# SUPERSINGULAR j-INVARIANTS AS SINGULAR MODULI MOD p 

Masanobu KANEKO ${ }^{1}$

(Received April 11, 1989)

1. Introduction. In this paper we shall give some results concerned with the reduction modulo $p$ of the minimal polynomials of "singular moduli". Let $O_{D}=\boldsymbol{Z}\left[\frac{1}{2}(D+\sqrt{-D})\right]$ be the imaginary quadratic order of discriminant $-D$ $(D \equiv 0,3 \bmod 4)$. We denote by $P_{D}(X)$ the monic polynomial whose roots are precisely the distinct $j$-invariants of elliptic curves over $\overline{\boldsymbol{Q}}$ with complex multiplication by $O_{D}(\overline{\boldsymbol{Q}}$ is the algebraic closure of the rationals $\boldsymbol{Q})$. It is well known that $P_{D}(X)$ has its coefficients in the ring of integers $\boldsymbol{Z}$ and the degree of $P_{D}(X)$ is equal to the class number of $O_{D}$. Let $E$ be an elliptic curve defined over $\boldsymbol{Q}$ and $J=j(E)$ be its $j$-invariant. As was observed by N. Elkies in [5], if a prime factor $p$ of the numerator of $P_{D}(J)$ satisfies $\left(\frac{\boldsymbol{Q}(\sqrt{-D})}{p}\right) \neq 1$ (i.e., $p$ does not split completely in $\boldsymbol{Q}(\sqrt{-D})$ ), then (provided that $E$ has good reduction at $p) p$ is supersingular for $E$. Conversely, every supersingular prime $p$ for $E$ appears as a prime factor of the numerator of $P_{D}(J)$ for some $D$ with $\left(\frac{\boldsymbol{Q}(\sqrt{-D})}{p}\right) \neq 1$. Elkies pointed out that, for supersingular $p$, such $D$ can always be found within the bound $D<2 p^{2 / 3}$. Furthermore he made an observation that such bound seemed to be in no way best possible. The first purpose of this paper is to give a better bound $D \leq \frac{4}{\sqrt{3}} \sqrt{p}$, which is a consequence of the following

Theorem 1. Every supersingular j-invariant contained in the prime field $\boldsymbol{F}_{p}$ is a root of some $P_{D}(X) \bmod p$ with $D \leq \frac{4}{\sqrt{3}} \sqrt{p}$.

Here we recall that supersingular $j$-invariants in characteristic $p$ are all contained in $\boldsymbol{F}_{p^{2}}$ (the field with $p^{2}$ elements) and some of them are in $\boldsymbol{F}_{p}$ whose cardinality is related to the class number of the field $\boldsymbol{Q}(\sqrt{-p})$. As our $E$ is defined over $\boldsymbol{Q}, j(E) \bmod p$ is contained in $\boldsymbol{F}_{p}$.

[^0]Our next theorem concerns common roots of two polynomials $P_{D_{1}}(X) \bmod$ $p$ and $P_{D_{2}}(X) \bmod p$.

Theorem 2. If two different discriminants $-D_{1}$ and $-D_{2}$ satisfy $D_{1} D_{2}<4 p$ (in particular $D_{1}, D_{2}<2 \sqrt{p}$ ), then two polynomials $P_{D_{1}}(X) \bmod p$ and $P_{D_{2}}(X)$ mod $p$ in $\boldsymbol{F}_{\rho}[X]$ have no roots in common. In other words, every prime factor $p$ of the resultant of $P_{D_{1}}(X)$ and $P_{D_{2}}(X)$ satisfies $p \leq \frac{D_{1} D_{2}}{4}$.

Furthermore, if $\boldsymbol{Q}\left(\sqrt{ }-D_{1}\right)=\boldsymbol{Q}\left(\sqrt{-D_{2}}\right)$, the above inequality $D_{1} D_{2}<4 p$ (resp. $\left.p \leq \frac{D_{1} D_{2}}{4}\right)$ can be replaced by $D_{1} D_{2}<p^{2}$ (resp. $p \leq \sqrt{D_{1} D_{2}}$ ).

As our proof will show, each prime factor $p$ of the resultant of $P_{D_{1}}(X)$ and $P_{D_{2}}(X)$ divides a positive integer of the form $\left(D_{1} D_{2}-x^{2}\right) / 4$. When $D_{1}$ and $D_{2}$ are fundamental discriminants and relatively prime, this fact was given by B . Gross and D. Zagier in [6] as a corollary of their explicit prime factorization of the resultant of $P_{D_{1}}(X)$ and $P_{D_{2}}(X)$.

