Institutions:

an abstract framework for foundations of software specification and logic

Andrzej Tarlecki

Institute of Informatics, University of Warsaw

> tarlecki@mimuw.edu.pl
> http://www.mimuw.edu.pl/~tarlecki

Institutions:

theoretical foundations to frame practical issues

Foundations
 of Software Specification and Development

Ultimate goal

A formal basis

for systematic development
of correct software systems
from requirements specifications
by verified refinement steps.

Formal basis:

- Mathematical structures to model software systems
- Logical systems to capture their properties
- Formal semantics to assign meanings to syntax
- Proofs to facilitate certainty and understanding

Software models

Programs should be:

- clear; efficient; robust; reliable; user friendly; well documented; ...
- but first of all, CORRECT
- don't forget though: also, executable...

First approximation:

> Software system (module, program, database, ...): $$
\begin{array}{l}\text { modelled as an algebra } \\ \quad=\text { sets of data values with operations on them }\end{array}
$$

- Disregarding: code (and efficiency, robustness, reliability, ...)
- Focusing on: semantics (and input/output behaviour)

Correctness

Software correctness makes sense only
w.r.t. a precise specification of the requirements.

> Specification: defines which software systems are acceptable $$
=\text { description of a set (class) of algebras }
$$

- Mainly: listing PROPERTIES that an acceptable system must satisfy
- often: equational, first-order, etc, properties that characterise the results of the operations of the system
- Separates WHAT system should do from HOW it works

Rough analogy

module interface	\leadsto	signature
module	\leadsto	algebra
module specification	\leadsto	class of algebras

CASL

Common
Algebraic
Specification
Language

Generality and abstraction

There are many choices:

- Software systems: Non-termination allowed? Exceptions? Non-determinism? Higher-order functions? Concurrency? etc.
- Specifications: Logical language to capture basic required properties? Equational? First-order? Higher-order? Temporal formulae? LTL, CTL, CTL*?
- Proofs: Logical calculi for building proofs (of properties, of refinement steps, etc.)

Most of the theory is independent of most of these choices!
We try to make this explicit:

> rely only on basic common features

Crash course I

Universal algebra

Trivial data type

Its signature Σ (syntax):

$$
\text { and } \Sigma \text {-algebra } A \text { (semantics): }
$$

```
sorts Int, Bool;
opns 0,1: Int;
    plus, times, minus: Int }\times\mathrm{ Int }->\mathrm{ Int;
    false, true: Bool;
    lteq: Int }\times\mathrm{ Int }->\mathrm{ Bool;
    not: Bool }->\mathrm{ Bool;
    and:Bool }\times\mathrm{ Bool }->\mathrm{ Bool;
```

carriers	$A_{\text {Int }}=\mathrm{Int}, A_{\text {Bool }}=$ Bool
operations	$0_{A}=0,1_{A}=1$
	$\operatorname{plus}_{A}(n, m)=n+m$, times $_{A}(n, m)=n * m$
	$\operatorname{minus}_{A}(n, m)=n-m$
	$\operatorname{false}_{A}=\mathrm{ff}$, true
	$\operatorname{lteq}_{A}(n, m)=\mathrm{tt}$ if $n \leq m$ else ff
	$n o t_{A}(b)=\mathrm{tt}$ if $b=\mathrm{ff}$ else ff
	$\operatorname{and}_{A}\left(b, b^{\prime}\right)=\mathrm{tt}$ if $b=b^{\prime}=\mathrm{tt}$ else ff

Signatures \& algebras

- Algebraic signature:

$$
\Sigma=(S, \Omega)
$$

- sort names: S
- operation names, classified by their argument and result sorts:

$$
\Omega=\left\langle\Omega_{w, s}\right\rangle_{w \in S^{*}, s \in S}
$$

- Σ-algebra:

$$
A=\left(|A|,\left\langle f_{A}\right\rangle_{f \in \Omega}\right)
$$

- carrier sets: $\left.|A|=\left.\langle | A\right|_{s}\right\rangle_{s \in S}$
- operations: $f_{A}:|A|_{s_{1}} \times \ldots \times|A|_{s_{n}} \rightarrow|A|_{s}$, for $f \in \Omega_{s_{1} \ldots s_{n}, s}$
- $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ stands for $s_{1}, \ldots, s_{n}, s \in S$ and $f \in \Omega_{s_{1} \ldots s_{n}, s}$

Fix a signature $\Sigma=(S, \Omega)$ for a while.

Few further notions

- the class of all Σ-algebras: $\operatorname{Alg}(\Sigma)$
- subalgebra $A_{\text {sub }} \subseteq A$: given by subset $\left|A_{\text {sub }}\right| \subseteq|A|$ closed under the operations
- homomorphism $h: A \rightarrow B:$ map $h:|A| \rightarrow|B|$ that preserves the operations
- isomorphism $i: A \rightarrow B$: bijective homomorphism
- congruence \equiv on A : equivalence $\equiv \subseteq|A| \times|A|$ closed under the operations
- quotient algebra A / \equiv : built in the natural way on the equivalence classes of \equiv
- product algebra $\prod_{i \in \mathcal{I}} A_{i}$: built on the Cartesian product of algebra carriers, with operations defined componentwise

Subalgebras

- for $A \in \operatorname{Alg}(\Sigma)$, a Σ-subalgebra $A_{\text {sub }} \subseteq A$ is given by subset $\left|A_{\text {sub }}\right| \subseteq|A|$ closed under the operations:
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1} \in\left|A_{\text {sub }}\right|_{s_{1}}, \ldots, a_{n} \in\left|A_{\text {sub }}\right|_{s_{n}}$,

$$
f_{A_{\text {sub }}}\left(a_{1}, \ldots, a_{n}\right)=f_{A}\left(a_{1}, \ldots, a_{n}\right)
$$

- for $A \in \operatorname{Alg}(\Sigma)$ and $X \subseteq|A|$, the subalgebra of A genereted by $X,\langle A\rangle_{X}$, is the least subalgebra of A that contains X.
- $A \in \operatorname{Alg}(\Sigma)$ is reachable if $\langle A\rangle_{\emptyset}$ coincides with A.

Fact: For any $A \in \mathbf{A l g}(\Sigma)$ and $X \subseteq|A|,\langle A\rangle_{X}$ exists.
Proof (idea):

- generate the generated subalgebra from X by closing it under operations in A; or
- the intersection of any family of subalgebras of A is a subalgebra of A.

Homomorphisms

- for $A, B \in \operatorname{Alg}(\Sigma)$, a Σ-homomorphism $h: A \rightarrow B$ is a function $h \rightarrow A \rightarrow|B|$ that preserves the operations:
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1} \in|A|_{s_{1}}, \ldots, a_{n} \in|A|_{s_{n}}$,

$$
h_{s}\left(f_{A}\left(a_{1}, \ldots, a_{n}\right)\right)=f_{B}\left(h_{s_{1}}\left(a_{1}\right), \ldots, h_{s_{n}}\left(a_{n}\right)\right)
$$

Fact: Given a homomorphism $h: A \rightarrow B$ and subalgebras $A_{\text {sub }}$ of A and $B_{\text {sub }}$ of B, the image of $A_{\text {sub }}$ under $h, h\left(A_{\text {sub }}\right)$, is a subalgebra of B, and the coimage of $B_{\text {sub }}$ under $h, h^{-1}\left(B_{\text {sub }}\right)$, is a subalgebra of A.

Fact: Given a homomorphism $h: A \rightarrow B$ and $X \subseteq|A|, h\left(\langle A\rangle_{X}\right)=\langle B\rangle_{h(X)}$.
Fact: Identity function on the carrier of $A \in \operatorname{Alg}(\Sigma)$ is a homomorphism $i d_{A}: A \rightarrow A$. Composition of homomorphisms $h: A \rightarrow B$ and $g: B \rightarrow C$ is a homomorphism $h ; g: A \rightarrow C$.

Isomorphisms

- for $A, B \in \operatorname{Alg}(\Sigma)$, a Σ-isomorphism is any Σ-homomorphism $i: A \rightarrow B$ that has an inverse, i.e., a Σ-homomorphism $i^{-1}: B \rightarrow A$ such that $i ; i^{-1}=i d_{A}$ and $i^{-1} ; i=i d_{B}$.
- Σ-algebras are isomorphic if there exists an isomorphism between them.

Fact: A Σ-homomorphism is a Σ-isomorphism iff it is bijective (" $1-1$ " and "onto").
Fact: Identities are isomorphisms, and any composition of isomorphisms is an isomorphism.

Congruences

- for $A \in \operatorname{Alg}(\Sigma)$, a Σ-congruence on A is an equivalence $\equiv \subseteq|A| \times|A|$ that is closed under the operations:
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1}, a_{1}^{\prime} \in|A|_{s_{1}}, \ldots, a_{n}, a_{n}^{\prime} \in|A|_{s_{n}}$,

$$
\text { if } a_{1} \equiv_{s_{1}} a_{1}^{\prime}, \ldots, a_{n} \equiv_{s_{n}} a_{n}^{\prime} \text { then } f_{A}\left(a_{1}, \ldots, a_{n}\right) \equiv_{s} f_{A}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) .
$$

Fact: For any relation $R \subseteq|A| \times|A|$ on the carrier of a Σ-algebra A, there exists the least congruence on A that conatins R.

Fact: For any Σ-homomorphism $h: A \rightarrow B$, the kernel of $h, K(h) \subseteq|A| \times|A|$, where $a K(h) a^{\prime}$ iff $h(a)=h\left(a^{\prime}\right)$, is a Σ-congruence on A.

Quotients

- for $A \in \operatorname{Alg}(\Sigma)$ and Σ-congruence $\equiv \subseteq|A| \times|A|$ on A, the quotient atgebra A / \equiv is built in the natural way on the equivalence classes of \equiv :
- for $s \in S,|A / \equiv|_{s}=\left\{\left.[a]_{\equiv}|a \in| A\right|_{s}\right\}$, with $[a]_{\equiv}=\left\{a^{\prime} \in|A|_{s} \mid a \equiv a^{\prime}\right\}$
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1} \in|A|_{s_{1}}, \ldots, a_{n} \in|A|_{s_{n}}$,

$$
f_{A / \equiv}\left(\left[a_{1}\right]_{\equiv}, \ldots,\left[a_{n}\right]_{\equiv}\right)=\left[f_{A}\left(a_{1}, \ldots, a_{n}\right)\right]_{\equiv}
$$

Fact: The above is well-defined; moreover, the natural map that assigns to every element its equivalence class is a Σ-homomorphisms $[-] \equiv: A \rightarrow A / \equiv$.

Fact: Given two Σ-congruences \equiv and \equiv^{\prime} on $A, \equiv \subseteq \equiv^{\prime}$ iff there exists a上-homomorphism $h: A / \equiv \rightarrow A / \equiv^{\prime}$ such that $[-]_{\equiv} ; h=[-]_{\equiv}$.

Fact: For any Σ-homomorphism $h: A \rightarrow B, A / K(h)$ is isomorphic with $h(A)$.

Products

- for $A_{i} \in \operatorname{Alg}(\Sigma), i \in \mathcal{I}$, the product of $\left\langle A_{i}\right\rangle_{i \in \mathcal{I}}, \prod_{i \in \mathcal{I}} A_{i}$ is built in the natural way on the Cartesian product of the carriers of $A_{i}, i \in \mathcal{I}$:
- for $s \in S,\left|\prod_{i \in \mathcal{I}} A_{i}\right|_{s}=\prod_{i \in \mathcal{I}}\left|A_{i}\right|_{s}$
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1} \in\left|\prod_{i \in \mathcal{I}} A_{i}\right|_{s_{1}}, \ldots, a_{n} \in\left|\prod_{i \in \mathcal{I}} A_{i}\right|_{s_{n}}$, for $i \in \mathcal{I}, f_{\prod_{i \in \mathcal{I}} A_{i}}\left(a_{1}, \ldots, a_{n}\right)(i)=f_{A_{i}}\left(a_{1}(i), \ldots, a_{n}(i)\right)$

Fact: For any family $\left\langle A_{i}\right\rangle_{i \in \mathcal{I}}$ of Σ-algebras, projections $\pi_{i}(a)=a(i)$, where $i \in \mathcal{I}$ and $a \in \prod_{i \in \mathcal{I}}\left|A_{i}\right|$, are Σ-homomorphisms $\pi_{i}: \prod_{i \in \mathcal{I}} A_{i} \rightarrow A_{i}$.

Define the product of the empty family of Σ-algebras. When the projection π_{i} is an isomorphism?

Terms

Consider an S-sorted set X of variables, Σ-algebra A and valuation $v: X \rightarrow|A|$.

- term $t \in\left|T_{\Sigma}(X)\right|$: built using variables X, constants and operations from Ω in the usual way
- term algebra $T_{\Sigma}(X)$: with the set of terms as the carrier, and operations defined "syntactically"
- term evaluation $v^{\#}: T_{\Sigma}(X) \rightarrow A$: the unique homomorphism from $T_{\Sigma}(X)$ to A that extends v
- term value $t_{A}[v]=v^{\#}(t)$: may also be determined inductively

Terms

Consider an S-sorted set X of variables.

