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WHEN IS A POLYGONAL PYRAMID
NUMBER AGAIN POLYGONAL?

MASANOBU KANEKO AND KATSUICHI TACHIBANA

ABSTRACT. We consider a Diophantine equation arising
from a generalization of the classical Lucas problem of the
square pyramid: when is the sum of the first m-gonal numbers
n-gonal? We use the theory of elliptic surfaces to deduce
several families of parametric solutions of the problem.

1. Introduction. In 1875 Lucas proposed the problem of proving
that 12 + 22 + · · · + 242 = 702 is the only nontrivial solution to the
problem referred to as “the cannonball problem” or “the problem of
the square pyramid”: When is the sum of the first n squares a perfect
square? This problem was settled finally by G.N. Watson in 1918 (see
[1] for the history and an elementary proof of the problem).

In the present paper, by regarding a perfect square as 4-gonal number,
we consider the following generalization of the cannonball problem:
When is the sum of the first m-gonal numbers once again an m-gonal
number, or more generally, a polygonal number of possibly different
order n? Here, for positive integers m ≥ 3 and i ≥ 1, the ith polygonal
number of order m or the ith m-gonal number, is given by

(1) Gm(i) =
m− 2

2
i2 − m− 4

2
i.

We call the sum of the first i m-gonal numbers the ith polygonal
pyramid number of order m, or the ith m-gonal pyramid number and
denote it by Pyrm(i) : Pyrm(i) =

∑i
j=1Gm(j). Then our problem of

the polygonal pyramid is to find (positive) integer solutions (x, y) to
the equation

(2) Gn(y) = Pyrm(x)

for fixed integersm, n ≥ 3. By (1), we can write this equation explicitly
as

(3) 3(n− 2)y2 − 3(n− 4)y = (m− 2)x3 + 3x2 − (m− 5)x.
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For each pair (m,n), this defines an elliptic curve over Q and, according
to Siegel’s theorem, there are only finitely many integral points on the
curve (3). However, it is in general very hard to find them all. Instead,
we view m or n as independent variable and consider a Q[m] or Q[n]
point on the curve. This makes it possible to find several parametric
solutions to (2) (with varying m or n).

Our main results are as follows.

Theorem 1.1. (a) For each integer m ≥ 3, there are infinitely
many m-gonal pyramid numbers expressible as a polygonal number.
Specifically, we have the following identities:

Pyrm(3(m− 2)k − 2) = G9k+2((m− 2)2k −m+ 3),
Pyrm(3k − 1) = G(m−2)k+3(3k − 1),
Pyrm(6k − 3) = G4(m−2)(2k−1)+6(3k − 1)

for any integer k ≥ 1.

(b) Moreover, if m ≡ 2 mod 3, then

Pyrm

(1
3
(m− 2)k − 2

)
= Gk+2

(1
9
(m− 2)2k −m+ 3

)
,(4)

Pyrm(k) = G(1/3)(m−2)(k+1)+3(k),
Pyrm(2k − 1) = G(4/3)(m−2)(2k−1)+6(k)

for any integer k ≥ 1 (for which the expression has meaning).

Theorem 1.2. (a) For each integer n ≥ 3, there are infinitely
many n-gonal numbers expressible as a polygonal pyramid number.
Specifically, we have

Gn((n− 2)k2 − 3k + 1) = Pyr 3k+2((n− 2)k − 2),(5)
Gn(8k2 − 6k + 1) = Pyr 3(n−2)k+2(4k − 2).(6)

Moreover, if n ≡ 2 mod 9, we have

Gn

(n− 2
9

k2 − k + 1
)
= Pyr k+2

(n− 2
3

k − 2
)
.
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(b) For n = 3, 5 and 8, there are other families of n-gonal numbers
that can be expressed as a polygonal pyramid number. Namely, we have

G3(2(12k2 + 13k + 3)) = Pyr 27k+20(4k + 2),
G5(6k2 + k) = Pyr 12k+6(3k),

G5(6k2 + 5k + 1) = Pyr 12k+10(3k + 1),
G5(2(12k2 − 25k + 13)) = Pyr 3k(12k − 14),
G5(2(12k2 − 17k + 6)) = Pyr 3k+1(12k − 10),

G8(30k2 + k) = Pyr 75k+7(6k),
G8(30k2 + 41k + 14) = Pyr 75k+57(6k + 4).

