
Institutions:
an abstract framework for foundations of

software specification and logic

Andrzej Tarlecki

Institute of Informatics, University of Warsaw

tarlecki@mimuw.edu.pl

http://www.mimuw.edu.pl/~tarlecki

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 1 -

Institutions:

theoretical foundations to frame practical issues

Foundations

of Software Specification

and Development

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 2 -

Ultimate goal

A formal basis

for systematic development

of correct software systems

from requirements specifications

by verified refinement steps.

Formal basis:

• Mathematical structures to model software systems

• Logical systems to capture their properties

• Formal semantics to assign meanings to syntax

• Proofs to facilitate certainty and understanding

��

�
�

�	

so
that we can sle

ep at night

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 3 -

Software models

Programs should be:

• clear; efficient; robust; reliable; user friendly; well documented; . . .

• but first of all, CORRECT

• don’t forget though: also, executable. . .

First approximation:

Software system (module, program, database, . . .):

modelled as an algebra

= sets of data values with operations on them

• Disregarding: code (and efficiency, robustness, reliability, . . .)

• Focusing on: semantics (and input/output behaviour)

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 4 -

Correctness#
"

!

�
�

�
�

Software correctness makes sense only

w.r.t. a precise specification of the requirements.

Specification: defines which software systems are acceptable

= description of a set (class) of algebras

• Mainly: listing PROPERTIES that an acceptable system must satisfy

– often: equational, first-order, etc, properties that characterise the results of

the operations of the system

• Separates WHAT system should do from HOW it works

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 5 -

Rough analogy

module interface ; signature

module ; algebra

module specification ; class of algebras

CASL

Common

Algebraic

Specification

Language

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 6 -

Generality and abstraction

There are many choices:

• Software systems: Non-termination allowed? Exceptions? Non-determinism?

Higher-order functions? Concurrency? etc.

• Specifications: Logical language to capture basic required properties?

Equational? First-order? Higher-order? Temporal formulae? LTL, CTL, CTL∗?

• Proofs: Logical calculi for building proofs (of properties, of refinement steps, etc.)

Most of the theory is independent of most of these choices!

We try to make this explicit:

rely only on basic common features

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 7 -

Crash course I

Universal algebra

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 8 -

Trivial data type

Its signature Σ (syntax): sorts Int ,Bool ;
opns 0, 1: Int ;

plus, times,minus : Int × Int → Int ;
false, true : Bool ;
lteq : Int × Int → Bool ;
not : Bool → Bool ;
and : Bool × Bool → Bool ;and Σ-algebra A (semantics):

carriers AInt = Int, ABool = Bool
operations 0A = 0, 1A = 1

plusA(n,m) = n+m, timesA(n,m) = n ∗m
minusA(n,m) = n−m
falseA = ff , trueA = tt
lteqA(n,m) = tt if n ≤ m else ff
notA(b) = tt if b = ff else ff
andA(b, b′) = tt if b = b′ = tt else ff

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 9 -

Signatures & algebras

• Algebraic signature:

Σ = (S,Ω)

− sort names: S

− operation names, classified by their argument and result sorts:

Ω = 〈Ωw,s〉w∈S∗,s∈S

• Σ-algebra:

A = (|A|, 〈fA〉f∈Ω)

− carrier sets: |A| = 〈|A|s〉s∈S
− operations: fA : |A|s1 × . . .× |A|sn → |A|s, for f ∈ Ωs1...sn,s

• f : s1 × . . .× sn → s stands for s1, . . . , sn, s ∈ S and f ∈ Ωs1...sn,s

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 10 -

Fix a signature Σ = (S,Ω) for a while.

Few further notions

• the class of all Σ-algebras: Alg(Σ)

• subalgebra Asub ⊆ A: given by subset |Asub | ⊆ |A| closed under the operations

• homomorphism h : A→ B: map h : |A| → |B| that preserves the operations

• isomorphism i : A→ B: bijective homomorphism

• congruence ≡ on A: equivalence ≡ ⊆ |A| × |A| closed under the operations

• quotient algebra A/≡: built in the natural way on the equivalence classes of ≡

• product algebra
∏
i∈I Ai: built on the Cartesian product of algebra carriers, with

operations defined componentwise

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 11 -

Subalgebras

• for A ∈ Alg(Σ), a Σ-subalgebra Asub ⊆ A is given by subset |Asub | ⊆ |A| closed

under the operations:

− for f : s1 × . . .× sn → s and a1 ∈ |Asub |s1 , . . . , an ∈ |Asub |sn ,

fAsub
(a1, . . . , an) = fA(a1, . . . , an)

• for A ∈ Alg(Σ) and X ⊆ |A|, the subalgebra of A genereted by X, 〈A〉X , is the

least subalgebra of A that contains X.

• A ∈ Alg(Σ) is reachable if 〈A〉∅ coincides with A.

Fact: For any A ∈ Alg(Σ) and X ⊆ |A|, 〈A〉X exists.

B
oringly

know
n. . .Proof (idea):

• generate the generated subalgebra from X by closing it under operations in A; or

• the intersection of any family of subalgebras of A is a subalgebra of A.

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 12 -

Homomorphisms

• for A,B ∈ Alg(Σ), a Σ-homomorphism h : A→ B is a function h : |A| → |B|
that preserves the operations:

B
orin

g
ly

kn
ow

n

. . .

− for f : s1 × . . .× sn → s and a1 ∈ |A|s1 , . . . , an ∈ |A|sn ,

hs(fA(a1, . . . , an)) = fB(hs1(a1), . . . , hsn(an))

Fact: Given a homomorphism h : A→ B and subalgebras Asub of A and Bsub of B,

the image of Asub under h, h(Asub), is a subalgebra of B, and the coimage of Bsub

under h, h−1(Bsub), is a subalgebra of A.

Fact: Given a homomorphism h : A→ B and X ⊆ |A|, h(〈A〉X) = 〈B〉h(X).

Fact: Identity function on the carrier of A ∈ Alg(Σ) is a homomorphism

idA : A→ A. Composition of homomorphisms h : A→ B and g : B → C is a

homomorphism h;g : A→ C.

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 13 -

Isomorphisms

• for A,B ∈ Alg(Σ), a Σ-isomorphism is any Σ-homomorphism i : A→ B that

has an inverse, i.e., a Σ-homomorphism i−1 : B → A such that i;i−1 = idA and

i−1;i = idB .

Boringlyknown
. . .

• Σ-algebras are isomorphic if there exists an isomorphism between them.

Fact: A Σ-homomorphism is a Σ-isomorphism iff it is bijective (“1-1” and “onto”).

Fact: Identities are isomorphisms, and any composition of isomorphisms is an

isomorphism.

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 14 -

Borin
gly

known

. . . Congruences

• for A ∈ Alg(Σ), a Σ-congruence on A is an equivalence ≡ ⊆ |A| × |A| that is

closed under the operations:

− for f : s1 × . . .× sn → s and a1, a
′
1 ∈ |A|s1 , . . . , an, a′n ∈ |A|sn ,

if a1 ≡s1 a′1, . . . , an ≡sn a′n then fA(a1, . . . , an) ≡s fA(a′1, . . . , a
′
n).

Fact: For any relation R ⊆ |A| × |A| on the carrier of a Σ-algebra A, there exists

the least congruence on A that conatins R.

Fact: For any Σ-homomorphism h : A→ B, the kernel of h, K(h) ⊆ |A| × |A|,
where a K(h) a′ iff h(a) = h(a′), is a Σ-congruence on A.

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 15 -

Quotients

• for A ∈ Alg(Σ) and Σ-congruence ≡ ⊆ |A| × |A| on A, the quotient algebra

A/≡ is built in the natural way on the equivalence classes of ≡:

B
orin

g
ly

kn
ow

n

. . .

− for s ∈ S, |A/≡|s = {[a]≡ | a ∈ |A|s}, with [a]≡ = {a′ ∈ |A|s | a ≡ a′}
− for f : s1 × . . .× sn → s and a1 ∈ |A|s1 , . . . , an ∈ |A|sn ,

fA/≡([a1]≡, . . . , [an]≡) = [fA(a1, . . . , an)]≡

Fact: The above is well-defined; moreover, the natural map that assigns to every

element its equivalence class is a Σ-homomorphisms []≡ : A→ A/≡.

Fact: Given two Σ-congruences ≡ and ≡′ on A, ≡ ⊆ ≡′ iff there exists a

Σ-homomorphism h : A/≡ → A/≡′ such that []≡;h = []≡′ .

Fact: For any Σ-homomorphism h : A→ B, A/K(h) is isomorphic with h(A).

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 16 -

Products

• for Ai ∈ Alg(Σ), i ∈ I, the product of 〈Ai〉i∈I ,
∏
i∈I Ai is built in the natural

way on the Cartesian product of the carriers of Ai, i ∈ I:

B
oringly

know
n

. . .

− for s ∈ S, |
∏
i∈I Ai|s =

∏
i∈I |Ai|s

− for f : s1 × . . .× sn → s and a1 ∈ |
∏
i∈I Ai|s1 , . . . , an ∈ |

∏
i∈I Ai|sn , for

i ∈ I, f∏
i∈I Ai

(a1, . . . , an)(i) = fAi(a1(i), . . . , an(i))

Fact: For any family 〈Ai〉i∈I of Σ-algebras, projections πi(a) = a(i), where i ∈ I
and a ∈

∏
i∈I |Ai|, are Σ-homomorphisms πi :

∏
i∈I Ai → Ai.

Define the product of the empty family of Σ-algebras.

When the projection πi is an isomorphism?

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 17 -

Terms

Consider an S-sorted set X of variables, Σ-algebra A and valuation v : X → |A|.

• term t ∈ |TΣ(X)|: built using variables X, constants and operations from Ω in

the usual way

• term algebra TΣ(X): with the set of terms as the carrier, and operations defined

“syntactically”

• term evaluation v# : TΣ(X)→ A: the unique homomorphism from TΣ(X) to A

that extends v

• term value tA[v] = v#(t): may also be determined inductively

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 18 -

Terms

Consider an S-sorted set X of variables.

Boringly

known

. . .