Boringly

known

- terms $t \in\left|T_{\Sigma}(X)\right|$ are built using variables X, constants and operations from Ω in the usual way: $\left|T_{\Sigma}(X)\right|$ is the least set such that
$-X \subseteq\left|T_{\Sigma}(X)\right|$
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $t_{1} \in\left|T_{\Sigma}(X)\right|_{s_{1}}, \ldots, t_{n} \in\left|T_{\Sigma}(X)\right|_{s_{n}}$, $f\left(t_{1}, \ldots, t_{n}\right) \in\left|T_{\Sigma}(X)\right|_{s}$
- for any Σ-algebra A and valuation $v: X \rightarrow|A|$, the value $t_{A}[v]$ of a term $t \in\left|T_{\Sigma}(X)\right|$ in A under v is determined inductively:

$$
\begin{aligned}
& -x_{A}[v]=v_{s}(x), \text { for } x \in X_{s}, s \in S \\
& -\left(f\left(t_{1}, \ldots, t_{n}\right)\right)_{A}[v]=f_{A}\left(\left(t_{1}\right)_{A}[v], \ldots,\left(t_{n}\right)_{A}[v]\right), \text { for } f: s_{1} \times \ldots \times s_{n} \rightarrow s \text { and } \\
& \quad t_{1} \in\left|T_{\Sigma}(X)\right|_{s_{1}}, \ldots, t_{n} \in\left|T_{\Sigma}(X)\right|_{s_{n}}
\end{aligned}
$$

Above and in the following: assuming unambiguous "parsing" of terms!

Term algebras

Consider an S-sorted set X of variables.

- The term algebra $T_{\Sigma}(X)$ has the set of terms as the cankier fond operations defined "syntactically":
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $t_{1} \in\left|T_{\Sigma}(X)\right|_{s_{1}}, \ldots, t_{n} \in\left|T_{\Sigma}(X)\right|_{s_{n}}$, $f_{T_{\Sigma}(X)}\left(t_{1}, \ldots, t_{n}\right)=f\left(t_{1}, \ldots, t_{n}\right)$.

Fact: For any S-sorted set X of variables, Σ-algebra A and valuation $v: X \rightarrow|A|$, there is a unique Σ-homomorphism $v^{\#}: T_{\Sigma}(X) \rightarrow A$ that extends v. Moreover, for $t \in\left|T_{\Sigma}(X)\right|, v^{\#}(t)=t_{A}[v]$.

Equations

- Equation:

$$
\forall X . t=t^{\prime}
$$

where:

- X is a set of variables, and
$-t, t^{\prime} \in\left|T_{\Sigma}(X)\right|_{s}$ are terms of a common sort.
- Satisfaction relation: Σ-algebra A satisfies $\forall X . t=t^{\prime}$

$$
A \models \forall X . t=t^{\prime}
$$

when for all $v: X \rightarrow|A|, t_{A}[v]=t_{A}^{\prime}[v]$.

Semantic entailment

$$
\Phi \models_{\Sigma} \varphi
$$

Σ-equation φ is a semantic consequence of a set of Σ-equations Φ
 $$
\text { if } \varphi \text { holds in every } \Sigma \text {-algebra that satisfies } \Phi \text {. }
$$

BTW:

- Models of a set of equations: $\operatorname{Mod}[\Phi]=\{A \in \operatorname{Alg}(\Sigma) \mid A \models \Phi\}$
- Theory of a class of algebras: $\operatorname{Th}[\mathcal{C}]=\{\varphi \mid \mathcal{C} \models \varphi\}$
- $\Phi \models \varphi \Longleftrightarrow \varphi \in \operatorname{Th}[\operatorname{Mod}[\Phi]]$
- Mod and Th form a Galois connection

Equational calculus

$$
\begin{array}{rc}
\frac{\forall X . t=t^{\prime}}{\forall X . t=t} & \frac{\forall X . t=t^{\prime} \quad \forall X . t^{\prime}=t^{\prime \prime}}{\forall X . t^{\prime}=t} \\
\frac{\forall X . t_{1}=t_{1}^{\prime} \ldots \quad \forall X . t_{n}=t_{n}^{\prime}}{\forall X . f\left(t_{1} \ldots t_{n}\right)=f\left(t_{1}^{\prime} \ldots t_{n}^{\prime}\right)} & \frac{\forall X . t=t^{\prime}}{\forall Y . t[\theta]=t^{\prime}[\theta]} \text { for } \theta: X \rightarrow\left|T_{\Sigma}(Y)\right|
\end{array}
$$

Mind the variables!

$$
a=b \text { does not follow from } a=f(x) \text { and } f(x)=b \text {, unless. } \ldots
$$

Proof-theoretic entailment

Σ-equation φ is a proof-theoretic consequence of a set of Σ-equations Φ if φ can be derived from Φ by the rules.

How to justify this?
Semantics!

Soundness \& completeness

Fact: The equational calculus is sound and complete:

$$
\Phi \models \varphi \Longleftrightarrow \Phi \vdash \varphi
$$

- soundness: "all that can be proved, is true" $(\Phi \models \varphi \Longleftarrow \Phi \vdash \varphi)$
- completeness: "all that is true, can be proved" $(\Phi \models \varphi \Longrightarrow \Phi \vdash \varphi)$

Proof (idea):

- soundness: easy!

Just check for each rule that if premises hold in an algebra then so does the conclusion.

- completeness: not so easy!

But not too difficult either.

Proving completeness

$$
\Phi \models \varphi \Longrightarrow \Phi \vdash \varphi
$$

Proof (idea):

- Suppose $\Phi \models \forall Y . t_{1}=t_{2}$
- Consider the term algebra $T_{\Sigma}(Y)$
- Define $\approx \subseteq\left|T_{\Sigma}(Y)\right| \times\left|T_{\Sigma}(Y)\right|$ by $t \approx t^{\prime} \Longleftrightarrow \Phi \vdash \forall Y . t=t^{\prime}$
- Check that \approx is a congruence on $T_{\Sigma}(Y)$; consider the quotient $T_{\Sigma}(Y) / \approx$
- For any $\theta: X \rightarrow\left|T_{\Sigma}(Y)\right|$, define $[\theta] \approx: X \rightarrow\left|T_{\Sigma}(Y) / \approx\right|$ by $[\theta]_{\approx}(x)=[\theta(x)] \approx$
- Check that for any $t \in\left|T_{\Sigma}(X)\right|$ and $\theta: X \rightarrow\left|T_{\Sigma}(Y)\right|, t_{\left.T_{\Sigma}(Y) / \approx[\theta] \approx\right]=[t[\theta]]_{\approx}}$
- It follows that $T_{\Sigma}(Y) / \approx \models \Phi$, and so also $T_{\Sigma}(Y) / \approx \models \forall Y . t_{1}=t_{2}$
- Conclude from this that $t_{1} \approx t_{2}$ i.e. $\Phi \vdash \forall Y . t_{1}=t_{2}$

Equational specifications

$$
\langle\Sigma, \Phi\rangle
$$

- signature Σ, to determine the static module interface
- axioms (Σ-equations), to determine required module properties

BUT:

Fact: A class of Σ-algebras is equationally definable iff it is closed under subalgebras, products and homomorphic images.

Equational specifications typically admit a lot of undesirable "modules"

Example

$$
\begin{aligned}
& \text { spec NAiventat }=\text { sort } N a t \\
& \qquad \begin{aligned}
& \text { ops } 0: N a t ; \\
& \text { succ }: N a t \rightarrow N a t ; \\
&-+_{-}: N a t \times N a t \rightarrow N a t \\
& \text { axioms } \forall n: N a t \bullet n+0=n ; \\
& \forall n, m: N a t \bullet n+\operatorname{succ}(m)=\operatorname{succ}(n+m)
\end{aligned}
\end{aligned}
$$

Now:

$$
\text { NAIVENAT } \not \models \forall n, m: N a t \bullet n+m=m+n
$$

(Nor: \quad Naivenat $\forall \forall n, m: N a t \bullet n+m=m+n$)

How to fix this

- Other (stronger) logical systems: conditional equations, first-order logic, higher-order logics, other bells-and-whistles
- more about this soon...

Institutions!

- Constraints:
- reachability (and generation): "no junk"
- initiality (and freeness): "no junk" \& "no confusion"

Constraints can be thought of as special (higher-order) formulae.

There has been a population explosion among logical systems. . .

Initial models

Fact: Every equational specification $\langle\Sigma, \Phi\rangle$ has an initial model: there exists a Σ-algebra $I \in \operatorname{Mod}[\Phi]$ such that for every Σ-algebra $M \in \operatorname{Mod}[\Phi]$ there exists a unique Σ-homomorphism from I to M.

Proof (idea): I is the quotient of the algebra of ground Σ-terms by the congruence that glues together all ground terms t, t^{\prime} such that $\Phi \models \forall \emptyset . t=t^{\prime}$.

BTW: This can be generalised to the existence of a free model of $\langle\Sigma, \Phi\rangle$ over any (many-sorted) set of data.

BTW: One proof of completeness of equational logic uses the same construction.

Example

$$
\begin{aligned}
& \text { spec NAT }=\text { free }\left\{\begin{array}{l}
\text { sort } \\
\text { ops } 0: N a t ;
\end{array}\right. \\
& \qquad \begin{array}{l}
\text { succ }: N a t \rightarrow N a t ; \\
-+_{-}: N a t \times N a t \rightarrow N a t
\end{array} \\
& \qquad \begin{array}{r}
\text { axioms } \forall n: N a t \bullet n+0=n ; \\
\forall n, m: N a t \bullet n+\operatorname{succ}(m)=\operatorname{succ}(n+m) \\
\}
\end{array}
\end{aligned}
$$

Now:

$$
\text { NAT } \models \forall n, m: N a t \bullet n+m=m+n
$$

Example'

$$
\begin{aligned}
\text { spec } N A T^{\prime}= & \text { free type } N a t::=0 \mid \operatorname{succ}(N a t) \\
& \text { op }+_{-}: N a t \times N a t \rightarrow N a t \\
& \text { axioms } \forall n: N a t \bullet n+0=n ; \\
& \forall n, m: N a t \bullet n+\operatorname{succ}(m)=\operatorname{succ}(n+m)
\end{aligned}
$$

NAT $\equiv \mathrm{NAT}^{\prime}$

Another example

```
spec String=
    generated { sort String
    ops nil:String;
        a,\ldots,z: String;
        _ _ _ : String }\times\mathrm{ String }->\mathrm{ String }
        axioms }\foralls:String \bullet s^nil = s
        \forall:String \bullet nil^ s=s;
        \foralls,t,v:String\bullet s^ (t^v)=(s^t)^v
        }
```


Moving between signatures

Let $\Sigma=(S, \Omega)$ and $\Sigma^{\prime}=\left(S^{\prime}, \Omega^{\prime}\right)$

$$
\sigma: \Sigma \rightarrow \Sigma^{\prime}
$$

- Signature morphism maps:
- sorts to sorts: $\sigma: S \rightarrow S^{\prime}$
- operation names to operation names, preserving their profiles: $\sigma: \Omega_{w, s} \rightarrow \Omega_{\sigma(w), \sigma(s)}^{\prime}$, for $w \in S^{*}, s \in S$
$\underline{\underline{\text { Let } \sigma: \Sigma \rightarrow \Sigma^{\prime}}}$

Translating syntax

- translation of variables: $X \mapsto X^{\prime}$, where $X_{s^{\prime}}^{\prime}=\biguplus_{\sigma(s)=s^{\prime}} X_{s}$
- translation of terms: $\sigma:\left|T_{\Sigma}(X)\right|_{s} \rightarrow\left|T_{\Sigma^{\prime}}\left(X^{\prime}\right)\right|_{\sigma(s)}$, for $s \in S$
- translation of equations: $\sigma\left(\forall X . t_{1}=t_{2}\right)$ yields $\forall X^{\prime} . \sigma\left(t_{1}\right)=\sigma\left(t_{2}\right)$

- σ-reduct: $-\mid \sigma: \mathbf{A} \boldsymbol{\operatorname { l g }}\left(\Sigma^{\prime}\right) \rightarrow \mathbf{A l g}(\Sigma)$, where for $A^{\prime} \in \mathbf{A l g}\left(\Sigma^{\prime}\right)$
$-\left.\left|A^{\prime}\right|_{\sigma}\right|_{s}=\left|A^{\prime}\right|_{\sigma(s)}$, for $s \in S$
$-\left.f_{A^{\prime}}\right|_{\sigma}=\sigma(f)_{A^{\prime}}$ for $f \in \Omega$

Note the contravariancy!

Satisfaction condition

Fact: For all signature morphisms $\sigma: \Sigma \rightarrow \Sigma^{\prime}, \Sigma^{\prime}$-algebras A^{\prime} and Σ-equations φ :

$$
\left.A^{\prime}\right|_{\sigma} \models_{\Sigma} \varphi \Longleftrightarrow A^{\prime} \models_{\Sigma^{\prime}} \sigma(\varphi)
$$

Proof (idea): for $t \in\left|T_{\Sigma}(X)\right|$ and $v: X \rightarrow\left|A^{\prime}\right| \sigma\left|, t_{A^{\prime}}\right|_{\sigma}[v]=\sigma(t)_{A^{\prime}}\left[v^{\prime}\right]$, where
$v^{\prime}: X^{\prime} \rightarrow\left|A^{\prime}\right|$ is given by $v_{\sigma(s)}^{\prime}(x)=v_{s}(x)$ for $s \in S, x \in X_{s}$.