Here k ≥ 0 is any integer for each equation (for which the sum has
meaning).

Theorem 1.3. When both m and n are viewed as independent
variables, one and only one Q[m,n] point exists on the elliptic curve
(3), namely,

(x, y) =
(1
3
(mn− 2m− 2n− 2),

1
9
(m2n− 2m3 − 4mn−m+4n+19)

)
.

The equation (5), or equivalently (4), since these two represent
essentially the same solution, when specialized to n = 3k + 2, gives
us a parametric solution (x, y,m) = (3k2 − 2, 3k3 − 3k + 1, 3k + 2) to
the special case m = n of (2) (when m ≡ 2 mod 3). We state this as

Corollary 1.4. Suppose m ≡ 2 mod 3 and write m = 3k + 2 with
k ≥ 1. The equation

Gm(y) = Pyrm(x)

has a parametric solution

(x, y) = (3k2 − 2, 3k3 − 3k + 1).

Notice that one can easily verify the identities in Theorems 1.1 and
1.2. But we show here how we can obtain these identities systematically
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from the polynomial points on the elliptic curve (3). In order to obtain
every polynomial point, we use an improved version of the results of
Hindy-Silverman [4] on an upper bound of the height pairing (the
canonical height) for polynomial points on an elliptic curve over a
rational function field (Proposition 4.1 in Section 4).

Various other variations to the original square pyramid problem have
been considered. Of them, we mention that Kuwata and Top [5] treated
the equation y2 =

∑n−1
i=0 (x+ i)2 for a positive integer n ≥ 2 also from

a viewpoint of the theory of elliptic surfaces. We also note in passing
that Beukers and Top [2] considered the problem that is equivalent to
finding integer solutions to the cubic equation Pyr 3(m) = Pyr 4(n) in
our notation.

Theorems will be proved in Section 3 after the determination in
Section 2 of the structure of the Mordell-Weil group of the curve (3),
viewed as defined over the rational function field Q(m) (with fixed n
and varying m). The last Section 4 will be devoted to giving an upper
bound of heights of polynomial points, which is used in Section 3, as
mentioned.

2. Mordell-Weil groups and generators. Fixing an integer n ≥ 3
and viewing m as a variable, we regard the elliptic curve (3) as being
defined over Q(m). Now let us make a change of variables:

(7) t = m− 2, x =
3

(n−2)t
X − 1

t
, y =

3
(n−2)2t

Y +
n−4

2(n−2)
.

This changes the equation (3) into the following elliptic curve over the
rational function field Q(t) defined by a (minimal) Weierstrass form

(8) En : Y 2 = X3 + p(t)X + q(t),

where
p(t) = −1

9
(n− 2)2(t2 − 3t+ 3),

q(t) =
1

108
(n− 2)2((3n2 − 20n+ 40)t2

− 12(n− 2)t+ 8n− 16).

In the present section we will determine the structure of the Mordell-
Weil group En(Q̄(t)) for each n ≥ 3. And we will also find generators of
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each Mordell-Weil group by calculating the height pairing. Notations
here follow [7]. We note that the minimal elliptic surface corresponding
to our elliptic curve (8) is rational, and hence the structure theorem of
the Mordell-Weil lattice as developed in Theorem 10.3 in [7] is applica-
ble. Namely, the structure of the Mordell-Weil group is determined by
the data of singular fibers which is described in the following lemma.

Lemma 2.1. For each n ≥ 3, reducible singular fibers of the minimal
elliptic surface over P1 corresponding to the elliptic curve (8) are fully
described as follows:

(a) Both E3 and E6 have an I3-fiber at t = 0 and an I∗0 -fiber at t = ∞.