• terms t ∈ |TΣ(X)| are built using variables X, constants and operations from Ω

in the usual way: |TΣ(X)| is the least set such that

− X ⊆ |TΣ(X)|
− for f : s1 × . . .× sn → s and t1 ∈ |TΣ(X)|s1 , . . . , tn ∈ |TΣ(X)|sn ,

f(t1, . . . , tn) ∈ |TΣ(X)|s
• for any Σ-algebra A and valuation v : X → |A|, the value tA[v] of a term

t ∈ |TΣ(X)| in A under v is determined inductively:

− xA[v] = vs(x), for x ∈ Xs, s ∈ S
− (f(t1, . . . , tn))A[v] = fA((t1)A[v], . . . , (tn)A[v]), for f : s1 × . . .× sn → s and

t1 ∈ |TΣ(X)|s1 , . . . , tn ∈ |TΣ(X)|sn

Above and in the following: assuming unambiguous “parsing” of terms!

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 19 -

Term algebras

Consider an S-sorted set X of variables.

B
oringly

know
n. . .

• The term algebra TΣ(X) has the set of terms as the carrier and operations

defined “syntactically”:

− for f : s1 × . . .× sn → s and t1 ∈ |TΣ(X)|s1 , . . . , tn ∈ |TΣ(X)|sn ,

fTΣ(X)(t1, . . . , tn) = f(t1, . . . , tn).

Fact: For any S-sorted set X of variables, Σ-algebra A and valuation v : X → |A|,
there is a unique Σ-homomorphism v# : TΣ(X)→ A that extends v. Moreover, for

t ∈ |TΣ(X)|, v#(t) = tA[v].

X |TΣ(X)|

|A|

TΣ(X)

A

-
HH
HHH

HHHHj ? ?

idX ↪→|TΣ (X)|

v ∃! v#|v#|SetS Alg(Σ)

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 20 -

Equations

• Equation:

∀X.t = t′

where:

− X is a set of variables, and

− t, t′ ∈ |TΣ(X)|s are terms of a common sort.

• Satisfaction relation: Σ-algebra A satisfies ∀X.t = t′

A |= ∀X.t = t′

when for all v : X → |A|, tA[v] = t′A[v].

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 21 -

Semantic entailment

Φ |=Σ ϕ

Σ-equation ϕ is a semantic consequence of a set of Σ-equations Φ

if ϕ holds in every Σ-algebra that satisfies Φ.

BTW:

• Models of a set of equations: Mod [Φ] = {A ∈ Alg(Σ) | A |= Φ}

• Theory of a class of algebras: Th[C] = {ϕ | C |= ϕ}

• Φ |= ϕ ⇐⇒ ϕ ∈ Th[Mod [Φ]]

• Mod and Th form a Galois connection

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 22 -

Equational calculus

∀X.t = t

∀X.t = t′

∀X.t′ = t

∀X.t = t′ ∀X.t′ = t′′

∀X.t = t′′

∀X.t1 = t′1 . . . ∀X.tn = t′n

∀X.f(t1 . . . tn) = f(t′1 . . . t
′
n)

∀X.t = t′

∀Y.t[θ] = t′[θ]
for θ : X → |TΣ(Y)|

Mind the variables!

a = b does not follow from a = f(x) and f(x) = b, unless. . .

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 23 -

Proof-theoretic entailment

Φ `Σ ϕ

Σ-equation ϕ is a proof-theoretic consequence of a set of Σ-equations Φ

if ϕ can be derived from Φ by the rules.

How to justify this?

Semantics!

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 24 -

Soundness & completeness

Fact: The equational calculus is sound and complete:

Φ |= ϕ ⇐⇒ Φ ` ϕ

• soundness: “all that can be proved, is true” (Φ |= ϕ⇐= Φ ` ϕ)

• completeness: “all that is true, can be proved” (Φ |= ϕ =⇒ Φ ` ϕ)

Proof (idea):

• soundness: easy!

Just check for each rule that if premises hold in an algebra then so does the

conclusion.

• completeness: not so easy!

But not too difficult either.

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 25 -

Proving completeness

Φ |= ϕ =⇒ Φ ` ϕ

Proof (idea):

− Suppose Φ |= ∀Y.t1 = t2

− Consider the term algebra TΣ(Y)

− Define ≈ ⊆ |TΣ(Y)| × |TΣ(Y)| by t ≈ t′ ⇐⇒ Φ ` ∀Y.t = t′

− Check that ≈ is a congruence on TΣ(Y); consider the quotient TΣ(Y)/≈

− For any θ : X → |TΣ(Y)|, define [θ]≈ : X → |TΣ(Y)/≈| by [θ]≈(x) = [θ(x)]≈

− Check that for any t ∈ |TΣ(X)| and θ : X → |TΣ(Y)|, tTΣ(Y)/≈[[θ]≈] = [t[θ]]≈

− It follows that TΣ(Y)/≈ |= Φ, and so also TΣ(Y)/≈ |= ∀Y.t1 = t2

− Conclude from this that t1 ≈ t2 i.e. Φ ` ∀Y.t1 = t2

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 26 -

Equational specifications

〈Σ,Φ〉

• signature Σ, to determine the static module interface

• axioms (Σ-equations), to determine required module properties

BUT:

Fact: A class of Σ-algebras is equationally definable iff it is closed under

subalgebras, products and homomorphic images.

Equational specifications typically admit a lot of undesirable “modules”

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 27 -

Example

spec NaiveNat = sort Nat

ops 0 : Nat ;

succ : Nat → Nat ;

+ : Nat ×Nat → Nat

axioms ∀n:Nat • n+ 0 = n;

∀n,m:Nat • n+ succ(m) = succ(n+m)

Now:

NaiveNat 6|= ∀n,m:Nat • n+m = m+ n

(Nor: NaiveNat 6` ∀n,m:Nat • n+m = m+ n)

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 28 -

How to fix this

• Other (stronger) logical systems: conditional equations, first-order logic,

higher-order logics, other bells-and-whistles

− more about this soon. . .

�
�

�
�

�
�

�
Institutions!

• Constraints:

− reachability (and generation): “no junk”

− initiality (and freeness): “no junk” & “no confusion”

Constraints can be thought of as special (higher-order) formulae.

There has been a population explosion among logical systems. . .

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 29 -

Initial models

Fact: Every equational specification 〈Σ,Φ〉 has an initial model: there exists a

Σ-algebra I ∈ Mod [Φ] such that for every Σ-algebra M ∈ Mod [Φ] there exists a

unique Σ-homomorphism from I to M .

Proof (idea): I is the quotient of the algebra of ground Σ-terms by the congruence

that glues together all ground terms t, t′ such that Φ |= ∀∅.t = t′.

BTW: This can be generalised to the existence of a free

model of 〈Σ,Φ〉 over any (many-sorted) set of data.

BTW: One proof of completeness of equational logic uses

the same construction.

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 30 -

Example

spec Nat = free { sort Nat

ops 0 : Nat ;

succ : Nat → Nat ;

+ : Nat ×Nat → Nat

axioms ∀n:Nat • n+ 0 = n;

∀n,m:Nat • n+ succ(m) = succ(n+m)

}

Now:

Nat |= ∀n,m:Nat • n+m = m+ n

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 31 -

Example′

spec Nat′ = free type Nat ::= 0 | succ(Nat)

op + : Nat ×Nat → Nat

axioms ∀n:Nat • n+ 0 = n;

∀n,m:Nat • n+ succ(m) = succ(n+m)

Nat ≡ Nat′

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 32 -

Another example

spec String =

generated { sort String

ops nil : String ;

a, . . . , z : String ;̂ : String × String → String }
axioms ∀s:String • s ̂ nil = s;

∀s:String • nil ̂ s = s;

∀s, t, v:String • s ̂ (t ̂ v) = (s ̂ t) ̂ v
}

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 33 -

Moving between signatures

Let Σ = (S,Ω) and Σ′ = (S′,Ω′)

σ : Σ→ Σ′

• Signature morphism maps:

− sorts to sorts: σ : S → S′

− operation names to operation names, preserving their profiles:

σ : Ωw,s → Ω′σ(w),σ(s), for w ∈ S∗, s ∈ S

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 34 -

Let σ : Σ→ Σ′

Translating syntax

• translation of variables: X 7→ X ′, where X ′s′ =
⊎
σ(s)=s′ Xs

• translation of terms: σ : |TΣ(X)|s → |TΣ′(X
′)|σ(s), for s ∈ S

• translation of equations: σ(∀X.t1 = t2) yields ∀X ′.σ(t1) = σ(t2)

. . . and semantics

• σ-reduct: σ : Alg(Σ′)→ Alg(Σ), where for A′ ∈ Alg(Σ′)

− |A′ σ|s = |A′|σ(s), for s ∈ S
− f

A′ σ
= σ(f)A′ for f ∈ Ω

Note the contravariancy!

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 35 -

Satisfaction condition

Fact: For all signature morphisms σ : Σ→ Σ′, Σ′-algebras A′ and Σ-equations ϕ:

A′ σ |=Σ ϕ ⇐⇒ A′ |=Σ′ σ(ϕ)

Proof (idea): for t ∈ |TΣ(X)| and v : X → |A′ σ|, tA′ σ [v] = σ(t)A′ [v
′], where

v′ : X ′ → |A′| is given by v′σ(s)(x) = vs(x) for s ∈ S, x ∈ Xs.

TRUTH is preserved (at least) under:

• change of notation

• restriction/extension of irrelevant context

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 36 -

Crash course II

Category theory

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 37 -

Categories and functors

• A category K consists of:

− a “set” of objects: |K|
− sets of morphisms: K(A,B), for all A,B ∈ |K|; m : A→ B stands for

m ∈ K(A,B)

− morphism composition: for m : A→ B and m′ : B → C, we have

m;m′ : A→ C;

the composition is associative and has identities.

