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1. Introduction

Some time around 1740, Euler [3–5] took a decisive step toward laying the
groundwork for the functional equation of the Riemann zeta function when he
discovered a marvellous method of calculating the values of the (absolutely!)
divergent series

‘1 + 1 + 1 + 1 + 1 + · · · ’ = −1
2 ,

‘1 + 2 + 3 + 4 + 5 + · · · ’ = − 1
12 ,

‘1 + 4 + 9 + 16 + 25 + · · · ’ = 0,

‘1 + 8 + 27 + 64 + 125 + · · · ’ = 1
120 , etc.

In modern terms, these are the values at non-positive integer arguments of the Riemann
zeta function ζ(s), defined by the series

ζ(s) = 1 + 1

2s
+ 1

3s
+ 1

4s
+ 1

5s
+ · · · ,

which is absolutely convergent for Re(s) > 1. With no concept of functions
of complex variables, to say nothing of analytic continuation, Euler proceeded as
described below to give meaning to divergent series of the above type and to evaluate
the values of them.

First, he directed his attention to the ‘less divergent’ alternating series

1m − 2m + 3m − 4m + 5m − 6m + 7m − 8m + etc.,

because its convergent counterpart

1

1n
− 1

2n
+ 1

3n
− 1

4n
+ 1

5n
− 1

6n
+ 1

7n
− 1

8n
+ etc.,
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does indeed have faster convergence and is related to the original series by the simple
equation

ζ ∗(s) = (1 − 21−s)ζ(s), (1)

where

ζ ∗(s) = 1 − 1

2s
+ 1

3s
− 1

4s
+ 1

5s
− · · · .

Then, he observed that the value in is obtained as a ‘limit’ of the power series

1m − 2mx + 3mx2 − 4mx3 + 5mx4 − 6mx5 + etc. (2)

as x → 1, because, although the series itself converges only for |x| < 1, it has an
expression as a rational function (or analytic continuation as we now term it), finite at
x = 1, which is obtained for a given value of m by applying the operator ((d/dx)x)m

(or in terms of the Euler operator x(d/dx), the operator x−1(x(d/dx))mx) to the
geometric series expansion

1

1 + x
= 1 − x + x2 − x3 + x4 − x5 + · · · (|x| < 1). (3)

For instance, if we substitute x = 1 into (3), we formally find

1
2 = 1 − 1 + 1 − 1 + 1 − · · · = ζ ∗(0),

and hence, in view of (1), we have ζ(0) = −1/2. The next few cases are

1

(1 + x)2
= 1 − 2x + 3x2 − 4x3 + 5x4 − · · · ,

1 − x

(1 + x)3
= 1 − 22x + 32x2 − 42x3 + 52x4 − · · · ,

1 − 4x + x2

(1 + x)4
= 1 − 23x + 33x2 − 43x3 + 53x4 − · · · ,

...

which imply

ζ ∗(−1) = 1
4 , ζ ∗(−2) = 0, ζ ∗(−3) = − 1

8 · · · ,
and hence

ζ(−1) = − 1
12 , ζ(−2) = 0, ζ(−3) = 1

120 · · · .
Later, with the power of complex integral and the theory of analytic continuation,

Euler’s method found a justification from a modern point of view. In fact, in
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[7, Theorem 2.5], it is shown that the alternating series ζ ∗(s) is summable (in the
sense of Abel) to (1 − 21−s)ζ(s) for all values of s.

In this article, aiming to evaluate ζ(−m) as a value of the analytically continued
function ζ(s) in the most elementary, yet rigorous, way possible, we present an
alternative approach. We introduce and investigate a q-analogue of the Riemann zeta
function. As becomes clear in the course of our study, this function serves very well
for the purpose of not only computing ζ(−m), but also providing a q-analogue which
is valid for all s ∈ C; in other words, in the classical limit q → 1 the value approaches
to ζ(s) for all s.