(b) E4 has an I2-fiber at each t = 0, 3 and 3/2 and an I∗0 -fiber at
t = ∞.

(c) Both E5 and En for n ≥ 7 have an I2-fiber at t = 0 and an I∗0 -fiber
at t = ∞.

Proof. It is known as Tate’s algorithm [9] that the type of singular
fiber over t = t0 is completely determined and calculable by the orders
at t0 of the discriminant ∆ = 4p(t)3 +27q(t)2, q(t) and the j-invariant
of the elliptic curve (8). The discriminant is given by

∆ = − 1
11664

(n− 2)4t2
(
64(n− 2)2t4 − 576(n− 2)2t3

− 9(27n4 − 360n3 + 1664n2 − 3776n+ 3776)t2

+ 648(n− 2)(3n2 − 28n+ 56)t− 1296(n− 2)(n− 3)(n− 6)
)
.

The order of ∆ at t = 0 is 2 for all n except for 3 and 6, in which
cases the order is 3. And we can verify by computing the discriminant
that the second factor, the polynomial of degree 4, has double zeros
only when n = 4, for integer n ≥ 3, and the roots are t = 3 and
3/2. The order of ∆ at t = ∞ is equal to that of ∆ at s = 0 in the
equation obtained from the change of variables s = 1/t, X ′ = s2X and
Y ′ = s3Y . From these the lemma is established using Tate’s algorithm.

Remark. Of course, there are also irreducible singular fibers on each
elliptic surface. However, those make no effect on the structure of the
Mordell-Weil group and thus we do not describe such fibers here.
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For each n ≥ 3, let

P
(n)
1 =

(1
3
(n− 2)(t+ 1),

1
6
n(n− 2)t

)
,

P
(n)
2 =

(1
3
(n− 2),− 1

6
(n− 2)(n− 4)t

)
and

P
(n)
3 =

(1
3
(n− 2)(−t+ 1),− 1

6
(n− 2)(n− 4)t

)
be points on the elliptic curve (8) corresponding to trivial points
(1, 1), (0, 0) and (−1, 0) on the original elliptic curve (3). And, for
n = 4, we add one more point: Let P (4)

4 = (2(t − 2)/3, 0) be the
point corresponding to another trivial point ((m− 5)/(m− 2), 0). The
following proposition gives the structure and generators of the Mordell-
Weil group of En(Q̄(t)).

Proposition 2.2. The structure and generators of the Mordell-Weil
group of En(Q̄(t)) are as follows:

(a) E3(Q̄(t)) ∼= E6(Q̄(t)) ∼= Z ⊕ Z and generators are P (3)
1 , P

(3)
2 and

P
(6)
1 , P

(6)
2 , respectively.

(b) E4(Q̄(t)) ∼= Z ⊕ (Z/2Z)2 and P
(4)
1 is a free generator. Torsion

points of order 2 are P (4)
2 , P

(4)
3 and P

(4)
4 .

(c) For n = 5 and n ≥ 7, En(Q̄(t)) ∼= Z ⊕ Z ⊕ Z and generators are

P
(n)
1 , P

(n)
2 and P

(n)
3 .

Proof. (a) There is essentially no difference between two cases n = 3
and 6, and so we treat the first here. From the types of two reducible
fibers in Lemma 2.1 (a), the lattice of irreducible components of those
fibers is

(
4 −2

−2 4

)
. Considering the dual lattice of the orthogonal of this

lattice in E8, cf. [3], the Mordell-Weil group E3(Q̄(t)) is isomorphic to
(1/6)

(
4 1

1 4

)
as a lattice. (The lattice is obtained also from the table of

[6], and so are the other ones below.) It follows that the rank of the
group is 2 and the height pairing of each generator with itself has to
be 2/3.
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By the explicit formula of the height pairing [7], we have (under the
notation in [7])

〈P (3)
1 , P

(3)
1 〉 = 2− contr 0(P

(3)
1 )− contr∞(P (3)

1 ).

