77. On Conjugacy Classes of the Pro-l braid Group of Degree 2th

By Masanobu KANEKO

Department of Mathematics, Faculty of Science, University of Tokyo

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1986)

0. Introduction. In [2], Y. Ihara studied the "pro-*l* braid group" of degree 2 which is a certain big subgroup $\Phi \subset \text{Out} \mathfrak{F}$ of the outer automorphism group of the free pro-*l* group \mathfrak{F} of rank 2. There is a canonical representation $\varphi_q: G_q \rightarrow \Phi$ of the absolute Galois group $G_q = \text{Gal}(\bar{Q}/Q)$ which is unramified outside *l*, and for each prime $p \neq l$, the Frobenius of *p* determines a conjugacy class C_p of Φ which is contained in the subset $\Phi_p \subset \Phi$ formed of all elements of "norm" *p* (loc. cit. Ch. I). In this note, we shall prove that Φ_p contains *infinitely* many Φ -conjugacy classes, at least if *p* generates Z_l^{\times} topologically. It is an open question whether one can *distinguish* the Frobenius conjugacy class from other norm-*p*-conjugacy classes.

1. The result. Let l be a rational prime. We denote by Z_l , Z_l^{\times} and Q_l , respectively, the ring of l-adic integers, the group of l-adic units and the field of l-adic numbers. As in [2], let $\mathfrak{F} = \mathfrak{F}^{(2)}$ be the free pro-l group of rank 2 generated by x, y, z, xyz = 1, $\Phi = \operatorname{Brd}^{(2)}(\mathfrak{F}; x, y, z)$ be the pro-l braid group of degree 2, Nr (σ) $\in Z_l^{\times}$ be the norm of $\sigma \in \Phi$, and for $\alpha \in Z_l^{\times}$, Φ_{α} be the "norm- α -part", i.e., $\Phi_{\alpha} = \{\sigma \in \Phi \mid \operatorname{Nr}(\sigma) = \alpha\}$.

Theorem. If $\alpha \in \mathbb{Z}_l^{\times}$ generates \mathbb{Z}_l^{\times} , then the set Φ_{α} contains infinitely many Φ -conjugacy classes.

Remarks. 1) In [2], it is proved under the same assumption, that Φ_a contains at least two Φ -conjugacy classes. (Corollary of Proposition 8, Ch. I.)

2) In [1], M. Asada and the author studied the "pro-*l* mapping class group" and obtained a result similar to 1).

2. Proof. Our method of proof is to consider the projection of Φ to the group $\Psi = \operatorname{Brd}^{(2)}(\mathfrak{F}/\mathfrak{F}''; x, y, z)$, where $\mathfrak{F}'' = [\mathfrak{F}', \mathfrak{F}']$, $\mathfrak{F}' = [\mathfrak{F}, \mathfrak{F}]$ and we use the same symbols x, y, z for their classes mod \mathfrak{F}'' . By Theorem 3 in [2] Ch. II, the group Ψ is explicitly realized as follows. Define the group Θ by

$$\begin{split} & \Theta = \{(\alpha, F) \mid \alpha \in \mathbf{Z}_{l}^{\times}, F \in \mathcal{A}^{\times}, F + uvw\mathcal{A} = \theta_{a} \} \\ & \text{with the composition law } (\alpha, F)(\beta, G) = (\alpha\beta, F \cdot G^{j_{\alpha}}), \text{ where} \\ & \mathcal{A} = \mathbf{Z}_{l}[[u, v, w]] / ((1+u)(1+v)(1+w)-1) \simeq \mathbf{Z}_{l}[[u, v]], \end{split}$$

^{†)} This is a part of the master's thesis of the author at the University of Tokyo (1985). He wishes to express his sincere gratitude to Professor Y. Ihara for his advice and encouragement.