TRUTH is preserved (at least) under:

- change of notation
- restriction/extension of irrelevant context

Crash course II

Category theory

Categories and functors

- A category \mathbf{K} consists of:
- a "set" of objects: |K|
- sets of morphisms: $\mathbf{K}(A, B)$, for all $A, B \in|\mathbf{K}| ; m: A \rightarrow B$ stands for $m \in \mathbf{K}(A, B)$
- morphism composition: for $m: A \rightarrow B$ and $m^{\prime}: B \rightarrow C$, we have $m ; m^{\prime}: A \rightarrow C$;
the composition is associative and has identities.
- A functor $\mathbf{F}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$ between two categories maps:
- K-objects to \mathbf{K}^{\prime}-objects
- K-morphisms to \mathbf{K}^{\prime}-morphisms, preserving their source and target, composition and identities

Sample categories and functors around

- sets and functions between them form the category Set
- (sm)all categories and functors between them form the category Cat
- Σ-algebras and their homomorphisms form the category $\operatorname{Alg}(\Sigma)$
- algebraic signatures and their morphisms form the category AlgSig
- σ-reduct extends to the functor ${ }_{-}{ }_{\sigma}: \mathbf{A} \lg \left(\Sigma^{\prime}\right) \rightarrow \mathbf{A l g}(\Sigma)$
- Alg: $\mathbf{A l g S i g}{ }^{o p} \rightarrow \mathbf{C a t}$ is a (contravariant) functor mapping signature Σ to the category $\boldsymbol{\operatorname { A l g }}(\Sigma)$ and signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ to the reduct functor $-\sigma^{\sigma}: \mathbf{A l g}\left(\Sigma^{\prime}\right) \rightarrow \mathbf{A l g}(\Sigma)$
- Eq: AlgSig \rightarrow Set is a (covariant) functor mapping signature Σ to the set $\mathbf{E q}(\Sigma)$ of all Σ-equations and signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ to the translation function $\sigma: \mathbf{E q}(\Sigma) \rightarrow \mathbf{E q}\left(\Sigma^{\prime}\right)$

Diagrams, limits, colimits

- Diagram in \mathbf{K} is a functor $D: J \rightarrow \mathbf{K}$ from (small) shape category J
- Cocone $\alpha: D \rightarrow X$ on diagram D with vertex $X \in|\mathbf{K}|$: consists of a family of morphisms $\alpha_{n}: D(n) \rightarrow X$, one for each node $n \in|J|$, such that $\alpha_{n}=D(e) ; \alpha_{m}$ for each edge $e: n \rightarrow m$ in J
- Cone $\beta: X \rightarrow D: \ldots$ a family of morphisms $\beta_{n}: X \rightarrow D(n) \ldots$ dually
- Colimit of D is a cocone $\operatorname{colim} D: D \rightarrow|\operatorname{colim} D|$ such that for every cocone $\alpha: D \rightarrow X$ there exists a unique $h:|\operatorname{colim} D| \rightarrow X$ such that $(\operatorname{colim} D)_{n} ; h=\alpha_{n}$ for $n \in|J|$
- Limit of D is a cone $\lim D:|\lim D| \rightarrow D \ldots$ dually

Limits and colimits (when they exist) are defined up to isomorphism

Limits and colimits

A limit of $D($ in $\mathbf{K})$ is a cone $\left\langle\beta_{n}: X \rightarrow D_{n}\right\rangle_{n \in N}$ on D such that for all cones $\left\langle\beta_{n}^{\prime}: X^{\prime} \rightarrow D_{n}\right\rangle_{n \in N}$ on D, for a unique morphism $h: X^{\prime} \rightarrow X, h ; \beta_{n}=\beta_{n}^{\prime}$ for all $n \in N$.

A colimit of $D($ in $\mathbf{K})$ is a cocone $\left\langle\alpha_{n}: D_{n} \rightarrow X\right\rangle_{n \in N}$ on D such that for all cocones $\left\langle\alpha_{n}^{\prime}: D_{n} \rightarrow X^{\prime}\right\rangle_{n \in N}$ on D, for a unique morphism $h: X \rightarrow X^{\prime}, \alpha_{n} ; h=\alpha_{n}^{\prime}$ for all $n \in N$.

Some limits

diagram	limit	in Set
$($ empty $)$	terminal object	$\{*\}$
$A \quad B$	product	$A \times B$
$A \xrightarrow[g]{\stackrel{f}{\longrightarrow}} B$	equalizer	$\{a \in A \mid f(a)=g(a)\} \hookrightarrow A$
$A \xrightarrow{f} C \stackrel{g}{\longleftrightarrow} B$	pullback	$\{(a, b) \in A \times B \mid f(a)=g(b)\}$

Fact: All finite limits may be built using terminal object and pullbacks; pullbacks may be built using products and equalizers.

Give constructions of such limits in Cat Hint: This is easy!

Some colimits

diagram	colimit	in Set
(empty)	initial object	\emptyset
$A \quad B$	coproduct	$A \uplus B$
$A \underset{g}{\stackrel{f}{\longrightarrow}} B$	coequalizer	$B \longrightarrow B / \equiv$
$A \stackrel{f}{\longleftrightarrow} C \xrightarrow{g} B$	pushout	$(A \uplus B) / \equiv$ where $f(a) \equiv g(a)$ for all $a \in A$

Fact: All finite colimits may be built using initial object and pushouts; pushouts may be built using coproducts and coequalizers.

Give constructions of such colimits in Cat Hint: This is not entirely easy!

Example of a pushout

Diagrams list objects indicating how they share components

Example of a pushout

Diagrams list objects indicating how they share components

Colimits combine objects taking account of the indicated sharing

A sample pushout in AlgSig

```
sort String
ops a,...,z:String;
    _^_ : String > String
        -> String
            |
```



```
sorts Elem,Nat, Array[Elem]
```

sorts Elem,Nat, Array[Elem]
ops empty:Array[Elem];
ops empty:Array[Elem];
put : Nat × Elem × Array[Elem]
put : Nat × Elem × Array[Elem]
Array[Elem];
Array[Elem];
get : Nat \times Array[Elem] }->\mathrm{ Elem

```
get : Nat \times Array[Elem] }->\mathrm{ Elem
```


A sample pushout in AlgSig

sort String
ops $a, \ldots, z:$ String;

- ^_ : String \times String
\rightarrow String
Δ


```
```

sorts String,Nat, Array[String]

```
```

sorts String,Nat, Array[String]
ops a,...,z:String;
ops a,...,z:String;
_ _ _ : String × String }->\mathrm{ String;
_ _ _ : String × String }->\mathrm{ String;
empty : Array[String];
empty : Array[String];
put:Nat }\times\mathrm{ String }\times\mathrm{ Array[String]
put:Nat }\times\mathrm{ String }\times\mathrm{ Array[String]
Array[String];
Array[String];
get : Nat × Array[String] }->\mathrm{ String

```
```

get : Nat × Array[String] }->\mathrm{ String

```
```

```
sorts Elem,Nat,Array[Elem]
```

sorts Elem,Nat,Array[Elem]
ops empty:Array[Elem];
ops empty:Array[Elem];
put : Nat × Elem × Array[Elem]
put : Nat × Elem × Array[Elem]
Array[Elem];
Array[Elem];
get :Nat × Array[Elem] }->\mathrm{ Elem

```
get :Nat × Array[Elem] }->\mathrm{ Elem
```


At last...

Institutions

Sample categories and functors around

- sets and functions between them form the category Set
- (sm)all categories and functors between them form the category Cat
- Σ-algebras and their homomorphisms form the category $\operatorname{Alg}(\Sigma)$
- algebraic signatures and their morphisms form the category AlgSig
- σ-reduct extends to the functor ${ }_{-}{ }_{\sigma}: \mathbf{A} \lg \left(\Sigma^{\prime}\right) \rightarrow \mathbf{A l g}(\Sigma)$
- Alg: $\mathbf{A l g S i g}{ }^{o p} \rightarrow \mathbf{C a t}$ is a (contravariant) functor mapping signature Σ to the category $\boldsymbol{\operatorname { A l g }}(\Sigma)$ and signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ to the reduct functor $-\sigma^{\sigma}: \mathbf{A l g}\left(\Sigma^{\prime}\right) \rightarrow \mathbf{A l g}(\Sigma)$
- Eq: AlgSig \rightarrow Set is a (covariant) functor mapping signature Σ to the set $\mathbf{E q}(\Sigma)$ of all Σ-equations and signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ to the translation function $\sigma: \mathbf{E q}(\Sigma) \rightarrow \mathbf{E q}\left(\Sigma^{\prime}\right)$

Generality and abstraction

There are many choices:

- Software systems: Non-termination allowed? Exceptions? Non-determinism? Higher-order functions? Concurrency? etc.
- Specifications: Logical language to capture basic required properties? Equational? First-order? Higher-order? Temporal formulae? LTL, CTL, CTL*?
- Proofs: Logical calculi for building proofs (of properties, of refinement steps, etc.)

Most of the theory is independent of most of these choices!
We try to make this explicit:

> rely only on basic common features

Tuning up the logical system

- various sets of formulae (equations, Horn-clauses, first-order, higher-order, modal formulae, ...)
- various notions of algebra (partial algebras, relational structures, error algebras, Kripke structures, ...)
- various notions of signature (order-sorted, error, higher-order signatures, sets of propositional variables, ...)
- (various notions of signature morphisms)

> No best logic for everything

Solution:

> Work with an arbitrary logical system

Main tool

Institutions

- a standard formalization of the concept of the underlying logical system for specification formalisms and most work on foundations of software specification and development from algebraic perspective;
- a formalization of the concept of a logical system for foundational studies.
- truly abstract model theory
- proof-theoretic considerations
- heterogeneous logical environments

$$
\begin{aligned}
& \text { Abstract model the } \\
& \text { for specification and programing } \\
& \text { the basics of category theory) }
\end{aligned}
$$

Institution: abstraction

plus satisfaction relation:

$$
M \models \varphi
$$

and so the usual Galois connection between classes of models and sets of sentences, with the standard notions induced $(\operatorname{Mod}[\Phi], \operatorname{Th}[\mathcal{M}], \operatorname{Th}[\Phi], \Phi \models \varphi$, etc $)$.

- Also, possibly adding (sound) consequence: $\Phi \vdash \varphi$ (implying $\Phi \models \varphi$) to deal with proof-theoretic aspects.

Institution: first insight

plus satisfaction relation:

$$
M \models \Sigma \varphi
$$

and so, for each signature, the usual Galois connection between classes of models and sets of sentences, with the standard notions induced $\left(\operatorname{Mod}_{\Sigma}[\Phi], \quad T h_{\Sigma}[\mathcal{M}]\right.$, $T h_{\Sigma}[\Phi], \Phi \models_{\Sigma} \varphi$, etc) .

- Also, possibly adding (sound) consequence: $\Phi \vdash_{\Sigma} \varphi$ (implying $\Phi \models_{\Sigma} \varphi$) to deal with proof-theoretic aspects.

Institution: key insight

imposing the satisfaction condition:

$$
M^{\prime} \models_{\Sigma^{\prime}} \sigma(\varphi) \text { iff }\left.M^{\prime}\right|_{\sigma} \models_{\Sigma} \varphi
$$

Truth is invariant under change of notation and independent of any additional symbols around

Institution

- a category Sign of signatures
- a functor Sen: Sign \rightarrow Set
$-\boldsymbol{\operatorname { S e n }}(\Sigma)$ is the set of Σ-sentences, for $\Sigma \in|\boldsymbol{\operatorname { S i g n }}|$
- a functor Mod: Sign ${ }^{o p} \rightarrow$ Cat
- $\operatorname{Mod}(\Sigma)$ is the category of Σ-models, for $\Sigma \in|\mathbf{S i g n}|$
- for each $\Sigma \in|\mathbf{S i g n}|$, Σ-satisfaction relation $\models_{\Sigma} \subseteq|\boldsymbol{\operatorname { M o d }}(\Sigma)| \times \operatorname{Sen}(\Sigma)$ subject to the satisfaction condition:

$$
M^{\prime}{ }_{\sigma} \models_{\Sigma} \varphi \Longleftrightarrow M^{\prime} \models_{\Sigma^{\prime}} \sigma(\varphi)
$$

where $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ in $\operatorname{Sign}, M^{\prime} \in\left|\operatorname{Mod}\left(\Sigma^{\prime}\right)\right|, \varphi \in \operatorname{Sen}(\Sigma)$, $M^{\prime}{ }_{\sigma}$ stands for $\operatorname{Mod}(\sigma)\left(M^{\prime}\right)$, and $\sigma(\varphi)$ for $\boldsymbol{\operatorname { S e n }}(\sigma)(\varphi)$.

