77. On Conjugacy Classes of the Proll braid Group of Degree 2 ${ }^{\text {th }}$

By Masanobu Kaneko
Department of Mathematics, Faculty of Science, University of Tokyo
(Communicated by Shokichi Iyanaga, m. J. A., Sept. 12, 1986)

0. Introduction. In [2], Y. Ihara studied the "pro-l braid group" of degree 2 which is a certain big subgroup $\Phi \subset$ Out \mathscr{F} of the outer automorphism group of the free pro-l group \mathfrak{F} of rank 2. There is a canonical representation $\varphi_{\boldsymbol{Q}}: G_{\boldsymbol{Q}} \rightarrow \Phi$ of the absolute Galois group $G_{\boldsymbol{Q}}=\operatorname{Gal}(\overline{\boldsymbol{Q}} / \boldsymbol{Q})$ which is unramified outside l, and for each prime $p \neq l$, the Frobenius of p determines a conjugacy class C_{p} of Φ which is contained in the subset $\Phi_{p} \subset \Phi$ formed of all elements of "norm" p (loc. cit. Ch. I). In this note, we shall prove that Φ_{p} contains infinitely many Φ-conjugacy classes, at least if p generates $\boldsymbol{Z}_{l}^{\times}$topologically. It is an open question whether one can distinguish the Frobenius conjugacy class from other norm-p-conjugacy classes.
1. The result. Let l be a rational prime. We denote by $\boldsymbol{Z}_{l}, \boldsymbol{Z}_{l}^{\times}$and \boldsymbol{Q}_{l}, respectively, the ring of l-adic integers, the group of l-adic units and the field of l-adic numbers. As in [2], let $\mathfrak{F}=\mathscr{F}^{(2)}$ be the free pro-l group of rank 2 generated by $x, y, z, x y z=1, \Phi=\operatorname{Brd}^{(2)}(\mathfrak{F} ; x, y, z)$ be the pro-l braid group of degree $2, \operatorname{Nr}(\sigma) \in \boldsymbol{Z}_{l}^{\times}$be the norm of $\sigma \in \Phi$, and for $\alpha \in \boldsymbol{Z}_{l}^{\times}$, Φ_{α} be the "norm- α-part", i.e., $\Phi_{\alpha}=\{\sigma \in \Phi \mid \operatorname{Nr}(\sigma)=\alpha\}$.

Theorem. If $\alpha \in \boldsymbol{Z}_{l}^{\times}$generates $\boldsymbol{Z}_{l}^{\times}$, then the set Φ_{α} contains infinitely many Φ-conjugacy classes.

Remarks. 1) In [2], it is proved under the same assumption, that Φ_{α} contains at least two Φ-conjugacy classes. (Corollary of Proposition 8, Ch. I.)
2) In [1], M. Asada and the author studied the "pro-l mapping class group" and obtained a result similar to 1).
2. Proof. Our method of proof is to consider the projection of Φ to the group $\Psi=\operatorname{Brd}^{(2)}\left(\mathfrak{F} / \mathfrak{F}^{\prime \prime} ; x, y, z\right)$, where $\mathfrak{F}^{\prime \prime}=\left[\mathfrak{F}^{\prime}, \mathfrak{F}^{\prime}\right], \mathscr{F}^{\prime}=[\mathfrak{F}, \mathfrak{F}]$ and we use the same symbols x, y, z for their classes $\bmod \mathfrak{F}^{\prime \prime}$. By Theorem 3 in [2] Ch. II, the group Ψ is explicitly realized as follows. Define the group Θ by

$$
\Theta=\left\{(\alpha, F) \mid \alpha \in \boldsymbol{Z}_{l}^{\times}, F \in \mathcal{A}^{\times}, F+u v w \mathcal{A}=\theta_{\alpha}\right\}
$$

with the composition law $(\alpha, F)(\beta, G)=\left(\alpha \beta, F \cdot G^{j \alpha}\right)$, where

$$
\mathcal{A}=Z_{l}[[u, v, w]] /((1+u)(1+v)(1+w)-1) \simeq Z_{l}[[u, v]],
$$

[^0]θ_{α} is certain class mod uvw determined by α, and j_{α} is a unique automorphism of the Z_{l}-algebra \mathcal{A} determined by
$$
(1+u) \longrightarrow(1+u)^{\alpha}, \quad(1+v) \longrightarrow(1+v)^{\alpha}, \quad(1+w) \longrightarrow(1+w)^{\alpha} .
$$

Then, $\Psi \simeq \Theta$ and $\Psi_{1} \simeq 1+u v w \mathcal{A}$. Here, for $\alpha \in Z_{l}^{\times}, \Psi_{\alpha}$ is the norm- α-part. Henceforth, we identify $\Psi\left(\right.$ resp. $\left.\Psi_{1}\right)$ with Θ (resp. $\left.1+u v w \mathcal{A}\right)$ by this isomorphism.