To be more specific, we consider a series that is similar to that obtained from
(2) by substituting qt for x (in which case the operator (d/dt) essentially plays the
role of the Euler operator x(d/dx)), and we replace nm by the q-integer [n]q :=
(1 − qn)/(1 − q) raised by the power −s. (Recall that Euler is the ‘grand master’
of q .) Thus, we consider the series

fq(s, t) :=
∞∑
n=1

qnt

[n]sq
= qt

[1]sq
+ q2t

[2]sq
+ q3t

[3]sq
+ q4t

[4]sq
+ · · · . (4)

Throughout the paper, we assume 0 < q < 1, so that the series (4) converges
absolutely for any s ∈ C and Re(t) > 0. If Re(s) > 1 and Re(t) > 0, the series
obviously converges to ζ(s) as q ↑ 1. This suggests that we should regard the function
fq(s, t) as a q-analogue of the Riemann zeta function ζ(s), but we put off elucidating
the precise analogy until we restrict our consideration to the special case t = s − 1.
Before considering this special case, we establish below the meromorphic continuation
of fq(s, t) as a function of the two variables s and t . This is carried out quite easily by
use of the binomial theorem.

PROPOSITION 1. Let 0 < q < 1. As a function of (s, t) ∈ C2, fq(s, t) is continued
meromorphically via the series expansion

fq(s, t) = (1 − q)s
∞∑
r=0

(
s + r − 1

r

)
qt+r

1 − qt+r

= (1 − q)s

(
qt

1 − qt
+ s

qt+1

1 − qt+1 + s(s + 1)

2

qt+2

1 − qt+2 + · · ·
)
,

which has poles of order 1 at all t ∈ Z≤0+2πiZ/log q := {a+2πib/logq | a, b ∈ Z,
a ≤ 0}.



178 M. Kaneko et al

Proof. We simply apply the binomial expansion

(1 − qn)−s =
∞∑
r=0

(
s + r − 1

r

)
qnr

to (4) and change the order of the summations to obtain

fq(s, t) = (1 − q)s
∞∑
n=1

qnt

(1 − qn)s

= (1 − q)s
∞∑
n=1

qnt
∞∑
r=0

(
s + r − 1

r

)
qnr

= (1 − q)s
∞∑
r=0

(
s + r − 1

r

) ∞∑
n=1

qn(t+r)

= (1 − q)s
∞∑
r=0

(
s + r − 1

r

)
qt+r

1 − qt+r
.

The other assertion follows readily from this.

Remark. It is worth noting that the function fq(s, t) can be expressed as a (beta-like)
Jackson integral. In fact, we have the identity

q−t (1 − q)1−sfq(s, t) = (1 − q)

∞∑
j=0

qjt

(1 − qj+1)s
=
∫ 1

0
xt−1(1 − qx)−s dqx.

In the next section, we specialize to the case t = s − 1 and establish a formula
for the value at s = −m ∈ Z≤0 in Proposition 2 and its limit as q ↑ 1 in Theorem 1.
Then we prove in Theorem 2 that the limit as q ↑ 1 is equal to ζ(s) for any s ∈ C

other than 1.

2. Main results

We now consider the case t = s − 1. For s = −m ∈ Z≤0, the point (s, t) =
(−m,−m − 1) lies on the pole divisor t = −m − 1 of fq(s, t). Nevertheless, a
sort of ‘miracle’ occurs by which this point turns out to be what is called a ‘point of
indeterminacy’; in other words, the function fq(s, s − 1) has a finite limit as s → −m
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and, moreover, this limit approaches the ‘correct’ value, ζ(−m), as q ↑ 1. What is
more, the function fq(s, s − 1) converges as q ↑ 1 to ζ(s) for any s! These results,
which we prove in quite elementary ways (using only methods available to Euler
himself), reveal that it is quite natural to regard the function fq(s, s − 1) as the
‘true’ q-analogue of the Riemann zeta function and, for this reason, hereafter we write
fq(s, s − 1) as ζq(s):

ζq(s) := fq(s, s − 1) =
∞∑
n=1

qn(s−1)

[n]sq
= qs−1

[1]sq
+ q2(s−1)

[2]sq
+ q3(s−1)

[3]sq
+ q4(s−1)

[4]sq
+ · · · .