• A functor F : K→ K′ between two categories maps:

− K-objects to K′-objects

− K-morphisms to K′-morphisms, preserving their source and target,

composition and identities

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 38 -

Sample categories and functors around

• sets and functions between them form the category Set

• (sm)all categories and functors between them form the category Cat

• Σ-algebras and their homomorphisms form the category Alg(Σ)

• algebraic signatures and their morphisms form the category AlgSig

• σ-reduct extends to the functor σ : Alg(Σ′)→ Alg(Σ)

• Alg : AlgSigop → Cat is a (contravariant) functor mapping signature Σ to the

category Alg(Σ) and signature morphism σ : Σ→ Σ′ to the reduct functor

σ : Alg(Σ′)→ Alg(Σ)

• Eq : AlgSig→ Set is a (covariant) functor mapping signature Σ to the set

Eq(Σ) of all Σ-equations and signature morphism σ : Σ→ Σ′ to the translation

function σ : Eq(Σ)→ Eq(Σ′)

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 39 -

Diagrams, limits, colimits

• Diagram in K is a functor D : J → K from (small) shape category J

• Cocone α : D → X on diagram D with vertex X ∈ |K|: consists of a family of

morphisms αn : D(n)→ X, one for each node n ∈ |J |, such that αn = D(e);αm

for each edge e : n→ m in J

• Cone β : X → D: . . . a family of morphisms βn : X → D(n) . . . dually

• Colimit of D is a cocone colimD : D → |colimD| such that for every cocone

α : D → X there exists a unique h : |colimD| → X such that (colimD)n;h = αn

for n ∈ |J |

• Limit of D is a cone limD : |limD| → D . . . dually

Limits and colimits (when they exist) are defined
up to isomorphism

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 40 -

Limits and colimits

A limit of D (in K) is a cone 〈βn : X → Dn〉n∈N on D

such that for all cones 〈β′n : X ′ → Dn〉n∈N on D, for a

unique morphism h : X ′ → X, h;βn = β′n for all n ∈ N .
•

•
Dn

•

•

-A
AAK

�
'

&

$

%

X

�
�
�
�
���

?

J
J
J
J
J
J
J
JĴ

Z
Z
Z
Z
Z
Z
Z~

βn

X ′

�
�

�
�

�
�
�=

� ?

C
C
C
C
CCW

β′
n

�
h

•

•
Dn

•

•

-A
AAK

�
'

&

$

%

X

�
�
�
�
��� 6

J
J
J
J
J
J
J
JJ]

Z
Z

Z
Z

Z
Z
Z}

αn

X ′

�
�
�
�
�
�
�>

�6

C
C
C
C
CCO

α′
n

-
h

A colimit of D (in K) is a cocone 〈αn : Dn → X〉n∈N
on D such that for all cocones 〈α′n : Dn → X ′〉n∈N on

D, for a unique morphism h : X → X ′, αn;h = α′n for

all n ∈ N .

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 41 -

Some limits

diagram limit in Set

(empty) terminal object {∗}

A B product A×B

A
f
−→−→
g

B equalizer {a ∈ A | f(a) = g(a)} ↪→ A

A
f−→ C

g←− B pullback {(a, b) ∈ A×B | f(a) = g(b)}

Fact: All finite limits may be built using terminal object and pullbacks;

pullbacks may be built using products and equalizers.

Give constructions of such limits in Cat

Hint: This is easy!

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 42 -

Some colimits

diagram colimit in Set

(empty) initial object ∅

A B coproduct A]B

A
f
−→−→
g

B coequalizer B −→ B/≡
where f(a) ≡ g(a) for all a ∈ A

A
f←− C g−→ B pushout (A]B)/≡

where f(c) ≡ g(c) for all c ∈ C

Fact: All finite colimits may be built using initial object and pushouts;

pushouts may be built using coproducts and coequalizers.

Give constructions of such colimits in Cat

Hint: This is not entirely easy!

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 43 -

Example of a pushout

{a, b}

{0, 1, 2, 3} {1, 2, 3}

@
@

@
@I

{a 7→ 1, b 7→ 2}
�
�
�
��

{a 7→ 1, b 7→ 3}

Diagrams list objects indicating how they share components

Colimits combine objects taking account of the indicated sharing

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 44 -

Example of a pushout

{a, b}

{0, 1, 2, 3}

{0, [1 = 1], [2 = 3], 2, 3}

{1, 2, 3}

@
@

@
@I

{a 7→ 1, b 7→ 2}

�
�
�
��{0 7→ 0, 1 7→ [1 = 1],

2 7→ [2 = 3], 3 7→ 3}

@
@

@
@I {1 7→ [1 = 1],

2 7→ 2, 3 7→ [2, 3]}

�
�
�
��

{a 7→ 1, b 7→ 3}

Diagrams list objects indicating how they share components

Colimits combine objects taking account of the indicated sharing

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 45 -

A sample pushout in AlgSig

sort Elem

sort String
ops a, . . . , z : String ;̂ : String × String

→ String

sorts Elem,Nat ,Array [Elem]

ops empty : Array [Elem];

put : Nat × Elem ×Array [Elem]

→ Array [Elem];

get : Nat ×Array [Elem]→ Elem

6

-

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 46 -

A sample pushout in AlgSig

sort Elem

sort String
ops a, . . . , z : String ;̂ : String × String

→ String

sorts Elem,Nat ,Array [Elem]

ops empty : Array [Elem];

put : Nat × Elem ×Array [Elem]

→ Array [Elem];

get : Nat ×Array [Elem]→ Elem

sorts String ,Nat ,Array [String]

ops a, . . . , z : String ;̂ : String × String → String ;

empty : Array [String];

put : Nat × String ×Array [String]

→ Array [String];

get : Nat ×Array [String]→ String

6

-

-

6

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 47 -

At last. . .

Institutions

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 48 -

Sample categories and functors around

• sets and functions between them form the category Set

• (sm)all categories and functors between them form the category Cat

• Σ-algebras and their homomorphisms form the category Alg(Σ)

• algebraic signatures and their morphisms form the category AlgSig

• σ-reduct extends to the functor σ : Alg(Σ′)→ Alg(Σ)

• Alg : AlgSigop → Cat is a (contravariant) functor mapping signature Σ to the

category Alg(Σ) and signature morphism σ : Σ→ Σ′ to the reduct functor

σ : Alg(Σ′)→ Alg(Σ)

• Eq : AlgSig→ Set is a (covariant) functor mapping signature Σ to the set

Eq(Σ) of all Σ-equations and signature morphism σ : Σ→ Σ′ to the translation

function σ : Eq(Σ)→ Eq(Σ′)

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 49 -

Generality and abstraction

There are many choices:

• Software systems: Non-termination allowed? Exceptions? Non-determinism?

Higher-order functions? Concurrency? etc.

• Specifications: Logical language to capture basic required properties?

Equational? First-order? Higher-order? Temporal formulae? LTL, CTL, CTL∗?

• Proofs: Logical calculi for building proofs (of properties, of refinement steps, etc.)

Most of the theory is independent of most of these choices!

We try to make this explicit:

rely only on basic common features

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 50 -

Tuning up the logical system

• various sets of formulae (equations, Horn-clauses, first-order, higher-order, modal

formulae, . . .)

• various notions of algebra (partial algebras, relational structures, error algebras,

Kripke structures, . . .)

• various notions of signature (order-sorted, error, higher-order signatures, sets of

propositional variables, . . .)

• (various notions of signature morphisms)

No best logic for everything

Solution:

Work with an arbitrary logical system

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 51 -

Main tool

Institutions

��

�

�

�	

Goguen &
Burstall: 1980→

1992

• a standard formalization of the concept of the underlying logical system for

specification formalisms and most work on foundations of software specification

and development from algebraic perspective;

• a formalization of the concept of a logical system for foundational studies:
− truly abstract model theory

− proof-theoretic considerations

− heterogeneous logical environments'

&

$

%#
"

!Abstract model theory

for specification and programming

(using the basics of category theory)

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 52 -

Institution: abstraction

Sen

Mod

#
"

!

#
"

!

'
&

$
%

'
&

$
%

•ϕ

•M

plus satisfaction relation:

M |= ϕ

and so the usual Galois connection be-

tween classes of models and sets of sen-

tences, with the standard notions induced

(Mod [Φ], Th[M], Th[Φ], Φ |= ϕ, etc).

• Also, possibly adding (sound) conse-

quence: Φ ` ϕ (implying Φ |= ϕ) to

deal with proof-theoretic aspects.

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 53 -

Institution: first insight

Sign

Sen

Mod

#
"

!

#
"

!

'
&

$
%

'
&

$
%

�
�

�
�•Σ

�� �•ϕ

�� �•M

B
B
B
B
B
B

�
�
�
�
�
�

�
�
�
�
�
�

B
B
B
B
B
B plus satisfaction relation:

M |=Σ ϕ

and so, for each signature, the usual Ga-

lois connection between classes of models

and sets of sentences, with the standard

notions induced (ModΣ[Φ], ThΣ[M],

ThΣ[Φ], Φ |=Σ ϕ, etc).

• Also, possibly adding (sound) conse-

quence: Φ `Σ ϕ (implying Φ |=Σ ϕ)

to deal with proof-theoretic aspects.

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 54 -

Institution: key insight

Sign

Sen

Mod

#
"

!

#
"

!

'
&

$
%

'
&

$
%

�
�

�
�•Σ

�� �•ϕ

�� �•M ′ σ

B
B
B
B
B
B

�
�
�
�
�
�

�
�
�
�
�
�

B
B
B
B
B
B

• Σ′

�� �•σ(ϕ)

�� �•M ′

B
B
B
B
B
B

�
�
�
�
�
�

�
�
�
�
�
�

B
B
B
B
B
B

-σ

� �6 σ

� �
?σ()

imposing the satisfaction condition:

M ′ |=Σ′ σ(ϕ) iff M ′ σ |=Σ ϕ

Truth is invariant
under change of notation

and independent of
any additional symbols around

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 55 -

Institution

• a category Sign of signatures

• a functor Sen : Sign→ Set

− Sen(Σ) is the set of Σ-sentences, for Σ ∈ |Sign|

• a functor Mod : Signop → Cat

− Mod(Σ) is the category of Σ-models, for Σ ∈ |Sign|

• for each Σ ∈ |Sign|, Σ-satisfaction relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ)

subject to the satisfaction condition:

M ′ σ |=Σ ϕ ⇐⇒ M ′ |=Σ′ σ(ϕ)

where σ : Σ→ Σ′ in Sign, M ′ ∈ |Mod(Σ′)|, ϕ ∈ Sen(Σ),

M ′ σ stands for Mod(σ)(M ′), and σ(ϕ) for Sen(σ)(ϕ).

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 56 -

Typical institutions

• EQ — equational logic

• FOEQ — first-order logic (with predicates and equality)

• PEQ, PFOEQ — as above, but with partial operations

• HOL — higher-order logic

• logics of constraints (fitted via signature morphisms)

• CASL — the logic of Casl: partial first-order logic with equality, predicates,

generation constraints, and subsorting

Casl subsorting: the sets of sorts in signatures are pre-ordered ;

in every model M , s ≤ s′ yields an injective subsort embedding (coercion)

ems≤s′
M : |M |s → |M |s′ such that ems≤s

M = id|M |s for each sort s, and

ems≤s′
M ;ems′≤s′′

M = ems≤s′′
M , for s ≤ s′ ≤ s′′; plus partial projections and

subsort membership predicates derived from the embeddings.