 θ_{α} is certain class mod uvw determined by α , and j_{α} is a unique automorphism of the Z_l -algebra \mathcal{A} determined by

 $(1+u)\longrightarrow(1+u)^{\alpha}$, $(1+v)\longrightarrow(1+v)^{\alpha}$, $(1+w)\longrightarrow(1+w)^{\alpha}$. Then, $\Psi\simeq\Theta$ and $\Psi_1\simeq 1+uvw\mathcal{A}$. Here, for $\alpha\in \mathbb{Z}_l^{\times}$, Ψ_{α} is the norm- α -part. Henceforth, we identify $\Psi(\text{resp. }\Psi_1)$ with $\Theta(\text{resp. }1+uvw\mathcal{A})$ by this isomorphism.

Now, we shall prove that if α generates Z_l^{\times} , Ψ_{α} contains infinitely many Ψ -conjugacy classes.

We fix an element $(\alpha, F_{\alpha}) \in \Psi_{\alpha}$. For any $(\alpha, H) \in \Psi_{\alpha}$, write $H = F_{\alpha}(1 + uvwH_{0}), \qquad H_{0} \in \mathcal{A}.$

Since α generates Z_l^{\times} , the centralizer of (α, H) in Ψ contains an element with arbitrary norm. Thus, in Ψ_{α} , Ψ -conjugacy is equivalent to Ψ_1 -conjugacy. Let

 $G=1+uvwG_0\in \Psi_1, \qquad G_0\in \mathcal{A}.$

Then

(1) $G^{-1}(\alpha, H)G = (\alpha, HG^{j_{\alpha}}G^{-1}) \in \Psi_{\alpha}$

and

(2) $HG^{j_{\alpha}}G^{-1} = F_{\alpha}(1 + uvwH_{0})(1 + uvwG_{0})^{j_{\alpha}}(1 + uvwG_{0})^{-1}.$

If we write

$$(3) HG^{j_{\alpha}}G^{-1}=F_{\alpha}(1+uvwJ), J\in \mathcal{A},$$

we get

(4) $J \equiv H_0 + (uvw)^{j_\alpha - 1}G_0^{j_\alpha} - G_0 \mod uvw.$ Now, identify \mathcal{A} with $Z_1[[u, v]]$ and write

 $G_0 \mod u = \dot{b}_0 + b_1 v + b_2 v^2 + \cdots, \qquad b_i \in Z_l \ (i \ge 0).$

We view b_i $(i \ge 0)$ as variables over Z_l . Direct calculation shows that we can write

(5) $(uvw)^{j_{\alpha}-1}G_{0}^{j_{\alpha}}-G_{0} \mod u = \sum_{i=0}^{\infty} \{(\alpha^{i+3}-1)b_{i}+Q_{i}(b_{0}, b_{1}, \cdots, b_{i-1})\}v^{i}$ where Q_{i} is a linear form determined alone by α with coefficients in Z_{l} in i variables. (Put $Q_{0}=0$.) For (α, H) , $(\alpha, H') \in \Psi_{\alpha}$, write

 $\begin{array}{cccc} H = F_{a}(1 + uvwH_{0}), & H' = F_{a}(1 + uvwH'_{0}), & H_{0}, H'_{0} \in \mathcal{A}, \\ H_{0} \mod u = h_{0} + h_{1}v + h_{2}v^{2} + \cdots, & H'_{0} \mod u = h'_{0} + h'_{1}v + h'_{2}v^{2} + \cdots, & h_{i}, h'_{i} \in \mathbf{Z}_{l}, \\ h(H) = (h_{0}, h_{1}, h_{2}, \cdots), & h(H') = (h'_{0}, h'_{1}, h'_{2}, \cdots). \end{array}$

Then by (1)-(5), if (α, H) and (α, H') are \mathcal{V}_1 -conjugate to each other, there exist $b_i \in \mathbb{Z}_i$, $i=0, 1, 2, \cdots$, such that

(6) $h_i = h'_i + (\alpha^{i+3} - 1)b_i + Q_i(b_0, b_1, \dots, b_{i-1})$ for all *i*.