Typical institutions

- EQ - equational logic
- FOEQ - first-order logic (with predicates and equality)
- PEQ, PFOEQ - as above, but with partial operations
- HOL — higher-order logic
- logics of constraints (fitted via signature morphisms)
- CASL - the logic of CASL: partial first-order logic with equality, predicates, generation constraints, and subsorting

CASL subsorting: the sets of sorts in signatures are pre-ordered; in every model $M, s \leq s^{\prime}$ yields an injective subsort embedding (coercion) $e m_{M}^{s \leq s^{\prime}}:|M|_{s} \rightarrow|M|_{s^{\prime}}$ such that $e m_{M}^{s \leq s}=i d_{|M|_{s}}$ for each sort s, and $e m_{M}^{s \leq s^{\prime}} ; e m_{M}^{s^{\prime} \leq s^{\prime \prime}}=e m_{M}^{s \leq s^{\prime \prime}}$, for $s \leq s^{\prime} \leq s^{\prime \prime}$; plus partial projections and subsort membership predicates derived from the embeddings.

Somewhat less typical institutions:

- modal logics
- three-valued logics
- programming language semantics:
- IMP: imperative programming language with sets of computations as models and procedure declararions as sentences
- FPL: functional programming language with partial algebras as models and the usual axioms with extended term syntax allowing for local recursive function definitions

Temporal logic

Institution TL:

- signatures \mathcal{A} : (finite) sets of actions;
extremely simplified version and oversimplified presentation
- models \mathcal{R} : sets of runs, finite or infinite sequences of (sets of) actions;
- sentences φ : built from atomic statements a (action $a \in \mathcal{A}$ happens) using the usual propositional and temporal connectives, including $\mathbf{X} \varphi$ (an action happens and then φ holds) and $\varphi \mathbf{U} \psi$ (φ holds until ψ holds)
- satisfaction $\mathcal{R} \models \varphi: \varphi$ holds at the beginning of every run in \mathcal{R}

WATCH OUT!

Under some formalisations, satisfaction condition may fail!

Care is needed in the exact choice of sentences considered, morphisms (between sets of actions) allowed, and reduct definitions.

Perhaps unexpected examples:

- no sentences
- no models
- no signatures
- trivial satisfaction relations

WORK IN AN ARBITRARY INSTITUTION

... adding extra structure and assumptions only if really needed ...

Let's fix an institution $\mathbf{I}=\left(\mathbf{S i g n}, \mathbf{S e n}, \mathbf{M o d},\left\langle\models_{\Sigma}\right\rangle_{\Sigma \in|\mathbf{S i g n}|}\right)$ for a while.

Semantic entailment

$$
\Phi \models_{\Sigma} \varphi
$$

$$
\begin{aligned}
& \Sigma \text {-sentence } \varphi \text { is a semantic consequence of a set of } \Sigma \text {-sentences } \Phi \\
& \text { if } \varphi \text { holds in every } \Sigma \text {-models that satisfies } \Phi .
\end{aligned}
$$

BTW:

- Models of a set of sentences: $\operatorname{Mod}[\Phi]=\{M \in|\operatorname{Mod}(\Sigma)| \mid M \models \Phi\}$
- Theory of a class of models: $\operatorname{Th}[\mathcal{C}]=\{\varphi \mid \mathcal{C} \models \varphi\}$
- $\Phi \models \varphi \Longleftrightarrow \varphi \in \operatorname{Th}[\operatorname{Mod}[\Phi]]$
- Mod and Th form a Galois connection

Semantic equivalences

Equivalence of sentences: for $\Sigma \in|\operatorname{Sign}|, \varphi, \psi \in \operatorname{Sen}(\Sigma)$ and $\mathcal{M} \subseteq|\operatorname{Mod}(\Sigma)|$,

$$
\varphi \equiv_{\mathcal{M}} \psi
$$

if for all Σ-models $M \in \mathcal{M}, M \models \varphi$ iff $M \models \psi$. For $\varphi \equiv_{|\operatorname{Mod}(\Sigma)|} \psi$ we write:

$$
\varphi \equiv \psi
$$

Equivalence of models: for $\Sigma \in|\mathbf{S i g n}|, M, N \in|\operatorname{Mod}(\Sigma)|$, and $\Phi \subseteq \mathbf{S e n}(\Sigma)$,

$$
M \equiv_{\Phi} N
$$

if for all $\varphi \in \Phi, M \models \varphi$ iff $N \models \varphi$. For $M \equiv \operatorname{Sen(\Sigma)} N$ we write:

$$
M \equiv N
$$

Compactness, consistency, completeness...

- Institution \mathbf{I} is compact if for each signature $\Sigma \in|\mathbf{S i g n}|$, set of Σ-sentences $\Phi \subseteq \boldsymbol{\operatorname { S e n }}(\Sigma)$, and Σ-sentences $\varphi \in \operatorname{Sen}(\Sigma)$,

$$
\text { if } \Phi \models \varphi \text { then } \Phi_{f i n} \models \varphi \text { for some finite } \Phi_{f i n} \subseteq \Phi
$$

- A set of Σ-sentences $\Phi \subseteq \boldsymbol{\operatorname { S e n }}(\Sigma)$ is consistent if it has a model, i.e.,

$$
\operatorname{Mod}[\Phi] \neq \emptyset
$$

- A set of Σ-sentences $\Phi \subseteq \boldsymbol{\operatorname { S e n }}(\Sigma)$ is complete if it is a maximal consistent set of Σ-sentences, i.e., Φ is consistent and

$$
\text { for } \Phi \subseteq \Phi^{\prime} \subseteq \boldsymbol{\operatorname { S e n }}(\Sigma) \text {, if } \Phi^{\prime} \text { is consistent then } \Phi=\Phi^{\prime}
$$

Fact: Any complete set of Σ-sentences $\Phi \subseteq \operatorname{Sen}(\Sigma)$ is a theory: $\Phi=\operatorname{Th}[\operatorname{Mod}[\Phi]]$.

Preservation of entailment

Fact:

$$
\Phi \models_{\Sigma} \varphi \Longrightarrow \sigma(\Phi) \models_{\Sigma^{\prime}} \sigma(\varphi)
$$

for $\sigma: \Sigma \rightarrow \Sigma^{\prime}, \Phi \subseteq \operatorname{Sen}(\Sigma), \varphi \in \operatorname{Sen}(\Sigma)$.
If the reduct ${ }_{-\mid \sigma}:\left|\operatorname{Mod}\left(\Sigma^{\prime}\right)\right| \rightarrow|\operatorname{Mod}(\Sigma)|$ is surjective, then

$$
\Phi \models_{\Sigma} \varphi \Longleftrightarrow \sigma(\Phi) \models_{\Sigma^{\prime}} \sigma(\varphi)
$$

Adding provability

Add to institution:

- proof-theoretic entailment:

$$
\vdash_{\Sigma} \subseteq \mathcal{P}(\operatorname{Sen}(\Sigma)) \times \operatorname{Sen}(\Sigma)
$$

for each signature $\Sigma \in|\mathbf{S i g n}|$, closed under

- weakening, reflexivity, transitivity (cut)
- translation along signature morphisms

Require:

- soundness: $\Phi \vdash_{\Sigma} \varphi \Longrightarrow \Phi \models_{\Sigma} \varphi$
(?) completeness: $\Phi \models_{\Sigma} \varphi \Longrightarrow \Phi \vdash_{\Sigma} \varphi$

Presentations (basic specifications)

$$
\langle\Sigma, \Phi\rangle
$$

- signature Σ, to determine the static module interface
- axioms (Σ-sentences) $\Phi \subseteq \mathbf{S e n}(\Sigma)$, to determine required module properties

> Use strong enough logic to capture the "right" class of models, excluding undesirable "modules"

Presentation morphisms

Presentation morphism:

$$
\sigma:\langle\Sigma, \Phi\rangle \rightarrow\left\langle\Sigma^{\prime}, \Phi^{\prime}\right\rangle
$$

is a signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ such that for all $M^{\prime} \in \operatorname{Mod}\left(\Sigma^{\prime}\right)$:

$$
\left.M^{\prime} \in \operatorname{Mod}\left[\Phi^{\prime}\right] \Longrightarrow M^{\prime}\right|_{\sigma} \in \operatorname{Mod}[\Phi]
$$

$$
\text { Then }{ }_{-}{ }_{\sigma}: \operatorname{Mod}\left[\Phi^{\prime}\right] \rightarrow \operatorname{Mod}[\Phi]
$$

Fact: A signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ is a presentation morphism
$\sigma:\langle\Sigma, \Phi\rangle \rightarrow\left\langle\Sigma^{\prime}, \Phi^{\prime}\right\rangle$ if and only if $\Phi^{\prime} \models \sigma(\Phi)$.
BTW: for all presentation morphisms $\Phi \models_{\Sigma} \varphi \Longrightarrow \Phi^{\prime} \models_{\Sigma^{\prime}} \sigma(\varphi)$

Conservativity

A presentation morphism:

$$
\sigma:\langle\Sigma, \Phi\rangle \rightarrow\left\langle\Sigma^{\prime}, \Phi^{\prime}\right\rangle
$$

is conservative if for all Σ-sentences φ : $\Phi^{\prime} \models_{\Sigma^{\prime}} \sigma(\varphi) \Longrightarrow \Phi \models_{\Sigma} \varphi$
A presentation morphism $\sigma:\langle\Sigma, \Phi\rangle \rightarrow\left\langle\Sigma^{\prime}, \Phi^{\prime}\right\rangle$ admits model expansion if for each $M \in \operatorname{Mod}[\Phi]$ there exists $M^{\prime} \in \operatorname{Mod}\left[\Phi^{\prime}\right]$ such that $\left.M^{\prime}\right|_{\sigma}=M$

$$
\text { (i.e., }-\mid \sigma: \operatorname{Mod}\left[\Phi^{\prime}\right] \rightarrow \operatorname{Mod}[\Phi] \text { is surjective). }
$$

Fact: If $\sigma:\langle\Sigma, \Phi\rangle \rightarrow\left\langle\Sigma^{\prime}, \Phi^{\prime}\right\rangle$ admits model expansion then it is conservative.
In general, the equivalence does not hold!
Fact: If $\langle\Sigma, \Phi\rangle$ is complete and $\left\langle\Sigma^{\prime}, \Phi^{\prime}\right\rangle$ is consistent then any presentation morphism $\sigma:\langle\Sigma, \Phi\rangle \rightarrow\left\langle\Sigma^{\prime}, \Phi^{\prime}\right\rangle$ is conservative.

Categories of presentations \& of theories

- Pres: the category of presentations in I has presentations as objects and presentation morphisms as morphisms, with identities and composition inherited from Sign, the category of signatures.
- TH: the category of theories in I is the full subcateogry of Pres with theories (presentations with sets of sentences closed under consequence) as objects.

Pres and TH are equivalent:
$i d_{\Sigma}:\langle\Sigma, \Phi\rangle \rightarrow\langle\Sigma, \operatorname{Th}[\operatorname{Mod}[\Phi]]\rangle$ is an isomorphism in Pres

Fact: The forgetful functors from Pres and $\mathbf{T H}$, respectively, to Sign preserve and create colimits.

Fact: If the category Sign of signatures is cocomplete, so are the categories Pres of presentations and $\mathbf{T H}$ of theories.

Proof hint

Logical connectives

- I has negation if for every signature $\Sigma \in|\mathbf{S i g n}|$ and Σ-sentence $\varphi \in \operatorname{Sen}(\Sigma)$, there is a Σ-sentence " $\neg \varphi$ " $\operatorname{Sen}(\Sigma)$ such that for all Σ-models $M \in|\operatorname{Mod}(\Sigma)|, M \models " \neg \varphi "$ iff $M \not \vDash \varphi$.
- I has conjunction if for every signature $\Sigma \in|\mathbf{S i g n}|$ and Σ-sentences $\varphi, \psi \in \operatorname{Sen}(\Sigma)$, there is a Σ-sentence " $\varphi \wedge \psi$ " $\operatorname{Sen}(\Sigma)$ such that for all Σ-models $M \in|\operatorname{Mod}(\Sigma)|, M \models " \varphi \wedge \psi$ " iff $M \models \varphi$ and $M \models \psi$.
- ... implication, disjunction, falsity, truth ...

Fact: For any signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ and Σ-sentence $\varphi \in \operatorname{Sen}(\Sigma)$ $\sigma(" \neg \varphi$ ") and " $\neg \sigma(\varphi)$ " are equivalent.
Similarly, for Σ-sentences $\varphi, \psi \in \mathbf{S e n}(\Sigma)), \sigma(" \varphi \wedge \psi ")$ and " $\sigma(\varphi) \wedge \sigma(\psi)$ " are equivalent.

Similarly for other connectives...
For any institution I, define its closures: under negation $\mathbf{I}\urcorner$, under conjunction \mathbf{I}^{\wedge}, etc. as well as under all boolean connectives $\mathbf{I}^{\text {bool }}$

Some "institutional" topics

- Institutions: intuitions and motivations

$$
\text { Goguen \& Burstall ~1980 } \rightarrow 1992
$$

- Very abstract model theory

$$
\text { Tarlecki } \sim 1986, \text { Diaconescu et al } \sim 2003 \rightarrow \ldots
$$

- Structured specifications

$$
\text { Clear ~1980, Sannella \& Tarlecki } \sim 1984 \rightarrow \ldots, \text { CASL } \sim 2004
$$

- Moving between institutions

Goguen \& Burstall $\sim 1983 \rightarrow 1992$, Tarlecki $\sim 1986,1996$, Goguen \& Rosu ~ 2002

- Heterogeneous specifications

Sannella \& Tarlecki ~ 1988, Tarlecki $\sim 2000 \rightarrow \ldots$. Diaconescu $\sim 2002 \rightarrow \ldots$. Mossakowski $\sim 2002 \rightarrow \ldots$

[^0]
Institutional (Abstract) Model Theory

An institution $\mathbf{I}=\left(\mathbf{S i g n}, \mathbf{S e n}, \mathbf{M o d},\left\langle\models_{\Sigma}\right\rangle_{\Sigma \in|\mathbf{S i g n}|}\right)$ remains fixed for another while.