Now, we shall prove that if α generates $\boldsymbol{Z}_{l}^{\times}, \Psi_{\alpha}$ contains infinitely many Ψ-conjugacy classes.

We fix an element $\left(\alpha, F_{\alpha}\right) \in \Psi_{\alpha}$. For any $(\alpha, H) \in \Psi_{\alpha}$, write

$$
H=F_{\alpha}\left(1+u v w H_{0}\right), \quad H_{0} \in \mathcal{A} .
$$

Since α generates $\boldsymbol{Z}_{l}^{\times}$, the centralizer of (α, H) in Ψ contains an element with arbitrary norm. Thus, in Ψ_{α}, Ψ-conjugacy is equivalent to $\Psi_{1^{-}}$ conjugacy. Let

$$
G=1+u v w G_{0} \in \Psi_{1}, \quad G_{0} \in \mathcal{A}
$$

Then

$$
\begin{equation*}
G^{-1}(\alpha, H) G=\left(\alpha, H G^{j_{\alpha}} G^{-1}\right) \in \Psi_{\alpha} \tag{1}
\end{equation*}
$$

and
(2)

$$
H G^{j_{\alpha}} G^{-1}=F_{\alpha}\left(1+u v w H_{0}\right)\left(1+u v w G_{0}\right)^{j_{\alpha}}\left(1+u v w G_{0}\right)^{-1} .
$$

If we write

$$
\begin{equation*}
H G^{j \alpha} G^{-1}=F_{\alpha}(1+u v w J), \quad J \in \mathcal{A}, \tag{3}
\end{equation*}
$$

we get
(4) $\quad J \equiv H_{0}+(u v w)^{j_{\alpha}-1} G_{0}^{j_{\alpha}}-G_{0} \quad \bmod u v w$.

Now, identify \mathcal{A} with $\boldsymbol{Z}_{l}[[u, v]]$ and write

$$
G_{0} \bmod u=b_{0}+b_{1} v+b_{2} v^{2}+\cdots, \quad b_{i} \in \boldsymbol{Z}_{l}(i \geq 0)
$$

We view $b_{i}(i \geq 0)$ as variables over \boldsymbol{Z}_{l}. Direct calculation shows that we can write
(5) $\quad(u v w)^{j_{\alpha-1}} G_{0}^{j_{\alpha}}-G_{0} \bmod u=\sum_{i=0}^{\infty}\left\{\left(\alpha^{i+3}-1\right) b_{i}+Q_{i}\left(b_{0}, b_{1}, \cdots, b_{i-1}\right)\right\} v^{i}$
where Q_{i} is a linear form determined alone by α with coefficients in Z_{l} in i variables. (Put $Q_{0}=0$.) For $(\alpha, H),\left(\alpha, H^{\prime}\right) \in \Psi_{\alpha}$, write

$$
H=F_{\alpha}\left(1+u v w H_{0}\right), \quad H^{\prime}=F_{\alpha}\left(1+u v w H_{0}^{\prime}\right), \quad H_{0}, H_{0}^{\prime} \in \mathcal{A},
$$

$H_{0} \bmod u=h_{0}+h_{1} v+h_{2} v^{2}+\cdots, \quad H_{0}^{\prime} \bmod u=h_{0}^{\prime}+h_{1}^{\prime} v+h_{2}^{\prime} v^{2}+\cdots, \quad h_{i}, h_{i}^{\prime} \in \boldsymbol{Z}_{l}$,

$$
h(H)=\left(h_{0}, h_{1}, h_{2}, \cdots\right), \quad h\left(H^{\prime}\right)=\left(h_{0}^{\prime}, h_{1}^{\prime}, h_{2}^{\prime}, \cdots\right)
$$

Then by (1)-(5), if (α, H) and (α, H^{\prime}) are Ψ_{1}-conjugate to each other, there exist $b_{i} \in Z_{l}, i=0,1,2, \cdots$, such that
(6) $\quad h_{i}=h_{i}^{\prime}+\left(\alpha^{i+3}-1\right) b_{i}+Q_{i}\left(b_{0}, b_{1}, \cdots, b_{i-1}\right) \quad$ for all i.