Remark. (1) The proper choice of t seems to be essential for obtaining a well-behaved
q-analogue of ζ(s). For example, the choice t = s adopted in [9] requires an extra
term to adjust the convergence when q ↑ 1 and the point (s, t) = (−m,−m) is not
a point of indeterminacy for any m ∈ Z≥0. The choices t = s − 2, s − 3, s − 4, . . .
seem as good as the choice t = s − 1 in defining ζq(s), as long as s = −m; but for
such choices, extra poles appear at s = 2, 3, 4, . . . . However, these poles disappear in
the limit q ↑ 1. For example, with t = s − 2 the residue at the simple pole s = 2 is
−(1 − q)2/log q , which goes to 0 as q ↑ 1. It is still not known how the behavior of
ζq(s) depends on the value of t chosen in defining it.

(2) If we define the q-analogue ζ ∗
q (s) of the alternating series ζ ∗(s) given in

Section 1 by

ζ ∗
q (s) =

∞∑
n=1

(−1)n−1 q
n(s−1)

[n]sq
,

the identity corresponding to (1) takes the form

ζ ∗
q (s) = ζq(s) − 2(1 + q)−sζq2(s).

In contrast to the situation considered by Euler, however, introducing ζ ∗
q (s) is not

helpful because the relation between ζ ∗
q (s) and ζq(s) is complicated by the presence

of ζq2 .
When specialized to the case t = s − 1, the formula in Proposition 1 becomes

ζq(s) = (1 − q)s
∞∑
r=0

(
s + r − 1

r

)
qs+r−1

1 − qs+r−1

= (1 − q)s
(

qs−1

1 − qs−1
+ s

qs

1 − qs
+ s(s + 1)

2

qs+1

1 − qs+1
+ · · ·

)
. (5)
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PROPOSITION 2. (1) The function ζq(s) has a simple pole at points in 1+2πiZ/log q
and in the set {a + 2πib/log q|a, b ∈ Z, a ≤ 0, b �= 0}. In particular, s = 1 is a
simple pole of ζq(s) with residue (q − 1)/log q .

(2) For m ∈ Z, m ≥ 0, the limiting value lims→−m ζq(s) =: ζq(−m) exists and
is given explicitly by

ζq(−m) = (1 − q)−m
{ m∑
r=0

(−1)r
(
m

r

)
1

qm+1−r − 1
+ (−1)m+1

(m+ 1) log q

}
. (6)

Proof. Assertion (1) is straightforward from (5), with the formula limy→0 y/

(1 − qy) = −1/log q used for the residue at s = 1. For (2), note that the
terms for which r ≥ m + 2 in the sum in (5) vanish as s → −m, because(−m+r−1

r

) = 0 and 1 − q−m+r−1 �= 0. On the other hand, for r = m + 1, we
have lims→−m(s +m)/(1 − qs+m) = −1/log q , and hence

lim
s→−m

(
s +m

m + 1

)
qs+m

1 − qs+m
= (−1)mm!

(m+ 1)!
(

− 1

log q

)
= (−1)m+1

(m+ 1) log q
.

The rest of the derivation of (6) is clear. ✷

Before presenting the general formula for limq↑1 ζq(−m), let us consider the first
three cases.

Example 1. As stated in Proposition 2, ζq(s) has a simple pole at s = 1 with residue
(q − 1)/log q , which converges to 1 as q → 1. This agrees with the well-known fact
that ζ(s) has a simple pole at s = 1 with residue 1.

Example 2. By (6), we have

ζq(0) = 1

q − 1
− 1

log q
.

Then, because

1

log q
= 1

log (1 + (q − 1))
= 1

(q − 1)− (q − 1)2/2 + · · · = 1

q − 1
+ 1

2
+O(q−1),

we find

lim
q→1

ζq(0) = − 1
2 .