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 57 -

Somewhat less typical institutions:

• modal logics

• three-valued logics

• programming language semantics:

− IMP: imperative programming language with sets of computations as models

and procedure declararions as sentences

− FPL: functional programming language with partial algebras as models and

the usual axioms with extended term syntax allowing for local recursive

function definitions

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 58 -

Temporal logic

Institution TL:

• signatures A: (finite) sets of actions;

extremely simplified version

and oversimplified presentation

• models R: sets of runs, finite or infinite sequences of (sets of) actions;

• sentences ϕ: built from atomic statements a (action a ∈ A happens) using the

usual propositional and temporal connectives, including Xϕ (an action happens

and then ϕ holds) and ϕUψ (ϕ holds until ψ holds)

• satisfaction R |= ϕ: ϕ holds at the beginning of every run in R

WATCH OUT! Under some formalisations, satisfaction condition may fail!

Care is needed in the exact choice of sentences considered,

morphisms (between sets of actions) allowed, and reduct definitions.

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 59 -

Perhaps unexpected examples:

• no sentences

• no models

• no signatures

• trivial satisfaction relations

• sets of sentences as sentences

• sets of sentences as signatures

• classes of models as sentences

• sets of sentences as models

• . . .

typical, not so typical and perhaps unexpected examples abound

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 60 -

WORK IN AN ARBITRARY INSTITUTION

. . . adding extra structure and assumptions only if really needed . . .

Let’s fix an institution I = (Sign,Sen,Mod, 〈|=Σ〉Σ∈|Sign|) for a while.

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 61 -

Semantic entailment

Φ |=Σ ϕ

Σ-sentence ϕ is a semantic consequence of a set of Σ-sentences Φ

if ϕ holds in every Σ-models that satisfies Φ.

BTW:

• Models of a set of sentences: Mod [Φ] = {M ∈ |Mod(Σ)| |M |= Φ}

• Theory of a class of models: Th[C] = {ϕ | C |= ϕ}

• Φ |= ϕ ⇐⇒ ϕ ∈ Th[Mod [Φ]]

• Mod and Th form a Galois connection

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 62 -

Semantic equivalences

Equivalence of sentences: for Σ ∈ |Sign|, ϕ,ψ ∈ Sen(Σ) and M⊆ |Mod(Σ)|,

ϕ ≡M ψ

if for all Σ-models M ∈M, M |= ϕ iff M |= ψ. For ϕ ≡|Mod(Σ)| ψ we write:

ϕ ≡ ψ
Semantic equivalence

Equivalence of models: for Σ ∈ |Sign|, M,N ∈ |Mod(Σ)|, and Φ ⊆ Sen(Σ),

M ≡Φ N

if for all ϕ ∈ Φ, M |= ϕ iff N |= ϕ. For M ≡Sen(Σ) N we write:

M ≡ N
Elementary equivalence

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 63 -

Compactness, consistency, completeness. . .

• Institution I is compact if for each signature Σ ∈ |Sign|, set of Σ-sentences

Φ ⊆ Sen(Σ), and Σ-sentences ϕ ∈ Sen(Σ),

if Φ |= ϕ then Φfin |= ϕ for some finite Φfin ⊆ Φ

• A set of Σ-sentences Φ ⊆ Sen(Σ) is consistent if it has a model, i.e.,

Mod [Φ] 6= ∅

• A set of Σ-sentences Φ ⊆ Sen(Σ) is complete if it is a maximal consistent set of

Σ-sentences, i.e., Φ is consistent and

for Φ ⊆ Φ′ ⊆ Sen(Σ), if Φ′ is consistent then Φ = Φ′

Fact: Any complete set of Σ-sentences Φ ⊆ Sen(Σ) is a theory: Φ = Th[Mod [Φ]].

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 64 -

Preservation of entailment

Fact:

Φ |=Σ ϕ =⇒ σ(Φ) |=Σ′ σ(ϕ)

for σ : Σ→ Σ′, Φ ⊆ Sen(Σ), ϕ ∈ Sen(Σ).

If the reduct σ : |Mod(Σ′)| → |Mod(Σ)| is surjective, then

Φ |=Σ ϕ ⇐⇒ σ(Φ) |=Σ′ σ(ϕ)

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 65 -

Adding provability

Add to institution:

• proof-theoretic entailment:

`Σ ⊆ P(Sen(Σ))× Sen(Σ)

for each signature Σ ∈ |Sign|, closed under

− weakening, reflexivity, transitivity (cut)

− translation along signature morphisms

Require:

• soundness: Φ `Σ ϕ =⇒ Φ |=Σ ϕ

(?) completeness: Φ |=Σ ϕ =⇒ Φ `Σ ϕ

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 66 -

Presentations
(basic specifications)

〈Σ,Φ〉

• signature Σ, to determine the static module interface

• axioms (Σ-sentences) Φ ⊆ Sen(Σ), to determine required module properties

Use strong enough logic to capture the “right” class of models,
excluding undesirable “modules”

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 67 -

Presentation morphisms

Presentation morphism:

σ : 〈Σ,Φ〉 → 〈Σ′,Φ′〉

is a signature morphism σ : Σ→ Σ′ such that for all M ′ ∈Mod(Σ′):

M ′ ∈ Mod [Φ′] =⇒ M ′ σ ∈ Mod [Φ]�
 �	Then σ : Mod [Φ′]→ Mod [Φ]

Fact: A signature morphism σ : Σ→ Σ′ is a presentation morphism

σ : 〈Σ,Φ〉 → 〈Σ′,Φ′〉 if and only if Φ′ |= σ(Φ) .�
�

�
�

�
�

�
BTW: for all presentation morphisms Φ |=Σ ϕ =⇒ Φ′ |=Σ′ σ(ϕ)

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 68 -

Conservativity

A presentation morphism:

σ : 〈Σ,Φ〉 → 〈Σ′,Φ′〉

is conservative if for all Σ-sentences ϕ: Φ′ |=Σ′ σ(ϕ) =⇒ Φ |=Σ ϕ

A presentation morphism σ : 〈Σ,Φ〉 → 〈Σ′,Φ′〉 admits model expansion if for each

M ∈ Mod [Φ] there exists M ′ ∈ Mod [Φ′] such that M ′ σ = M

(i.e., σ : Mod [Φ′]→ Mod [Φ] is surjective).

Fact: If σ : 〈Σ,Φ〉 → 〈Σ′,Φ′〉 admits model expansion then it is conservative.�
�

�
�
 �	In general, the equivalence does not hold!

Fact: If 〈Σ,Φ〉 is complete and 〈Σ′,Φ′〉 is consistent then any presentation

morphism σ : 〈Σ,Φ〉 → 〈Σ′,Φ′〉 is conservative.

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 69 -

Categories of presentations & of theories

• Pres: the category of presentations in I has presentations as objects and

presentation morphisms as morphisms, with identities and composition inherited

from Sign, the category of signatures.

• TH: the category of theories in I is the full subcateogry of Pres with theories

(presentations with sets of sentences closed under consequence) as objects.#
"

!

Pres and TH are equivalent:
idΣ : 〈Σ,Φ〉 → 〈Σ,Th[Mod [Φ]]〉

is an isomorphism in Pres

Fact: The forgetful functors from Pres and TH, respectively, to Sign preserve and

create colimits.

Fact: If the category Sign of signatures is cocomplete, so are the categories Pres

of presentations and TH of theories.

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 70 -

Proof hint

in Sign:

Σ

Σ1

Σ′

Σ2

@
@
@I
σ1

�
�
��σ′2

@
@
@I σ′1

�
�
��
σ2

in Pres:

〈Σ,Φ〉

〈Σ1,Φ1〉

〈Σ′, σ′2(Φ1) ∪ σ′1(Φ2)〉

〈Σ2,Φ2〉

@
@
@I
σ1

�
�
��σ′2

@
@
@I σ′1

�
�
��
σ2

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 71 -

Logical connectives

• I has negation if for every signature Σ ∈ |Sign| and Σ-sentence ϕ ∈ Sen(Σ),

there is a Σ-sentence “¬ϕ” ∈ Sen(Σ) such that for all Σ-models

M ∈ |Mod(Σ)|, M |= “¬ϕ” iff M 6|= ϕ.

• I has conjunction if for every signature Σ ∈ |Sign| and Σ-sentences

ϕ,ψ ∈ Sen(Σ), there is a Σ-sentence “ϕ ∧ ψ” ∈ Sen(Σ) such that for all

Σ-models M ∈ |Mod(Σ)|, M |= “ϕ ∧ ψ” iff M |= ϕ and M |= ψ.

• . . . implication, disjunction, falsity , truth . . .

Fact: For any signature morphism σ : Σ→ Σ′ and Σ-sentence ϕ ∈ Sen(Σ)

σ(“¬ϕ”) and “¬σ(ϕ)” are equivalent.

Similarly, for Σ-sentences ϕ,ψ ∈ Sen(Σ)), σ(“ϕ ∧ ψ”) and “σ(ϕ) ∧ σ(ψ)” are

equivalent.

Similarly for other connectives. . .

�
�

�
�

For any institution I, define its closures:

under negation I¬, under conjunction I∧, etc.�
�

�
. . . as well as under all boolean connectives Ibool

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 72 -

Some “institutional” topics

• Institutions: intuitions and motivations
Goguen & Burstall ∼1980→ 1992

• Very abstract model theory
Tarlecki ∼1986, Diaconescu et al ∼2003→ . . .

• Structured specifications
Clear ∼1980, Sannella & Tarlecki ∼1984→ . . ., Casl ∼2004

• Moving between institutions
Goguen & Burstall ∼1983→ 1992, Tarlecki ∼1986, 1996, Goguen & Rosu ∼2002

• Heterogeneous specifications
Sannella & Tarlecki ∼1988, Tarlecki ∼2000→ . . ., Diaconescu ∼2002→ . . .,

Mossakowski ∼2002→ . . . (Hets)�
�

�
�
 �	. . . apologies for missing some names and for inaccurate years. . .

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 73 -

Institutional (Abstract) Model Theory

An institution I = (Sign,Sen,Mod, 〈|=Σ〉Σ∈|Sign|) remains fixed for another while.