In view of this, we shall define an equivalence relation in $Z_{l}^{\infty}=\left\{h=\left(h_{0}, h_{1}\right.\right.$, $\left.\left.h_{2}, \cdots\right) \mid{ }^{\forall} h_{i} \in \boldsymbol{Z}_{l}\right\}$. For $h=\left(h_{0}, h_{1}, h_{2}, \cdots\right) \in \boldsymbol{Z}_{l}^{\infty}$ and $i \geq 3$, define an element $R_{i}(h) \in \boldsymbol{Q}_{l}$ inductively by

$$
\begin{equation*}
R_{i}(h)=\frac{1}{\alpha^{i}-1}\left\{h_{i-3}-Q_{i-3}\left(R_{3}(h), R_{4}(h), \cdots, R_{i-1}(h)\right)\right\} . \tag{7}
\end{equation*}
$$

It follows from (6) that, for $h=\left(h_{0}, h_{1}, \cdots\right), h^{\prime}=\left(h_{0}^{\prime}, h_{1}^{\prime}, \cdots\right) \in Z_{l}^{\infty}$ corresponding to H_{0}, H_{0}^{\prime},
(8)

$$
b_{i}=R_{i+3}(h)-R_{i+3}\left(h^{\prime}\right) \quad(i \geq 0)
$$

(Note that Q_{i} is a linear form.) Since α generates $\boldsymbol{Z}_{l}^{\times}, \alpha^{i}-1 \in \boldsymbol{Z}_{l}^{\times}$unless
$1-1 \mid$ i. So, for any integer $k \geq 1$, define
$h \stackrel{(k)}{\sim} h^{\prime}$ if and only if $R_{i(l-1)}(h)-R_{i(l-1)}\left(h^{\prime}\right) \in Z_{l}$ for any i

$$
\text { satisfying } \quad 1 \leq i \leq k
$$

This is an equivalence relation in $\boldsymbol{Z}_{l}^{\infty}$. We call its equivalence class (k) equivalence class. Therefore $(\alpha, H) \sim\left(\alpha, H^{\prime}\right)\left(\Psi_{1}\right.$-conjugate to each other) implies $h(H) \stackrel{(k)}{\sim} h\left(H^{\prime}\right)$ for all $k \geq 1$.

We shall show that the number of (k)-equivalence classes in $\boldsymbol{Z}_{l}^{\infty}$ tends to infinity as $k \rightarrow \infty$. Let $k \geq 2$ and $l^{\nu} \| k$, i.e., l^{ν} is the exact power of l dividing k. Then $\left(\alpha^{k(l-1)}-1\right) Z_{l}=l^{\nu+1} Z_{l}$. We claim that a $(k-1)$-equivalence class consists of $l^{\nu+1}$ distinct (k)-equivalence classes. To see this, we fix a manner of " l-adic expansion" of an element in \boldsymbol{Q}_{l}, i.e., for $a \in \boldsymbol{Q}_{l}$, we write $a=\sum_{i=-m}^{\infty} a_{i} l^{i} \in \boldsymbol{Q}_{l}, a_{i} \in \boldsymbol{Z}, 0 \leq a_{i} \leq l-1, m \in Z$. We define the "fractional part" $\{a\}$ of a as $\sum_{i=-m}^{-1} a_{i} i^{i}$. Then $h \stackrel{(k)}{\sim} h^{\prime}$ is equivalent to

$$
\left\{\overline{R_{i(l-1)}}(h)\right\}=\left\{R_{i(l-1)}\left(h^{\prime}\right)\right\} \quad \text { for all } i, \quad 1 \leq i \leq k .
$$

Put

$$
\tilde{R}_{i}(h)=\left\{R_{i(l-1)}(h)\right\} .
$$

If h runs through a $(k-1)$-equivalence class, $Q_{k(l-1)-3}\left(0, \cdots, 0, \tilde{R}_{1}(h), 0, \cdots, 0\right.$, $\left.\tilde{R}_{2}(h), 0, \cdots, 0, \tilde{R}_{k-1}(h), 0, \cdots, 0\right)$ is independent of h and the sum of this element and $\left(\alpha^{k(l-1)}-1\right) R_{k^{(l-1)}}(h)$ belongs to Z_{l}. By the definition of $R_{k(l-1)}(h)$, we see easily that this sum takes every value $\bmod l^{\nu+1}\left(l^{\nu} \| k\right)$ as h varying in a ($k-1$)-equivalence class. Therefore, a ($k-1$)-equivalence class consists of $l^{\nu+1}$ distinct (k)-equivalence classes and hence the number of (k)equivalence class in $\boldsymbol{Z}_{l}^{\infty}$ tends to infinity as $k \rightarrow \infty$. By definition, the map $\Psi_{\alpha} \ni(\alpha, H) \rightarrow h(H) \in \boldsymbol{Z}_{l}^{\infty}$ is surjective. Therefore, we have shown that, if $\alpha \in \boldsymbol{Z}_{l}^{\times}$generates $\boldsymbol{Z}_{l}^{\times}$, the set Ψ_{α} contains infinitely many Ψ-conjugacy classes.