Since contr 0(P
(3)
1 ) = 2/3 and contr∞(P (3)

1 ) = 2/3, we have 〈P (3)
1 ,

P
(3)
1 〉 = 2/3. Hence, P (3)

1 is a generator of E3(Q̄(t)), and by the same
calculation, so is P (3)

2 .

(b) From the previous lemma, the lattice of irreducible components is
D4 ⊕A⊕3

1 and therefore, E4(Q̄(t)) is isomorphic to A∗
1 ⊕ (Z/2Z)2. Tor-

sion points correspond to the roots of the righthand side of the equation
(8), i.e., P (4)

2 , P
(4)
3 and P

(4)
4 . Since the free part is isomorphic to A∗

1,
the height pairing of a generator is 1/2. Observing singular points on
each singular fiber, we have contr 0(P

(4)
1 ) = 1/2, contr∞(P (3)

1 ) = 1 and
contr 3(P

(4)
1 ) = contr 3/2(P

(4)
1 ) = 0, and hence 〈P (4)

1 , P
(4)
1 〉 = 1/2 from

the formula. Therefore, P (4)
1 is a generator of E4(Q̄(t)).

(c) In every case, the lattice of irreducible components is D4 ⊕ A1

and hence En(Q̄(t)) is isomorphic to A∗⊕3
1 . From singular points on

each singular fiber, contr 0(P
(n)
i ) = 1/2 and contr∞(P (n)

i ) = 1, and it
follows that 〈P (n)

i , P
(n)
i 〉 = 1/2, i = 1, 2 and 3, from the formula, as is

required.

Corollary 2.3. En(Q̄(t)) = En(Q(t)) for every n ≥ 3.

Proof. This is clear because all the generators of each En(Q̄(t)) given
in the proposition are defined over Q(t).

3. Proof of theorems. By (7), the point (x, y) on (3) corresponds
to the point (X,Y ) on the elliptic curve (8) where

(9) X =
1
3
(n− 2)(tx+ 1), Y =

1
6
(n− 2)(2(n− 2)y − n+ 4)t.

In order to find integral points on the curve (3) over Q (integers m
and n being fixed), we search for Q[m]-integral points (x, y), i.e., x and
y ∈ Q[m], on (3) viewed as over Q(m), with an integer n fixed. Then,
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by (9), corresponding points on (8) must be Q[t]-integral (polynomial
points). We can find all the polynomial points from the generators
of En(Q(t)) because heights of polynomial points are bounded. We
need a practical bound for actual computation and this will be given
by Corollary 4.4 to Proposition 4.1 in the next section.

Proposition 3.1. For each value of n ≥ 3, the following table
lists the parametric integer solutions (x, y,m) coming from Q[t]-integral
points on the elliptic curve (8).

TABLE 1. Parametric solutions in case of fixing n.

n (x, y,m)
n = 3 i) (k − 2, k2 − 3k + 1, 3k + 2)

ii) (4k − 2, (2k − 1)(4k − 1), 3k + 2)
iii) (4k + 2, 2(3k + 1)(4k + 3), 27k + 20)

n = 4 i) (2k − 2, (k − 1)(2k − 1), 3k + 2)
n = 5 i) (3k − 2, 3k2 − 3k + 1, 3k + 2)

ii) (4k − 2, (2k − 1)(4k − 1), 9k + 2)
iii) (3k, k(6k + 1), 12k + 6)
iv) (3k + 1, (2k + 1)(3k + 1), 12k + 10)
v) (12k − 14, 2(k − 1)(12k − 13), 3k)
vi) (12k − 10, 2(3k − 2)(4k − 3), 3k + 1)

n = 6 i) (4k − 2, 4k2 − 3k + 1, 3k + 2)
ii) (k − 2, (1/2)(k − 1)(k − 2), 3k + 2)

n ≥ 7 i) ((n− 2)k − 2, (n− 2)k2 − 3k + 1, 3k + 2)
(n− 2)k/3− 2, (n− 2)k2/9− k + 1, k + 2)
if n ≡ 2 mod 9

ii) (4k − 2, (2k − 1)(4k − 1), 3(n− 2)k + 2)
n = 8 iii) (6k, k(30k + 1), 75k + 7)

iv) (6k + 4, (3k + 2)(10k + 7), 75k + 57)
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Proof. We find all Q[t]-integral points on the elliptic curve (8) using
the estimate of heights given in Corollary 4.4 in the next section, and
check if they correspond to Q[m]-integral points on the curve (3). We
shall simply write Pi for P

(n)
i .