This agrees with Euler’s result, ζ(0) = −1/2.
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Example 3. Again by (6), we have

ζq(−1) = (1 − q)−1
(

1

q2 − 1
− 1

q − 1
+ 1

2 log q

)
= 1

1 − q

(
1

q − 1

1

2 + q − 1
− 1

q − 1
+ 1

2 log q

)
= 1

1 − q

(
1

2(q − 1)
− 1

4
+ q − 1

8
+ · · · − 1

q − 1

+ 1

2(q − 1)
+ 1

4
− q − 1

24
+ · · ·

)
−→ − 1

12
as q → 1,

in accordance with ζ(−1) = −1/12.
Let the Bernoulli numbers Bk be defined by the generating series

tet

et − 1

(
= t

1 − e−t

)
=

∞∑
k=0

Bk

tk

k! .

The first values are

B0 = 1, B1 = 1
2 , B2 = 1

6 , B3 = 0, B4 = − 1
30 , B5 = 0,

B6 = 1
42 , B7 = 0, . . . .

We are now in a position to state the general formula for limq↑1 ζq(−m).
THEOREM 1. For each non-negative integer m, we have

lim
q↑1

ζq(−m) = − Bm+1

m+ 1
.

Proof. With (6), the assertion of the theorem becomes

lim
q→1

(1 − q)−m
{ m∑
r=0

(−1)r
(
m

r

)
1

qm+1−r − 1
+ (−1)m+1

(m + 1) log q

}
= − Bm+1

m+ 1
.

(Note here that because the sum is finite, we can replace the limit q ↑ 1 by q → 1.)
Multiplying both sides by (−1)m+1(m+1) and making the replacement r → m+1−r ,
we see that this is equivalent to

lim
q→1

(1 − q)−m
{
(m+ 1)

m+1∑
r=1

(−1)r
(

m

r − 1

)
1

qr − 1
+ 1

log q

}
= (−1)mBm+1.
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Then, writing
1

qr − 1
= 1

r

r log q

er logq − 1

1

log q

and using
t

et − 1
=

∞∑
k=0

(−1)kBk
tk

k! ,

we have

(m+ 1)
m+1∑
r=1

(−1)r
(

m

r − 1

)
1

qr − 1

= (m+ 1)
m+1∑
r=1

(−1)r
(

m

r − 1

)
1

r

∞∑
k=0

(−1)kBk
(r log q)k

k!
1

log q

=
∞∑
k=0

(m+1∑
r=1

(−1)r
(
m+ 1

r

)
rk
)
(−1)kBk

(log q)k−1

k! .

Because the inner sum on the right-hand side of this expression can be calculated as

m+1∑
r=1

(−1)r
(
m + 1

r

)
rk =

((
x
d

dx

)k
((1 − x)m+1 − 1)

)∣∣∣∣
x=1

=


−1 if k = 0,

0 if 0 < k < m+ 1,

(−1)m+1(m + 1)! if k = m+ 1,

we find

(m + 1)
m+1∑
r=1

(−1)r
(

m

r − 1

)
1

qr − 1

= − 1

log q
+ Bm+1(log q)m +O((log q)m+1) (as q → 1).

From this and the expansion log q = q − 1 + O((q − 1)2) (q → 1), we obtain the
desired result. ✷

Remark. In view of Theorem 1, it is natural to define the q-Bernoulli numbers Bm(q)
by

Bm(q) := −mζq(1 −m) (m ≥ 1).
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By (6) (making the replacements m → m − 1 and r → m − r) we obtain the closed
formula

Bm(q) = (q − 1)−m+1
{ m∑
r=1

(−1)r
(
m

r

)
r

qr − 1
+ 1

log q

}

= (q − 1)−m+1
m∑
r=0

(−1)r
(
m

r

)
r

qr − 1
(m ≥ 1).

Here, the term with r = 0 is understood to be 1/log q (the limiting value of the
summand in the limit r → 0). This suggests that we define

B0(q) := q − 1

log q
.

With this, the q-Bernoulli numbers {Bm(q)}m≥0 satisfy the recursion relation

n∑
m=0

(−1)m
(
n

m

)
qmBm(q) = (−1)nBn(q)+ δ1n (n ≥ 0),

where δ1n is 1 if n = 1 and 0 otherwise and the generating function

Fq(t) :=
∞∑
m=0

Bm(q)
tm

m!
satisfies the relation

Fq(qt) = etFq(t) − tet .