Abstract abstract model theory

Providing new insights and abstract formulations for classical model-theoretic concepts and results

- amalgamation over pushouts
- the method of elementary diagrams
- existence of free extensions
- Birkhoff variety theorem(s)
- interpolation results
- Beth definability theorem
- logical connectives, free variables, quantification
- completeness for any first-order logic
- ...

Classical Craig interpolation

In first-order logic:
Fact: Any sentences $\varphi_{1} \in \operatorname{Sen}\left(\Sigma_{1}\right)$ and $\varphi_{2} \in \operatorname{Sen}\left(\Sigma_{2}\right)$ such that $\varphi_{1} \models_{\Sigma_{1} \cup \Sigma_{2}} \varphi_{2}$, have an interpolant $\theta \in \operatorname{Sen}\left(\Sigma_{1} \cap \Sigma_{2}\right)$ such that $\varphi_{1} \models_{\Sigma_{1}} \theta$ and $\theta \models_{\Sigma_{2}} \varphi_{2}$.

Example

$\begin{aligned} & \text { sort String } \\ & \text { ops } a, \ldots, z: \text { String; } \\ & \widehat{-}_{-}: \text {String } \times \text { String } \\ & \\ & \rightarrow \text { String } \end{aligned}$	\longrightarrow	```empty : Array[String]; put:Nat }\times\mathrm{ String }\times\mathrm{ Array[String] Array[String]; get : Nat }\times\mathrm{ Array [String] }->\mathrm{ String```
sort Elem	PO	
	\longrightarrow	$\begin{aligned} & \text { sorts Elem, Nat, Array }[\text { Elem }] \\ & \text { ops empty }: \text { Array }[\text { Elem }] ; \\ & \text { put }: \text { Nat } \times \text { Elem } \times \text { Array }[\text { Elem }] \\ & \quad \rightarrow \text { Array }[\text { Elem }] ; \\ & \text { get }: \text { Nat } \times \text { Array }[\text { Elem }] \rightarrow \text { Elem } \end{aligned}$

Craig interpolation, take \#1

In \mathbf{I}, interpolation property holds for a signature pushout below, if any sentences $\varphi_{1} \in \operatorname{Sen}\left(\Sigma_{1}\right)$ and $\varphi_{2} \in \operatorname{Sen}\left(\Sigma_{2}\right)$ such that $\sigma_{2}^{\prime}\left(\varphi_{1}\right) \models_{\Sigma^{\prime}} \sigma_{1}^{\prime}\left(\varphi_{2}\right)$,
have an interpolant $\theta \in \mathbf{S e n}(\Sigma)$ such that $\varphi_{1} \models_{\Sigma_{1}} \sigma_{1}(\theta)$ and $\sigma_{2}(\theta) \models_{\Sigma_{2}} \varphi_{2}$.

Institutional Craig interpolation

In I, Craig interpolation property holds for a pushout in Sign

if for all $\Phi_{1} \subseteq \operatorname{Sen}\left(\Sigma_{1}\right)$ and $\varphi_{2} \in \operatorname{Sen}\left(\Sigma_{2}\right)$ such that $\sigma_{2}^{\prime}\left(\Phi_{1}\right) \models_{\Sigma^{\prime}} \sigma_{1}^{\prime}\left(\varphi_{2}\right)$ there is $\Theta \subseteq \boldsymbol{\operatorname { S e n }}(\Sigma)$ such that $\Phi_{1} \models_{\Sigma_{1}} \sigma_{1}(\Theta)$ and $\sigma_{2}(\Theta) \models_{\Sigma_{2}} \varphi_{2}$.

Fact: Many-sorted first-order logic has the interpolation property for the pushout as above provided that at least one of the two morphisms σ_{1}, σ_{2} is injective on sorts.

Fact: Many-sorted equational logic has the interpolation property for the pushout as above provided that all sorts are non-void and σ_{2} is injective.

Institutional Craig-Robinson interpolation

In I, Craig-Robinson interpolation property holds for a pushout in $\mathbf{S i g n}$ if for all $\Phi_{1} \subseteq \operatorname{Sen}\left(\Sigma_{1}\right), \Gamma_{2} \subseteq \operatorname{Sen}\left(\Sigma_{2}\right)$ and $\varphi_{2} \in \operatorname{Sen}\left(\Sigma_{2}\right)$ such that $\sigma_{2}^{\prime}\left(\Phi_{1}\right) \cup \sigma_{1}^{\prime}\left(\Gamma_{2}\right) \models_{\Sigma^{\prime}} \sigma_{1}^{\prime}\left(\varphi_{2}\right)$ there is $\Theta \subseteq \operatorname{Sen}(\Sigma)$ such that $\Phi_{1} \models_{\Sigma_{1}} \sigma_{1}(\Theta)$ and $\sigma_{2}(\Theta) \cup \Gamma_{2} \models_{\Sigma_{2}} \varphi_{2}$.

BTW:

Consistency theorem

I has the consistency property for a pushout in $\mathbf{S i g n}$

if for all sets of sentences $\Phi \subseteq \boldsymbol{\operatorname { S e n }}(\Sigma), \Phi_{1} \subseteq \operatorname{Sen}\left(\Sigma_{1}\right)$ and $\Phi_{2} \subseteq \operatorname{Sen}\left(\Sigma_{2}\right)$ and presentation morphisms $\sigma_{1}:\langle\Sigma, \Phi\rangle \rightarrow\left\langle\Sigma_{1}, \Phi_{1}\right\rangle$ and $\sigma_{2}:\langle\Sigma, \Phi\rangle \rightarrow\left\langle\Sigma_{2}, \Phi_{2}\right\rangle$ such that Φ_{1} and Φ_{2} are consistent and σ_{1} is conservative, $\left\langle\Sigma^{\prime}, \sigma_{2}^{\prime}\left(\Phi_{1}\right) \cup \sigma_{1}^{\prime}\left(\Phi_{2}\right)\right\rangle$ is consistent.
Fact: In any compact institution with falsity, negation and conjunction, Craig interpolation, Craig-Robinson interpolation and Robinson consistency properties are equivalent.

Amalgamation for algebras taken for granted

Fact: For any algebras $A_{1} \in\left|\mathbf{A l g}\left(\Sigma_{1}\right)\right|$ and $A_{2} \in\left|\mathbf{A l g}\left(\Sigma_{2}\right)\right|$ with common interpretation of common symbols $A_{1}\left|\Sigma_{1} \cap \Sigma_{2}=A_{2}\right| \Sigma_{1} \cap \Sigma_{2}$, there is a unique "union" of A_{1} and $A_{2}, A^{\prime} \in\left|\mathbf{A l g}\left(\Sigma_{1} \cup \Sigma_{2}\right)\right|$ with $A^{\prime} \mid \Sigma_{1}=A_{1}$ and $A^{\prime} \mid \Sigma_{2}=A_{2}$.

In I, amalgamation property holds for the pushout above if for all $M_{1} \in\left|\operatorname{Mod}\left(\Sigma_{1}\right)\right|$ and $M_{2} \in\left|\operatorname{Mod}\left(\Sigma_{2}\right)\right|$ with $M_{1}\left|\sigma_{1}=M_{2}\right| \sigma_{2}$, there is a unique $M^{\prime} \in\left|\operatorname{Mod}\left(\Sigma^{\prime}\right)\right|$ with $\left.M^{\prime}\right|_{\sigma_{1}^{\prime}}=M_{2}$ and $\left.M^{\prime}\right|_{\sigma_{2}^{\prime}}=M_{1}$.
Fact: Many-sorted first-order and equational logics admit amalgamation.

Adding amalgamation

Assume:

- the model functor Mod: Sign ${ }^{o p} \rightarrow \mathbf{C a t}$ is continuous (maps colimits of signatures to limits of model categories)

Fact: Alg: AlgSig ${ }^{o p} \rightarrow \mathbf{C a t}$ is continuous.
Amalgamation property: Amalgamation property follows for a pushout in Sign if Mod maps it to a pullback in Cat:

Birkhoff-style results

Fact: In (many-sorted) equational logic, for any class of Σ-algebras $\mathcal{A} \subseteq|\mathbf{A l g}(\Sigma)|$, $\operatorname{Mod}[\operatorname{Th}[\mathcal{A}]]=\mathcal{H S P}(\mathcal{A})$.

General scheme:

I is a Birkhoff institution with \mathcal{F} and \mathcal{B}, if for any signature $\Sigma \in|\mathbf{S i g n}|$ and class of Σ-models $\mathcal{M} \subseteq|\operatorname{Mod}(\Sigma)|$

$$
\operatorname{Mod}[\operatorname{Th}[\mathcal{M}]]=\mathcal{B}_{\Sigma}(\mathcal{F}(\mathcal{M}))
$$

where:
$-\mathcal{F}$ is a family of filters with $\{\{*\}\} \in \mathcal{F}$, all model categories have F-filtered products for all $F \in \mathcal{F}$; then $\mathcal{F}(\mathcal{M})$ is the class of all F-filtered products of models in \mathcal{M}, for all $F \in \mathcal{F}$, and
$-\mathcal{B}=\left\langle\mathcal{B}_{\Sigma} \subseteq\right| \operatorname{Mod}(\Sigma)|\times|\operatorname{Mod}(\Sigma)|\rangle_{\Sigma \in|\operatorname{Sign}|}$ is a family of relations closed under isomorphism; then $\mathcal{B}_{\Sigma}(\mathcal{F}(\mathcal{M}))$ is the image of $\mathcal{F}(\mathcal{M})$ under relation \mathcal{B}_{Σ}.

```
Diaconescu ~2004
```


Interpolation from axiomatisability

Fact: Let I be a Birkhoff institution with \mathcal{F} and \mathcal{B}. Consider a pushout in Sign, for which I admits (weak) amalgamation, and such that reducts w.r.t. σ_{1} and σ_{2} preserve \mathcal{F}-filtered products.
Then for this pushout I has

- Craig interpolation property if the reduct w.r.t. σ_{2} lifts \mathcal{B}^{-1},

As in Rodenburg's proof for equational interpolation

- Craig-Robinson interpolation property if the reduct w.r.t. σ_{1} lifts \mathcal{B}.

Quite a few examples, both known and new

Free variables

Standard algebra	Institution I
algebraic signature $\Sigma=\langle S, \Omega\rangle$	signature $\Sigma \in \mid$ Sign \mid
S-sorted set of variables X	signature extension $\iota: \Sigma \rightarrow \Sigma(X)$ ($\Sigma(X)$ expands Σ by variables X as constants)
open Σ-formula φ with variables X	$\Sigma(X)$-sentence φ
Σ-algebra M	Σ-model $M \in\|\operatorname{Mod}(\Sigma)\|$
valuation of variables $v: X \rightarrow\|M\|$ in M	ι-expansion M^{v} of M, i.e., $M^{v} \in\left\|\operatorname{Mod}(\Sigma(X) \mid), M^{v}\right\|_{\iota}=M$ $\left(x_{M^{v}}=v(x)\right.$ for each variable/constant $x \in X)$
satisfaction of formula φ in M under v : $M \models_{\Sigma}^{v} \varphi$	satisfaction of "open formula" φ $M^{v} \models_{\Sigma(X)} \varphi$

Quantification

Let \mathcal{I} be a class of signature morphisms. For decency, assume that it forms a subcategory of $\mathbf{S i g n}$ and is closed under pushouts with arbitrary signature morphisms.