When n = 3, computation shows that only 2P2,−2P1 − 2P2 and
−2P1 give Q[m]-integral points on (3) and they are respectively ((m−
8)/3, (m2 − 13m+ 31)/9), (2(2m− 7)/3, (1/9)(2m− 7)(4m− 11)) and
(2(2m − 13)/27, 2(m − 11)(4m + 1)/243). The first and the second
points become (Z- and positive) integral points if and only if m is an
integer of the form 3k + 2 where k ≥ 3 for the first and k ≥ 1 for the
second. For the third point the condition is m = 27k + 20 for k ≥ 0.

When n = 4, −P1 + P4 is the unique point to look at and it gives
(2(m− 5)/3, (m− 5)(2m− 7)/9) on the curve (3). This will become a
positive integer point if and only if m = 3k + 2 for k ≥ 2.

For the case n = 5, four points occur: −P1 + P2 + P3, −P1 − P2 −
P3, −P1 − P2 + P3 and −P1 + P2 − P3 on (3). These correspond
respectively to (m−4, (m2−7m+13)/3)), (2(2m−13)/9, (2m−13)(4m−
17)/81), ((m− 6)/4, (m− 4)(m− 6)/24)) and (4m− 14, 2(m− 3)(4m−
13)/3). The first and the second are integer points only in the case
m = 3k + 2 for k ≥ 1 and m = 9k + 2 for k ≥ 1, respectively. For the
third, m = 12k+6 for k ≥ 1 or m = 12k+10 for k ≥ 0 is the condition.
And m = 3k for k ≥ 2 or m = 3k + 1 for k ≥ 1 is for the last.

When n = 6, −2P1 + 2P2 and −2P1 are required points. (Here we
note that 2P2 is also Q[m]-integral but this point gives negative y for
all m.) These two points become (2(4m− 14)/3, (4m2 − 25m+ 43)/9)
and ((m− 8)/3, (m− 5)(m− 8)/18) on (3), and then m = 3k+2 is the
condition to be positive integral points for both cases where k ≥ 1 and
k ≥ 3, respectively.

For every n ≥ 7, −P1 + P2 + P3, −P1 − P2 − P3 and −P1 − P2 + P3

satisfy the condition. On the curve (3) these three points correspond
to

(1
3
(mn−2m−2n−2),

1
9
(m2n−2m2−4mn−m+4n+19)

)(10)

=
(1
3
(m−2)(n−2)− 2,

1
9
(m−2)2(n−2)−m+ 3

)
,

(11)
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(
4(m−2)
3(n−2)

− 2,
(2(m−2)
3(n−2)

− 1
)(4(m−2)

3(n−2)
− 1

))
,

and(
(mn−2m−8n+22)

3(n− 3)2
,
(mn−2m−8n+22)(mn−2m−5n+13)

9(n− 2)(n− 3)3

)
.

The first is positive integral ifm = 3k+2 for k ≥ 1. When n ≡ 2 mod 9,
the first is always integral for any value of m. The second is integral if
m = 3(n − 2)k + 2 for k ≥ 1. (When n − 2 is even, the condition can
be weakened. However, we do not want to make our case distinction
too complicated to describe.) The third requires a little more work and
will be treated as

Lemma 3.2. The point

(x, y) =(
(mn−2m−8n+22)

3(n− 3)2
,
(mn−2m−8n+22)(mn−2m−5n+13)

9(n− 2)(n− 3)3

)

on the curve (3) becomes an integer point only when n = 8. In that
case the condition on m for (x, y) to be a positive integer point is that
m = 75k + 7 for k ≥ 1 or m = 75k + 57 for k ≥ 0.

