at most r if and only if ∂r+1f = 0. Assume f ∈ QM
(n)
k+n. Then we have

(k + n − wt(f ))i = 0 for all i > 0 and ∂n+1f = 0, hence ∂n+1θ
(r)
k (f ) = 0. This

shows θ
(r)
k (f ) ∈ QM

(n)
k+n+2(r+1). �

Note that the operator θ
(r)
k does not increase the depth despite of differentiations.

†We learned this fact from Don Zagier. Also, an equivalent statement in a more representation theoretic
setting is given in [5].
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4. Observations and conjectures

As far as our numerical computations show, extremal quasimodular forms always exist
(if weight and depth satisfy necessary conditions) and unique if normalized. For depth
less than 5, we have the following.

CONJECTURE 1. If r = 3 and k ≡ 0 mod 6, or r = 4 and k ≡ 0 mod 12, the
extremal quasimodular form of weight k and depth r is a solution of

θ
(r)
k−r (f ) = 0.

We have shown in Theorems 2.1 and 3.1 that this is so for r = 1, k ≡ 0 mod 6
and r = 2, k ≡ 0 mod 4.

By inspecting exponents, we see that any extremal quasimodular forms of weight
k and depth r ≥ 5 cannot satisfy the equation θ

(r)
k−r (f ) = 0. The case r ≤ 4 is

somehow special, so it seems, as the following conjecture supported by numerical
evidence also shows.

CONJECTURE 2. If the depth is at most 4, the Fourier coefficients of any normalized
extremal quasimodular forms of weight greater than 2 are always positive. Moreover,
no denominator of such coefficients has prime factors greater than the weight.

One may expect some meaning of the positive coefficients, say as counting
numbers of some objects. Indeed, for the normalized extremal quasimodular form
of weight 6 and depth 3,

the coefficient of qd is equal to the number of simply ramified coverings
of genus 2 and degree d of an elliptic curve over C.

(See [1] and [3] for a more precise definition and statement.) We do not know
any other example of extremal quasimodular forms whose Fourier coefficients allow
such interpretation as counting numbers or something of that sort. It would be very
interesting to have such an interpretation.
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