The q-Bernoulli numbers defined here are essentially (i.e. up to the factor (−1)m) the
same as those introduced by Tsumura [8].

The following fundamental relation, in addition to being important in its own
right, guarantees that our computation at negative integers above does give us the
correct values that we sought to obtain on a rigorous basis.

THEOREM 2. For any s ∈ C, excluding s = 1, we have

lim
q↑1

ζq(s) = ζ(s).

Example. We now give some numerically computed examples directly illustrating
this relation. Setting s = 1/2 and q = 0.999 in (5), the sum of the first 105

terms gives −1.460 145 273 95 · · · . Then, setting q = 0.999 99 and taking the
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first 107 terms, we obtain −1.460 352 417 · · · , which agrees with the actual value
ζ(1/2) = −1.460 354 5088 · · · to the fifth decimal place.

Next, consider the point s = 1/2 + 14.1347i near the first non-trivial zero
(= 1/2 + 14.134 725 141 734 693 790 457 251 983 562 · · · i) of ζ(s). For q = 0.9999,
the first 105 terms give the absurdly large value 108 35.552 · · ·+102 70.785 · · · i,
while the first 106 terms give −0.000 306 477 · · ·+0.000 794 677 · · · i. (The actual
value is ζ(1/2 + 14.1347i) = 0.000 003 135 364 · · ·−0.000 019 693 36 · · · i.)
Then if we set s = 1/2 + 14.134 725i and q = 0.999 99, the first 2 ×
106 terms give −0.469 0527 · · ·−0.466 9811 · · · i, and the first 5 × 106 terms
give −0.000 031 064 · · ·+0.000 081 2513 · · · i. (The actual value is ζ(1/2 +
14.134725i)= 0.000 000 017 674 · · ·−0.000 000 111 02 · · ·i.)

Combining Theorems 1 and 2, we readily obtain the following.

COROLLARY. For each non-negative integer m, we have

‘1m + 2m + 3m + 4m + 5m + · · · ’ = ζ(−m) = − Bm+1

m+ 1
.

Remarks. (1) We can also define a q-analogue of the Hurwitz zeta function

ζ(s; a) =
∞∑
n=0

1

(n + a)s

by

ζq(s; a) =
∞∑
n=0

q(n+a)(s−1)

[n+ a]sq
and prove the identity

lim
q↑1

ζq(s; a) = ζ(s; a)
for any s �= 1, as well as the formula

lim
q↑1

ζq(−m; a) = −Bm+1(a)

m+ 1

for integersm ≤ 0. Here, the Bernoulli polynomialBk(x) is defined by the generating
series

text

et − 1
=

∞∑
k=0

Bk(x)
tk

k! . (7)

We can now define q-Bernoulli polynomials (and derive elementary formulas), in
analogy to the q-Bernoulli numbers defined in the remark given after Theorem 1.
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However, to make our presentation as concise as possible, we restrict ourselves to the
case of the Riemann zeta function.

(2) It is interesting to note that the limit

lim
q↑1

(1 − q)k
∞∑
n=1

nk−1qn

1 − qn
= (k − 1)!ζ(k) (∀k ≥ 2, k ∈ Z) (8)

is derived easily from the relation

lim
q↑1

ζq(k) = ζ(k). (9)

(Equation (9) directly follows from the definition without appealing to Theorem 2,
because we are in the region of absolute convergence, due to the condition k ≥ 2.)
In fact, if we set s = 2 in (5) and make the replacement r + 1 → n, we have

ζq(2) = (1 − q)2
∞∑
n=1

nqn

1 − qn
,

which gives the desired limit for the case k = 2. For general values of k, we similarly
set s = k in (5) and make the replacement k + r − 1 → n to find

ζq(k) = (1 − q)k
∞∑
n=1

(
n

k − 1

)
qn

1 − qn
.

(Observe that
(

n
k−1

) = 0 for n = 1, 2, . . . , k − 2.) We then note that(
n

k − 1

)
= nk−1

(k − 1)! + [lower degree terms],

and, on taking the limit q ↑ 1, the sums coming from the lower degree terms vanish,
as can be shown inductively, hence we obtain the conclusion.