Proof of Lemma 3.2. Put n − 2 = q. In order that y is an integer,
q must divide (mn − 2m − 8n + 22)(mn − 2m − 5n + 13). Since
(mn−2m−8n+22)(mn−2m−5n+13) ≡ 6 ·3 = 18 mod q, q must be a
divisor of 18 and hence, because n ≥ 7, possible values of n(= q+2) are
8, 11, 20. It is easy to see that n = 11 and n = 20 are impossible. When
n = 8, the point (x, y) becomes (2(m−7)/25, (m−7)(2m−9)/375). For
x to be integral, m must be of the form 25k+7. Then y = k(10k+1)/3
and thus k must be congruent to 0 or 2 mod 3. Therefore (x, y) is
positive integral if and only ifm = 75k+7 for k ≥ 1 or m = 75k+57 for
k ≥ 0. This proves the lemma and thus the proposition is established.

In the course of our computation of points on (3) for general n ≥ 7,
we found points other than (10) whose coordinates are polynomials in
n; namely,

−P1 − P2 =
(3n−m− 7

m− 2
,
3n−m− 7
m− 2

)
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and

−P1 − P3 =
( 3(n− 6)
4(m− 2)

,
3n+ 4m− 26

8(m− 2)

)
.

For a fixed value of m, we shall investigate the condition on n in order
for these points to be integral. First, if m = 3, the first point is always
integral and positive provided that n is an integer ≥ 4 whereas the
second is a positive intgral when and only when n = 8k+2 with k ≥ 1.
Assume m > 3. The point

(3n−m− 7
m− 2

,
3n−m− 7
m− 2

)
=

(3(n− 3)
m− 2

− 1,
3(n− 3)
m− 2

− 1
)

is integral if n − 3 is of the form (m − 2)k. If m − 2 is divisible by 3,
then the condition can be weakened to n− 3 = (m− 2)k/3. The point

( 3(n− 6)
4(m− 2)

,
3n+ 4m− 26

8(m− 2)

)
=

( 3(n− 6)
4(m− 2)

,
1
2
· 3(n− 6)
4(m− 2)

+
1
2

)

is integral if and only if 3(n− 6)/4(m− 2) is an odd integer. This is so
if n− 6 is of the form 4(m− 2)(2k+1). If m− 3 is divisible by 3, then
it is enough for n− 6 to be of the form 4(m− 2)(2k + 1)/3. Summing
up, we obtain the following

Proposition 3.3. Suppose an integer m ≥ 3 is fixed. We have the
following parametric solutions (x, y, n) where x, y and n are polynomials
in an integer k ≥ 1:

(x, y, n) = (3(m− 2)k − 2, (m− 2)2k −m+ 3, 9k + 2),
= (3k − 1, 3k − 1, (m− 2)k + 3),
= (6k − 3, 3k − 1, 4(m− 2)(2k − 1) + 6).

Moreover, if m ≡ 2 mod 3, then we have

(x, y, n) =
1
3
(m− 2)k − 2,

1
9
(m− 2)2k −m+ 3, k + 2,

=
(
k, k,

1
3
(m− 2)(k + 1) + 3

)
,

=
(
2k − 1, k,

4
3
(m− 2)(2k − 1) + 6

)
.
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Propositions 3.1 and 3.3 provide the identities of Theorems 1.1 and
1.2. Theorem 1.3 is also deduced from the above consideration, since a
Q[m,n] point must be a priori a Q[m] point (when n is fixed).