- I has universal quantification along \mathcal{I} if for every signature morphism $\iota: \Sigma \rightarrow \Sigma^{\prime}$ in \mathcal{I} and Σ^{\prime}-sentence $\psi \in \operatorname{Sen}\left(\Sigma^{\prime}\right)$, there is a Σ-sentence $" \forall \iota \cdot \psi$ " $\in \boldsymbol{\operatorname { S e n }}(\Sigma)$ such that for all Σ-models $M \in|\operatorname{Mod}(\Sigma)|, M \models " \forall \iota . \psi "$ iff for all Σ^{\prime}-models with $\left.M^{\prime}\right|_{\iota}=M, M^{\prime} \in\left|\operatorname{Mod}\left(\Sigma^{\prime}\right)\right|, M^{\prime} \models \psi$.
- I has existential quantification along \mathcal{I} if for $\iota: \Sigma \rightarrow \Sigma^{\prime}$ in \mathcal{I} and Σ^{\prime}-sentence $\psi \in \boldsymbol{\operatorname { S e n }}\left(\Sigma^{\prime}\right)$, there is a Σ-sentence $" \exists \iota . \psi " \in \mathbf{S e n}(\Sigma)$ such that for all Σ-models $M \in|\operatorname{Mod}(\Sigma)|, M \models " \exists \iota . \psi "$ iff for some Σ^{\prime}-model $M^{\prime} \in\left|\operatorname{Mod}\left(\Sigma^{\prime}\right)\right|$ with $\left.M^{\prime}\right|_{\iota}=M, M^{\prime} \models \psi$.
Fact: For any $\sigma: \Sigma \rightarrow \Sigma_{1}, \sigma\left(\right.$ " $\forall \iota . \psi$ ") and " $\forall \iota^{\prime} \cdot \sigma^{\prime}(\psi)$ " are equivalent, where the following is a pushout in $\mathbf{S i g n}$ with $\iota^{\prime} \in \mathcal{I}$:
Similarly for existential quantification. Define \mathbf{I} "O, "first-order closure" of \mathbf{I}
AMALGAMATION NEEDED

The method of diagrams

Institution I	Standard algebra
Given a signature Σ and Σ-model M, build signature extension $\iota: \Sigma \rightarrow \Sigma(M)$ and a $\Sigma(M)$-presentation \mathcal{E}_{M} so that the reduct by ι yields isomorphism $\operatorname{Mod}_{\Sigma(M)}\left[\mathcal{E}_{M}\right] \rightarrow(M / \operatorname{Mod}(\Sigma))$and everything is natural ...	(algebraic signature Σ and Σ-algebra M) (adding elements of $\|M\|$ as constants) (all ground atoms true in $M^{i d_{M}}$, the natural ι-expansion of M) (then the reduct by ι yields isomorphism $\left.\operatorname{Alg}_{\Sigma(M)}\left[\mathcal{E}_{M}\right] \rightarrow(M / \mathbf{A l g}(\Sigma))\right)$ (everything is natural)
Now: M has a "canonical" ι-expansion which is initial in $\operatorname{Mod}_{\Sigma(M)}\left[\mathcal{E}_{M}\right]$	($M^{i d_{M}}$, reachable ι-expansion of M, is initial in $\left.\operatorname{Alg}_{\Sigma(M)}\left[\mathcal{E}_{M}\right]\right)$

> Equipped with the method of diagrams, one can do a lot!

Institutional very abstract model theory

Providing new insights and abstract formulations for classical model-theoretic concepts and results

- amalgamation over pushouts
- the method of elementary diagrams
- existence of free extensions
- Birkhoff variety theorem(s)
- interpolation results
- Beth definability theorem
- logical connectives, free variables, quantificatign
- completeness for any first-order logic
- ...

Foundations of Software Specification and Development

Keeping an institution $\mathbf{I}=\left(\mathbf{S i g n}, \mathbf{S e n}, \mathbf{M o d},\left\langle\models_{\Sigma}\right\rangle_{\Sigma \in|\mathbf{S i g n}|}\right)$ fixed for yet another while.

Revised rough analogy

module interface	\leadsto	I-signature
module	\leadsto	I-model
module specification	\leadsto	class of \mathbf{I}-models

Structured specifications and their consequences

Example:
 (double/linear) hash table

```
spec NAT = ...
spec STRING=...
spec ELEM = sort Elem
spec StringKEy = String and NAT
    then op hash : String }->\mathrm{ Nat
spec STRINGKEY0 = STRINGKEY with hash \mapsto hash0
```

```
spec Array_OF_ElEm = ElEm and Nat
    then sort Array[Elem]
        ops empty : Array[Elem];
        put:Nat }\times\mathrm{ Elem }\times\mathrm{ Array[Elem] }->\mathrm{ Array[Elem];
        get :Nat }\times\mathrm{ Array [Elem] }->\mathrm{ Elem
    pred used:Nat \times Array[Elem]
    \forall i,j:Nat;e:Elem;a:Array[Elem]
        - \negused(i, empty)
        - used(i,put(i,e,a))
        \bullet i\not=j\Longrightarrow(used}(i,put(j,e,a))\Longleftrightarrowused(i,a)
    - get (i,put (i,e,a)) =e
    - i\not=j\Longrightarrowget (i,put(j,e,a))=\operatorname{get}(i,a)
```


Parametrized specification

```
spec Array[Elem] = Array_Of_Elem
```

```
    Array[SP fit Elem }\mapsto\mathrm{ Asort]
    stands for
{Array[Elem] with Elem\mapsto Asort} and SP
```

spec Bucket $=$ Array[String fit Elem \mapsto String]
with Array $[$ String $] \mapsto$ Bucket
spec Table $=$ Array[Bucket fit Elem \mapsto Bucket]
with Array[Bucket] \mapsto Table

StringHashTable0 $=$ StringKey0 and Bucket

 then ops add:String \times Bucket \rightarrow Bucket; putnear : Nat \times String \times Bucket \rightarrow Bucket preds present : String \times Bucket isnear : Nat \times String \times Bucket $\forall i:$ Nat; $s:$ String; $b:$ Bucket- $\operatorname{add}(s, b)=\operatorname{putnear}(\operatorname{hash} 0(s), s, b)$
- $\neg \operatorname{used}(i, b) \Longrightarrow \operatorname{putnear}(i, s, b)=\operatorname{put}(i, s, b)$
- $\operatorname{used}(i, b) \wedge \operatorname{get}(i, b)=s \Longrightarrow \operatorname{putnear}(i, s, b)=b$
- $\operatorname{used}(i, b) \wedge \operatorname{get}(i, b) \neq s \Longrightarrow$

$$
\operatorname{putnear}(i, s, b)=\operatorname{putnear}(\operatorname{succ}(i), s, b)
$$

- $\operatorname{present}(s, b) \Longleftrightarrow \operatorname{isnear}(h a s h 0(s), s, b)$
- $\neg \operatorname{used}(i, b) \Longrightarrow \neg i s n e a r(i, s, b)$
- $\operatorname{used}(i, b) \wedge \operatorname{get}(i, b)=s \Longrightarrow \operatorname{isnear}(i, s, b)$
- $\operatorname{used}(i, b) \wedge \operatorname{get}(i, b) \neq s \Longrightarrow(\cdots)$

```
StringHashTable =
    StringHashTable0 and StringKey and Table
        then op add:String }\times\mathrm{ Table }->\mathrm{ Table
    pred present:String }\times\mathrm{ Table
    \forall:Nat;s:String;t:Table
        - hash(s)=i\wedgeused}(i,t)
        add(s,t)=put(i,add(s,get (i,t)),t)
    - hash(s)=i^\negused}(i,t)
        add(s,t)=put(i,add(s,empty),t)
    - hash(s)=i^used}(i,t)
    (present (s,t) \Longleftrightarrow present (s,get (i,t)))
    - hash(s)=i\wedge\negused}(i,t)\Longrightarrow \neg\operatorname{present}(s,t
```

```
spec UserStringHashTable =
    StringHashTable
\[
\begin{aligned}
& \text { reveal } \text { String, nil, } a, \ldots, z,_{-}{ }_{-} \text {, Table, empty: Table, } \\
& \text { add : String } \times \text { Table } \rightarrow \text { Table, present: String } \times \text { Table }
\end{aligned}
\]
```


Specification structure

- This is a (nicely) structured specification
- The specification structure can guide, for instance, proof search
- The specification structure does not prescribe the structure of programs that implement the specification

```
spec SimpleUserStringHashTable = String
    then sort Table
    ops empty: Table;
        add:String }\times\mathrm{ Table }->\mathrm{ Table
    pred present:String }\times\mathrm{ Table
    \foralls, s' : String,t:Table
    - \negpresent(s, empty)
    - present (s, add(s,t))
    - s\not= s' \Longrightarrow(present (s,put (s', t)) \Longleftrightarrow present (s,t))
```


Specifications

$$
S P \in S p e c
$$

Adopting the model-theoretic view of specifications

The meaning of any specification $S P \in S p e c$ built over \mathbf{I} is given by:

- its signature $\operatorname{Sig}[S P] \in|\operatorname{Sign}|$, and
- a class of its models $\operatorname{Mod}[S P] \subseteq|\operatorname{Mod}(\operatorname{Sig}[S P])|$.

This yields the usual notions:

- semantic equivalence: $S P \equiv S P^{\prime}$ iff $\operatorname{Sig}[S P]=\operatorname{Sig}\left[S P^{\prime}\right]$ and $\operatorname{Mod}[S P]=\operatorname{Mod}\left[S P^{\prime}\right]$;
- semantic consequence: $S P \models \varphi$ iff $\operatorname{Mod}[S P] \models \varphi$;
- theory of a specification: $T h[S P]=\{\varphi \mid S P \models \varphi\}$; etc

Standard structured specifications

Basic specification: $\langle\Sigma, \Phi\rangle$ - for $\Sigma \in|\boldsymbol{\operatorname { S i g n }}|$ and $\Phi \subseteq \boldsymbol{\operatorname { S e n }}(\Sigma)$:

$$
\operatorname{Sig}[\langle\Sigma, \Phi\rangle]=\Sigma \quad \text { captures basic properties }
$$

$$
\operatorname{Mod}[\langle\Sigma, \Phi\rangle]=\operatorname{Mod}[\Phi]
$$

Union: $S P_{1} \cup S P_{2}$ - for $S P_{1}$ and $S P_{2}$ with $\operatorname{Sig}\left[S P_{1}\right]=\operatorname{Sig}\left[S P_{2}\right]$:

$$
\begin{aligned}
& \operatorname{Sig}\left[S P_{1} \cup S P_{2}\right]=\operatorname{Sig}\left[S P_{1}\right] \\
& \operatorname{Mod}\left[S P_{1} \cup S P_{2}\right]=\operatorname{Mod}\left[S P_{1}\right] \cap \operatorname{Mod}\left[S P_{2}\right]
\end{aligned}
$$

combines the constraints imposed

Translation: $\sigma(S P)$ - for any $S P$ and $\sigma: \operatorname{Sig}[S P] \rightarrow \Sigma^{\prime}$:

$$
\begin{array}{lr}
\operatorname{Sig}[\sigma(S P)]=\Sigma^{\prime} & \text { renames and introduces new components } \\
\operatorname{Mod}[\sigma(S P)]=\left\{M^{\prime} \in\left|\operatorname{Mod}\left(\Sigma^{\prime}\right)\right|\left|M^{\prime}\right|_{\sigma \in \operatorname{Mod}[S P]\}}\right.
\end{array}
$$

Hiding: $\left.S P^{\prime}\right|_{\sigma}$ - for any $S P^{\prime}$ and $\sigma: \Sigma \rightarrow \operatorname{Sig}\left[S P^{\prime}\right]$:

$$
\operatorname{Sig}\left[\left.S P^{\prime}\right|_{\sigma}\right]=\Sigma
$$

hides auxiliary components

$$
\operatorname{Mod}\left[\left.S P^{\prime}\right|_{\sigma}\right]=\left\{\left.M^{\prime}\right|_{\sigma} \mid M^{\prime} \in \operatorname{Mod}\left[S P^{\prime}\right]\right\}
$$

Normal forms

Fact: Any specification built out of basic specifications using union and translation only is equivalent to a basic specification.

Fact: If the category of signatures has pushouts and the institution admits amalgamation, then any specification SP built out of basic specifications using union, translation and hiding may be equivalently transformed to its normal form:

$$
\mathbf{n f}(S P)=\left.\left\langle\Sigma_{\text {all }}, \Phi_{\text {all }}\right\rangle\right|_{\sigma_{\text {res }}}
$$

such that

$$
S P \equiv \mathbf{n f}(S P)
$$

Proof: by induction on the structucture of $S P$.

Know about them - use them for meta-results — never use them for applications

Proving semantic consequence

$$
\frac{\mathbf{n f}(S P)=\left.\left\langle\Sigma_{\text {all }}, \Phi_{\text {all }}\right\rangle\right|_{\sigma_{\text {res }}} \quad \Phi_{\text {all }} \models_{\Sigma_{\text {all }}} \sigma_{\text {res }}(\varphi)}{S P \vdash \varphi}
$$

This is sound and complete for semantic consequence when the category of signatures has pushouts, the institution admits amalgamation (then the normal forms as above can be constructed), but:

> This is a bad way!

- lack of compositionality
- no use of the specification structure
- typically, $\Phi_{\text {all }}$ is HUGE
- no help in proof search

Standard compositional proof system

$\frac{\varphi \in \Phi}{\langle\Sigma, \Phi\rangle \vdash \varphi} \quad \frac{S P_{1} \vdash \varphi}{S P_{1} \cup S P_{2} \vdash \varphi} \quad \frac{S P_{2} \vdash \varphi}{S P_{1} \cup S P_{2} \vdash \varphi}$
$\frac{S P \vdash \varphi}{\sigma(S P) \vdash \sigma(\varphi)} \quad \frac{S P^{\prime} \vdash \sigma(\varphi)}{\left.S P^{\prime}\right|_{\sigma} \vdash \varphi}$

Plus a structural rule:

$$
\frac{\text { for } i \in J, S P \vdash \varphi_{i} \quad\left\{\varphi_{i}\right\}_{i \in J} \models \varphi}{S P \vdash \varphi}
$$

Soundness \& completeness

$$
S P \vdash \varphi \Longrightarrow S P \models \varphi
$$

Fact: If the category of signatures has pushouts, the institution admits (weak) amalgamation and Craig-Robinson interpolation then

$$
S P \vdash \varphi \Longleftrightarrow S P \models \varphi
$$

Proof (idea):

- soundness: easy! Check for each rule that if premises hold so does the conclusion.
- completeness: not so easy! By induction on the structures of specification: for each specification-building operation, assume completeness of consequences for its arguments, and use their normal forms to show that the premises of the rule needed to prove the consequence for the result specification hold.