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 74 -

Abstract abstract model theory

Providing new insights and abstract formulations
for classical model-theoretic concepts and results

• amalgamation over pushouts

• the method of elementary diagrams

• existence of free extensions

• Birkhoff variety theorem(s)

• interpolation results

• Beth definability theorem

• logical connectives, free variables, quantification

• completeness for any first-order logic

in
an

y
in

st
itu

tio
n

with
va

rio
us

bits
of

ex
tra

st
ru

ct
ure

,

under
so

m
e

te
ch

nica
l as

su
m

ptio
ns.

. .

• . . . In
te

rp
ola

tio
n

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 75 -

Classical Craig interpolation

In first-order logic:

Fact: Any sentences ϕ1 ∈ Sen(Σ1) and ϕ2 ∈ Sen(Σ2) such that ϕ1 |=Σ1∪Σ2 ϕ2,

have an interpolant θ ∈ Sen(Σ1 ∩ Σ2) such that ϕ1 |=Σ1
θ and θ |=Σ2

ϕ2.

θ

ϕ1 |= θ θ |= ϕ2

ϕ1 |= ϕ2

Σ1 ∩ Σ2

Σ1

Σ1 ∪ Σ2

Σ2

@
@@I

�
���

@
@@I

�
���

In general though:

intersection-union squares

are not enough!

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 76 -

Example

sort Elem

sort String
ops a, . . . , z : String ;̂ : String × String

→ String

sorts Elem,Nat ,Array [Elem]

ops empty : Array [Elem];

put : Nat × Elem ×Array [Elem]

→ Array [Elem];

get : Nat ×Array [Elem]→ Elem

sorts String ,Nat ,Array [String]

ops a, . . . , z : String ;̂ : String × String → String ;

empty : Array [String];

put : Nat × String ×Array [String]

→ Array [String];

get : Nat ×Array [String]→ String

6

-

-

6
PO

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 77 -

Craig interpolation, take #1

In I, interpolation property holds for a signature pushout below, if any sentences

ϕ1 ∈ Sen(Σ1) and ϕ2 ∈ Sen(Σ2) such that σ′2(ϕ1) |=Σ′ σ
′
1(ϕ2),

have an interpolant θ ∈ Sen(Σ) such that ϕ1 |=Σ1
σ1(θ) and σ2(θ) |=Σ2

ϕ2.

θ

ϕ1 |= σ1(θ) σ2(θ) |= ϕ2

σ′2(ϕ1) |= σ′1(ϕ2)

Σ

Σ1

Σ′

Σ2

@
@@Iσ1

�
���σ′2

@
@@Iσ
′
1

�
���σ2

PO

In general though:

single sentences

are not enough!

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 78 -

Institutional Craig interpolation

In I, Craig interpolation property holds for a pushout in Sign

Σ

Σ1

Σ′

Σ2

@
@@Iσ1

�
���σ′2

@
@@Iσ
′
1

�
���σ2

PO

if for all Φ1 ⊆ Sen(Σ1) and ϕ2 ∈ Sen(Σ2) such that σ′2(Φ1) |=Σ′ σ
′
1(ϕ2) there is

Θ ⊆ Sen(Σ) such that Φ1 |=Σ1 σ1(Θ) and σ2(Θ) |=Σ2 ϕ2.

Fact: Many-sorted first-order logic has the interpolation property for the pushout as

above provided that at least one of the two morphisms σ1, σ2 is injective on sorts.

Fact: Many-sorted equational logic has the interpolation property for the pushout as

above provided that all sorts are non-void and σ2 is injective.

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 79 -

Institutional Craig-Robinson interpolation

In I, Craig-Robinson interpolation property holds for a pushout in Sign if for all

Φ1 ⊆ Sen(Σ1), Γ2 ⊆ Sen(Σ2) and ϕ2 ∈ Sen(Σ2) such that

σ′2(Φ1) ∪ σ′1(Γ2) |=Σ′ σ
′
1(ϕ2) there is Θ ⊆ Sen(Σ) such that Φ1 |=Σ1

σ1(Θ) and

σ2(Θ) ∪ Γ2 |=Σ2 ϕ2.

Fact: Craig-Robinson interpolation implies

Craig interpolation.

Θ

Φ1 |= σ1(Θ) σ2(Θ) ∪ Γ2 |= ϕ2

σ′2(Φ1) ∪ σ′1(Γ2) |= σ′1(ϕ2)

Σ

Σ1

Σ′

Σ2

@
@@Iσ1

�
���σ′2

@
@@Iσ
′
1

�
���σ2

PO

Fact: In compact institutions with conjunc-

tion and implication, Craig interpolation and

Craig-Robinson interpolation are equivalent.

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 80 -

BTW:

Consistency theorem

I has the consistency property for a pushout in Sign

Σ

Σ1

Σ′

Σ2

@
@@Iσ1

�
���σ′2

@
@@Iσ
′
1

�
���σ2

〈Σ,Φ〉

〈Σ1,Φ1〉

〈Σ′, σ′2(Φ1) ∪ σ′1(Φ2)〉

〈Σ2,Φ2〉

@
@@Iσ1

�
���σ′2

@
@@Iσ
′
1

�
���σ2

if for all sets of sentences Φ ⊆ Sen(Σ), Φ1 ⊆ Sen(Σ1) and Φ2 ⊆ Sen(Σ2) and

presentation morphisms σ1 : 〈Σ,Φ〉 → 〈Σ1,Φ1〉 and σ2 : 〈Σ,Φ〉 → 〈Σ2,Φ2〉 such that

Φ1 and Φ2 are consistent and σ1 is conservative, 〈Σ′, σ′2(Φ1) ∪ σ′1(Φ2)〉 is consistent.

�
�

�
�

Rob
in

so
n

co
nsis

te
ncy

th
eo

re
m

(fo
r firs

t-o
rd

er
lo

gi
c)

Fact: In any compact institution with falsity, negation and conjunction, Craig

interpolation, Craig-Robinson interpolation and Robinson consistency properties are

equivalent.

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 81 -

Amalgamation for algebras
taken for granted

A1 Σ1∩Σ2 = A2 Σ1∩Σ2

A1 = A′
Σ1 A′

Σ2 = A2

A′

�
�
�

�
�	

@
@
@
@
@R

@
@
@
@
@R

�
�

�
�
�	

Σ1 ∩ Σ2

Σ1

Σ1 ∪ Σ2

Σ2

@
@@I

�
���

@
@@I

�
���

Fact: For any algebras A1 ∈ |Alg(Σ1)| and A2 ∈ |Alg(Σ2)| with common

interpretation of common symbols A1 Σ1∩Σ2 = A2 Σ1∩Σ2 , there is a unique “union”

of A1 and A2, A′ ∈ |Alg(Σ1 ∪ Σ2)| with A′ Σ1 = A1 and A′ Σ2 = A2.

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 82 -

Amalgamation

M1 σ1 =M2 σ2

M1 =M ′
σ′2

M ′
σ′1

=M2

M ′

�
�
�

�
�	

@
@
@
@
@R

@
@
@
@
@R

�
�

�
�
�	

Σ

Σ1

Σ′

Σ2

@
@@Iσ1

�
���σ′2

@
@@Iσ
′
1

�
���σ2

PO �
�

�
�

May be sensibly stated for any
commuting square of morphisms

In I, amalgamation property holds for the pushout above if for all M1 ∈ |Mod(Σ1)|
and M2 ∈ |Mod(Σ2)| with M1 σ1 = M2 σ2 , there is a unique M ′ ∈ |Mod(Σ′)| with

M ′ σ′1 = M2 and M ′ σ′2 = M1.

Fact: Many-sorted first-order and equational logics admit amalgamation.

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 83 -

Adding amalgamation

Assume:

• the model functor Mod : Signop → Cat is continuous (maps colimits of

signatures to limits of model categories)

Fact: Alg : AlgSigop → Cat is continuous.

Amalgamation property: Amalgamation property follows for a pushout in Sign if

Mod maps it to a pullback in Cat:

Σ

Σ1

Σ2

Σ′

6
σ1

-
σ2

-
σ′2

6
σ′1POPO -Mod

Mod(Σ)

Mod(Σ1)

Mod(Σ2)

Mod(Σ′)

?

σ1

�
σ2

�
σ′2

?

σ′1PB

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 84 -

Birkhoff-style results

Fact: In (many-sorted) equational logic, for any class of Σ-algebras A ⊆ |Alg(Σ)|,
Mod [Th[A]] = HSP(A).

General scheme:

I is a Birkhoff institution with F and B, if for any signature Σ ∈ |Sign| and class of

Σ-models M⊆ |Mod(Σ)|

Mod [Th[M]] = BΣ(F(M))

where:

− F is a family of filters with {{∗}} ∈ F , all model categories have F -filtered

products for all F ∈ F ; then F(M) is the class of all F -filtered products of

models in M, for all F ∈ F , and

− B = 〈BΣ ⊆ |Mod(Σ)| × |Mod(Σ)|〉Σ∈|Sign| is a family of relations closed under

isomorphism; then BΣ(F(M)) is the image of F(M) under relation BΣ.

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 85 -

�
�

�
�

�
�

�
Diaconescu ∼2004

Interpolation from axiomatisability

Fact: Let I be a Birkhoff institution with F and B.

Consider a pushout in Sign, for which I admits (weak)

amalgamation, and such that reducts w.r.t. σ1 and σ2

preserve F-filtered products.

Σ

Σ1

Σ′

Σ2

@
@@Iσ1

�
���σ′2

@
@@Iσ
′
1

�
���σ2

PO

Then for this pushout I has

• Craig interpolation property if the reduct w.r.t. σ2 lifts B−1,�
 �	As in Rodenburg’s proof for equational interpolation

• Craig-Robinson interpolation property if the reduct w.r.t. σ1 lifts B.

Quite a few examples, both known and new

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 86 -

Free variables

Standard algebra Institution I

algebraic signature Σ = 〈S,Ω〉 signature Σ ∈ |Sign|

S-sorted set of variables X signature extension ι : Σ→ Σ(X)

(Σ(X) expands Σ by variables X as con-

stants)

open Σ-formula ϕ with variables X Σ(X)-sentence ϕ

Σ-algebra M Σ-model M ∈ |Mod(Σ)|

valuation of variables v : X → |M | in M ι-expansion Mv of M ,
i.e., Mv ∈ |Mod(Σ(X)|), Mv

ι = M

(xMv=v(x) for each variable/constant

x ∈ X)

satisfaction of formula ϕ in M under v: satisfaction of “open formula” ϕ
M |=v

Σ ϕ Mv |=Σ(X) ϕ

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 87 -

Quantification

Let I be a class of signature morphisms. For decency, assume that it forms a

subcategory of Sign and is closed under pushouts with arbitrary signature morphisms.