When k is even and k ≥ 4, the series

∞∑
n=1

nk−1qn

(1 − qn)
=

∞∑
n=1

(∑
d |n

dk−1
)
qn

constitutes the Fourier series for the Eisenstein series Gk(τ) of weight k on the
modular group, with constant term −Bk/2k (= ζ(1 − k)/2). Here τ is a variable
in the upper-half plane and is related to q as q = e2πiτ . The modularity condition
amounts to the transformation formula Gk(−1/τ) = τ kGk(τ ), which can be derived
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from (as shown by Hecke [6]) the functional equation for the corresponding Dirichlet
series ϕ(s) := ζ(s)ζ(s + 1 − k),

(2π)−s!(s)ϕ(s) = (−1)k/2(2π)s−k!(k − s)ϕ(k − s).

(When k is odd, the functional equation for ϕ(s) does not take this form and, therefore,
in this case the series

∑∞
n=1 n

k−1qn/(1 − qn) cannot be the Fourier series of a
modular form.) Hecke also showed that the residue of ϕ(s) at the simple pole s = k

is equal to (2πi)kc0/(k − 1)!, where c0 is the constant term of the corresponding
modular form. In our case, the residue is ζ(k) and thus the constant term of Gk(τ) is
(k − 1)!ζ(k)/(2πi)k = −Bk/2k, as expected. As an alternative method to determine
the constant term, we can use (8) as follows. First, set τ = it with t > 0. Then,
e2πi(−1/it) → 0 as t → 0 and hence

c0 = lim
t→0

Gk

(
− 1

it

)
= lim

t→0
(it)kGk(it) = lim

q↑1

(it)k

(1 − q)k
(1 − q)kGk(it)

= 1

(2πi)k
(k − 1)!ζ(k).

Proof of Theorem 2. Recall the celebrated summation formula of Euler [1, 2] (obtained
later by Maclaurin (cf. [10, Section 7.21]), which is proved by simply repeating
integration by parts). For aC∞-function f (x) on [1,∞) and arbitrary integersM ≥ 0,
N ≥ 1, we have

N∑
n=1

f (n) =
∫ N

1
f (x) dx + 1

2
(f (1)+ f (N)) +

M∑
k=1

Bk+1

(k + 1)! (f
(k)(N) − f (k)(1))

− (−1)M+1

(M + 1)!
∫ N

1
B̃M+1(x)f

(M+1)(x) dx, (10)

where B̃M+1(x) is the ‘periodic Bernoulli polynomial’ defined by

B̃k(x) = Bk(x − [x]) ([x] being the largest integer not exceeding x).

Recall that the Bernoulli polynomials Bk(x) are defined by the generating series (7):

B0(x) = 1, B1(x) = x− 1
2 , B2(x) = x2 −x+ 1

6 , B3(x) = x3 − 3
2x

2 + 1
2x, . . . .

As is well known, by choosing f (x) = x−s and taking the limit N → ∞, we obtain
the analytic continuation of ζ(s) to the region satisfying Re(s) > −M ,

ζ(s) = 1

s − 1
+ 1

2
+

M∑
k=1

Bk+1

(k + 1)!(s)k − (s)M+1

(M + 1)!
∫ ∞

1
B̃M+1(x)x

−s−M−1 dx, (11)
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where (s)k := s(s + 1) · · · (s + k − 1). Since we can choose M arbitrarily large, this
gives the analytic continuation of ζ(s) to the whole s-plane, showing that there is a
(unique) simple pole at s = 1 with residue 1.