By Deuring's theory of reduction of elliptic curves, Theorem 2 can be reformulated as the following Theorem $2^{\prime}$ which is a little more general than a theorem of Eichler [3] but the proof is essentially the same. Let $Q_{\infty, p}$ be the definite quaternion algebra over $\boldsymbol{Q}$ which ramifies only at $p$. The order $O_{D}$ is said to be optimally embedded in a maximal order $R$ of $\boldsymbol{Q}_{\infty, p}$ if $\boldsymbol{Q}(\sqrt{ }-\bar{D})$ embeds into $Q_{\infty, p}$ and $R \cap \boldsymbol{Q}(\sqrt{-D})=O_{D}$.

Theorem 2'. Suppose that two quadratic orders $O_{D_{1}}$ and $O_{D_{2}}$ are optimally embedded in a maximal order of $Q_{\infty, p}$ with different images, then the inequality $D_{1} D_{2} \geq 4 p$ holds. If $\boldsymbol{Q}\left(\sqrt{-D_{1}}\right)=\boldsymbol{Q}\left(\sqrt{-D_{2}}\right)$, this inequality can be replaced by $D_{1} D_{2} \geq p^{2}$.

In the appendix, we shall give an alternative proof of a proposition by Elkies [5] which was crucial for his proof of the infinitude of supersingular primes for elliptic curves over $\boldsymbol{Q}$.

The author is very grateful to Professor T. Ibukiyama for his helpful communications. The constant of our Theorem 1 was improved to the present form by his remark.
2. Proof of Theorem 1. Let $E$ be an arbitrary supersingular elliptic curve defined over $\boldsymbol{F}_{p}\left(\right.$ hence its $j$-invariant is contained in $\left.\boldsymbol{F}_{p}\right)$ and End $E$ its endomorphism ring over the algebraic closure of $\boldsymbol{F}_{p}$. To prove Theorem 1, it suffices to show that End $E$ contains an order $O_{D}$ with $D \leq \frac{4}{\sqrt{3}} \sqrt{p}$. For, if an order $O_{D}$ is contained in End $E$, by Deuring's Lifting Lemma ([2, p. 259]), there exists an elliptic curve over $\overline{\boldsymbol{Q}}$ with complex multiplication by some order $O_{D^{\prime}}$
containing $O_{D}$ whose reduction to characteristic $p$ is isomorphic to $E$. Then the $j$-invariant of $E$ is a root of $P_{D^{\prime}}(X) \bmod p$ with $D^{\prime} \leq D \leq \frac{4}{\sqrt{3}} \sqrt{p}$ and Theorem 1 follows. It is well known that, when $E$ is defined over $\boldsymbol{F}_{p}$, End $E$ is isomorphic to a maximal order of $Q_{\infty, p}$ which contains an element with the minimal polynomial $X^{2}+p$ (Frobenius element). On the other hand, such a maximal order has been described explicitly by Ibukiyama in [7] as follows. Choose a prime $q$ such that $q \equiv 3 \bmod 8$ and $\left(\frac{-p}{q}\right)=1$. Here, $\left(\frac{-p}{q}\right)$ is the Legendre's symbol. Then $Q_{\infty, p}$ can be realized as

$$
\boldsymbol{Q}_{\infty, p}=\boldsymbol{Q}+\boldsymbol{Q} \alpha+\boldsymbol{Q} \beta+\boldsymbol{Q} \alpha \beta,
$$

where $\alpha^{2}=-p, \beta^{2}=-q$, and $\alpha \beta=-\beta \alpha$. Choosing an integer $r$ such that $r^{2}+$ $p \equiv 0 \bmod q$, put

$$
O(q, r)=Z+Z \frac{1+\beta}{2}+Z \frac{\alpha(1+\beta)}{2}+Z \frac{(r+\alpha) \beta}{q} .
$$

When $p \equiv 3 \bmod 4$, we further choose an integer $r^{\prime}$ such that $r^{\prime 2}+p \equiv 0 \bmod$ $4 q$ and put

$$
O^{\prime}\left(q, r^{\prime}\right)=\boldsymbol{Z}+\boldsymbol{Z} \frac{1+\alpha}{2}+\boldsymbol{Z} \beta+\boldsymbol{Z} \frac{\left(r^{\prime}+\alpha\right) \beta}{2 q} .
$$