Next, we shall deduce the theorem from this. Let

$$
\Psi^{-}=\left\{(\alpha, F) \in \Theta \mid F \bar{F}=\alpha(u v w)^{j_{\alpha}-1}\right\}, \quad \Psi_{\alpha}^{-}=\Psi^{-} \cap \Psi_{\alpha} \quad\left(\alpha \in Z_{l}^{\times}\right),
$$

where $\bar{F}=F^{j-1}$ for $F \in \mathcal{A}$. Let $\gamma: \Phi \rightarrow \Psi$ be the natural map induced from Aut $\mathfrak{F} \rightarrow$ Aut $\left(\mathfrak{F} / \mathfrak{F}^{\prime \prime}\right)$. Then, by Theorem 8 in [2] Ch. IV, the image of γ coincides with Ψ^{-}. So, it suffices to show that there are infinitely many elements in Ψ_{α}^{-}which are not Ψ_{1}-conjugate to each other. We may choose our $\left(\alpha, F_{\alpha}\right)$ from the minus part Ψ_{α}^{-}of Ψ_{α}. Let $(\alpha, H) \in \Psi_{\alpha}^{-}$and write $H=F_{\alpha}\left(1+u v w H_{0}\right), H_{0} \in \mathcal{A}$. Then $1+u v w H_{0} \in \Psi_{1}^{-}$. It follows from this that $H_{0} \equiv \bar{H}_{0} \bmod u$. Conversely, for $H_{0} \in \mathcal{A}$ satisfying $H_{0} \equiv \bar{H}_{0} \bmod u$, there exists $1+u v w H_{0}^{\prime} \in \Psi_{1}^{-}$such that $H_{0}^{\prime} \equiv H_{0} \bmod u$. This can be seen in the same way as in the proof of Proposition 1 (ii), Ch. III, [2]. Therefore, when H runs through Ψ_{α}^{-}, i.e., $1+u v w H_{0}$ runs through $\Psi_{1}^{-}, H_{0} \bmod u$ runs through every element satisfying $H_{0} \equiv \bar{H}_{0} \bmod u$. Now let

$$
H_{0} \bmod u=h_{0}+h_{1} v+h_{2} v^{2}+\cdots
$$

The condition $H_{0} \equiv \bar{H}_{0} \bmod u$ is satisfied if and only if $h_{2 i}, i=0,1,2, \cdots$, are arbitrary and $h_{2 i+1}, i=0,1,2, \cdots$, are determined inductively by the relations
(9) $\quad h_{1}=0, \quad h_{2 i+1}+{ }_{i} C_{1} \cdot h_{2 i}+{ }_{i} C_{2} \cdot h_{2 i-1}+\cdots+{ }_{i} C_{i-1} \cdot h_{i+2}+h_{i+1}=0 \quad(i \geq 1)$. This can be seen easily by expanding

$$
\bar{H}_{0} \bmod u=h_{0}-h_{1} v\left(1-v+v^{2}-\cdots\right)+h_{2} v^{2}\left(1-v+v^{2}-\cdots\right)^{2}-\cdots
$$

and comparing the coefficient of v^{i} for $i=0,1,2, \cdots$. So, to prove the theorem, it suffices to show that when $h_{0}, h_{2}, h_{4}, \cdots$, vary freely in Z_{l} and $h_{1}, h_{3}, h_{5}, \cdots$, are determined by (9), the number of (k)-equivalence classes to which h belongs tends to infinity as $k \rightarrow \infty$. As before, this can be checked by a lengthy but straightforward calculation of the quantity

$$
\begin{aligned}
& \left(\alpha^{k(l-1)}-1\right) R_{k(l-1)}(h) \\
& \quad+Q_{k(l-1)-3}\left(0, \cdots, 0, \tilde{R}_{1}(h), 0, \cdots, 0, \tilde{R}_{2}(h), 0, \cdots, 0,\right. \\
& \left.\quad \tilde{R}_{k-1}(h), 0, \cdots, 0\right) \bmod l^{\nu+1} .
\end{aligned}
$$

References

[1] M. Asada and M. Kaneko: On the automorphism group of some pro-l fundamental group (to appear in Advanced Studies in Pure Math.).
[2] Y. Ihara: Profinite braid groups, Galois representations and complex multiplications. Ann. of Math., 123, 43-106 (1986).

[^0]: t) This is a part of the master's thesis of the author at the University of Tokyo (1985). He wishes to express his sincere gratitude to Professor Y. Ihara for his advice and encouragement.