Now we set f (x) = qx(s−1)/(1 − qx)s and M = 1 in (10). Then, assuming
Re(s) > 1 and noting

f ′(x) = log q · qx(s−1) s − 1 + qx

(1 − qx)s+1
,

f ′′(x) = (log q)2qx(s−1) s(s + 1)− 3s(1 − qx)+ (1 − qx)2

(1 − qx)s+2
,

and in general f (k)(x) = (log q)kqx(s−1)(1 − qx)−s−k × (a polynomial in s and qx),
we see that we can take the limit N → ∞; doing so yields

∞∑
n=1

qn(s−1)

(1 − qn)s
=
∫ ∞

1

qx(s−1)

(1 − qx)s
dx + 1

2

qs−1

(1 − q)s
− 1

12
(log q)qs−1 s − 1 + q

(1 − q)s+1

− (log q)2

2

∫ ∞

1
B̃2(x)q

x(s−1) s(s+1)−3s(1−qx)+(1−qx)2

(1−qx)s+2
dx

for Re(s) > 1. The first integral on the right-hand side is evaluated as∫ ∞

1

qx(s−1)

(1 − qx)s
dx =

∫ ∞

1

q−x

(q−x − 1)s
dx =

[
(q−x − 1)1−s

(s − 1) log q

]∞

1

= −qs−1(1 − q)1−s

(s − 1) log q
.

We therefore obtain

ζq(s) = (1 − q)s
∞∑
n=1

qn(s−1)

(1 − qn)s

= qs−1

s − 1

q − 1

log q
+ qs−1

2
+ qs−1

12

log q

q − 1
(s − 1 + q)

− (1 − q)s
(log q)2

2

∫ ∞

1
B̃2(x)q

x(s−1) s(s+1)−3s(1−qx)+(1−qx)2

(1−qx)s+2 dx.

(12)

Unlike in the classical case represented by (11), the integral in (12) cannot be made
to converge by simply choosing M sufficiently large instead of M = 1, because
the presence of the factor qx(s−1) in f (M+1)(x) implies that necessarily Re(s) > 1.
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Therefore, in this case we use the Fourier expansion of the periodic Bernoulli
polynomials† (cf. [10, Ch. IX, Miscellaneous Exercise 12]),

B̃k(x) = −k!
∑
n∈Z
n�=0

e2πinx

(2πin)k
. (13)

This equality is valid for all real numbers x when k ≥ 2, in which case the sum is
absolutely and uniformly convergent. Substituting this (with k = 2) into (12) and
interchanging the summation and the integration, we find

ζq(s) = qs−1

s − 1

q − 1

log q
+ qs−1

2
+ qs−1

12

log q

q − 1
(s − 1 + q)+ (1 − q)s(log q)2

×
∑
n∈Z
n�=0

1

(2πin)2

∫ ∞

1
e2πinxqx(s−1) s(s + 1)− 3s(1 − qx)+ (1 − qx)2

(1 − qx)s+2 dx.

Further, we make the change of variable qx = u in the integral to obtain

ζq(s) = qs−1

s − 1

q − 1

log q
+ qs−1

2
+ qs−1

12

log q

q − 1
(s − 1 + q)

− (1 − q)s log q
∑
n∈Z
n�=0

1

(2πin)2
{s(s + 1)bq(s − 1 + δn,−s − 1)

− 3sbq(s − 1 + δn,−s) + bq(s − 1 + δn,−s + 1)}, (14)

where δ = 2πi/log q and

bt (α, β) =
∫ t

0
uα−1(1 − u)β−1 du,

which is referred to as the incomplete beta function‡. Note that each of the incomplete
beta integrals in (14) converges absolutely for Re(s) > 1 and is uniformly bounded
with respect to n:

|bq(s−1+δn,−s+ν)| ≤
∫ q

0
uσ−2(1−u)−σ+ν−1 du (∀n, σ = Re(s), ν = −1, 0, 1).

Hence the sum converges absolutely.

†The idea of replacing B̃2(x) in the integral by its Fourier expansion is due to Ueno and Nishizawa [9].
However, the argument used here that follows this replacement, which only uses integration by parts
(and no confluent hypergeometric functions or the like), seems to be quite different from that in [9].
‡We remind the reader that the beta integral is often called the Euler integral.
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Now, repeated use of integration by parts yields the formula

bt(α, β) =
∫ t

0

(
uα

α

)′
(1 − u)β−1 du

= 1

α
tα(1 − t)β−1 − 1 − β

α

∫ t

0
uα(1 − u)β−2 du

= 1

α
tα(1 − t)β−1 − 1 − β

α

∫ t

0

(
uα+1

α + 1

)′
(1 − u)β−2 du

...