Then a part of Ibukiyama's results says that both $O(q, r)$ and $O^{\prime}\left(q, r^{\prime}\right)$ (their isomorphism classes depend only on $q$ not on $r$ nor $r^{\prime}$ ) are maximal orders of $Q_{\infty, p}$ and any maximal order which contains an element with the minimal polynomial $X^{2}+p$ is isomorphic to $O(q, r)$ or $O^{\prime}\left(q, r^{\prime}\right)$ with suitable choise of $q$. 'Therefore our task is to show that for any $q$ both $O(q, r)$ and $O^{\prime}\left(q, r^{\prime}\right)$ contain an element $\frac{1}{2}(D+\sqrt{-D})$ (i.e., an element with the minimal polynomial $X^{2}-$ $\left.D X+\frac{1}{4}\left(D^{2}+D\right)\right)$ with $D \leq \frac{4}{\sqrt{3}} \sqrt{p}$.

We start with $O(q, r)$. Let

$$
\gamma=w+x \frac{1+\beta}{2}+y \frac{\alpha(1+\beta)}{2}+z \frac{(r+\alpha) \beta}{q}
$$

denote an element in $O(q, r)(w, x, y, z \in Z)$ and consider the following diophantine equations:

$$
\operatorname{tr}(\gamma)=2 w+x=D
$$

and

$$
n(\gamma)=\left(w+\frac{x}{2}\right)^{2}+\frac{p}{4} y^{2}+q\left(\frac{x}{2}+\frac{z r}{q}\right)^{2}+p q\left(\frac{y}{2}+\frac{z}{q}\right)^{2}=\frac{D^{2}+D}{4},
$$

where $\operatorname{tr}(\gamma)$ (resp. $n(\gamma)$ ) is the reduced trace (resp. norm) of $\gamma$. These equations are equivalent to

$$
\begin{gather*}
2 w+x=D  \tag{2-1}\\
p y^{2}+q\left(x+\frac{2 z r}{q}\right)^{2}+p q\left(y+\frac{2 z}{q}\right)^{2}=D . \tag{2-2}
\end{gather*}
$$

Note that, by our choise of $q$ and $r$, for any $x, y, z$ in $\boldsymbol{Z}$ the left hand side of (2-2) always represent an integer congruent modulo 2 to $x$. So, if integers $x, y$ and $z$ satisfies (2-2), we can always find an integer $w$ which satisfies (2-1). Therefore, the problem is to find such $D$ not greater than $\frac{4}{\sqrt{3}} \sqrt{p}$ that the equation $(2-2)$ is soluble. Now, if we put $y=0$ in (2-2), we have

$$
\begin{equation*}
\frac{(q x+2 z r)^{2}+4 p z^{2}}{q}=D \tag{2-3}
\end{equation*}
$$

and the left hand side of $(2-3)$ is a positive definite binary quadratic form in $x$ and $z$ with determinant $4 p$. Hence a classical theorem (cf. e.g. [1, p. 30]) assures that there exists integers $x$ and $z$ so that the left hand side of (2-3) is less than or equal to $\sqrt{\frac{4 \times 4 p}{3}}=\frac{4}{\sqrt{3}} \sqrt{p}$. This proves our assertion.

As for $O^{\prime}\left(q, r^{\prime}\right)($ when $p \equiv 3 \bmod 4)$, the same calculations will do. Put

$$
\gamma=w+x \frac{1+\alpha}{2}+y \beta+z \frac{\left(r^{\prime}+\alpha\right) \beta}{2 q} \in O^{\prime}\left(q, r^{\prime}\right)
$$

From the conditions $\operatorname{tr}(\gamma)=D$ and $n(\gamma)=\frac{D^{2}+D}{4}$ we have

$$
\begin{gather*}
2 w+x=D  \tag{2-4}\\
p x^{2}+q\left(2 y+\frac{z r^{\prime}}{q}\right)^{2}+\frac{p z^{2}}{q}=D \tag{2-5}
\end{gather*}
$$