• I has universal quantification along I if for every signature morphism ι : Σ→ Σ′

in I and Σ′-sentence ψ ∈ Sen(Σ′), there is a Σ-sentence “∀ι.ψ” ∈ Sen(Σ) such

that for all Σ-models M ∈ |Mod(Σ)|, M |= “∀ι.ψ” iff for all Σ′-models with

M ′ ι = M , M ′ ∈ |Mod(Σ′)|, M ′ |= ψ.

• I has existential quantification along I if for ι : Σ→ Σ′ in I and Σ′-sentence

ψ ∈ Sen(Σ′), there is a Σ-sentence “∃ι.ψ” ∈ Sen(Σ) such that for all Σ-models

M ∈ |Mod(Σ)|, M |= “∃ι.ψ” iff for some Σ′-model M ′ ∈ |Mod(Σ′)| with

M ′ ι = M , M ′ |= ψ.

Fact: For any σ : Σ→ Σ1, σ(“∀ι.ψ”) and “∀ι′.σ′(ψ)” are equivalent,

where the following is a pushout in Sign with ι′ ∈ I:

Σ

Σ′

Σ1

Σ′1
6
ι

-
σ

-σ
′

6
ι′PO

Similarly for existential quantification.
AMALGAMATION NEEDED�
 �	Define IFO, “first-order closure” of I

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 88 -

The method of diagrams

Institution I Standard algebra

Given a signature Σ and Σ-model M , (algebraic signature Σ and Σ-algebra M)

build signature extension ι : Σ→ Σ(M) (adding elements of |M | as constants)

and a Σ(M)-presentation EM (all ground atoms true in M idM , the nat-

ural ι-expansion of M)

so that the reduct by ι yields isomorphism

ModΣ(M)[EM]→ (M/Mod(Σ))

(then the reduct by ι yields isomorphism

AlgΣ(M)[EM]→ (M/Alg(Σ)))

. . . and everything is natural . . . (everything is natural)

Now: M has a “canonical” ι-expansion

which is initial in ModΣ(M)[EM]

(M idM , reachable ι-expansion of M , is

initial in AlgΣ(M)[EM])

Equipped with the method of diagrams, one can do a lot!

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 89 -

Institutional very abstract model theory

Providing new insights and abstract formulations
for classical model-theoretic concepts and results

• amalgamation over pushouts

• the method of elementary diagrams

• existence of free extensions

• Birkhoff variety theorem(s)

• interpolation results

• Beth definability theorem

• logical connectives, free variables, quantification

• completeness for any first-order logic

• . . .

in
an

y
in

st
itu

tio
n

with
va

rio
us

bits
of

ex
tra

st
ru

ct
ure

,

under
so

m
e

te
ch

nica
l as

su
m

ptio
ns.

. .

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 90 -

Foundations of Software Specification and Development

Keeping an institution I = (Sign,Sen,Mod, 〈|=Σ〉Σ∈|Sign|) fixed for yet another while.

Revised rough analogy

module interface ; I-signature

module ; I-model

module specification ; class of I-models

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 91 -

Structured specifications and their consequences

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 92 -

Example:

(double/linear) hash table

spec Nat = . . .

spec String = . . .

spec Elem = sort Elem

spec StringKey = String and Nat

then op hash : String → Nat

spec StringKey0 = StringKey with hash 7→ hash0

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 93 -

spec Array of Elem = Elem and Nat

then sort Array [Elem]

ops empty : Array [Elem];

put : Nat × Elem ×Array [Elem]→ Array [Elem];

get : Nat ×Array [Elem]→ Elem

pred used : Nat ×Array [Elem]

∀ i, j : Nat ; e : Elem; a : Array [Elem]

• ¬used(i, empty)

• used(i, put(i, e, a))

• i 6= j =⇒ (used(i, put(j, e, a)) ⇐⇒ used(i, a))

• get(i, put(i, e, a)) = e

• i 6= j =⇒ get(i, put(j, e, a)) = get(i, a)

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 94 -

Parametrized specification

spec Array[Elem] = Array of Elem

Array[SP fit Elem 7→ Asort]

stands for

{Array[Elem] with Elem 7→ Asort} and SP

spec Bucket = Array[String fit Elem 7→ String]

with Array [String] 7→ Bucket

spec Table = Array[Bucket fit Elem 7→ Bucket]

with Array [Bucket] 7→ Table

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 95 -

StringHashTable0 = StringKey0 and Bucket

then ops add : String × Bucket → Bucket ;

putnear : Nat × String × Bucket → Bucket

preds present : String × Bucket

isnear : Nat × String × Bucket

∀ i : Nat ; s : String ; b : Bucket

• add(s, b) = putnear(hash0 (s), s, b)

• ¬used(i, b) =⇒ putnear(i, s, b) = put(i, s, b)

• used(i, b) ∧ get(i, b) = s =⇒ putnear(i, s, b) = b

• used(i, b) ∧ get(i, b) 6= s =⇒
putnear(i, s, b) = putnear(succ(i), s, b)

• present(s, b) ⇐⇒ isnear(hash0 (s), s, b)

• ¬used(i, b) =⇒ ¬isnear(i, s, b)

• used(i, b) ∧ get(i, b) = s =⇒ isnear(i, s, b)

• used(i, b) ∧ get(i, b) 6= s =⇒ (· · ·)

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 96 -

StringHashTable =

StringHashTable0 and StringKey and Table

then op add : String × Table → Table

pred present : String × Table

∀ i : Nat ; s : String ; t : Table

• hash(s) = i ∧ used(i, t) =⇒
add(s, t) = put(i, add(s, get(i, t)), t)

• hash(s) = i ∧ ¬used(i, t) =⇒
add(s, t) = put(i, add(s, empty), t)

• hash(s) = i ∧ used(i, t) =⇒
(present(s, t) ⇐⇒ present(s, get(i, t)))

• hash(s) = i ∧ ¬used(i, t) =⇒ ¬present(s, t)

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 97 -

spec UserStringHashTable =

StringHashTable

reveal String ,nil , a, . . . , z, ̂ ,Table, empty : Table,

add : String × Table → Table, present : String × Table

Specification structure

• This is a (nicely) structured specification

• The specification structure can guide, for instance, proof search

• The specification structure does not prescribe the structure of programs that

implement the specification

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 98 -

spec SimpleUserStringHashTable = String

then sort Table

ops empty : Table;

add : String × Table → Table

pred present : String × Table

∀ s, s′ : String , t : Table

• ¬present(s, empty)

• present(s, add(s, t))

• s 6= s′ =⇒ (present(s, put(s′, t)) ⇐⇒ present(s, t))

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 99 -

Specifications

SP ∈ Spec

Adopting the model-theoretic view of specifications

The meaning of any specification SP ∈ Spec built over I is given by:

• its signature Sig [SP] ∈ |Sign|, and

• a class of its models Mod [SP] ⊆ |Mod(Sig [SP])|.

This yields the usual notions:

• semantic equivalence: SP ≡ SP ′ iff Sig [SP]=Sig [SP ′] and Mod [SP]=Mod [SP ′];

• semantic consequence: SP |= ϕ iff Mod [SP] |= ϕ;

• theory of a specification: Th[SP] = {ϕ | SP |= ϕ}; etc

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 100 -

Standard structured specifications

Basic specification: 〈Σ,Φ〉 — for Σ ∈ |Sign| and Φ ⊆ Sen(Σ):

Sig [〈Σ,Φ〉] = Σ
�
 �	captures basic properties

Mod [〈Σ,Φ〉] = Mod [Φ]

Union: SP1 ∪ SP2 — for SP1 and SP2 with Sig [SP1] = Sig [SP2]:

Sig [SP1 ∪ SP2] = Sig [SP1]
�
 �	combines the constraints imposed

Mod [SP1 ∪ SP2] = Mod [SP1] ∩Mod [SP2]

Translation: σ(SP) — for any SP and σ : Sig [SP]→ Σ′:

Sig [σ(SP)] = Σ′
�
 �	renames and introduces new components

Mod [σ(SP)] = {M ′ ∈ |Mod(Σ′)| |M ′ σ ∈ Mod [SP]}

Hiding: SP ′ σ — for any SP ′ and σ : Σ→ Sig [SP ′]:

Sig [SP ′ σ] = Σ
�
 �	hides auxiliary components

Mod [SP ′ σ] = {M ′ σ |M ′ ∈ Mod [SP ′]}

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 101 -

Normal forms

Fact: Any specification built out of basic specifications using union and translation

only is equivalent to a basic specification.

Fact: If the category of signatures has pushouts and the institution admits

amalgamation, then any specification SP built out of basic specifications using union,

translation and hiding may be equivalently transformed to its normal form:

nf(SP) = 〈Σall ,Φall〉 σres

such that

SP ≡ nf(SP)

Proof: by induction on the structucture of SP .

Know about them — use them for meta-results — never use them for applications

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 102 -

Proving semantic consequence

nf(SP) = 〈Σall ,Φall〉 σres
Φall |=Σall

σres(ϕ)

SP ` ϕ

This is sound and complete for semantic consequence when the category of signatures

has pushouts, the institution admits amalgamation (then the normal forms as above

can be constructed), but:

This is a bad way!

• lack of compositionality

• no use of the specification structure

• typically, Φall is HUGE

• no help in proof search

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 103 -

Standard compositional proof system

ϕ ∈ Φ

〈Σ,Φ〉 ` ϕ
SP1 ` ϕ

SP1 ∪ SP2 ` ϕ
SP2 ` ϕ

SP1 ∪ SP2 ` ϕ

SP ` ϕ
σ(SP) ` σ(ϕ)

SP ′ ` σ(ϕ)

SP ′ σ ` ϕ

Plus a structural rule:

for i ∈ J,SP ` ϕi {ϕi}i∈J |= ϕ

SP ` ϕ

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 104 -

Soundness & completeness

SP ` ϕ =⇒ SP |= ϕ

Fact: If the category of signatures has pushouts, the institution admits (weak)

amalgamation and Craig-Robinson interpolation then

SP ` ϕ ⇐⇒ SP |= ϕ

.
Proof (idea):

• soundness: easy! Check for each rule that if premises hold so does the conclusion.

