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On Conjugacy Classes of the Pro.l braid
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0. Introduction. In [2], Y. Ihara studied the "pro-/braid group" of
degree 2 which is a certain big subgroup #Out of the outer auto-
morphism group of the free pro-/group of rank 2. There is a canonical
representation 9: G-*# of the absolute Galois group G=Gal (/Q) which
is unramified outside l, and for each prime p=/=l, the Frobenius of p deter-
mines a conjugacy class C of which is contained in the subset
formed of all elements of "norm" p (loc. cit. Ch. I). In this note, we shall
prove that P contains infinitely many #-conjugacy classes, at least if p
generates Z topologically. It is an open question whether one can dis-
tinguish the Frobenius conjugacy class from other norm-p-conjugacy
classes.

1. The result. Let be a rational prime. We denote by Zl, Z and
Q, respectively, the ring of /-adic integers, the group of /-adic units and
the field of/-adic numbers. As in [2], let =(2) be the free pro-/ group
of rank 2 generated by x, y, z, xyz= 1, =Brd(2) (; x, y, z) be the pro-/
braid group of degree 2, Nr (a) e Z be the norm of a e , and for a..e Z,

be the "norm-a-part", i.e., ={ e lNr
Theorem. If e Z generates Z, then the set contains infinitely

many #-conjugacy classes.
Remarks. 1) In [2], it is proved under the same assumption, that

contains at least two #-cnjugacy classes. (Corollary of Proposition 8,
Ch. I.)

2) In [1], M. Asada and the author studied the "pro-/ mapping class
group" and obtained a result similar to 1).

2. Proof. Our method of proof is to consider the projection of to
the group gZ=Brd( (/"; x, y, z), where "=[’, ’], ’=[, ] and we
use the same symbols x, y, z for their classes mode". By Theorem 3 in
[2] Ch. II, the group g is explicitly realized as follows. Define the group
0 by

6 {(c, F)]c e Z, F e, F+uvwA =06}
with the composition law (c, F)(fl, G)=(afl, F. G]0, where

j=Zl[[u, v, w]]/((l+u)(1 +v)(1 +w)--l)Zl[[u, v]],
*) This is a part of the master’s thesis of the author at the University of Tokyo

(1985). He wishes to express his sincere gratitude to Professor Y. Ihara for his advice
and encouragement.
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t is certain class mod uvw determined by c, and i is a unique auto-
morphism of the Z-algebra determined by

(1 + u) ;(1 +u), (1 + v) >(1 + v), (1 + w) >(1 + w).
Then, 69 and l+uvw. Here, or c e Z, ;. is the norm-a-part.
Henceforth, we identiy ’(resp. ,) with 9(resp. l+uvw,_) by this iso-
morphism.

Now, we shall prove that if c generates Z, . contains infinitely many
F-conjugacy classes.

We fix an element (, F) e . For any (c, H) e , write
H--F(1+uvwHo), Ho e .

Since generates Z, the centralizer of (c, H) in c contains an element
with arbitrary norm. Thus, in , -conjugacy is equivalent to
conjugacy. Let

Then
(1)
and
(2)
I we write

G 1 +uvwGo e ,
G-’(o, H)G=(c, HG]"G-1) e ;

HG]"G-=F.(l+uvwHo)(l+uvwGo)].(1 +uVWGo) -.
3 ) HG]"G -1 =F,(l+uvwJ), J e
we get
( 4 ) J--Ho+(UVW)]-IG--Go mod uvw.
Now, identify /with Zt[[u, v]] and write

Go mod u bo+ bv+ b2v +. ., bi e Z (i 0).
We view b (i 0) as variables over Z. Direct calculation shows that we
can write
5 ) (uvw)]-G"-Go mod u==o ((+--l)b+Q(bo, b, ..., b_)}v

where Q, is a linear form determined alone by with coefficients in Z in
i variables. (Put Qo=0.) For (, H), (, H’) e ,, write

H F,(I+uvwHo), H’=F,(I+uvwH), Ho, H e,
VHomodu=ho+h,v+hv+ Hmdu=h+hv+, +..., h, hZ,

h(H)=(ho, h,, h, ..), h(H’)=(h, h, h’, .).
Then by (1)-(5), if (, H) and (, H’) are -cvnjugate to each other, there
exist b e Z, i=0, 1, 2, ..., such that
6 ) h=h+(+--l)b+Q(bo, b, ..., b_) for all i.