As before, for any $x, y, z$ in $\boldsymbol{Z}$ the left hand side of (2-5) is an integer congruent modulo 2 to $x$ and hence the $w$ determined by (2-4) is in $\boldsymbol{Z}$. Again by putting $x=0$ the left hand side of $(2-5)$ is a positive definite binary quadratic form of determinant $4 p$. Therefore there exists an element $\gamma \in O^{\prime}\left(q, r^{\prime}\right)$ whose minimal polynomial is $X^{2}-D X+\frac{1}{4}\left(D^{2}+D\right)$ with $D \leq \frac{4}{\sqrt{3}} \sqrt{p}$. This concludes our proof of Theorem 1.
3. Proof of Theorem $2^{\prime}$. Suppose that $O_{D_{1}}$ and $O_{D_{2}}$ are optimally embedded in a maximal order $R$ of $Q_{\infty, p}$ with different images. Let $\alpha_{i}(i=1,2)$ be the images of $\frac{1}{2}\left(D_{i}+\sqrt{-D_{i}}\right)$ by these embeddings $\left(\alpha_{1} \neq \alpha_{2}\right)$. In $R$, consider the $\boldsymbol{Z}$-module $L$ generated by $1, \alpha_{1}, \alpha_{2}$, and $\alpha_{1} \alpha_{2}$. In general, a module $\boldsymbol{Z} \mu_{1}+$
$\boldsymbol{Z}_{\mu_{2}}+\boldsymbol{Z} \mu_{3}+\boldsymbol{Z} \mu_{4}$ in $Q_{\infty, p}$ has rank 4 if and only if its discriminant $D\left(\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}\right)$ $=\operatorname{det}\left(\operatorname{tr}\left(\mu_{i} \mu_{j}\right)\right)$ is not euqal to 0 (cf. e.g. [3, Ch. $\left.1 \S 2 \mathrm{Th} .1\right]$ ). As for our $L$ we have by a direct calculation

$$
D\left(1, \alpha_{1}, \alpha_{2}, \alpha_{1} \alpha_{2}\right)=-\left\{\frac{D_{1} D_{2}-\left(2 s-D_{1} D_{2}\right)^{2}}{4}\right\}^{2}
$$

where $s=\operatorname{tr}\left(\alpha_{1} \alpha_{2}\right)(\in \boldsymbol{Z})$. Now consider the element $\beta=\left(\alpha_{1}-\frac{D_{1}}{2}\right)\left(\alpha_{2}-\frac{D_{2}}{2}\right)$ in $R$. It does not belong to $\boldsymbol{Q}$ (the center of $\left.\boldsymbol{Q}_{\infty, p}\right)$ even when $\boldsymbol{Q}\left(\sqrt{-D_{1}}\right)=\boldsymbol{Q}$ $\left(\sqrt{-D_{2}}\right)$ because of our assumption that $O_{D_{1}}$ and $O_{D_{2}}$ are optimally embedded with different images. Hence

$$
\begin{aligned}
\operatorname{tr}(\beta)^{2}-4 n(\beta) & =\left(s-\frac{D_{1} D_{2}}{2}\right)^{2}-4 \times \frac{D_{1} D_{2}}{16} \\
& =\frac{\left(2 s-D_{1} D_{2}\right)^{2}-D_{1} D_{2}}{4}<0
\end{aligned}
$$

Therefore, we have $D\left(1, \alpha_{1}, \alpha_{1}, \alpha_{1} \alpha_{2}\right) \neq 0$. On the other hand, we can readily show that $L$ is a subring ( $\alpha_{i}^{2}, \alpha_{2} \alpha_{1} \in L$ etc.) of $R$. Hence we conclude that $L$ is an order of $Q_{\infty, p}$. As the discriminant of an order in $Q_{\infty, p}$ is divisible by $p^{2}$ (the discriminant of maximal orders), we conclude that $p$ divides the positive integer $\frac{1}{4}\left(D_{1} D_{2}-\left(2 s-D_{1} D_{2}\right)^{2}\right)$, in particular $p \leq \frac{D_{1} D_{2}}{4}$.

When $D_{1}$ and $D_{2}$ are given as $D_{1}=f_{1}^{2} D$ and $D_{2}=f_{2}^{2} D$ with positive integers $f_{1}, f_{2}, D$, we have

$$
\frac{D_{1} D_{2}-\left(2 s-D_{1} D_{2}\right)^{2}}{4}=\frac{\left(f_{1} f_{2} D-\left(2 s-D_{1} D_{2}\right)\right)\left(f_{1} f_{2} D+\left(2 s-D_{1} D_{2}\right)\right)}{4}(>0)
$$

As the inequality $\left|f_{1} f_{2} D \pm\left(2 s-D_{1} D_{2}\right)\right| \leq 2 f_{1} f_{2} D$ holds and both $f_{1} f_{2} D-(2 s-$ $\left.D_{1} D_{2}\right)$ and $f_{1} f_{2} D-\left(2 s-D_{1} D_{2}\right)$ are even numbers (since they have same parity and their product is divisible by 4 ), we must have $p \leq f_{1} f_{2} D=\sqrt{D_{1} D_{2}}$. This completes our proof.

Appendix. An alternative proof of a proposition in [5] ${ }^{2}$. Let $p$ be a prime number. Recall that $P_{D}(X)$ denotes the minimal polynomial of a singular modulus having $O_{D}$ as complex multiplication. In [5] the following proposition played an essential role.