Can we do better?

In fact: given the other assumptions on the institution, Craig-Robinson interpolation is a necessarry condition for completeness of the above standard proof system.

In general: there is no sound and complete compositional proof system for semantic consequence for structured specifications because:

Claim: The best sound and compositional proof system one can have is given above.

The only better proof systems are incidental

Fact: The standard proof system is at least as strong as any other sound, compositional, non-absent-minded and theory-oriented proof system for consequences of structured specifications built from basic specifications using union, translation and hiding.

Fact: The standard proof system is at least as strong as any other sound, monotone, non-absent-minded proof system for consequences of structured specifications built from basic specifications using union, translation and hiding.

Fact: The standard proof system is at least as strong as any other persistently sound and compositional proof system for consequences of structured specifications built from basic specifications using union, translation and hiding.

These also hold for proof systems based on a sound entailment for I

Program development

Verification

Given specification $S P$ and program P, prove that $\llbracket P \rrbracket \in \operatorname{Mod}[S P]$

BUT:

Proofs of software correctness are notoriously difficult

SO:

Build software together with a proof of its correctness

Programmer's task

Informally:

Given a requirements specification produce a module that correctly implements it

Semantically:

Given a requirements specification $S P$ build a model $M \in|\operatorname{Mod}(\operatorname{Sig}[S P])|$ such that $M \in \operatorname{Mod}[S P]$

Program development

May be easy:

```
spec NAT =
CASL specification
    free type Nat ::=0 | succ(Nat)
    op _+__:Nat }\times\mathrm{ Nat }->\mathrm{ Nat
    axioms }\foralln:Nat \bullet n+0=n
        \foralln,m:Nat \bullet n + succ(m)=\operatorname{succ}(n+m)
```

```
structure NAT =
    struct
            datatype Nat = 0 | succ of Nat
            fun add(n,0) = n
            | add(n,\operatorname{succ}(m)) = \operatorname{succ}(\operatorname{add}(n,m))
    end
```


Key idea

$$
S P \leadsto M
$$

Never in a single jump!

Rather: proceed step by step, adding gradually more and more detail and incorporating more and more design and implementation decisions, until a specification is obtained that is easy to implement directly

$$
S P_{0} \leadsto S P_{1} \leadsto \cdots \leadsto S P_{n}
$$

Refinement step

$$
S P^{\prime} \leadsto S P
$$

Means:

$$
\operatorname{Sig}\left[S P^{\prime}\right]=\operatorname{Sig}[S P] \text { and } \operatorname{Mod}[S P] \subseteq \operatorname{Mod}\left[S P^{\prime}\right]
$$

So:

- preserve the static interface (preserving the signature)
- incorporate further details (narrowing the class of models)

Fact:

$$
\frac{S P_{0} \leadsto S P_{1} \leadsto \cdots \leadsto S P_{n} \quad M \in \operatorname{Mod}\left[S P_{n}\right]}{M \in \operatorname{Mod}\left[S P_{0}\right]}
$$

In practice, some parts will get fixed:

Keep them apart from whatever is really left for implementation:

Constructor refinement step

SP $\underset{\kappa}{\sim} \underset{\sim}{m} S P$

Means:

$$
\kappa(\operatorname{Mod}[S P]) \subseteq \operatorname{Mod}\left[S P^{\prime}\right]
$$

where

$$
\kappa:|\operatorname{Mod}(\operatorname{Sig}[S P])| \rightarrow\left|\operatorname{Mod}\left(\operatorname{Sig}\left[S P^{\prime}\right]\right)\right|
$$

is a constructor:
Intuitively: parametrised module (functor of STANDARD ML)
Semantically: function between model classes

Trivial example

$$
\begin{aligned}
& \text { spec NATADD }=\text { NAT with }\{+\mapsto a d d\} \\
& \text { spec NATADDMULT }=\text { NATADD then } \\
& \text { op mult }: \text { Nat } \times \text { Nat } \rightarrow \text { Nat } \\
& \text { axiom } \forall n: N a t \bullet m u l t ~ \\
& \text { ax, } \operatorname{succ}(0))=n ; \\
& \forall n, m: N a t \bullet m u l t(n, m)=\operatorname{mult}(m, n)
\end{aligned}
$$

functor MULT (X: NAT_ADD_SIG) : NAT_ADD_MULT_SIG = struct open X
fun mult $(\mathrm{n}, 0)=0 \mid \operatorname{mult}(\mathrm{n}, \operatorname{succ}(\mathrm{m}))=\mathrm{n}+\operatorname{mult}(\mathrm{n}, \mathrm{m})$
end

```
NatAddMult wulm}->\mathrm{ NATAdD
```


Development process

Fact:

$$
\frac{S P_{0} \underset{\kappa_{1}}{\sim} S P_{1} \underset{\kappa_{2}}{\sim} \cdots \cdots \underbrace{}_{\kappa_{n}} \leadsto S P_{n}=E M P T Y}{\kappa_{1}\left(\kappa_{2}\left(\ldots \kappa_{n}(\text { empty }) \ldots\right)\right) \in \operatorname{Mod}\left[S P_{0}\right]}
$$

Methodological issues:

- top-down vs. bottom-up vs. middle-out development?
- modular decomposition (designing modular structure)

Branching refinement steps

$$
S P \leadsto B\left\{\begin{array}{l}
S P_{1} \\
\vdots \\
S P_{n}
\end{array}\right.
$$

Branching step $B R$ involves a "linking procedure" (n-argument constructor)

$$
\kappa_{B R}:\left|\operatorname{Mod}\left(\operatorname{Sig}\left[S P_{1}\right]\right)\right| \times \cdots \times\left|\operatorname{Mod}\left(\operatorname{Sig}\left[S P_{n}\right]\right)\right| \rightarrow|\operatorname{Mod}(\operatorname{Sig}[S P])|
$$

and we require

$$
\frac{M_{1} \in \operatorname{Mod}\left[S P_{1}\right] \quad \cdots \quad M_{n} \in \operatorname{Mod}\left[S P_{n}\right]}{\kappa_{B R}\left(M_{1}, \ldots, M_{n}\right) \in \operatorname{Mod}[S P]}
$$

Further development proceeds for each $S P_{i}$ separately

Architectural specifications

CASL provides an explicit way to write down the organisational specification such a branching amounts to:

$$
\text { arch spec } B R=\left\lvert\, \begin{aligned}
& \text { units } U_{1}: S P_{1} \\
& \ldots \\
& U_{n}: S P_{n} \\
& \text { result } \kappa_{B R}\left(U_{1}, \ldots, U_{n}\right)
\end{aligned}\right.
$$

Moreover:

- units my be generic (parametrised modules, Standard ML functors), but always are declared with their specifications
- Casl provides a rich collection of combinators to define $\kappa_{B R}$ and various additional ways to define units

```
arch spec StringHAShTABLEDESIGN =
```

units N : NAT;
$S:$ String;
$S K$: StringKey given S, N;
SK0 : StringKey0 given S, N;
$A:$ Elem \rightarrow Array_of_Elem given N;
$A 0:$ Elem \rightarrow Array_of_Elem given N;
$B=A 0[S$ fit Elem \mapsto String $]$ with Array $[$ String $] \mapsto$ Bucket;
$T=A[B$ fit Elem \mapsto Bucket $]$ with Array $[$ Bucket $] \mapsto$ Table;
HT0 : StringHashTable0 given $S K 0, B$;
$H T$: StringHashTable given $H T 0, S K, T$
result $H T$ reveal String, nil, $a, \ldots, z,{ }_{-}{ }^{-}$, Table, empty, $a d d$, present

Further development

IF

THEN

$$
S P \leadsto \begin{array}{lll}
\text { units } U_{1}^{\prime}: S P_{1}^{\prime} & \ldots & U_{n}^{\prime}: S P_{n}^{\prime} \\
\text { result } \kappa\left(\kappa_{1}\left(U_{1}^{\prime}\right), \ldots, \kappa_{n}\left(U_{n}^{\prime}\right)\right)
\end{array}
$$

Better still, keep the development tree within architectural specifications, as proposed for CASL

Local constructions / parametrized units

Local construction:

$$
F:|\operatorname{Mod}(\Sigma)| \rightarrow\left|\operatorname{Mod}\left(\Sigma^{\prime}\right)\right|
$$

Assume persistency:

$$
\iota: \Sigma \rightarrow \Sigma^{\prime} \text { and }\left.F(M)\right|_{\iota}=M, \text { for all } M \in|\operatorname{Mod}(\Sigma)|
$$

Local constructions are meant to be applied in a global context Σ_{G} via a fitting morphism $\gamma: \Sigma \rightarrow \Sigma_{G}$

From local to global constructions

Given $F:|\operatorname{Mod}(\Sigma)| \rightarrow\left|\operatorname{Mod}\left(\Sigma^{\prime}\right)\right|$ persistent along $\iota: \Sigma \rightarrow \Sigma^{\prime}$ and fitting morphism $\gamma: \Sigma \rightarrow \Sigma_{G}$ we obtain

$$
F_{G}:\left|\operatorname{Mod}\left(\Sigma_{G}\right)\right| \rightarrow\left|\operatorname{Mod}\left(\Sigma_{G}^{\prime}\right)\right|
$$

as defined by the pushout in Sign and the following condition:

$$
\left.F_{G}(\mathcal{G})\right|_{\iota^{\prime}}=\mathcal{G} \text { and }\left.F_{G}(\mathcal{G})\right|_{\gamma^{\prime}}=F\left(\left.\mathcal{G}\right|_{\gamma}\right)
$$

CASL syntax for $F_{G}(\mathcal{G}): F[\mathcal{G}$ fit $\sigma]$

Amalgamation required!

Specifications for local constructions

Strict correctness

$$
\operatorname{Mod}\left[S P \xrightarrow{\iota} S P^{\prime}\right]
$$

the class of all local constructions
$F:|\operatorname{Mod}(\operatorname{Sig}[S P])| \rightarrow\left|\operatorname{Mod}\left(\operatorname{Sig}\left[S P^{\prime}\right]\right)\right|$ that are

- persistent along $\iota: \operatorname{Sig}[S P] \rightarrow \operatorname{Sig}\left[S P^{\prime}\right]$
- strictly correct w.r.t. parameter specification $S P$ and result specification $S P^{\prime}$:

$$
F(M) \in \operatorname{Mod}\left[S P^{\prime}\right] \text { for all } M \in \operatorname{Mod}[S P]
$$

Correctness of global implementations

Take (as before) • $\iota: \Sigma \rightarrow \Sigma^{\prime}, \gamma: \Sigma \rightarrow \Sigma_{G}$

- $S P$ with $\operatorname{Sig}[S P]=\Sigma, S P^{\prime}$ with $\operatorname{Sig}\left[S P^{\prime}\right]=\Sigma^{\prime}$
- $S P_{G}$ with $\operatorname{Sig}\left[S P_{G}\right]=\Sigma_{G}, S P_{G}^{\prime}$ with $\operatorname{Sig}\left[S P_{G}^{\prime}\right]=\Sigma_{G}^{\prime}$

Fact: If $\bullet F \in \operatorname{Mod}\left[S P \xrightarrow{\iota} S P^{\prime}\right]$

- $\operatorname{Mod}\left[S P_{G}\right] \subseteq \operatorname{Mod}[\gamma(S P)]$
- $\operatorname{Mod}\left[\gamma^{\prime}\left(S P^{\prime}\right) \cup \iota^{\prime}\left(S P_{G}\right)\right] \subseteq \operatorname{Mod}\left[S P_{G}^{\prime}\right]$ then $F_{G}\left(\operatorname{Mod}\left[S P_{G}\right]\right) \subseteq \operatorname{Mod}\left[S P_{G}^{\prime}\right]$, i.e.:

$$
S P_{G}^{\prime} \quad \sim_{F_{G}} \leadsto S P_{G}
$$

Correctness of global implementations

Program development

- Start with a SPECIFICATION
- Develop software via a SEQUENCE of refinement steps
- Each step is small enough that a PROOF OF CORRECTNESS is possible
- Correct refinement steps can be COMPOSED
- Some refinement steps involve DECOMPOSITION into SEPARATE TASKS

RESULT:

Well-designed, well-structured, well-documented correct and highly modular software

Toward heterogeneous specifications

Linking institutions with each other

...various maps between institutions...