In view of this, we shall define an equivalence relation in $Z_l^{\infty} = \{h = (h_0, h_1, h_2, \cdots) | \forall h_i \in Z_l\}$. For $h = (h_0, h_1, h_2, \cdots) \in Z_l^{\infty}$ and $i \ge 3$, define an element $R_i(h) \in Q_l$ inductively by

(7)
$$R_{i}(h) = \frac{1}{\alpha^{i} - 1} \{h_{i-3} - Q_{i-3}(R_{3}(h), R_{4}(h), \cdots, R_{i-1}(h))\}.$$

It follows from (6) that, for $h = (h_0, h_1, \cdots)$, $h' = (h'_0, h'_1, \cdots) \in \mathbb{Z}_l^{\infty}$ corresponding to H_0 , H'_0 ,

(8) $b_i = R_{i+3}(h) - R_{i+3}(h')$ $(i \ge 0).$

(Note that Q_i is a linear form.) Since α generates Z_l^{\times} , $\alpha^i - 1 \in Z_l^{\times}$ unless

M. KANEKO

So, for any integer $k \ge 1$, define l - 1 | i. $h \overset{(k)}{\longrightarrow} h'$ if and only if $R_{\iota(l-1)}(h) - R_{\iota(l-1)}(h') \in \mathbb{Z}_l$ for any isatisfying 1 < i < k.

This is an equivalence relation in Z_l^{∞} . We call its equivalence class (k)equivalence class. Therefore $(\alpha, H) \longrightarrow (\alpha, H')$ (Ψ_1 -conjugate to each other) implies $h(H) \stackrel{(k)}{\sim} h(H')$ for all $k \ge 1$.

We shall show that the number of (k)-equivalence classes in Z_1^{∞} tends to infinity as $k \rightarrow \infty$. Let $k \ge 2$ and $l^{\nu} || k$, i.e., l^{ν} is the exact power of ldividing k. Then $(\alpha^{k(l-1)}-1)Z_l = l^{\nu+1}Z_l$. We claim that a (k-1)-equivalence class consists of $l^{\nu+1}$ distinct (k)-equivalence classes. To see this, we fix a manner of "*l*-adic expansion" of an element in Q_l , i.e., for $a \in Q_l$, we write $a = \sum_{i=-m}^{\infty} a_i l^i \in Q_i$, $a_i \in Z$, $0 \le a_i \le l-1$, $m \in Z$. We define the "fractional part" {a} of a as $\sum_{i=-m}^{-1} a_i l^i$. Then $h \stackrel{(k)}{\sim} h'$ is equivalent to $\{\overline{R_{i(l-1)}}(h)\} = \{R_{i(l-1)}(h')\}$ for all $i, 1 \le i \le k$.

Put

 $\tilde{R}_i(h) = \{R_{i(l-1)}(h)\}.$ If *h* runs through a (*k*-1)-equivalence class, $Q_{k(l-1)-3}(0, \dots, 0, \tilde{R}_1(h), 0, \dots, 0, M_1(h))$ $\tilde{R}_{2}(h), 0, \dots, 0, \tilde{R}_{k-1}(h), 0, \dots, 0)$ is independent of h and the sum of this element and $(\alpha^{k(l-1)}-1)R_{k(l-1)}(h)$ belongs to Z_l . By the definition of $R_{k(l-1)}(h)$, we see easily that this sum takes every value mod $l^{\nu+1}(l^{\nu}||k)$ as h varying in a (k-1)-equivalence class. Therefore, a (k-1)-equivalence class consists of $l^{\nu+1}$ distinct (k)-equivalence classes and hence the number of (k)equivalence class in Z_l^{∞} tends to infinity as $k \rightarrow \infty$. By definition, the map $\Psi_{\alpha} \ni (\alpha, H) \rightarrow h(H) \in \mathbb{Z}_{l}^{\infty}$ is surjective. Therefore, we have shown that, if $\alpha \in \mathbf{Z}_{l}^{\times}$ generates \mathbf{Z}_{l}^{\times} , the set Ψ_{α} contains infinitely many Ψ -conjugacy classes.