• completeness: not so easy! By induction on the structures of specification: for each

specification-building operation, assume completeness of consequences for its

arguments, and use their normal forms to show that the premises of the rule

needed to prove the consequence for the result specification hold.

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 105 -

Can we do better?

In fact: given the other assumptions on the institution, Craig-Robinson interpolation

is a necessarry condition for completeness of the above standard proof system.

In general: there is no sound and complete compositional proof system

for semantic consequence for structured specifications because:

Claim: The best sound and compositional proof system one can have is given above.

�
�
�
�
 �	Really ?

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 106 -

The only better proof systems are incidental

Fact: The standard proof system is at least as strong as any other sound,

compositional, non-absent-minded and theory-oriented proof system for consequences

of structured specifications built from basic specifications using union, translation and

hiding.

Fact: The standard proof system is at least as strong as any other sound, monotone,

non-absent-minded proof system for consequences of structured specifications built

from basic specifications using union, translation and hiding.

Fact: The standard proof system is at least as strong as any other persistently sound

and compositional proof system for consequences of structured specifications built

from basic specifications using union, translation and hiding.

These also hold for proof systems

based on a sound entailment for I �
�

�
�

�
�

�

The extra assumptions cannot be dropped

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 107 -

Program development

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 108 -

Verification

Given specification SP and program P , prove that [[P]] ∈ Mod [SP]

BUT:

Proofs of software correctness are notoriously difficult

SO:

Build software together with a proof of its correctness

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 109 -

Programmer’s task

Informally:

Given a requirements specification
produce a module that correctly implements it

Semantically:

Given a requirements specification SP

build a model M ∈ |Mod(Sig [SP])| such that
M ∈ Mod [SP]

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 110 -

Program development

May be easy:

spec Nat =
�
 �	Casl specification

free type Nat ::= 0 | succ(Nat)

op + : Nat ×Nat → Nat

axioms ∀n:Nat • n+ 0 = n;

∀n,m:Nat • n+ succ(m) = succ(n+m)

structure NAT =
�� ��Standard ML code

struct

datatype Nat = 0 | succ of Nat

fun add(n,0) = n

| add(n,succ(m)) = succ(add(n,m))

end

. . . but this is rare

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 111 -

Key idea

SP ;M

Never in a single jump!

Rather: proceed step by step, adding gradually more and more detail and

incorporating more and more design and implementation decisions, until a

specification is obtained that is easy to implement directly

SP0 ññòSP1 ññò· · · ññòSPn

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 112 -

Refinement step

SP ′ ññòSP

Means:

Sig [SP ′] = Sig [SP] and Mod [SP] ⊆ Mod [SP ′]

So:

• preserve the static interface (preserving the signature)

• incorporate further details (narrowing the class of models)

Fact:
SP0 ññòSP1 ññò· · · ññòSPn M ∈ Mod [SPn]

M ∈ Mod [SP0]

��

�
�

�	
Satisf

actio
n guaranteed!

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 113 -

In practice, some parts will get fixed:'

&

$

%
SP0 ññò

κ1

'
&
$
%SP1 ññò

κ1
κ2

�
�
�
�SP2 ññò· · · ññò

κ1
κ2

· · · κn•

Keep them apart from whatever is really left for implementation:'

&

$

%
SP0 κ1

ñññò

'
&
$
%SP1 κ2
ñññò

�
�
�
�SP2 κ3
ñññò· · · κn

ñññò• SPn = EMPTY

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 114 -

Constructor refinement step

SP ′ κññòSP

Means:

κ(Mod [SP]) ⊆ Mod [SP ′]

where

κ : |Mod(Sig [SP])| → |Mod(Sig [SP ′])|

is a constructor :

Intuitively: parametrised module (functor of Standard ML)

Semantically: function between model classes

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 115 -

Trivial example

spec NatAdd = Nat with {+ 7→ add}
�
 �	Casl specifications

spec NatAddMult = NatAdd then
op mult : Nat ×Nat → Nat

axiom ∀n:Nat •mult(n, succ(0)) = n;

∀n,m:Nat •mult(n,m) = mult(m,n)

functor MULT (X: NAT ADD SIG): NAT ADD MULT SIG =

struct open X

fun mult(n,0) = 0 | mult(n,succ(m)) = n + mult(n,m)

end
�� ��Standard ML code

NatAddMult
MULT
ñññññòNatAdd

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 116 -

Development process

Fact:
SP0 κ1

ñññòSP1 κ2
ñññò· · · κn

ñññòSPn = EMPTY

κ1(κ2(. . . κn(empty) . . .)) ∈ Mod [SP0]

Methodological issues:

• top-down vs. bottom-up vs. middle-out development?

• modular decomposition (designing modular structure)

��

�
�

�	

Satis
factio

n guaranteed!

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 117 -

Branching refinement steps

SP ññò BR

SP1

...

SPn

Branching step BR involves a “linking procedure” (n-argument constructor)

κBR : |Mod(Sig [SP1])| × · · · × |Mod(Sig [SPn])| → |Mod(Sig [SP])|

and we require

M1 ∈ Mod [SP1] · · · Mn ∈ Mod [SPn]

κBR(M1, . . . ,Mn) ∈ Mod [SP]�
�

�
�
 �	Further development proceeds for each SP i separately

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 118 -

Architectural specifications

Casl provides an explicit way to write down the organisational specification such a

branching amounts to:

arch spec BR = units U1 : SP1

. . .

Un : SPn

result κBR(U1, . . . , Un)

Moreover:

• units my be generic (parametrised modules, Standard ML functors), but

always are declared with their specifications

• Casl provides a rich collection of combinators to define κBR and various

additional ways to define units

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 119 -

arch spec StringHashTableDesign =

units N : Nat;

S : String;

SK : StringKey given S,N ;

SK0 : StringKey0 given S,N ;

A : Elem→ Array of Elem given N ;

A0 : Elem→ Array of Elem given N ;

B = A0 [S fit Elem 7→ String] with Array [String] 7→ Bucket ;

T = A[B fit Elem 7→ Bucket] with Array [Bucket] 7→ Table;

HT0 : StringHashTable0 given SK0 , B;

HT : StringHashTable given HT0 ,SK , T

result HT reveal String ,nil , a, . . . , z, ̂ ,Table, empty , add , present

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 120 -

Further development

IF

SP ññò
units U1 : SP1 . . . Un : SPn

result κ(U1, . . . , Un)

SP1 κ1
ñññòSP ′1 · · · SPn κn

ñññòSP ′n

THEN

SP ññò
units U ′1 : SP ′1 . . . U ′n : SP ′n

result κ(κ1(U ′1), . . . , κn(U ′n))

�
�

�
�

Better still, keep the development tree within architectural specifications,
as proposed for Casl

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 121 -

Local constructions / parametrized units

Local construction:

F : |Mod(Σ)| → |Mod(Σ′)|

Assume persistency :

ι : Σ→ Σ′ and F (M) ι = M , for all M ∈ |Mod(Σ)|

Local constructions are meant to be applied in a global context ΣG via a fitting

morphism γ : Σ→ ΣG

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 122 -

From local to global constructions

G γ F (G γ)-

FG

Σ

ΣG

Σ′

Σ′G

6
γ

-
ι

-ι′

6

γ′PO

G FG(G)-

F

Given F : |Mod(Σ)| → |Mod(Σ′)| per-

sistent along ι : Σ → Σ′ and fitting mor-

phism γ : Σ→ ΣG we obtain

FG : |Mod(ΣG)| → |Mod(Σ′G)|

as defined by the pushout in Sign and the

following condition:

FG(G) ι′ = G and FG(G) γ′ = F (G γ)

Casl syntax for FG(G): F [G fit σ] Amalgamation required!

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 123 -

D
o

not
co

nfu
se

:

par
am

et
riz

ed
(p

ro
gr

am
sp

ec
ifi

ca
tio

n)

6=

(p
ar

am
et

riz
ed

pr
og

ra
m

)
sp

ec
ifi

ca
tio

n

Specifications for local constructions

SP
ι−→ SP ′

Strict correctness

Mod [SP
ι−→ SP ′]

the class of all local constructions

F : |Mod(Sig [SP])| → |Mod(Sig [SP ′])| that are

• persistent along ι : Sig [SP]→ Sig [SP ′]

• strictly correct w.r.t. parameter specification SP and result specification SP ′:

F (M) ∈ Mod [SP ′] for all M ∈ Mod [SP]

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 124 -

Correctness of global implementations

Take (as before) • ι : Σ→ Σ′, γ : Σ→ ΣG

• SP with Sig [SP] = Σ, SP ′ with Sig [SP ′] = Σ′

• SPG with Sig [SPG] = ΣG, SP ′G with Sig [SP ′G] = Σ′G

Fact: If • F ∈ Mod [SP
ι−→ SP ′]

• Mod [SPG] ⊆ Mod [γ(SP)]

• Mod [γ′(SP ′) ∪ ι′(SPG)] ⊆ Mod [SP ′G]

then FG(Mod [SPG]) ⊆ Mod [SP ′G], i.e.: SP

SPG

SP ′

SP ′G

6
γ

-
ι

-ι
′

6
γ′

SP ′G FG
ññññòSPG

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 125 -

Correctness of global implementations

SP ′

γ′(SP ′) ∪ ι′(SPG)

SP

SPG

6

γ′

�
ι

��@@I
ι′ 6

γ
PO

FG
ññññòSP ′G ññò

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 126 -

Program development

• Start with a SPECIFICATION

• Develop software via a SEQUENCE of refinement steps

• Each step is small enough that a PROOF OF CORRECTNESS is possible

• Correct refinement steps can be COMPOSED

• Some refinement steps involve DECOMPOSITION into SEPARATE TASKS

RESULT:

Well-designed, well-structured, well-documented

correct and highly modular software

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 127 -

Toward heterogeneous specifications

Linking institutions with each other

. . . various maps between institutions. . .