Categories of institutions

Institution morphism: $\mu: \mathbf{I} \longrightarrow \mathbf{I}^{\prime}$

with the satisfaction condition lurking again:

$$
M \models \mu(\varphi) \text { iff } \mu(M) \models^{\prime} \varphi^{\prime}
$$

Moving between institutions: a taxonomy of maps

morphisms μ	$\begin{gathered} \text { Sen } \longleftarrow \text { Sen }^{\prime} \\ \text { Sign } \longrightarrow \text { Sign }^{\prime} \\ \text { Mod } \longrightarrow \text { Mod }^{\prime} \end{gathered}$	semi-morphisms μ	$\begin{aligned} & \text { Sen } \begin{array}{r} \text { Sen }^{\prime} \\ \text { Sign } \longrightarrow \\ \text { Sign } \end{array} \\ & \text { Mod } \longrightarrow \end{aligned} \text { Mod }^{\prime}$
comorphisms ρ	$\begin{gathered} \text { Sen } \longrightarrow \text { Sen }^{\prime} \\ \text { Sign } \longrightarrow \text { Sign }^{\prime} \\ \text { Mod } \longleftarrow \text { Mod }^{\prime} \end{gathered}$	semi-comorphisms ρ	$\begin{aligned} & \text { Sen } \quad \text { Sen }^{\prime} \\ & \text { Sign } \longrightarrow \text { Sign }^{\prime} \\ & \text { Mod } \longleftarrow \text { Mod }^{\prime} \end{aligned}$
forward morphisms	$\begin{gathered} \text { Sen } \longrightarrow \text { Sen }^{\prime} \\ \text { Sign } \longrightarrow \text { Sign }^{\prime} \\ \text { Mod } \longrightarrow \text { Mod }^{\prime} \end{gathered}$	plus theoroidal versions, plus weak versions, plus	
forward comorphisms	$\begin{gathered} \operatorname{Sen} \longleftarrow \text { Sen }^{\prime} \\ \operatorname{Sign} \longrightarrow \text { Sign }^{\prime} \\ \text { Mod } \longleftarrow \text { Mod }^{\prime} \end{gathered}$		

Mastering the diversity

Morphism

Span of comorphisms

Putting institutions together

Fact: The category $\mathcal{I N S}$ of institutions and institution morphisms is complete and (nearly) cocomplete. So is the category coINS, the category of institutions and institution comorphisms.

- Limits in $\mathcal{I N S}$: a rudimentary way of combining institutions linked by institution morphisms to capture how one institution is built over another.
- This is in contrast with the Grothendieck institution built over the same diagram, which just puts the institutions involved next to each other, with additional signature morphisms induced by institution morphisms.

Limits of limits

- In general, limits in $\mathcal{I N S}$ do not preserve cocompleteness of the category of signatures, amalgamability, interpolation, etc.
- Nothing comes for free in $\operatorname{co} \mathcal{I N S}$ either (though some things might be easier).

Systematically building complex logical systems

- Logic presentations: parchments...
- Putting parchments together - (co)completeness of parchments categories...
- Parchment constructions, extensions, modifications...
- Preserving and combining proof systems...

EXAMPLE: CafeOBJ cube of logics

Heterogeneous environment

> A collection of institutions
> linked by (forward) (semi-) (co-) morphisms

A collection of institutions linked by (semi-)comorphisms

A diagram $\mathcal{H I E}$ in the category $\operatorname{co\mathcal {INS}}$ (of institutions and institution comorphisms)

EXAMPLES:

- a dozen of logics, one for each kind of UML diagrams
- the Hets family of institutions
- CafeOBJ cube of logics
- Mossakowski's diagram of algebraic and other institutions
- ...

Given a heterogeneous environment of institutions $\mathcal{H \mathcal { H E }}$

Heterogeneous specifications

- Move to a universal institution UI
(encode institutions in $\mathcal{H I E}$ using comorphisms into UI, compatible with maps within $\mathcal{H I E}$; then work in UI)
- Focussed heterogeneous specifications
(specifications that reside in an institution, but may involve specifications from other institutions in $\mathcal{H I E}$)
- Distributed heterogeneous specifications (specification diagrams over $\mathcal{H I E}$)

Focused heterogeneous specifications

In a heterogeneous environment $\mathcal{H I E}$:
Translation: introduces new structure to specification models, following an institution semi-comorphism $\rho: \mathbf{I} \rightarrow \mathbf{I}^{\prime}$; for any \mathbf{I}-specification $S P$,

$$
\rho(S P)
$$

is an \mathbf{I}^{\prime}-specification with $\operatorname{Sig}[\rho(S P)]=\rho(\operatorname{Sig}[S P])$ and $\operatorname{Mod}[\rho(S P)]=\left\{M^{\prime} \in \mid \operatorname{Mod}^{\prime}\left(\rho(\operatorname{Sig}[S P])| | \rho\left(M^{\prime}\right) \in \operatorname{Mod}[S P]\right\}\right.$.

Hiding: hides extra structure of specification models, following an institution semi-morphism $\mu: \mathbf{I}^{\prime} \rightarrow \mathbf{I}$; for any \mathbf{I}^{\prime}-specification $S P^{\prime}$,

$$
\left.S P^{\prime}\right|_{\mu}
$$

is an \mathbf{I}-specification with $\operatorname{Sig}\left[\left.S P^{\prime}\right|_{\mu}\right]=\mu\left(\operatorname{Sig}\left[S P^{\prime}\right]\right)$ and
$\operatorname{Mod}\left[\left.S P^{\prime}\right|_{\mu}\right]=\left\{\mu\left(M^{\prime}\right) \mid M^{\prime} \in \operatorname{Mod}\left[S P^{\prime}\right]\right\}$.

Some topics to repeat for focused heterogeneous specifications

- structured specifications
- proving semantic consequence of, and between specifications
- institution (co)morphisms in use
- soundness and completeness of (compositional) proof systems
- stepwise software development
- constructor and abstractor implementations
- inter-institutional constructors needed: the model component of institution semi-(co)morphisms
- branching implementations and architectural specifications
- developments of individual units may proceed independently within different institutions, given inter-institutional constructors to join them

Distributed heterogeneous specifications

Heterogeneous specification morphisms

Recall: a specification morphism $\sigma: S P \rightarrow S P^{\prime}$ in an institution I is a signature morphism $\sigma: \operatorname{Sig}[S P] \rightarrow \operatorname{Sig}\left[S P^{\prime}\right]$ such that for all models $M^{\prime} \in \operatorname{Mod}\left[S P^{\prime}\right]$, $M^{\prime}{ }_{\sigma} \in \operatorname{Mod}[S P]$.
Define: a heterogeneous specification morphism from I-specification $S P$ to \mathbf{I}^{\prime}-specification $S P^{\prime}$ is a pair $\left\langle\rho, \sigma^{\prime}\right\rangle: S P \rightarrow S P^{\prime}$, where $\rho: \mathbf{I} \rightarrow \mathbf{I}^{\prime}$ is an institution (semi-)comorphism, and $\sigma^{\prime}: \rho(\operatorname{Sig}[S P]) \rightarrow \operatorname{Sig}\left[S P^{\prime}\right]$ is an \mathbf{I}^{\prime}-signature morphism such that for all models $M^{\prime} \in \operatorname{Mod}\left[S P^{\prime}\right], \rho\left(M^{\prime} \mid \sigma^{\prime}\right) \in \operatorname{Mod}[S P]$.

This yields a category $\mathcal{H S P E C}$ of heterogeneous specifications over $\mathcal{H I E}$.

[^1]
Distributed heterogeneous specifications

- A distributed heterogeneous specification $\mathcal{H S P}$ is a diagram of heterogeneous specifications in $\mathcal{H S P E C}, \mathcal{H S P}: \mathcal{J} \rightarrow \mathcal{H S P E C}$.

Notation:

- for $i \in|\mathcal{J}|, \mathcal{H S P}_{i}$ is the specification $\mathcal{H S P}(i)$
- for $e: i \rightarrow j$ in $\mathcal{J}, \mathcal{H S P}_{e}=\left\langle\rho_{e}, \sigma_{e}\right\rangle: \mathcal{H S P}_{i} \rightarrow \mathcal{H S P}_{j}$ is the heterogeneous specification morphism $\mathcal{H S P}(e)$.
- A distributed heterogeneous model of $\mathcal{H S P}$ is a family $\mathcal{M}=\left\langle M_{i}\right\rangle_{i \in|\mathcal{J}|}$ of models compatible with $\mathcal{H S P}$.
$\mathcal{H S P}$ is (globally) consistent
That is, such that
- for $i \in|\mathcal{J}|, M_{i} \in \operatorname{Mod}\left[\mathcal{H S P}_{i}\right]$
if it has a (distributed) model

$$
- \text { for } e: i \rightarrow j \text { in } \mathcal{J}, M_{i}=\rho_{e}\left(M_{j} \mid \sigma_{e}\right) .
$$

Moving to the limit

 specification $\mathcal{H S P}$ over $\mathcal{H I E}$ there is a (focussed heterogeneous) I-specification SP with models corresponding exactly to distributed heterogeneous models of $\mathcal{H S P}$.
...given enough assumptions...

So what?
Typically, the limit institution I is not "natural" - hence it is better to work with distributed specifications, dealing with various views of the system separately.

Work with local views, local understanding, and local compatibility
...but do not forget about global consistency and emerging properties

Implementing distributed specifications

To implement $\mathcal{H S P}: \mathcal{J} \rightarrow \mathcal{H S P E C}$ by $\mathcal{H S P}^{\prime}: \mathcal{J}^{\prime} \rightarrow \mathcal{H S P E C}$, provide:

- a covering function $f:|\mathcal{J}| \rightarrow\left|\mathcal{J}^{\prime}\right|$, and
- a distributed constructor $\kappa=\left\langle\kappa_{i}: \operatorname{Mod}\left[\mathcal{H S P}_{f(i)}^{\prime}\right] \rightarrow \operatorname{Mod}\left[\mathcal{H S P} \mathcal{P}_{i}\right]\right\rangle_{i \in|\mathcal{J}|}$.

$$
\text { So that for each } i \in|\mathcal{J}| \text {, we have } \mathcal{H S P}_{i} \underset{\kappa_{i}}{\sim} \rightarrow \mathcal{H S P}_{f(i)}^{\prime}
$$

THEN:

$$
\mathcal{H S P} \min _{\langle\kappa, f\rangle} \rightarrow \mathcal{H S P}^{\prime}
$$

if for each distributed heterogeneous model $\mathcal{M}^{\prime}=\left\langle M_{i^{\prime}}^{\prime}\right\rangle_{i^{\prime} \in\left|\mathcal{J}^{\prime}\right|}$ of $\mathcal{H S P}{ }^{\prime}$, $\kappa_{f}\left(\mathcal{M}^{\prime}\right)=\left\langle\kappa_{i}\left(M_{f(i)}^{\prime}\right)\right\rangle_{i \in|\mathcal{J}|}$ is a distributed heterogeneous model of $\mathcal{H S P}$.

STRUCTURE MAY CHANGE! INSTITUTIONS MAY CHANGE! WE NEED TO ARRIVE AT A SINGLE "IMPLEMENTATION" INSTITUTION

One standard way

Fact: For any $\mathcal{H S P}: \mathcal{J} \rightarrow \mathcal{H S P E C}$ and $\mathcal{H S P}^{\prime}: \mathcal{J}^{\prime} \rightarrow \mathcal{H S P E C}$, given

- a functor $F: \mathcal{J} \rightarrow \mathcal{J}^{\prime}$
- a natural transformation $\tau: \mathcal{H S P} \rightarrow F ; \mathcal{H S P}^{\prime}$ with

$$
\tau_{i}=\left\langle\rho_{i}, \sigma_{i}\right\rangle: \mathcal{H S P}_{i} \rightarrow \mathcal{H S P}_{F(i)} \text { for } i \in|\mathcal{J}|
$$

we have

$$
\mathcal{H S P} \min _{\langle\kappa, f\rangle} \leadsto \mathcal{H S P} \mathcal{S}^{\prime}
$$

where

- $f=|F|:|\mathcal{J}| \rightarrow\left|\mathcal{J}^{\prime}\right|$
- $\kappa=\left\langle\rho_{i}\left(-\mid \sigma_{i}\right): \operatorname{Mod}\left[\mathcal{H S P}_{F(i)}^{\prime}\right] \rightarrow \operatorname{Mod}\left[\mathcal{H S P}{ }_{i}\right]\right\rangle_{i \in|\mathcal{J}|}$

Key idea

A semantic view of heterogeneous logical environment for software specification and programming emerges: a diagram of institutions

Sample further work:

- keep building up the environment of relevant institutions and (forward) (semi-)(co)morphisms between them;
- expected results and methods for distributed heterogeneous specifications;
- proof theoretic links between institutions linked semantically;
- programming links between "programming" institutions linked semantically.

Summing up

- Standard underlying logical and preliminaries: basic algebraic framework, equational logic; category theory
- Institutions: motivation, abstraction, generality; formalization of the concept of a logical system
- Institutional model theory: numerous bits and pieces of classical model theory reformulated, clarified and sharpened
- Foundations of software specification and development:
- Specifications: basic and structured specifications; proof systems for specifications
- Program development: (constructor) refinements; architectural specifications
- (Observational approach)
- Heterogeneous logical frameworks: maps between institutions; heterogeneous specifications and development; building complex logical systems

Conclusion

A small dose of
mathematics (universal algebra, logic, category theory)
helps to clarify, sharpen, expand and develop
the concepts, methods and results we want

[^0]: apologies for missing some names and for inaccurate years.

[^1]: \ldots Grothendieck construction. . .