Proposition (Elkies). Assume $p \equiv 3$ (mod 4). We have

$$
\begin{aligned}
& P_{p}(X) \equiv\left(X-12^{3}\right)(R(X))^{2} \quad \bmod p \\
& P_{4 p}(X) \equiv\left(X-12^{3}\right)(S(X))^{2} \quad \bmod p
\end{aligned}
$$

with some polynomials $R(X), S(X) \in Z[X]$.
We shall give a proof of this proposition by using two classical results due to Kronecker. First we shall prove the following Proposition'. (Actually in this form Elkies used the proposition.)

Proposition'. We have

$$
\begin{aligned}
& P_{p}(X) \equiv(T(X))^{2} \bmod p \text { if } p \equiv 1(4) \\
& P_{p}(X) P_{4 p}(X) \equiv(U(X))^{2} \bmod p \text { if } p \equiv 3(4)
\end{aligned}
$$

with some polynomials $T(X), U(X) \in Z[X]$.
Proof. Let $\Phi_{p}(X, Y)$ denote the $p$-th modular polynomial. (cf. [8, Ch. $\left.5 \S 2\right]$ ) The following two properties on $\Phi_{p}(X, Y)$ are known as the "Kronecker's relations":

$$
\begin{align*}
\Phi_{p}(X, Y) & \equiv\left(X^{p}-Y\right)\left(X-Y^{p}\right) \bmod p,  \tag{4-1}\\
\Phi_{p}(X, X) & =-\prod_{D} P_{D}(X)^{r(D)} \\
& =\left\{\begin{array}{lll}
-P_{4 p}(X) \Pi_{p \nmid D} P_{D}(X)^{2} & \text { if } & p \equiv 1(4) \\
-P_{p}(X) P_{4 p}(X) \Pi_{p \ngtr D} P_{D}(X)^{2} & \text { if } & p \equiv 3(4),
\end{array}\right.
\end{align*}
$$

where the product runs over such $D$ that the order $O_{D}$ contains an element of norm $p$ and $r(D)=1$ or 2 according as $p \mid D$ or $p \nmid D$ (cf. [8, Ch. $5 \S 2$ and Ch. 10 App.]) By putting $Y=X$ in (4-1) we get

$$
\begin{equation*}
\Phi_{p}(X, X) \equiv-\left(X^{p}-X\right)^{2} \bmod p \tag{4-3}
\end{equation*}
$$

Proposition' follows immediately from this and (4-2).
Proof of Proposition. The above relations (4-2) and (4-3) shows that, modulo $p$, the polynomial $P_{p}(X) P_{4 p}(X)$ is a square and divides $\left(X^{p}-X\right)^{2}$. Hence each of its roots has multiplicity 2. By Lemma 1 in [5], both $P_{p}(X)$ $\bmod p$ and $P_{4 p}(X) \bmod p$ have $12^{3}$ as one of their roots. On the other hand, a lemma of Ibukiyama ([7, !.em. 1.8]) implies that there are no other common roots of $P_{p}(X) \bmod p$ and $P_{4 p}(X) \bmod p$. Therefore the conclusion follows.

## References

[1] J.W.S. Cassels: "An Introduction to the Geometry of Numbers," Springer, 1959.
[2] M. Deuring: Die Typen der Multiplikatorenringe elliptischer Funktionen Körper, Abh. Math. Sem. Univ. Hamburg 14 (1941), 197-272.
[3] M. Eichler: "Lectures on Modular Correspondences," Tata Inst. Fundamental

Res., Bombay, 1955/6.
[4] M. Eichler: New formulas for the class number of imaginary quadratic fields, Acta Arith. 49 (1987), 35-43.
[5] N.D. Elkies: The existense of infinitely many supersingular primes for every elliptic curve over $\boldsymbol{Q}$, Invent. Math. 89 (1987), 561-567.
[6] B.H. Gross and D. Zagier: On singular moduli, J. Reine Angew. Math. 355 (1985), 191-220.
[7] T. Ibukiyama: On maximal orders of division quaternion algebra over the rational number field with certain optimal embeddings, Nagoya Math. J. 88 (1982), 181-195.
[8] S. Lang: "Elliptic Functions, Second Edition," Springer, 1987.

> Department of Mathematics Osaka University, Toyonaka, Osaka 560
> Japan


[^0]:    1 This work was supported by Grant-in-Aid for Scientific Research, The Ministry of Educations, Science and Culture.