Categories of institutions

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 128 -

�
� �
�
�
� �

INS
Institution morphism: µ : I −→ I′

Sign

Sen

Mod

�
�

�
�

�
�

�
�

'
&

$
%

'
&

$
%

�
�
�
�•Σ

�
 �	•µ(ϕ′)

�
 �	•M

B
B
B
B
BB

�
�
�
�
��

�
�
�
�
��

B
B
B
B
BB

Sign′

Sen′

Mod′

�
�

�
�

�
�

�
�

'
&

$
%

'
&

$
%

�
�
�
�• µ(Σ)

�
 �	• ϕ′

�
 �	• µ(M)

B
B
B
B
BB

�
�
�
�
��

�
�
�
�
��

B
B
B
B
BB

�

-

-

µ

µ

µ

with the satisfaction condition lurking again:
M |= µ(ϕ) iff µ(M) |=′ ϕ′

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 129 -

�
� �
�

�
� �

coINSInstitution comorphism: ρ : I −→ I′

Sign

Sen

Mod

�
�

�
�

�
�

�
�

'
&

$
%

'
&

$
%

�
�
�
�•Σ

�
 �	•ϕ

�
 �	•ρ(M ′)

B
B
B
B
BB

�
�
�
�
��

�
�
�
�
��

B
B
B
B
BB

Sign′

Sen′

Mod′

�
�

�
�

�
�

�
�

'
&

$
%

'
&

$
%

�
�
�
�• Σ′

�
 �	• ρ(ϕ)

�
 �	•M ′

B
B
B
B
BB

�
�
�
�
��

�
�
�
�
��

B
B
B
B
BB

-

-

�

ρ

ρ

ρ

with the satisfaction condition lurking again:
ρ(M ′) |= ϕ iff M ′ |=′ ρ(ϕ)

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 130 -

Moving between institutions: a taxonomy of maps

morphisms µ

Sen←− Sen′

Sign −→ Sign′

Mod −→Mod′

semi-morphisms µ

Sen Sen′

Sign −→ Sign′

Mod −→Mod′

comorphisms ρ

Sen −→ Sen′

Sign −→ Sign′

Mod←−Mod′

semi-comorphisms ρ

Sen Sen′

Sign −→ Sign′

Mod←−Mod′

forward morphisms

Sen −→ Sen′

Sign −→ Sign′

Mod −→Mod′

forward comorphisms

Sen←− Sen′

Sign −→ Sign′

Mod←−Mod′

#
"

!

�
�

�
�

plus theoroidal versions,

plus weak versions, plus . . .

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 131 -

Mastering the diversity

Morphism Span of comorphisms

Set
�
 �	

6

Sen

Sign(op)

?

Mod

�
 �	Cat

6

Sen′

Sign′(op)

?

Mod′

Φ -

α�

β -

Set
�
 �	

6

Sen

Sign(op)

?

Mod

�
 �	Cat

6

Sen′

Sign′(op)

?

Mod′

Sign(op)

•

•

Φ
6

Sen′6

Φop

?

Mod′
?

Φ-

α�

β- =�

=-

=�

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 132 -

Putting institutions together

Fact: The category INS of institutions and institution morphisms is complete and

(nearly) cocomplete. So is the category coINS, the category of institutions and

institution comorphisms.

• Limits in INS: a rudimentary way of combining institutions linked by institution

morphisms to capture how one institution is built over another.

• This is in contrast with the Grothendieck institution built over the same diagram,

which just puts the institutions involved next to each other, with additional

signature morphisms induced by institution morphisms.

Limits of limits

• In general, limits in INS do not preserve cocompleteness of the category of

signatures, amalgamability, interpolation, etc.

• Nothing comes for free in coINS either (though some things might be easier).

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 133 -

Systematically building complex logical systems

• Logic presentations: parchments. . .

• Putting parchments together — (co)completeness of parchments categories. . .

• Parchment constructions, extensions, modifications. . .

• Preserving and combining proof systems. . .

EXAMPLE: CafeOBJ cube of logics

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 134 -

Heterogeneous environment

A collection of institutions

linked by

(forward) (semi-) (co-) morphisms

A collection of institutions

linked by (semi-)comorphisms

A diagram HIE in the category coINS
(of institutions and institution comorphisms)

EXAMPLES:

• a dozen of logics, one for each kind of UML diagrams

• the Hets family of institutions

• CafeOBJ cube of logics

• Mossakowski’s diagram of algebraic and other institutions

• . . .

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 135 -

Given a heterogeneous environment of institutions HIE

Heterogeneous specifications

• Move to a universal institution UI

(encode institutions in HIE using comorphisms into UI, compatible with maps

within HIE ; then work in UI)

• Focussed heterogeneous specifications

(specifications that reside in an institution, but may involve specifications from

other institutions in HIE)

• Distributed heterogeneous specifications

(specification diagrams over HIE)

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 136 -

Focused heterogeneous specifications

In a heterogeneous environment HIE :

Translation: introduces new structure to specification models, following an

institution semi-comorphism ρ : I→ I′; for any I-specification SP ,

ρ(SP)

is an I′-specification with Sig [ρ(SP)] = ρ(Sig [SP]) and

Mod [ρ(SP)] = {M ′ ∈ |Mod′(ρ(Sig [SP])| | ρ(M ′) ∈ Mod [SP]}.

Hiding: hides extra structure of specification models, following an institution

semi-morphism µ : I′ → I; for any I′-specification SP ′,

SP ′ µ

is an I-specification with Sig [SP ′ µ] = µ(Sig [SP ′]) and

Mod [SP ′ µ] = {µ(M ′) |M ′ ∈ Mod [SP ′]}.

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 137 -

Some topics to repeat for
focused heterogeneous specifications

• structured specifications

• proving semantic consequence of, and between specifications

− institution (co)morphisms in use

• soundness and completeness of (compositional) proof systems

• stepwise software development

• constructor and abstractor implementations

− inter-institutional constructors needed: the model component of institution

semi-(co)morphisms

• branching implementations and architectural specifications

− developments of individual units may proceed independently within different

institutions, given inter-institutional constructors to join them

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 138 -

Distributed heterogeneous specifications

. . . some preliminary ideas . . .

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 139 -

Heterogeneous specification morphisms

Recall: a specification morphism σ : SP → SP ′ in an institution I is a signature

morphism σ : Sig [SP]→ Sig [SP ′] such that for all models M ′ ∈ Mod [SP ′],

M ′ σ ∈ Mod [SP].

Define: a heterogeneous specification morphism from I-specification SP to

I′-specification SP ′ is a pair 〈ρ, σ′〉 : SP → SP ′, where ρ : I→ I′ is an

institution (semi-)comorphism, and σ′ : ρ(Sig [SP])→ Sig [SP ′] is an I′-signature

morphism such that for all models M ′ ∈ Mod [SP ′], ρ(M ′ σ′) ∈ Mod [SP].

This yields a category HSPEC of heterogeneous specifications over HIE .

�� ��. . . Grothendieck construction. . .

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 140 -

Distributed heterogeneous specifications

• A distributed heterogeneous specification HSP is a diagram of heterogeneous

specifications in HSPEC, HSP : J → HSPEC.

Notation:

− for i ∈ |J |, HSPi is the specification HSP(i)

− for e : i→ j in J , HSPe = 〈ρe, σe〉 : HSPi → HSPj
is the heterogeneous specification morphism HSP(e).

• A distributed heterogeneous model of HSP is a family M = 〈Mi〉i∈|J | of

models compatible with HSP.

That is, such that

− for i ∈ |J |, Mi ∈ Mod [HSPi]
− for e : i→ j in J , Mi = ρe(Mj σe).HSP is (globally) consistent

if it has a (distributed) model

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 141 -

Moving to the limit

Fact: If I is the colimit of HIE in coINS then for any distributed heterogeneous

specification HSP over HIE there is a (focussed heterogeneous) I-specification SP

with models corresponding exactly to distributed heterogeneous models of HSP.�
 �	. . . given enough assumptions. . .

So what?

Typically, the limit institution I is not “natural” — hence it is better to work with

distributed specifications, dealing with various views of the system separately.�
�

�
�

�
�

�
Work with local views, local understanding, and local compatibility

. . . but do not forget about global consistency and emerging properties

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 142 -

Implementing distributed specifications

To implement HSP : J → HSPEC by HSP ′ : J ′ → HSPEC, provide:

• a covering function f : |J | → |J ′|, and

• a distributed constructor κ = 〈κi : Mod [HSP ′f(i)]→ Mod [HSPi]〉i∈|J |.�
 �	So that for each i ∈ |J |, we have HSPi κi
ñññòHSP ′f(i).

THEN:

HSP 〈κ, f〉ññññññòHSP ′

if for each distributed heterogeneous model M′ = 〈M ′i′〉i′∈|J ′| of HSP ′,
κf (M′) = 〈κi(M ′f(i))〉i∈|J | is a distributed heterogeneous model of HSP.�
�

�
�

STRUCTURE MAY CHANGE! INSTITUTIONS MAY CHANGE!

WE NEED TO ARRIVE AT A SINGLE “IMPLEMENTATION” INSTITUTION

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 143 -

One standard way

Fact: For any HSP : J → HSPEC and HSP ′ : J ′ → HSPEC, given

• a functor F : J → J ′

• a natural transformation τ : HSP → F ;HSP ′ with

τi = 〈ρi, σi〉 : HSPi → HSPF (i) for i ∈ |J |

we have

HSP 〈κ, f〉ññññññòHSP ′

where

• f = |F | : |J | → |J ′|

• κ = 〈ρi(σi) : Mod [HSP ′F (i)]→ Mod [HSPi]〉i∈|J |

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 144 -

Key idea

A semantic view of heterogeneous logical environment

for software specification and programming emerges:

a diagram of institutions

Sample further work:

• keep building up the environment of relevant institutions and (forward)

(semi-)(co)morphisms between them;

• expected results and methods for distributed heterogeneous specifications;

• proof theoretic links between institutions linked semantically;

• programming links between “programming” institutions linked semantically.

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 145 -

Summing up

• Standard underlying logical and preliminaries: basic algebraic framework,

equational logic; category theory

• Institutions: motivation, abstraction, generality; formalization of the concept of a

logical system

• Institutional model theory: numerous bits and pieces of classical model theory

reformulated, clarified and sharpened

• Foundations of software specification and development:

− Specifications: basic and structured specifications; proof systems for

specifications

− Program development: (constructor) refinements; architectural specifications

− (Observational approach)

• Heterogeneous logical frameworks: maps between institutions; heterogeneous

specifications and development; building complex logical systems

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 146 -

Conclusion

A small dose of

mathematics (universal algebra, logic, category theory)

helps to clarify, sharpen, expand and develop

the concepts, methods and results we want

Andrzej Tarlecki: Workshop LAC’18, February 2018, Melbourne - 147 -