Remark. If we regard the elliptic curve (8) as being defined over Q(n)
(we denote it by E′

m here), the Mordell-Weil group E′
m(Q(n)) is a little

complicated. In this case there are two types of the Mordell-Weil group
according as m = 5 or m �= 5. But we have to pay more attention to
their generators. First, in case ofm = 5 (t = 3), the Mordell-Weil group
E′

5(Q̄(n)) is isomorphic to Z3. We can easily verify that P (n)
1 and P (n)

2

are again generators in this case, too. But a remaining generator is
completely different from any generators of En(Q(t)). Indeed,

(1
3
(3
√−1− 2)(n− 2),

1
2
n(n− 2)

)
is a third generator, which does not correspond to a trivial point on the
elliptic curve (3). Thus the Mordell-Weil group E′

5(Q̄(n)) is actually
E′

5(Q
√−1)(n)). Anyway, we can search for Q[n]-integral points from

these generators. But there is no new Q[n]-point other than those
already obtained before.

In case of m �= 5, the Mordell-Weil group E′
m(Q̄(n)) is isomorphic

to Z4. Generators are P (n)
1 , P

(n)
2 , P

(n)
3 and a point with the following

X-coordinate:

X = − 1
6

(
m− 2±

√
m2 − 22m+ 49

)
(n− 2).

Thus, the field of definition becomes strictly larger than Q (except for
m = 20, 22 and 30). It would, therefore, be hard to investigate the
whole Q(n)-rational points and presumably no new Q[n] points will be
found.

4. Upper bound for heights of polynomial points. In this
section we shall prove the following

Proposition 4.1. Let k be an algebraically closed field of characteris-
tic other than 2 or 3, E an elliptic curve given by a minimal Weierstrass
form over k(t), and r the number of distinct zeros of the discriminant
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∆. Then for a polynomial point P = (x(t), y(t)) ∈ E(k(t)), we have
the following properties:

(i) When r ≥ 2,

〈P, P 〉 ≤
{
2χ+ 4r − 6 if 12 � deg (∆)
2χ+ 4r − 4 if 12 | deg (∆).

(ii) When r = 1, P is a torsion point, and hence

〈P, P 〉 = 0.

Here 〈P, P 〉 is the height pairing in the sense of [7] and χ is the
arithmetic genus of the minimal model.

We note that the height pairing here is twice the canonical height.
Suppose E is given by a minimal Weierstrass form;

(12) E : y2 = x3 + p(t)x+ q(t),

where p(t) and q(t) are in k[t]. By minimal we mean the degree of the
discriminant ∆ is minimal. Then a positive integer µ = min{m ∈ Z |
deg (p(t)) ≤ 4m and deg (q(t)) ≤ 6m} is uniquely determined. For a
point P = (x(t), y(t)) on the elliptic curve E, if deg (x(t)) ≤ 2µ and
deg (y(t)) ≤ 3µ, then we can easily show 〈P, P 〉 ≤ 2χ [7]. Thus we
treat a polynomial point P = (x(t), y(t)) on the elliptic curve (12) such
that deg (x(t)) ≥ 2µ and deg (y(t)) ≥ 3µ.

In order to prove the theorem above, we need the following two
lemmas.

Lemma 4.2. For a polynomial point P = (x(t), y(t)) ∈ E(k(t)),

(PO) =
1
2
deg (x(t))− µ,

where (PO) is the intersection number of the section (P ) and the zero
section (O).

Proof. Since P = (x(t), y(t)) is a polynomial point, the section (P )
does not intersect the zero section (O) except on the fiber at t = ∞.
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It follows that (PO) = (PO)t=∞, where (PO)t=∞ is the local index at
the intersecting point of two sections on the fiber at t = ∞. Now we
change the coordinate of the elliptic curve (12). Let s = 1/t, X = s2µx
and Y = s3µy, and moreover, W = X/Y and Z = 1/X. Then we have
the elliptic curve

Ẽ : Z =W 3 + p̃(s)WZ2 + q̃(x)Z3,

where p̃(s) = s4µp(1/s) and q̃(s) = s6µq(1/s) are in k[s]. By
this coordinate change, the point P becomes P̃ = (w(s), z(s)) =
(X(s)/Y (s), 1/Y (s)) and the point at infinity O is the origin Õ = (0, 0).
So we may calculate (P̃ Õ)s=0, i.e., the local intersection number of two
sections (P̃ ) and (Õ) at the point p = (0, 0, 0) on {(W,Z, s)}, which is
the affine expression of the minimal elliptic surface S of Ẽ.