=
M−1∑
k=1

(−1)k−1 (1 − β)k−1

(α)k
tα+k−1(1 − t)β−k

+ (−1)M−1 (1 − β)M−1

(α)M−1
βt(α +M − 1, β −M + 1)

for any M ≥ 2. Applying this to bq(s − 1 + δn,−s − 1), we have (note that qδn = 1)

bq(s − 1 + δn,−s − 1) =
M−1∑
k=1

(−1)k−1 (s + 2)k−1

(s − 1 + δn)k
qs+k−2(1 − q)−s−1−k

+ (−1)M−1 (s + 2)M−1

(s − 1 + δn)M−1
bq(s−2+M+δn,−s−M).

This allows us to carry out the analytic continuation of bq(s − 1 + δn,−s − 1) as a
function of s into the region Re(s) > 2 −M . From this we have

∑
n∈Z
n�=0

s(s + 1)

(2πin)2
bq(s − 1 + δn,−s − 1)

=
M−1∑
k=1

(−1)k−1
∑
n∈Z
n�=0

1

(2πin)2
(s)k+1

(s − 1 + δn)k
qs+k−2(1 − q)−s−1−k

+ (−1)M−1
∑
n∈Z
n�=0

1

(2πin)2
(s)M+1

(s − 1 + δn)M−1

×
∫ q

0
us−3+M+δn(1 − u)−s−M−1 du
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=
M−1∑
k=1

(−1)k−1
∑
n∈Z
n�=0

1

(2πin)2
(s)k+1

(s − 1 + δn)k
qs+k−2(1 − q)−s−1−k

− (−1)M−1 log q
∑
n∈Z
n�=0

1

(2πin)2
(s)M+1

(s − 1 + δn)M−1

×
∫ ∞

1
e2πinxqx(s−2+M)(1 − qx)−s−M−1 dx.

Then, using

lim
q→1

log q

1 − q
= −1, lim

q→1
(1 − q)k(s − 1 + δn)k = (−2πi)k, lim

q→1

1 − qx

1 − q
= x,

we obtain, for Re(s) > 2 −M ,

lim
q↑1

(1 − q)s log q
∑
n∈Z
n�=0

s(s + 1)

(2πin)2
bq(s − 1 + δn,−s − 1)

=
M−1∑
k=1

∑
n∈Z
n�=0

(s)k+1

(2πin)k+2
−
∑
n∈Z
n�=0

(s)M+1

(2πin)M+1

∫ ∞

1
e2πinxx−s−M−1 dx

= −
M−1∑
k=1

Bk+2

(k + 2)! (s)k+1 + (s)M+1

(M + 1)!
∫ ∞

1
B̃M+1(x)x

−s−M−1 dx.

In the last equality, we have used (13) and its form in the case x = 1,

∑
n∈Z
n�=0

1

(2πin)k
= −Bk

k! ,

valid for all k ≥ 2. We carry out the same procedure for the terms containing
bq(s−1+δn,−s) and bq(s−1+δn,−s+1). As it turns out, however, the contributions
from these two vanish when we take q ↑ 1, because the powers of 1 − q that they
contain are lower than those from bq(s − 1 + δn,−s − 1). We therefore obtain, for
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Re(s) > 2 −M ,

lim
q↑1

ζq(s) = 1

s − 1
+ 1

2
+ s

12
+

M∑
k=2

Bk+1

(k + 1)!(s)k − (s)M+1

(M + 1)!

×
∫ ∞

1
B̃M+1(x)x

−s−M−1 dx

= 1

s − 1
+ 1

2
+

M∑
k=1

Bk+1

(k + 1)! (s)k − (s)M+1

(M + 1)!
∫ ∞

1
B̃M+1(x)x

−s−M−1 dx.

This coincides with formula (11) for ζ(s), which is valid for Re(s) > −M and thus
the theorem is established, as the integer M can be chosen arbitrarily large. ✷
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