In view of this, we shall define an equivalence relation in Z =(h=(ho, h,
h, -..)]Vh e Zt}. For h=(ho, h, hz, ...) e Z and i 3, define an element
R(h) e Q inductively by

1( 7 R(h)= {h_--Q_(R(h), R(h), ..., R_,(h))}.

It follows from (6) that, for h=(ho, h,, ...), h’ =(hg, h, ...) e Z correspond-
ing to H0, Hg,
( 8 ) b=R+(h)--R+(h’) (i 0).
(Note that Q is a linear form.) Since generates z, -1 e z unless
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/--lli. So, for any integer k

_
1, define

h() h’ if and only if R(l_)(h)--R(l_)(h’)e Zt for any i
satisfying 1 i k.

This is an equivalence relation in Z. We call its equivalence class (k)-
equivalence class. Therefore (a, H)._(c, H’)(-conjugate to each other)

implies h(H)(k h(H’) for all k

_
1.

We shall show that the number of (k)-equivalence classes in Z tends
to infinity as k--c. Let k_2 and l]lk, i.e., is the exact power of
dividing k. Then (o(I-)-I)Zt=I/’Zt. We claim that a (k--1)-equivalence
class consists of / distinct (k)-equivalence classes. To see this, we fix a
manner of "/-adic expansion" of an element in Qt, i.e., for a e QI, we write
a--,,’=_ al e QI, a e z, O_a_l-1, m e z. We define the "fractional

part" (a} of a as j__l_ al. Then h(k) h’ is equivalent to
{R(_)(h)}={R(_)(h’)} for all i,

Put
R(h) {R(_ )(h)}.

If h runs through a (k--1)-equivalence class, Q(_)_(0, ., 0, R(h), O, ., O,
R.(h), 0,..., 0, R_(h), 0,..., 0) is independent of h and the sum of this
element and (a(-)--l)Rq_)(h) belongs to Z. By the definition of R(l_)(h),
we see easily that this sum takes every value mod / (lllk) as h varying
in a (k-1)-equivalence class. Therefore, a (k-1)-equivalence class con-
sists of /’ distinct (k)-equivalence classes and hence the number of (k)-
equivalence class in Z/ tends to infinity as k-c. By definition, the map

(o, H)h(H)e Z is surjective. Therefore, we have shown that, if
ae Z generates Z, the set contains infinitely many -cnjugacy
classes.

Next, we shall deduce the theorem from this. Let
-={(o,F)e(glFF=o(uvw)o-}, V:=-NCZ (eZ),

where =F]- for F e . Let ’" -- be the natural map induced from
AutAut(/"). Then, by Theorem 8 in [2] Ch. IV, the image of
coincides with -. So, it suffices to show that there are infinitely many
elements in : which are not -cvnjugate to each other. We may choose
our (a,F,) rom the minus part Or: of .. Let (a,H)e : and write
H=F,(1 +uvwHo), Ho e i. Then 1 +uvwHo e . It follows from this that

Ho--Homodu. Conversely, for H0e satisfying Ho:--Homodu, there
exists l+uvwH’0 e ; such that H--Ho modu. This can be seen in the
same way as in the proof of Proposition 1 (ii), Ch. III, [2]. Therefore,
when H runs through g:, i.e., l+uvwHo runs through :5, H0mod u runs
through every element satisfying H0--Homodu. Now let

H0 mod u ho+hv+ h.v + ..
The condition H0--Homodu is satisfied if and only i h, i--0, 1, 2,...,
are arbitrary and h/, i=0, 1, 2,..., are determined inductively by the
relations



No. 7] Pro-/ braid Group 277

(9) h--O, h./+C.h+C.h_+. +C_.h+-bh+--O (i_1).
This can be seen easily by expanding

H0 mod u ho- hlv(1 v +v --k h.v2(1 v --k v )2
and comparing the coefficient of v for i--O, 1, 2,.... So, to prove the
theorem, it suffices to show that when h0, h, h,, ..-, vary freely in Zt and
h, h, h, ..., are determined by (9), the number of (k)-equivalence classes
to which h belongs tends to infinity as kco. As before, this can be
checked by a lengthy but straightforward calculation o the quantity

(o(l-1) 1)Rq_ 1)(h)
+Q,q_)_(o, ..., O, R(h), O, ..., O, R.(h), O, ..., O,

R_ l(h), O, ., O) mod /1.
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