The local ring of this surface at the point p is

OS,p = k[W,Z, s]p/(Z −W 3 − p̃(s)WZ2 − q̃(s)Z3)

and the local equation of the section (P̃ ), respectively (Õ), at p is
W − w(s) = 0, respectively W = 0. Since w(s) = us(1/2)deg (x(t))−µ for
some u in k[s]∗0, it follows from the definition of an intersection number
that

(PO) = dimk OS,p/(W − w(s),W )

= dimk k[s]0/(s(1/2)deg (x(t))−µ)

=
1
2
deg (x(t))− µ,

where the second equality is obtained from the isomorphism of k-vector
spaces

OS,p/(W − w(s),W ) ∼= k[s]0/(w(s)).

Lemma 4.3. For a polynomial point P = (x(t), y(t)) ∈ E(k(t)),

〈P, P 〉 ≤ 2χ− 2µ+ deg (x(t)).

Proof. From the formula, Theorem 8.6 in [7], of the height pairing,
we have

〈P, P 〉 ≤ 2χ+ 2(PO).
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This combined with Lemma 4.2 gives the desired inequality.

Proof of Proposition 4.1. Let h : K → Z be the height function (K is
the function field) i.e., h(f) is either the total number of zeros of f or
the total number of poles [8]. Choosing zeros of ∆ and ∞ as the set S
in the inequality of [4, Proposition 8.2] or [8, Theorem 12.3], we have

(13) h
(y4

∆

)
≤ 24(r − 1).

Case (i). As we have noticed, we are treating a polynomial point
P = (x(t), y(t)) such that deg (x(t)) ≥ 2µ and deg (y(t)) ≥ 3µ. Since
the discriminant ∆ is also a polynomial and deg (∆) ≤ 12m by the
assumption, we have

h
(y4

∆

)
≥ 4h(y)− h(∆) = 4deg (y(t))− deg (∆).

Thus from the inequality (13),

deg (y(t)) ≤ 6(r − 1) +
1
4
deg (∆)

≤ 6(r − 1) +

{
3(µ− 1) if 12 � deg (∆)

3µ if 12 | deg (∆)

=

{
6r + 3µ− 9 if 12 � deg (∆)

6r + 3µ− 6 if 12 | deg (∆).

Since deg (x(t)) = 2/3deg (y(t)), we have

deg (x(t)) ≤
{
4r + 2µ− 6 if 12 � deg (∆)
4r + 2µ− 4 if 12 | deg (∆).

Hence we obtain the desired result by Lemma 4.3.

Case (ii). Since h(y4/∆) = 0 from the inequality (13), y4 = α∆ for
some α in k. By the assumption that y(t) is a polynomial, if 4 � deg (∆),
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then α = 0, and, therefore, P = (x(t), 0), i.e., a torsion point of order 2.
If 4 | deg (∆), then a minimal Weierstrass form is as follows:

y2 = x3 + β(t+ γ)2l, l = 1 or 2,

for some β and γ in k. But both of the elliptic curves above have two
singular fibers of the types IV and IV∗, and hence the Mordell-Weil
groups are isomorphic to Z/2Z. Indeed, for P = (0, β1/2(t + γ)l), we
have E(k(t)) = {O,P, 2P}. The fact that 〈P, P 〉 = 0 is immediately
obtained from the definition of the height pairing.

Corollary 4.4. In addition to the assumption in Proposition 4.1, if
E is a rational elliptic surface, then

〈P, P 〉 ≤
{
4r − 4 if deg (∆) < 12,
4r − 2 if deg (∆) = 12.

Proof. This follows immediately from the fact that χ = µ = 1 when
E is rational.

Corollary 4.5. In general, for a polynomial point P ,

〈P, P 〉 ≤ 2χ+ 48µ− 4.

In particular, 〈P, P 〉 ≤ 46 if E is rational.

Proof. Immediately from the fact that r ≤ deg (∆) ≤ 12µ.
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