Next, we shall deduce the theorem from this. Let

 $\Psi^{-} = \{ (\alpha, F) \in \Theta \, | \, F\overline{F} = \alpha (uvw)^{j_{\alpha}-1} \}, \quad \Psi^{-}_{\alpha} = \Psi^{-} \cap \Psi^{-}_{\alpha} \quad (\alpha \in \mathbb{Z}_{+}^{\times}),$

where $\overline{F} = F^{j-1}$ for $F \in \mathcal{A}$. Let $\gamma : \Phi \to \Psi$ be the natural map induced from Aut $\mathfrak{F} \rightarrow Aut (\mathfrak{F}/\mathfrak{F}')$. Then, by Theorem 8 in [2] Ch. IV, the image of \mathfrak{I} coincides with Ψ^- . So, it suffices to show that there are infinitely many elements in Ψ_{α}^{-} which are not Ψ_{1} -conjugate to each other. We may choose our (α, F_{α}) from the minus part Ψ_{α}^{-} of Ψ_{α} . Let $(\alpha, H) \in \Psi_{\alpha}^{-}$ and write $H = F_{\alpha}(1 + uvwH_0), H_0 \in \mathcal{A}$. Then $1 + uvwH_0 \in \mathcal{V}_1$. It follows from this that $H_0 \equiv \overline{H}_0 \mod u$. Conversely, for $H_0 \in \mathcal{A}$ satisfying $H_0 \equiv \overline{H}_0 \mod u$, there exists $1+uvwH'_0 \in \mathcal{V}_1$ such that $H'_0 \equiv H_0 \mod u$. This can be seen in the same way as in the proof of Proposition 1 (ii), Ch. III, [2]. Therefore, when H runs through $\Psi_{\overline{a}}$, i.e., $1 + uvwH_0$ runs through $\Psi_{\overline{1}}$, $H_0 \mod u$ runs through every element satisfying $H_0 \equiv \overline{H}_0 \mod u$. Now let

 $H_0 \mod u = h_0 + h_1 v + h_2 v^2 + \cdots$

The condition $H_0 \equiv \overline{H}_0 \mod u$ is satisfied if and only if h_{2i} , $i=0, 1, 2, \cdots$, are arbitrary and h_{2i+1} , $i=0, 1, 2, \dots$, are determined inductively by the relations

276

(9) $h_1=0, \quad h_{2i+1}+{}_iC_1 \cdot h_{2i}+{}_iC_2 \cdot h_{2i-1}+\cdots+{}_iC_{i-1} \cdot h_{i+2}+h_{i+1}=0$ (i≥1). This can be seen easily by expanding

 $\overline{H}_0 \mod u = h_0 - h_1 v (1 - v + v^2 - \cdots) + h_2 v^2 (1 - v + v^2 - \cdots)^2 - \cdots$ and comparing the coefficient of v^i for $i=0, 1, 2, \cdots$. So, to prove the theorem, it suffices to show that when h_0, h_2, h_4, \cdots , vary freely in Z_l and h_1, h_3, h_5, \cdots , are determined by (9), the number of (k)-equivalence classes to which h belongs tends to infinity as $k \to \infty$. As before, this can be

checked by a lengthy but straightforward calculation of the quantity $(\alpha^{k(l-1)}-1)R_{k(l-1)}(h)$ $+Q_{k(l-1)-3}(0, \dots, 0, \tilde{R}_1(h), 0, \dots, 0, \tilde{R}_2(h), 0, \dots, 0, \tilde{R}_{k-1}(h), 0, \dots, 0) \mod l^{\nu+1}.$

References

- M. Asada and M. Kaneko: On the automorphism group of some pro-l fundamental group (to appear in Advanced Studies in Pure Math.).
- Y. Ihara: Profinite braid groups, Galois representations and complex multiplications. Ann. of Math., 123, 43-106 (1986).

No. 7]